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C H A P T E R  1 

I N T R O D U C T I O N  T O  P R O X I M I T Y  O P E R A T I O N S  

1 .O Introduction 

As the frequency and complexity of space missions increase, the scope of the tasks 
to be performed on orbit will grow beyond the capabilities of single spacecraft and will 
necessitate collaboration among multiple specialized vehicles. The safe and efficient 
operation of multiple spacecraft in close proximity to one another will place new demands 
on both pilots and flight control systems in the near future. Inflight construction of the 
space station and other complex on orbit tasks will require a flexibility and spontaneity 
beyond current proximity operation techniques. Operations between the space station, 
orbital maneuvering vehicles, free flyers, and the shuttle will continue to depend on the 
ability to routinely perform complex rendezvous, formationkeeping, and docking 
maneuvers.1O Though shuttle crews can perform many of these tasks manually, extended 
duration formationkeeping requirements and the introduction of highly maneuverable 
unmanned vehicles will cause crew workloads to increase and will necessitate the 
development of automatic systems to handle standard proximity operations. 

The proximity operations problem has usually been solved using an 'active' pursuit 
spacecraft to establish a desired position and attitude relative to a 'passive' target vehicle.12 
This pursuit vehicle approach neglects both the ability of the 'passive' vehicle to perform 
complementary attitude and translation maneuvers and the superior fault tolerance of a 

system employing two active vehicles. Consequently, the pursuit vehicle maneuver 
sequences are less efficient and more constrained than those generated using the control 
authority available from both vehicles. 

This paper presents a cooperative autopilot approach to the controll of joint 
maneuvers of two spacecraft during proximity operations. The cooperative approach 
considers the two spacecraft as a single system and exploits the rotational and translational 
capabilities of each spacecraft in order to control the state of this system. The efficiency 
and robustness to jet failures of this new autopilot design is demonstrated. 
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1.1 Background 

Previous treatments of spacecraft proximity operations have focussed on the control- 
of the mo.tion of a single maneuvering vehicle in a reference frame fixed to a target 
vehicle.'*-21.22 This pursuit vehicle initiates rendezvous and docking, performs 
formationkeeping activities, and implements collision avoidance maneuvers. Though the 
target vehicle may perform some independent attitude control during the approach phases of 
the rendezvous, the commanded attitude of the target vehicle is pre-determined and is not 
updated to account for the actual state of the pursuit vehicle. The closed-loap control used 
in this approach to proximity operations formulates reaction control jet firng commands for 
the pursuit vehicle in order to minimize the fuel consumed, the time to reach the target state, 
and/or the final state error. 

Single vehicle control was successfully applied to terminal phase proximity 
operations and docking during the Apollo and Skylab missions. On these missions the 
target spacecraft remained essentially passive while the pursuit vehicle performed simple, 
manually controlled approach maneuvers. During the shuttle era, the target spacecraft have 
been science platforms or communication and observation satellites which have not been 
designed for extensive orbital maneuvering. Consequently the space shuttle performs most 
of the proximity operations maneuvers even though it is more massive than most of its 
rendezvous partners. The use of single vehicle control avoids the complexity of the 
cooperative. maneuvering problem and in current space shuttle operations does not 
significantly impact the performance of the two vehicle system due to the imbalance of 
control authority between the vehicles. 

The introduction of the next generation of advanced spacecraft will add a new 
dimension to proximity operations. Spacecraft like the Orbital Maneuvering Vehicle 
(OMV) will be unmanned, maneuverable, and designed specifically for the rendezvous 
mission. Future enhancements to the shuttle autopilot will make the shuttle a more agile 
and more efficient proximity operations vehicle. Artificially constraining one of these 
advanced vehicles to remain passive during proximity operations eliminates the natural 
synergism that exists between two agile spacecraft. Conversely, employing the control 
authority of both spacecraft to perform coordinated maneuvers will provide an increased 
level of flexibility and a greater margin of safety during proximity operations. 

In many mission scenarios spacecraft will be required to operate at a range of only a 
few vehicle lengths. Control of the relative attitude and position of two spacecraft in this 



operating regime is especially difficult due to stringent plume impingement constraints and 
"fail-safe" collision avoidance rules. 14 

. Many spacecraft rely on hot gas reaction control jets to perform on orbit maneuvers. 
The space shuttle reaction control system utilizes bipropellent (nitrogen tetraoxide and 
monomethyl hydrazine) hypergolic jets.4 These jets expel a plume of high velocity gas 
when fired that could damage or disrupt a neighboring vehicle during close proximity 
operations. While vehicles with delicate optical instruments or solar panels are particularly 
sensitive to the chemical effects of the jet plume, spacecraft with flexible or articulated 
appendages may experience adverse perturbations due to the force of the plume 
impingement. Vehicles operating in close proximity to the space station will be required to 
orchestrate maneuvers such that the thruster exhaust does not impinge on the stationlo 

When operating in close proximity to a spacecraft which is sensitive to jet plume 
effects, the space shuttle crew manually disallows jet firings which may impinge upon the 
target spacecraft. For example, if the shuttle passes beneath such a vehicle all upwardly 
f ~ n g  jets are disall0wed.1~ In each situation where a jet or set of jets is to be disallowed 
the controllability of the maneuvering vehicle must be re-evaluated. During single active 
vehicle proximity operations, the pursuit vehicle must be capable of avoiding a collision 
with the passive target vehicle under a variety of limited failure modes. The types of 
maneuvers a pursuit vehicle may perform become extremely limited under collision 
avoidance and plume impingement constraints as the spacecraft get very close. If a large 
number of jets on the pursuit vehicle are deselected or have failed, the maneuvers available 
to the crew will probably be fairly fuel inefficient and in the extreme case, the pursuit 
vehicle may become unable to control the relative states of the two vehicles. 

The cooperative control scheme developed in this thesis exploits the natural 
redundancy provided by the actuators on the target vehicle in order to make the two vehicle 
system more robust to jet unavailabilities. 

1.2 Application 

The cooperative autopilot approach to the control of two vehicle proximity 
operations is applicable to any two spacecraft. This thesis develops the concept for a 
system of two shuttle vehicles. As the principle support vehicle for construction of the 
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and the new cooperative control architecture is not a consequence of introducing a more 
efficient or otherwise superior spacecraft in place of the non-maneuvering target vehicle. 
Specifically, the use of two shuttle vehicles will facilitate direct comparisons between 
cooperative control and traditional 'shuttle as a pursuit vehicle' proximity operations 
soh tions. 

* 

The general scenario to be considered in this thesis is a joint maneuver by two space 
shuttles operating in low earth orbit (LEO). The shuttles are in nearly identical 90 min (300 
nm ) circular orbits at a relative range of less than 3000 ft. The maneuver will typically last 
less than one orbit. The initial attitude of each vehicle is unconstrained. The 'two spacecraft 
are idealized as three dimensional rigid bodies; the mass (m), inertia (I), and center of mass 
location (ran), of each vehicle is constant and known in the vehicle's body fixed coordinate 
frame. Similarly, the locations (r,), and the thrust vectors (fj), of the 44 reaction control jets 
on each orbiter are known in the body fixed frames. The attitude and position of each 
vehicle in an earth centered inertial coordinate frame is available from onboiud navigation 
devices. The relative states of the vehicles are assumed to be available either as a direct 
measurement (by a laser ranger for instance) or as the difference of the inertial states. 
These sensor and estimator requirements are not unique to a cooperative control architecture 
and have already been proposed for use during traditional proximity operations.22 

1 remotely piloted spacecraft such as the OMV is assumed to exist between the two 
. spacecraft. The slave vehicle provides mass property parameters, jet status data as well as 

current position and attitude information to the master vehicle. The master vehicle passes 
the numbers of the jets to be fired and the corresponding firing times to the sliive vehicle. 
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1.3 Overview of the Cooperative Controller 

The cooperative controller is a two tiered system consisting of an open-loop 
maneuver planner block and a closed-loop regulator block. The maneuver planner employs 
a linearized model of the vehicles to plan an open-loop trajectory consisting of an 
acceleration burn, a coast period, and a deceleration bum. During the coast phase of the 
maneuver the regulator monitors the state errors and computes any necessary corrective jet 
firings in order to keep the system following the pre-planned trajectory. Figure 1.1 is a 
block diagram of the cooperative controller. 

The trajectory solver (chapter 5) accepts a state command form a guidance algorithm 
or pilot interface module and computes a trajectory consisting of an acceleration burn, a 
coast, and a deceleration burn which carries the system from the current state to the 

commanded final state. The acceleration and deceleration jet firing commands are 
determined by a simplex jet selection algorithm (chapter 4) which minimizes a cost function 
based on total jet firing time. The trajectory itself is optimized to minimize the final state 
error. 

Once a satisfactory trajectory has been determined the trajectory solver passes the 
acceleration jet firing commands, the desired value of the system state at the beginning of 
the coast phase of the trajectory, and the deceleration jet firing commands to the trajectory 
sequencer. The trajectory sequencer initiates the planned maneuver by passing the jet firing 
commands to the jet sequencer which actually implements them. At the end of the 
acceleration, burn the trajectory sequencer initializes the nominal trajectory state generator 
(section 5.3) with the pre-computed value of the system state at the beginning of the coast 
phase and activates the phase space regulator (chapter 6). 

During the coast phase of the maneuver the nominal trajectory generator updates the 
target value of the system state at 12.5 hz using a linearized model of the two vehicle 
system. The state error is then computed as the difference between the current state and the 
target state. The phase space regulator compares the state error to a set of predetermined 
thresholds and determines when a corrective jet firing is required. To implement a 
coi-rective jet firing a velocity impulse request is passed to the simplex jet selection 
algorithm which computes an optimum set of jet firing commands. These feedback 
initiated jet firing commands are immediately passed to the jet sequencer and implemented. 
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At the end of the coast phase of the maneuver the pre-computed deceleration jet 
firings are implemented. At the end of the deceleration jet firing sequence the two bum 
maneuver is complete. A new maneuver is then commanded or the coast phase feedback 
loop is reactivated to maintain the two vehicle system at the commanded state. In the latter 
case the output of the trajectory state generator is the coinmanded state and is constant. 

1.4 Outline of this Thesis 

Chapter 2 develops the rotational equations of motion for a body in space and 
derives an expression for the relative motion of two rigid bodies. 

Chapter 3 presents a derivation of the Clohessy - Wiltshire equations for the 
translational motion of a body with respect to a neighboring circular orbit. These equations 
are then used to develop an expression for the relative motion of two maneuvering 

spacecraft. 

Chapter 4 develops the cooperative control jet selection algorithm. The two vehicle 
jet selection problem is first formulated as a linear programming problem. The properties 
of linear programming problems are then presented and the revised simplex algorithm 
introduced as a solution technique. Finally the practical aspects of the application of the 
revised simplex algorithm to the jet selection problem are discussed. 

Chapter 5 develops the two vehicle trajectory solver which determines the open- 
loop trajectory for the two bum maneuver. First, the linearized algebraic equations 
describing the final state of the system in terms of the initial state and the coast velocity 
parameters are derived. An iterative method for determining the values of the coast velocity 
parameters which minimize the final state error is then presented. The coast phase nominal 
state trajectory generator is formulated. 

Chapter 6 formulates the phase space regulator for the two spacecraft cooperative 
control problem. The velocity to be gained algorithm and the concept of the phase sphere 
are introduced as the basis for general phase space control. The application of phase space 
control to the cooperative control problem is then discussed. 
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Chapter 7 contains a description of the tests used to verify the operation of the 
cooperative controller for the two space shuttle example. A detailed analysis of the results 
of the tests is presented and comparisons are made between the pursuit vehicle approach 
and the cooperative control approach to proximity operations. 

i 

Chapter 8 contains a summary of this investigation and outlines some key areas for 

I 
further research which should be addressed prior to an actual flight test of this system. 
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C H A P T E R  2 

R O T A T I O N A L  M O T I O N  D U R I N G  P R O X I M I T Y  
0 P E  R A T  I O  N S  

2.0 Introduction 

The rotational motion of a spacecraft is based primarily on rigid body angular 
momentum principles. This section provides a derivation of Euler's Momentum IQuations. 
Though a general closed form solution of Euler's equations does not exist, in certain cases 
good approximations may be made and accurate solutions formulated. The essential 
approximations to be employed during the development of the cooperative autopilot are 
introduced and the linearized rotational equations of motion formulated. Quaternions will 
be employed to express the angular displacements between reference frames and are briefly 
introduced. 

2.1 Kinematics of a Rigid Body7-8 

Consider a rigid body of mass m as a collection of particles with individual mass mi 

(figure 2.1). The ith particle has instantaneous position Ri and instantaneous velocity Ri 
with respect to an inertial reference frame. The linear momentum of this particle is given by 
Newton's Second Law: 

The moment of this momentum about an arbitrary point 0 located at R, is defined as 

where ri is the instantaneous position of the i* particle with respect to an intermediate 
coordinate frame centered at the point 0. Since Ri = & + ri , the first derivative of Ri is 
Ri = Ro + ri and the moment of momentum becomes 

I 
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Figure 2.1 
Position of particle mi in an 

inertial and a rotating reference frame. 

The first term in this expression is the angular momentum of the particle observed 
in the intermediate coordinate frame and the second term is the correction due to the motion 
of the point 0. 

The total angular momentum of the body about point 0 is the vector sum of the 
angular momenta of the i particles. 

If the point 0 is constrained to correspond to the center of mass of the rigid body, then by 
definition 

C ri mi = o 
1 

and the angular momentum equation becomes 

(2-5) 

1 

The time derivative of the position of the i* particle in the intermediate frame with respect 
to the inertial reference frame is- 

15 



where r: indicates differentiation of ri with respect to time in the intermediate coordinate 
frame and o is the angular velocity of the body with respect to the inertial frame. Since the 
body is rigid and the intermediate reference frame is fixed in the body, 6 = 0 and 

Substituting this expression into the expression for Ho yields 

As the number of particles in the body is allowed to increase while the individual mi 
decrease such that m = C mi remains constant, the particle model of the body approaches a 
continuum model. In the limit, this summation over the particle mass elements becomes an 
integration over the differential elements of mass, dm. 

H,=\rx(oxr)dm (2-10) 

The argument of this integral is evaluated by expressing the vector products in component 
form along the body fixed coordinate directions. 

The components of the angular momentum along the body axes are then 

H, = -ox\ b y )  dm + (x2+z2) dm - cu, (yz) dm I 
H, = -ox\ (xz) dm - (yz) dm + cu,\ (x2+y2) dm 

(2-12) 

The integrals in the a b v e  equations are constant in any coordinate frame fixed to the rigid 
body. By convention, 

16 



are defined as the moments of inertia and 

as the products of inertia. The components of the angular momentum may be rewritten in 
terms of these constants. 

Hx = I X X O X  - Ixyoy - I X Z W  

Hy = - IXYOX + I,% - IYZOZ 

H, = - IXZOX - Iyzoy + I Z Z O Z  

(2- 15) 

Mamx notation is often the most convenient way to write an expression for the total angular 
momentum. 

&=IO (2-16) 

The matrix I is the inertia tensor 

(2-17) 

The rate of change of the angular momentum is calculated by taking the derivative 
of this last expression for.H, with respect to time. 

A, = IO + I; = 1*0 + 0 x 1 0  + IO* + I ( 0 X O )  (2-18) 

Here I* and O* are the derivatives of I and o in the body fixed reference. frame. Since the 
inertia tensor of a rigid body is constant in a frame fixed in the body, I* = 0 and hence the 
first term on the right hand side of this equation is zero. Since o x o = 0, the last term on 
the right is also zero. The rate of change of the angular momentum is then expressed 

A, = I O + O X I O  (2-19) 
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2.2 Euler's Moment Equation 7.8 

Newton's second law relates the force on a particle, Fj, to, the linear momentum of 
the particle, pi. 

where 

pi mi Ri (2-21) 

Since the mass of a particle is constant, Newton's second law may be written 
.. 

F; = mi Ri (2-22) 

From equation 2-6, the total angular momentum of the body can be written in terms 
of the of the momenta of the individual particles 

H, = ri x mii; 
1 

(2-23) 

Differentiating this expression for the angular momentum with respect to time and noting 
that i i  x i.; = 0 

(2-24) 

A, = C pix miRi + R, x C miri (2-25) 
i 1 

The origin of the body coordinate frame has been constrained to be the center of mass of 
the rigid body. Thus by definition of the center of mass 

1 

and the rate of change of the angular momentum is 

(2-26) 

(2-27) 
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The factor q R i  is the time rate of change of the linear momentum of the i* particle and 
may be replaced using the above expression for Newton's second law 

(2-28) 

If the external force on the i* particle is defined as Ei and the force exerted on the 
i* particle by the j* particle is defined as fij, then the total force exerted on the i* particle is 

Substituting this expression for the total force into equation 2-28 

1 i j  

The double summation in this equation is composed of pairs of terms of the form 

From Newton's third law 

fij = -fji 

so that the double sum may be rewritten 

(2-29) 

(2-30) 

(2-3 1) 

(2-32) 

(2-33) 
i j  

In an ideal rigid body, ( no particle deformation ), the mutual forces between particles act 
through the particle centers. Consequently, the direction of the fij force vectors correspond 
with the direction of the the relative position vectors ( ri - rj ) and each cross product in the 
double summation is zero. The rate of change of the angular momentum vector of a rigid 
body is 

Ho = C r i x E i  
1 

(2-34) 

Ei is the total external force vector applied to the i* particle. The corresponding moment 
applied to the rigid body by this force is given by 

ri x Ei (2-35) 
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and the total external moment applied to the rigid body is 

(2-36) 

Finally, combining equation 2-34 and 2-36 we arrive at the familiar governing equation for 
the rotational motion of a rigid body 

A, = M, (2-57) 

When the total external moment applied to the body is zero, this equation is merely 
a statement of the principle of the conservation of angular momentum. In addition, if the 
kinematic expression for the rate of change of the angular momentum (equation 2-19) is 
substituted for H, , this equation becomes 

M, = I c j + o x I a  (2-38) 

This is the matrix form of Euler's Moment Equations. These three coupled, non-linear 
differential equations completely describe the rotational motion of a rigid body about its 
center of mass. Though a general closed form solution of Euler's equations does not exist, 
in special cases when the body is axisymmetrical, the angular velocity is small, or the 
applied moments are large, good approximations can be made and simple closed form 
solutions to the resulting linear differential equations derived. 

Euler's equations may be written in component form as 

(2-39) 
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If the angular rates ox, a,,, oz are small, the second order terms may be neglected and 
these equations reduced to 

Mx = I,,;, - I,,;, - Ixz& 
My = - IxyO, + IyY% - IyzCj, 

M, = - Inox - Iyz? + I,,& 

Which may be re-written in matrix form as 

(2-40) 

M = 1; (2-41) 

so that the rate of change of the angular velocity is 

& = I-lM (2-42) 

If in addition, the external moment applied to the vehicle is zero, then the spacecraft 
equations of motion become 

o = constant (2-43) 

Many spacecraft employ reaction control jets to perform attitude and position 
control. Each reaction control jet on a spacecraft is described by its location (rj) and its 
force vector (fj). The moment applied about the spacecraft center of mass (rem) by the jfi 
jet is 

Mj = (rj - ra) x fj 

Define Ctj, the angular acceleration due to the j* jet, as 

aj = I-'Mj 

(2-44) . 

(2-45) 
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If a control vector u is defined such that 

1 when the j* jet is fuing I 0 otherwise U j  = (2-46) 

then the equation 2-42 governing the rotational motion of the spacecraft may be written 

(2-47) 

where N is the number of reaction control jets on the spacecraft. 

2.3 Attitude Displacements 1730 

Consider a coordinate frame rotating with a constant angular velocity o with respect 
to a reference coordinate frame. The angular velocity vector may be written as 

o = &;, = %( /ix + m iy + n iz )  (2-48) 
dt 

Integrating this constant angular velocity over the period At = t1 - to 

o d t  = "i.Jo dt dt = &(At);, dt J. (2-49) 

This angular displacement vector represents a rotation by an angle A 8  = a ( A t )  about an 

axis i, A more convenient representation of this rotation is Hamilton's four element 
quaternion. 

dt 
A 

a 

P 
(2-50) 

6, a, p, y are the Euler Parameters and are defined as 
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1 1 1 
2 2 2 6 = cos-A0 a = / s i n i A 0  p = m sin-A0 y = n sin-A0 (2-51) 

From this definition it is clear that 

q = ai, + piy  + yiZ = (2-52) 

- 
61 -a1 -p1 -Y1 

a1 81 -Y1 p1 

P1 Y1 81 -a1 

Y1 4-31 a1 

and that 

a 2 + p 2 + + + 8 2 =  1 (2-53) 

The new orientation of a reference frame following a rotational displacement 0 
about an axis 1, is given by 

- u u  

9 f = q o q e  (2-54) 

where io is the quaternion representation of the original orientation of the reference frame 
and quaternion multiplication is defined by 

- -  
Q142  = 81% - nTn2 + 8142 + ha1 + Q1 x 42 

(2-55) 

A vector may be rotated thru an angle represented by the quaternion q in the 
following manner. Define the four element vector Z0 as 

" 
ro = [;I 

then the rotated vector is 

(2-56) 

(2-57) 
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2.4 Relative Rotational Motion of Two Spacecraft 

Consider the rotational motion of two rigid spacecraft. Define the relative angular 
velocity as 

where 01 and are the angular velocity of vehicle #1 and vehicle #2. The rate of change 
of the relative angular velocity is the derivative of this equation in an inertial reference frame 

Euler's Moment equation provides an expression for the angular acceleration experienced 
by each vehicle in terms of the external moment applied to the vehicle. Thus &R may be re- 
written 

As before, if the angular velocity of each vehicle is small, the second order rate terms may 
be neglected. Since the external moments experienced by each spacecraft are primarily due 
to reaction control jet activity, the moments Mi and M2 may be expanded as the sum of the 
moments applied by the individual jets. 

The additional subscript has been added in this expression to indicate the vehicle 
referenced. As before, if the angular acceleration of the spacecraft due to firing the j* jet is 
aj the this equation may be re-written as 

(2-62) 

where ul, u2 are the control vectors for the two vehicles. When none of the jets in the two 
vehicle system are active, the angular momentum of the system is conserved and the 
govehng equation for the relative attitude of the vehicles becomes 

O R  = 0 + OR = constant (2-63) 
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. CHAPTER 3 

SPACECRAFT T RAN SLAT1 0 N D Y  NAM I C S  

3.0 Introduction 

The translational motion of a spacecraft is based upon the linear momentum of an 
equivalent mass particle under the influence of external forces. This section derives the 
equations of motion for a rigid body undergoing pure translation. The predominant 
external force on a spacecraft is the gravitational force of the planet it is orbiting. A 
formulation of the general two-body problem is presented. Though a treatment of the 
methods generally employed to solve the resulting non-linear second order differential 
equations is beyond the scope of this thesis, these equations serve as the basis of a 
derivation of the Clohessy - Wiltshire18 (Euler-Hill) equations for moti.on relative to 
reference point travelling in an unperturbed circular orbit. The primary interest of this 
thesis is the control of the relative motion of two active spacecraft. The equations of 
relative motion are derived in a "local vertical local horizontal" reference frame. 

. 

3.1 Translational Motion of a Rigid Body7 

Consider a rigid body of mass m as a collection of particles with individual mass 
mi. The i* particle has an instantaneous position Ri and instantaneous velocity Ri with 

respect to an inertial reference frame. The linear momentum of this particle is defined as 

pi = mi R; (3-1) 

Define ri as the instantaneous position of the ifh particle with respect to an intermediate 
coordinate frame centered at the point 0 such that Ri  = Ro + ri , where Ro is the 
instantaneous position of the point 0 in the inertial frame. The linear momentum of the ith 
particle is then 

pi = miRo + miri (3-2) 

The total linear momentum of the body is the sum of the linear momenta of the i particles 
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1 i 

Since the mass of the i* particle is constant, 

(3-3) 

(3-4) 

If the point 0 is constrained to correspond to the center of mass of the rigid body, then by 
definition 

Cri.I; = o 
1 

and the linear momentum equation becomes 

(3-5) 

By definition m = mi so that the total linear momentum of a rigid body reduces to 
1 

p = m %  (3-7) 

which is just the linear momentum of a point mass m located at the center of mass of the 
body. The rate of change of the total linear momentum is the derivative of this expression 
with respect to time 

p = &  (3-8) 

If the extemal force on the i* particle is defined as Ei and the force exerted on the 
i* particle by the j* particle is defined as fij, then the total force exerted on the i* particle is 

Fi = Ei + fi j  

The total force on the body is the sum of the total force acting on each particle 

1 i i j  

(3-9) 

(3-10) 

From Newton's third law it is clear that 

(3-1 1 )  
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and thus that the double summation over the internal force vectors in the total force 
expression is zero. The total force is then the sum of the external forces applied to the 
particles in the body. 

F = C E ,  
1 

(3-12) 

Applying Newton's second law (F; = pi) permits p to be eliminated between 
equation 3-8 and equation 3- 12 and yields the governing equation for translational motion 
of a rigid body. 

(3-13) 

As expected, the pure tanslational motion of a rigid body in the presence of external 
forces is equivalent to the motion of a single particle of equivalent mass located at the center 
of mass of the body translating under the influence of a single force equivalent to the vector 
sum of all the external forces. 

3.2 Two Body Problem l7 

Consider two bodies with instantaneous positions R1 and R2 with respect to an 
inertial reference frame. If the bodies are far enough apart, of have sufficiently spherical 
mass distributions and are not in contact with each other, then their mutual gravitational 
attraction will act through their mass centers and they may be treated as particle masses mi 
and m2. Newton's law of gravitation states that any two particles attract one another with a 

force of magnitude 

(3-14) 

acting along the line joining them. Here G is the universal gravitational constant and R12 is 
the distance between the particles. 

R12 = R21 = 4 R 2 - R d  ( R2 - R1) (3-15) 

The vector representation of the gravitational force experienced by each body is 
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(3-16) 

Newton's second law states 

F = &  (3-17) 

and may be applied to the gravitational force equation for each vehicle to yield two 
differential equations describing the motion of the two bodies in the inertial reference 
frame. 

The motion of m2 relative to mi is obtained by differencing these equations 

Thus the basic differential equations of relative motion for the two body system is 

CL 
R3 

# + - R = O  

(3-18) 

(3-19) 

(3-20) 

In this thesis, the primary interest is the motion of a rigid body about the earth. In 
this case, the center of mass of the two body system very nearly corresponds with the 
center of mass of the earth. Thus the relative motion differential equations (3-20) may be 
interpreted as a description of the motion of a rigid body about a center of attraction. 

3 3  Translational Motion with Respect to a Nominal Circular Orbit 18, 7 9  l 1  

Consider a reference point travelling in an unperturbed circular orbit about the earth. 
The motion of the point in an earth centered inertial reference frame is given by 

(3-21) 
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Define a "local vertical - local horizontal" reference frame centered on and moving With this 
reference point. The LVLH unit vectors are defined as: 

(3-22) 

In other terms, 1, is defined opposite the instantaneous orbital radius vector,, iY is defined 
opposite the angular momentum vector of the orbit, and i, is defined to complete the right 
handed coordinate system. 

A 

Consider a spacecraft travelling in a separate orbit and experiencing an external 
perturbation force such as drag from the upper atmosphere, gravitational anomalies, or 
reaction control jet activity. The motion of this vehicle in an earth centered inertial reference 
frame is governed by 

P Rl  + -Rl  = a1 
R: 

(3-23) 

where a1 is the force per unit mass of the perturbation force. The motion of'the spacecraft 
relative to the reference point is described by the difference of the second order equations 
describing the individual motions in inertial space. 

(3-24) 

Here rl is defined as the instantaneous position of the spacecraft relative to the reference 
point 0. 

The position of the reference point, Ro, and the relative position vector, rl, are 
easily expressed in the LVLH coordinate frame as 

Ro = [ O  0 -&F (3-25) 

rl = [ x  y zIT (3-26) 

Since R1 = R,, + r1, the inertial position of the spacecraft may also be expressed in the 
LVLH coordinate frame 

R1 = [ x  y ( z -%) lT  (3-27) 
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The ratio 

(3-28) 

may be expressed in terms of the LVLH coordinate variables by substituting the expression 
in equation 3-25 for Ro and the expression in equation 3-27 for R1. 

(3-29) 

During proximity operations rl << & and therefore x, y, z << €&,. Under this condition, 
the second factor in equation 3-29 may be expanded as a binomial series and the equation 
re-written as 

= R: ((R,, - 21-3 - $R,, - 2)-5(x2 + y2) + H.o.T.) (3-30) 
R: 

Expanding the ( b - z )  terms as binomial series and collecting similar terms yields 

(3-3 1) 

Y - 
R, ’ R, ’ R, Since << 1 second order terms involving these ratios are neglected leaving 

Substituting this expression into equation 3-24 

rl = -(R, P - ( 1  + 3 A ) R l )  + a1 
R3, Ro 

and noting again that R1 = R, + rl 

(3-32) 

(3-33) 

(3-34) 

Z 
Since R, << 1, the last term in the brackets represents a small fraction of the LVLH 
coordinate displacements and may be neglected without introducing significant errors. 
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With these simplifications the linearized differential equation governing the motion of a 
spacecraft relative to a unperturbed reference orbit becomes 

(3-35) 

The complete derivative of the position of the spacecraft relative to the orbiting 
reference point may be written as 

rl = r; + o x r l  (3-36) 

where 6 is the derivative with respect to the LVLH coordinate system and o is the 
angular velocity of the LVLH frame relative to the earth centered inertial frame. The 
complete derivative of this relative velocity is the relative acceleration. 

~1 = r;* + 2(oxr;) + O X  rl + o x  ( o x r l )  (3-37) 

Since the LVLH coordinate frame is aligned with the instantaneous radius vector of the 
reference orbit, the angular velocity of the LVLH frame is equal to the instantaneous 
angular velocity of the reference point about the center of the earth. For a general 
unperturbed reference, this angular velocity is time varying and equal to 

(3-38) 

where h is the massless angular momennun of the orbit. 

When the reference orbit is defined to be an unperturbed circular orbit, & is a 
constant and equal to the semi-major axis of the orbit. From Kepler's Second Law (equal 
areas in equal time) the angular velocity of the circular orbit is constant and equal 'to the 
mean motion of the orbit 

(3-39 
) 

Here TO is the mean motion and iY is the cross-plane unit vector of the LVLH frame. Thus 
for a circular reference orbit the complete derivative of the relative position vector may be 
written 
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Eliminating r1 between this kinematic expression and equation 3-35 yields the set of three 
second order linear differential equations for the relative motion of a spacecraft in the 
LVLH reference frame. 

** x1 = 2q0z; + a, 

y;* = - +Yl+ ay (3-41) 

z;* = - 2q0 x; + 3qgzl + a, 

These equations are known as the Clohessy - Wiltshire (Euler - Hill) equations and are 
often expressed is state space form (X = A X + B f ) as 

- 
0 0 0 1 0 0  

0 0 0 0 1 0  

0 0 0 0 0 1  

0 0 0 0 0 2 7  

O - $ O  0 0 0 

0 0 3q2 -27 0 0 

+ 

0 0 0  
0 0 0  
0 0 0  

mi' 0 0 
0 mi' 0 
0 0 mi' 

[ i] (342) 

I where a1 has been replaced by mi'f. 

The character of the motion of an unpowered satellite may be ascertained by 
inspection of equations 3-41 or equation 3-42. The motion of the satellite in the direction 
perpendicular to the orbital plane (& ) is uncoupled from the motion along the other LVLH 
directions and is a simple harmonic oscillation with a period equal to the orbital period of 
the reference point, zLL. Qualitatively, this motion is the consequence of a slight difference 

T O  

I in the inclination of the spacecraft and reference orbits. 

The motion along the x and z axes is a coupled oscillation. Note however, that 
when the vehicle is positioned on the LVLH x axis (zl = 0) with zero inplane velocity 
(XI, il = 0) the second derivatives of x and z are also zero and the vehicle is at an 
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equilibrium point. Consequently, positions along the x axis are efficient points at which to 
stationkeep and are commonly exploited during many types of proximity maneuvers. 

The complete solution of the Clohessy-Wiltshire (C.W.) equations is the sum of 
their homogeneous and particular solutions. Equations 3-41 may be written as a set of 
unforced differential equations 

.. x = 2q0z 

.. 
Y = - $ Y  (3-43) 

E = -2qox + 371202 

For simplicity the subscript 1 has been dropped and the I*' replaced with I*' though the 
derivative is still to be carried out in the LVLH frame. As noted above, the second equation 
represents a simple harmonic oscillation and thus the equation governing the motion in the 
cross-plane direction is 

Y = Yocosrlot + -sinqot Y O  

rl0 (3-44) 

with first derivative 

(3-45) Y = Yocosrlot - yoqosinqot 

YO and yo are respectively the initial out-of-plane position and the initial out-of-plane 
velocity. 

To solve the remaining two coupled differential equations describing the in plane 
motion, integrate the first equation and evaluate the resulting integration constant at the 
initial condition (t=O, x=xo, z=q ,  etc.) 

(3-46) 2710 z + ( i o  - 2% zo) x =  

Substitute this expression for x into the third equation and collect common terms. 

z = -$z + (4T& - 271,xo) (3-47) 

The solution to this equation will take the form z = Acosrlt + Bsinrlt + C, where A, B, and 
C are constants to be determined from initial conditions. The solution is 
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and has first derivative 

i = iOcosqot - (2x0 - 3q0q)sinq0t 

(3-48) 

(3-49) 

Substitution of this expression for z into the above equation for x yields 

x = (4x0 - ~ ,zo )cosq0 t  + 2 d i n q 0 t  + ( 6 q o ~  - 3x0) (3-50) 

Since each of the coefficients in this equation is constant, the governing equation for x may 
be obtained by direct integration. The resulting integration constant is again evaluated at the 
initial condition, t = 0. 

Unlike the other equations, this equation contains the secular term ( 6 q o ~  - 3ko) t. 
This term drives the spacecraft in the positive x direction if q > 0 (spacecraft is below the 
reference point) and in the negative x direction if q e 0 (spacecraft is above the reference 
point). This characteristic of the relative motion is primarily due to the small difference in 
the semi-major axis (and thus the period) of the two orbits. 

These six equations for x, y, z, x, y, z in terms of their initial values may be 
organized in a mamx structure and written as 
. -  
X 

Y 
Z 

x 

Y 
z 
. -  

- 
1 0 6qot-6S -S-3 t  4 0 q 1 -  C) 

rl0 V O  

o c  

0 0 

0 0 

4 - 3 c  - q 1 -  C) 0 
V O  

0 

- S  1 
rl0 

0 0 6rlo(l - C) 4 c - 3  0 2s 

0 - q o s  0 . o  C 0 

0 0 3qos -2s 0 C - 

(3-52) 

where 'C' and 'S' have been substituted for the expressions 'cos qat' and 'sin qat'. This 
homogeneous solution is in state transition matrix form, 
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The complete solution may be evaluated using the sum of the particular and the 
homogeneous solutions. 

x(t) = Wt) X(Q) + O(z) B(z) f(z) dz (3-54) 

The mamx B(z) is the control weighting matrix identified in equation 3-42. Since B is 
constant for a fixed vehicle configuration, the integral in equation 3-54 may be evaluated 
for periods of constant thrust ( f(z) = f ). 

11 

WT) B(T) f(z) dz = (1. Q(z) dr) B f = r(t) mi'f 1' (3-55) 

r(t) is a matrix and is dependent only on the length of the period of constant thrust and the 
mean motion of the reference orbit. 

- t - -  S '  
;o( r l o i  

- q 1  - C)- 3t2 0 
rl20 

0 - q l  - C) 0 

- - 2  2 0 l ( 1 -  C) 

- s - 3 t  4 0 L ( 1 -  C) 

0 1 s  0 

0 - L S  = - q l -  C) 

l l o h l o  1 r120 

rl0 rl0 

rl0 

rl0 - rlo 

(3-56) 

The complete solution of the Clohessy Wiltshire equations for a period of constant 
thrust in matrix can be expressed using matrix notation as 

(3-57) x(t) = O(t) X(Q) + r(t) mi'f 

3.4 Relative Translational Motion of Two Active Spacecraft 

Consider two spacecraft travelling in very similar near circular orbits. In addition 
define an LVLH coordinate system attached to a reference point travelling in a neighboring 

35 



unperturbed circular orbit. The motion of each spacecraft with respect to the reference 
point is described by equation 3-57. The relative position of the two spacecraft is 

which may be expanded as 

XR(t) = Wt) xR(Q) + r(t) (mi% - mi%) (3-59) . 

Since the perturbation forces are primarily due to reaction control jets the external forces f l  
and f2 may be expanded in terms of the contributions of the individual jets. The equation 
for the relative position of the two spacecraft becomes 

(3-60) 
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CHAPTER 4 

JET S E L E C T I O N  FOR C O O P E R A T I V E  C O N T R O L  

4.0 Introduction 

The cooperative jet selection algorithm must select an appropriate set of reaction 
control jets on each spacecraft and compute the corresponding firing times in order to 
simultaneously implement the rate change requested by the control system and minimize a 
linear fuel expenditure function. A linear programming solution to the single vehicle jet 
selection problem was incorporated into the shuttle OEX autopilot and successfully flight- 
tested on missions STS 51G and STS 61B in 1985. The extension of this algorithm to a 
two spacecraft system was first performed by B. Persson at the C.S. Draper Laboratory16. 
This section presents a discussion of this extended linear programming solution to the 
multi-vehicle jet selection problem. 

4.1 The Two vehide Jet Selection Problem. 

The cooperative autopilot developed in this thesis controls the attitude of the master 
vehicle with respect to an external reference frame, the attitude of the slave vehicle with 
respect to the master, and the position of the slave vehicle with respect to the master. 
Define an activity vector, Aj, to be the second derivative of the control variables in response 
to a firing of the j* jet. 

VR -j 

(4-1) 

where &j i the rate of change of the angular velocity of the master vehicle, i)Rj is the rate 
of change of the relative angular velocity vector, and VRj is the rate of change of the relative 
linear velocity. Expressions for each sub-vector in this nine dimensional activity vector 
may be derived from the treatment of rotational and translational motion provided in chapter 
2 and chapter 3. 
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The rate of change of the relative angular velocity is the difference of the angular 
accelerations experienced by the individual spacecraft. 

Similarly, the rate of change of the relative linear velocity is 

Each reaction control jet on a spacecraft applies a linear force and a moment about 
the spacecraft center of mass when fired. -The linear and angular acceleration of the 
spacecraft in response to a firing of the jth reaction control jet are 

Here I is the vehicle inertia mamx, m is the vehicle mass, r, is the location of the jth jet , 
r, is the location of the center of mass of the vehicle, and fj is the jet force vector. 

The jets on the master vehicle have a direct effect on the angular velocity of the 
master, but as seen in equations 2-62 and 3-60 an opposite effect on the relative angular 
velocity and relative linear velocity. The nine dimensional activity vector for a master 
vehicle jet isdefined to be 

The jets on the slave vehicle have a direct effect on the relative angular velocity and the 
relative linear velocity of the system, but have no effect on the angular velocity of the 
master vehicle. The nine dimensional activity vector for a slave vehicle jet is 
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The impulse provided to the system by a master vehicle jet firing is the integral over 
time of the rate of change of the velocities effected by the jet. 

Similarly, the impulse provided to the system by a slave vehicle jet firing is 

AW2j = 

0 

q1 f2j dt 6' 

(4-8) 

(4-9) 

If each vehicle may be accurately modelled as a rigid body with constant mass, the 
parameters rj, rcm, I, and m will remain constant during the integration if it .is performed in 
the respective body fixed frame. For a non-throttleable reaction control jet f j  is also 
constant. Under these assumptions the nine dimensional impulse provided by the jth 

master vehicle jet and the j* slave vehicle jet reduce to 

0 

(4- 1 1) 
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The total impulse provided by f ~ n g  a group of jets on both vehicles is the sum of 
the impulses provided by the individual jets. 

Ni Nz 

j=l j= 1 
AW = Awl+  AW2 = C Alj Atlj + C A2j At2j (4-12) 

Here N1 and N2 are respectively the number of jets on the master and the number of jets on 
the slave vehicle. For those jets not fired during the sequence, At, = 0. 

The components of the activity vectors defined in equation 4- 10 and equation 4- 1 1 
are expressed using body fixed parameters of the two spacecraft. Combining these vectors I 

as suggested in equation 4-12 requires that the elements of the activity vectors be expressed 
in a common coordinate frame. Define a general activity vector 

(4- 13) 

where Cla is the angular acceleration of the master vehicle expressed in the master vehicle 
body frame, CQ is the rate of change of the relative angular velocity expressed in the master 
vehicle body frame, and a R  is the rate of change of the relative linear velocity expressed in 
the reference LVLH frame. In terms of the components of the body frame activity vectors 
and the appropriate rotation quaternions this general activity vector is written 

J 

for 1 5  j 5 N 1  

(4-14) 

for N1+1 5 j IN1+N2 

Here k is the quaternion representation of a rotation from the master vehicle body frame 
to the reference LVLH frame. Similarly,cu. is the rotation from the slave vehicle body 
frame to the reference LVLH frame, and i 2 1  is the rotation from the slave vehicle body 
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frame to the master vehicle body frame. &L , -a , and &1 are assumed to be known and 
constant during the jet firing sequence. This approximation is appropriate whenever the 
vehicles have small angular velocities and the jet firing duration is short. 

Equation 4- 12 for the total impulse applied to the two spacecraft system can be now 
be written 

N+Nz 
AW = C AjAtj 

j=l 
(4- 15) 

or in matrix notation as 

AW = A t  (4-16) 

where A is the 9x(N +N2) mamx of activity vectors 

aR(N~+Nz) (4-17) 1 -  a ~ ~ N 1 + ~ z )  

a R ( ~ I + ~ z )  

... 
a"(l) a Y N ~ + l )  

aR(2) * * ' aR(N~) aR(N~+l)  

aq2) ' . a Y N ~ )  aR(N~+l )  

... 
... 
... 

and t is the (N1+N2) dimensional firing time vector 

(4- 18) 

If the total impulse AW to be delivered to the system of two vehicles by a jet firing 
sequence is specified by the cooperative autopilot as AWc , then the jet select algorithm 
must determine an appropriate set of jet firing times t to satisfy 

AWc = A t  (4-19) 

If the rank of mamx A is nine (full rank) then there exists at least one subset (basis) 
of nine linearly independent activity vectors which span nine dimensional space. Since any 
other nine dimensional vector may be expressed as a linear combination od a set of basis 
vectors, the structural constraint equation has at least one solution. If the nank is nine and 
N1+N2 > 9 then the system of equations is under-constrained, the basis set is not unique, 
and an infinite number of solutions are possible. Of these possible solutions, only those 
solutions where tj > 0 for j=l to N1+N2 need to be considered since negative jet firings are 
not feasible. The objective of the jet selection algorithm is to select the op~'irnum solution 
from this "smaller" infiiite set. 
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The optimum solution will satisfy the constraints in equation 4- 19, be non-negative, 
and minimize a linear fuel expenditure function (cost function) 

qt ) = c1 tl + c2 t2 + - - - + m-1 tN-1 + CN tN (4-20) 

where Cj  is the cost coefficient for the j* jet and is determined based on fuel usage, the 
lifetime of the jet, and vehicle geometry heuristics. In this equation N (= N1+N2) is the 
total number of jets on the two spacecraft. It is no longer necessary to differentiate between 
jets on the master vehicle and those on the slave vehicle. 

The jet selection problem as stated in equations 4-19 and 4-20 is formulated as a 
linear programming problem. The characteristics of linear programming problems and their 
solutions are discussed in the following sections. 

4.2 Linear Programming 6 

The general linear programming problem is to determine the values for the 
unknowns tl, t2, ... tN which minimize a linear objective function 

qt) = C T t  

subject to the m linear structural constraints 

A t  SP 

and the N non-negativity constraints 

ti 2 0 for i = 1,2,* .N 

(4-21) 

(4-22) 

(4-23) 

Two important characteristics of linear programming problems are utilized in most 
solution algorithms: 

- The solutions to the set of m+N constraint equations form a convex set 

- The optimal solution lies at an atreme point of this set 

A convex set is defined as a set of points defined such that a line segment joining 
any two of the points in the set lies entirely within the set. Figure 4.l(a) shows a two 
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dimensional convex set where the line segments joining any two points xi and x2 lies 
completely within the set. In figure 4.l(b) it is possible to define a line segment such 
that a portion of the segment lies outside the set. This set is not convex. 

EMREME 

Figure 4.1 (a) 
A convex set. 

EXTREME POINTS 

.- . 
c c . . 

Figure 4.l(b) 
A non-convex set. 

Each of the m+N inequality constraints in equations 4-22 and 4-23 describes a 
halfspace on and below a hyperplane which partitions the m-dimensional space in two. 
The hyperplane is the constraint boundary and is described by the equation formed by 
replacing the inequality with an equ'ality. The intersection of these halfspaces is by 
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definition a polygonal convex set and represents the solution space of the set of 
inequalities. In two dimensions a hyperplane is a line and the halfspace defined by a 5 
inequality is the halfplane below the line. The trapezoidal region in figure 4.1 (a) is the 
intersection of four such halfplanes and represents the set of feasible solutions to a set of 
linear equality constraints. In contrast, the notch region in figure 4.l(b) cannot be 
constructed as the intersection of a set of halfplanes. Note that points x i  and x2 are on 
opposite sides of the perimeter segment and thus cannot both satisfy an inequality 
formulated about the line containing the p1p2 segment. This region cannot represent the 
solution set for a set of linear equality constraints. 

. 

. 

An extreme point is a point in the convex set which does not lie on any line segment 
connecting any two other points in the set. For a convex set defined in N dimensional 
space, all the extreme point solutions lie at the intersections of N of the m+N hyperplanes. 
Note that not all such intersections are extreme points of the convex solution set. In two 
dimensions the extreme points lie at the intersections of the constraint lines. In figure 
4.l(a) the corners of the trapezoidal region are the extreme points but the point 'a' is not. 

While any point in the convex set described by the m structural and N non- 
negativity constraints is a "feasible" solution to the linear programming problem, extreme 
point solutions are "basic feasible solutions", (Le. only m of the tj are non-zero). To 
demonstrate this, note that the structural inequality constraints may be re-written as 
equalities by introducing m "slack" variables to preserve this solution space. 

P l l  
A t + s = P  where s = 

Sm 

(4-24) 

The values taken by the slack variables indicate the location of the solution with respect to 
each inequality constraint. If Si > 0 then the left side of the inequality is less than the right 
side and the constraint is satisfied; if Si = 0 then the two sides are equal and the solution 
point lies on the constraint boundary; if Si < 0 then the left side is larger than the right and 
the constraint has been violated. Obviously Si 2 0 for all feasible solutions. 

The extreme points of a convex set lie at the intersections of N of the constraint 
boundaries and thus simultaneously satisfy N of the m+N constraints in their equality 
form. If k of these N satisfied constraints are structural constraints then the corresponding 
k slack variables are zero. The other N-k boundary equations satisfied at the extreme 
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point correspond to non-negativity constraints and thus N-k of the tj are also zero. Since 
there are N+m total variables, k + (N-k ) of which are zero, the extreme point solution has 
at most m non-zero values and is thus a basic feasible solution. 

Since a extreme point solution has at most m nonzero tj, equations 4-21 and 4-22 
may be written in terms of a vector i containing the m non-zero tj, a square matrix B 
containing the corresponding m columns of the structural constraint matrix A, and the 
vector e containing the m corresponding cost coefficients. 

B i = P  (4-25) 

9- qt) = c  t (4-26) 

In addition, an extreme point of the convex set is defined as a point that does not lie on a 
segment between any two other points in the set and therefore may not be expressed as a 
combination of any two other solutions. Consequently, i is a unique solution to equation 
4-25. From linear algebra, if B is not full rank then an infinite number of i will satisfy 
equation 4--26. Therefore the m columns of B must be linearly independent and form a 
vector basis for m dimensional space. 

The optimal solution to the linear programming problem is the member of the 
convex set of solutions to the inequality constraints that also minimizes the objective 
function. To demonstrate that the optimal solution is an extreme point of the convex 
solution set, define the gradient of the object function as 

(4-27) 

Since the objective function is linear, G is constant and specifies the direction of maximum 
decrease of the objective function. The point on the convex set which extends furthest in 
this direction is the optimum solution and will be an extreme point of the set. In the 
unusual case that the gradient vector is perpendicular to a hyperplane segment between two 
extreme points, every point on the segment is optimal and all have equal cost. 

In figure 4.2 a gradient line representing the direction of maximum decrease of an 
objective function has been superimposed on the two dimensional convex solution set of 
figure 4.l(a). Point 'a' extends the furthest in the specified direction and is therefore the 
minimum cost solution. 
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Figure 4.2 
Gradient method for finding the optimal extreme point solution. 

In a two or three dimensional system involving a small number of inequality 
constraints, it may be acceptable to simply evaluate the objective function at each extreme 
point and select the solution that corresponds to the minimum result. If the dimension of 
the system is large, a more efficient method of selecting the optimal solution point from the 
numerous (but finite) set of extreme points is required. The Revised Simplex algorithm is 
an efficient method for systematically evaluating the extreme point solutions to the 
constraint equation and determining the optimal solution. The next section discusses the 
theoretical basis for the simplex method and presents as overview of the algorithm itself. 

4.3 The Revised Simplex Algorithm 6.2 

The previous section established two important facts: 

(1) The optimal solution of the linear programming problem lies at an extreme point 
of the convex set of feasible solutions. 

(2) Each extreme point is a basic solution <'t ) and is associated with a set of m basis 
vectors (B) and a value of the objective function (F(Z)). 

The Simplex algorithm provides a systematic method to move from the current 
extreme point solution to one with a lower objective function value by replacing a basis 
vector with a column of the structural constraint mamx A. The incoming column vector is 
chosen based on its effect on the value of the objective function. The outgoing basis vector 
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is selected to insure the feasibility of the new solution. Simplex iterates on this vector by 
vector replacement process until either the optimal solution has been found or it has been 
established that no feasible solution exists. The Revised Simplex algorithm actually 
implemented in this research operates in the same manner but is computationally more 
efficient than the standard Simplex method. 

From equation 4-25 an extreme point solution is described by the matrix of basis 
vectors B and the basis solution vector Z 

B i  = P (4-28) 

Since B is a basis set, every column of the structural constraint matrix A may be expressed 
as a combination of the columns of B 

Aj = B Yj (4-29) 

This equation defines the combination coefficients for the non-basis vector Aj as 

yj = B - I A ~  + yj = 

Ymj (4-30) 

Using equation 4-29 to both add and subtract P units of the the non-basis vector Aj 

from the left hand side of the extreme point solution in equation 4-28 yields 

B(Z - PYj) + PAj = P - (4-3 1) 

Thus the addition of P units of Aj  requires a reduction of each ii by Pyij in order to 
preserve the equality. As P increases the coefficient of the ith basis vector will decrease if 
the corresponding combination coefficient element yij is positive. (If none of the yij are 
positive then the optimal solution corresponds to the current extreme point.) Eventually the 
coefficient of one of the basis vectors (say bk) will become zero; effectively removing it 
from the basis solution. This occurs when 

i.e. at p = ' k  
Y ij (4-32) 

At this point the coefficients of the other m-1 basis vectors may be calculated according to 
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(4-33) 

and equation 4-3 1 re-written as 

a' "' 
bit1 + b2t2 + + bk (0) + - - - + bG+ pAj = P (4-34) 

Since the coefficient of bk is 0 the left side of this equation is still the weighted sum of only 
m column vectors. The new basic solution and objective function value may be expressed 
in mamx notation by replacing the outgoing basis vector bk with the incoming non-basis 

vector Aj, setting the corresponding element ?; = p and the corresponding cost coefficient * 

- 
ck = cj 

wtT-8  
F(i') = C t (4-36) 

The feasibility of the solution has been preserved by selecting the outgoing basis vector to 

be the vector corresponding to the minimum positive & ratio. 

In terms of the objective function, the reduction per unit of Aj  of the ii by yij 

corresponds to an improvement of ET Yj, however, the addition of a unit of Aj into the 
solution represents an increase in the objective function of Cj. The net decrease in the 
objective function per unit of Aj is 

AF = ET yj - cj (4-37) 

Substituting the expression for Yj from equation 4-30 this becomes 

AF = CT B-' Aj - Cj (4-38) 

The net decrease of the objective function is calculated for each non-basis vector in the 
constraint mamx A . A row vector may be defined as 

AF =[AF1  AFp e . .  A F N ]  

= [ CTB-'A1 - c1 CTB-'A2 - c2 

= C  B [ A1 A2 - . -  AN ] - I C 1  c2- -*WI 

... E ~ B - ~ A ~  - CN ] 
"T -1 (4-39) 
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The member of the constraint matrix A selected to be included into the basis is the vector 
corresponding to the maximum positive element of the vector AF. The value of the 
objective function at each extreme point is (equation 4-26) 

-7- lqi) = c  t (4-40) 

From quation 4-25 

=B-'P (4-41) 

So that the value of the objective function may be expressed for any basic solution as 

(4-42) F(g=C -T B -1p 

Note that in order to select the incoming vector, the combination coefficients for each 
column of A must be computed and AF formed using equation 4-30. These operations are 
computationally very intensive. A more direct manner performing the basis update is 
required. 

It is useful to define a partitioned mamx T representative of the "simplex tableau" 
described in much of the literature on linear programming. 

T =  
I 

Y I r 
(4-43) 

Here Y is the matrix of combination coefficient vectors corresponding to the columns of the 
constraint matrix A and is calculated using the current extreme point basis B. 

Substituting equatiqns 4-30,4-39,4-41, and 4-42 into this partitioned matrix yields 
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which may be factored as 

=[;Bl : ] [ 
B 0 - I  

=[ -E 1 ] 

- 
I B-'P 
I 

I 

- - -  
I -&)-1p 

- 

-c 0 

A P  

-c 0 

(4-45) 

(4-46) 

Note that the A F  vector may now be computed as an inner product of the successive 
columns of with the last row of -'. The combination coefficients need only be ' 

computed after the incoming basis vector has been selected from the columns of the 
constraint coefficient matrix. In addition, the (m+l)x(N+l) matrix is not affected by a 
change of basis and remains constant during the Simplex iterations. The 6 -' matrix 
however, must be updated each time a new vector is swapped into the basis. 

An efficient method of performing the update of the 6 matrix may be developed 
as follows. Each column of the augmented basis 6 is 

forj = 1 tom 
h 

bm+l = I:_ (4-47) 

The incoming constraint matrix column Ak corresponds to the kth column of 2 which is 

(4-48) 

and may be expressed as a linear combination of the columns of the augmented basis 6 
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n 

If the / * basis vector (61) is replaced by Ak then the new basis (E ') may be written as 

where E is an "elementary matrix" 

E =  

0 ... 

1 ... 

... 0 

... 0 

Taking the inverse of each side of equation 4-50 

-Ylk 

ylk 
... 0 

... -Y2k 1 
Y l k  

... 1 
Y l k  

0 

-Y(m+l)k ... - 
Y / k  

0 

... 0 

0 ... 

... 0 

1 ... 

... 0 

... 0 

... 0 

. . .  1 

(4-50) 

) (4-5 

(4-52) 

(4-53) 

The update of 6 inferred by this equation may be implemented on an element by element 
basis as 

j = 1 to m+l 

(4-54) 

and 
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h 

A '  bij 
bij = ~ l k  for i = I j = 1 to m+l 

(4-55) 

Thus by updating the inverse of the augmented basis directly the computation of the 
-' and a full set of combination coefficients has been avoided. (m+l) dimensional inverse 

4.4 Implementation of the Revised Simplex Jet Select Algorithm U6 

The jet select algorithm employed as part of the cooperative autopilot developed in 
this thesis is a nine dimensional implementation of the Revised Simplex method described 
in the last section. The principle input to the algorithm is the nine dimensional rate change 
request (AW,) generated by the steering algorithms. The jet select software assigns 
appropriate firing times to the reaction control jets on a pair of spacecraft in order to 
implement the requested impulse. 

The example under study in this thesis is a system of two space shuttles. Each 

shuttle has a complement of 44 stationary reaction control thrusters; 38 primaries (870 lbf) 
and six verniers (24 lbf). Each jet is described by its body fixed position vector, body 
fixed thrust direction vector, an availability flag, and a scalar cost coefficient. Table 4.1 
gives the location and thrust direction of each jet in the shuttle body frame. The primary 
thrusters on each shuttle are grouped into 14 clusters of two to four jets, ( see figure 4.3). 
The jets within each cluster have similar locations, similar thrust directions, and 
consequently, deliver similar torques and forces. Though the six vernier jets are physically 
located adjacent to the primary jet clusters, the magnitude of a vernier activity vector is 
significantly smaller than those of the neighboring primaries. For the purpose of jet 
selection each available vernier jet is considered to be a separate single jet cluster and is 
included in the formulation of the constraint coefficient matrix A. 

Due to the similarity of the activity vectors of the primary reaction control jets in 
each cluster, a single primary jet is designated as the cluster representative and (at least 
initially) is the only jet included in the constraint coefficient matrix. This approach provides 
substantial computation benefits and does not significantly affect the maneuverability of the 
shuttle during normal operations. 
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Each reaction control thruster also has an associated availability flag and cost 
coefficient. The availability flag indicates whether or not a jet may be included in the jet 
selection solution. A jet may be designated as unavailable by the crew, a failure detection 
module, or a heuristic supervisor module ( e.g. a plume avoidance algorithm). If a cluster 
representative is unavailable the jet select module attempts to replace it with another member 
of the cluster. If all members of a cluster are unavailable, the linear programing problem is 
formulated without a representative from the cluster and the dimension of the constraint 
coefficient matrix (A) is decreased by one. This flexibility is one of the major benefits of 
formulating the jet selection task as a linear programming problem. 

The optimum solution of the linear programming formulation of the jet selection 
problem is selected from among the set of feasible solutions based on the value of the linear 
objective function 

qt) = C T t  (4-56) 

The cost coefficients (Cj) associated with each jet are a quantitative representation of an 
operational preference to be applied during the jet selection process. A preference among 
the available jets may be motivated by several different objectives. The principle objective 
in this development is fuel conservation, thus all primary jets are costed equally and more 
heavily than the verniers, ( Cprimary = 1.0, cvernier = 0.0287). Alternative realtime 
algorithms for the cost coefficients may be motivated by a need to perform fuel 
management either between the two spacecraft or among the propellent tanks on a single 
vehicle. Cost functions could also be developed to heavily penalize the use of jets which 
which may 'plume' a neighboring spacecraft. This approach to plume avoidance leaves the 

jet in the range of possible simplex solutions, so that it may be selected during an 
emergency maneuver. Designating a jet as unavailable removes it from the solution space 
and thus may adversely affect the controllability of the vehicle(s). 

I 
t 

1 

I 

The simplex approach to linear programming systematically progresses from one 
basic feasible solution to a 'better' basic feasible solution until the optimal solution is 
achieved. The feasibility of the final optimal solution is therefore dependent on the 
feasibility of the initial solution. Though in some linear programming applications an initial 
basic solution is easily discerned , the complexity of jet selection problem makes this 
impractical. The initial basis must satisfy the constraint equation 

I 

I 

B t  = AWc, (4-57) 
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span nine dimensional space (it must be invertible), and it must provide a feasible solution t 
via 

t = B-' AWc (4-58) 

Even if a basis could be easily derived form the combination coefficient matrix, performing 
the inversion of B required to seed the revised simplex method is also computationally 
burdensome. 

To circumvent these difficulties, nine additional variables are introduced with a 
basis of corresponding "artificial activity vectors" Bo. If the artificial vectors are defined as 

B, = Ij SIGN(AW%) 

where Ij is the j* column of a 9x9 identity matrix then 

B;' = Bo 

and 

(4-59) 

(4-61) 

Since the artificial vectors are mutually orthogonal, the inverse in equation 4-60 is 
guaranteed to exist. Equation 4-59 confirms that the initial solution satisfies the non- 
negativity constraints. Thus the addition of a set of slack variables avoids both a difficult 
search for an initial basis and the computational burden of inverting the basis to seed the 
revised simplex algorithm. 

The artificial activity vectors are not however, representative of real reaction control 
jets and thus cannot appear in a real optimal solution. To ensure that these columns of B 
are rotated out of the basis during the simplex operations, the cost coefficient 
corresponding to &ch artificial activity vector is set to a maximum positive value. Simplex 
must iterate at least nine times to eliminate all the artificial vectors from the basis. Once 
removed from the basis the artificial vectors are discarded and are never used as potential 
incoming vectors. 

Once the initial basis solution is set up, the jet select algorithm proceeds to solve the 
linear programming problem using the revised simplex method. Several pragmatic 
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implementation issues may have a significant impact on the performance of the jet select 
algorithm. 

The activity vectors are calculated under the assumption that neither vehicle 
experiences a significant translation or rotation during the jet firing. During large AW 
maneuvers, some jets are assigned fairly long firing times as part of the optimal solution. 
If the vehicle has a significant angular velocity during the firing, the net translational 
impulse provided by a jet will not be aligned with the expected impulse vector. Several 
solutions have been proposed to alleviate this problem. 

The revised simplex algorithm implementation by Persson and Cookel6 compares 
the longest f ~ n g  command in the optimal solution to a predetermined threshold. If the 
firing time exceeds the threshold, it is set equal to the threshold value and all the other jet 
firing times are scaled to preserve the direction of the impulse delivered. 

(4-62) 

Since the magnitude of the impulse delivered by this method will be less than the magnitude 
of the original impulse request, the state of the vehicles at the end of the burn is measured, 
a new AWc calculated, and the jet selection algorithm immediately run to complete the 
maneuver. In this manner an extremely long burn may be accurately implemented in a 
piecewise optimal sense. 

A revised simplex algorithm modified to incorporate an upper bound on the each 
solution variable i, has been implemented for control moment gyros by Paradis03. In this 
algorithm the value of the ij is compared to a threshold after each simplex iteration. If ij 

exceeds this upper bound the corresponding actuator is considered saturated and it is 
removed from the basis and saved as a special adjunct command. The impulse provided by 
this saturated actuator is used to adjust the impulse request passed to the remaining true 
basis solution set. As the algorithm progresses toward the final basic solution it may be no 
longer be optimal for ij to remain at the maximum value. TO a ~ o w  this saturated actuator to 
become 'unsaturated during the course of simplex convergence the sign of the 
corresponding activity vector is switched and re-admitted into the set of potential incoming 
activity vectors. If this anti-vector is selected then the firing time of the saturated jet is 
decreased and it is re-admitted into the basic solution in its positive sense. 
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The most striking feature of this approach is that more than 9 jets could be fired 
simultaneously as part of a single solution. This enhancement of the linear programming 
approach to jet selection is promising and should be investigated further as a method of 
incoprating the secondary jets in each cluster. 

In any iterative algorithm there exists a potential for build up of round off errors. 
The effect of the round off errors induced during the direct update of the B-' mamx may be 
checked by calculating the impulse delivered by the current solution against the impulse 
request. The firing time solution vector is given by 

Z = B-'AWc (4-63) 

where B-' is calculated during the most recent simplex iteration. Since the activity vectors 
corresponding to these firing times are columns of the known matrix A (equation 4-22) the 
actual basis B, may be easily constructed and the actual impulse calculated as 

B,i = AWa (4-64) . 

The error in the velocity change due to the inaccuracy of B-' is simply the difference 
between the actual and commanded velocity impulse. 

AWm = AWa - AWC (4-65) 

If the magnitude of this error vector exceeds 1% of the magnitude of AWc, the actual basis 
B, is inverted and substituted for the current value of B-l. The round off errors do not 
grow rapidly and thus the basis is not re-inverted very often. 
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CHAPTER 5 

T W O  VEHICLE TRAJECTORY SOLVER 

5.0 Introduction 

The cooperative trajectory solver generates a model trajectory consisting of a list of 
the jets to be fired, the corresponding burn times, and the state variable time histories which 
carry the two vehicle system from the initial state to a commanded final state. A solution to 
single spacecraft combined rotational and translational maneuvers has been presented using 
an open-loop "feed-forward" trajectory solver as part of a "feed-forward / feedback" 
closed-loop control architectureg. This section develops a similar open-Imp trajectory 
solver for two vehicle cooperative maneuvers. 

The two shuttle vehicles under consideration in this thesis are characteristic of a 
larger class of spacecraft which employ reaction control jets to perform rotational and 
translational maneuvers. Each shuttle reaction control jet applies a force along at least two 
of the vehicle body axes and (consequently) a torque about all three body axes. Current 
spacecraft control system designs tend to approach attitude and translation control as two 
separate, decoupled control problems. In addition, attitude and translation control is often 
performed by a set of uncoupled single axis controllers. Since the vehicle dynamics are 
coupled through the reaction control jets, attempts to control one set of the control variables 
with an uncoupled controller will often introduce large disturbances in other control 
variables. Compensating for these control induced disturbances consumes additional fuel 
and may cause the number of jet fuings to drastically increase. 

It has been demonstrated that optimal, three degree of freedom rotational maneuvers 
of a single linearized spacecraft model employ a jet activity profile which contains an 
acceleration phase, coast phase, and a deceleration phase', (see figure 5.1). The "staircase" 
clustering of the acceleration and deceleration jet firngs at Q and tf increases the average 
vehicle rate during the firings and thus decreases the overall maneuver tirne. During the 
intermediate coast period the external torque on the vehicle is assumed to be zero and the 
spacecraft angular velocity remains constant. This jet firing profile is the biasis for the nine 
degree of freedom feed-forward trajectory solver developed here. 
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Figure 5.1 
The Two Bum Jet Firing Profile. 

5.1 Final State Equations 

The two vehicle coordinated trajectory solver plans combined master vehicle 
rotations, slave/master relative rotations, and slave/master relative translations using the 
available reaction control jets on both vehicles. The rate of change of the velocity of each 
of the control variables induced by the jhreaction control jet is described by a nine 
dimensional activity vector Aj. As defined in chapter 4, 

(5-1) 
j 

where a, is the angular acceleration of the master vehicle expressed in the master body 
frame, a~ is the rate of change of the relative angular velocity expressed in the master 
vehicle frame, and aR is the rate of change of the relative linear velocity expressed in the 
LVLH frame. 
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The linearized equations governing the absolute attitude of the master vehicle and 
the relative attitude of the slave vehicle with respect to the master vehicle were derived in 
chapter 2 under the assumption that each vehicle is experiencing a small angular rate. Since 
the sub-vectors of the general activity vector (aa,aR) represent the angular accelerations 
induced by the j* jet, these equations may be written 

Here u is the N1+N2 element control vector defined as 

I1 when the j* jet is firing 
uJ = 10 otherwise (5-4) 

Integrating equation 5-2 from to to tf while following the jet firing profile in figure 
5.1 yields: 

j= l  

Similarly, integrating equation 5-3 for the attitude of the slave vehicle with respect to the 
master vehicle yields 

j = l  
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In equations 5-5 thru 5-7 and 5-8 thru 5-10 the CY.& aij, and 4 are the angular accelerations 

and fhng  times corresponding to the j* jet during the deceleration burn. As was shown in 
chapter 4, the activity vectors corresponding to the jets on the slave spacecraft are a 
function of the relative attitude of the two spacecraft. The set of activity vectors employed 
during the second burn must therefore be recomputed at the beginning of the deceleration 
bum. Since each burn is assumed to be impulsive, the relative attitude of the two 
spacecraft at the initiation of the second burn is considered to be equal to the commanded 
relative attitude for the purpose of activity vector calculation. 

In chapter 3 the translational motion of a single spacecraft in a local vertical - local 
horizontal (LVLH) reference frame was shown to be governed by the Clohessy - Wiltshire 
equations. The complete solution of the C.W. equations for a period of constant external 
force was shown to be 

where O(t) is the state transition mamx, 

w> = 

6qot - 6s - S  4 - 3t 1 0 
q0 

o c  0 0 

0 0 4 - 3 c  - q 1 -  C) 
q0 

j= 1 

0 - ( 1 -  2 c 
r \ O  

-S  1 0 
rl0 
0 1 -S  

rl0 
0 2s 

C 0 

0 C 

(5-1 1) 

(5-12) 

r(t) is the control weighting matrix, 
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0 - q l  - C) 0 
$ 

- s - 3 t  4 
rl0 

0 L ( 1 -  C) 
rl0 

0 J--S 0 
rl0 

I"(1- C) 
- rlo 

0 1 - S  
rlo - 

(5- 13) 

aj is the translation acceleration sub-vector of the j* activity vector, and u is the control 
vector defined in equation 5-4. For simplicity, 'C' and 'S' have been substituted for 
'cos Tot' and 'sin Tot' in the above expressions. Often the state transition matrix is written 
in terms of its 3x3 sub-matrices as 

(5-14) 

Since the relative motion of the master and slave spacecraft is defined by 

the equation governing the relative motion of the two spacecraft during any period of 
constant thrust is 

(5-16) 

This equation may be applied to each period of constant thrust along the accelerate, 
coast, decelerate jet firing profile of figure 5.1 to determine the final relative position states 
of the two spacecraft. The constant thrust periods during the acceleration and deceleration 
phases are very short compared to the period of the reference orbit. (A circular Low Earth 
Orbit has &period of approximately 90 min. and a mean motion q0 = 0.001 16 radsec; a 
typical period of constant thrust during the jet firing phases is c 5 sec.). Since t is small 
during the acceleration and deceleration phases, q0t is a small angle and truncated series 
approximations for SIN and COS may be used without introducing significant errors. 
Neglecting terms of the order of and high& yields: 
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@(t) = 

l O O t O O  
O l O O t O  
O O l O O t  
0 0 0 1 0 2qot 
0 0 0 0 1 0  
0 0 0 -2qot 0 1 

0 0 0  
q t ) = l t O O  

(5-17) 

The velocity coupling terms 2q0t << 1, and thus the velocity update performed by equation 
5-16 is dominated by the effect of the thrusters during the acceleration and deceleration 
phases of the jet firing profile. If the change in velocity due to these coupling terms is 
neglected during short reaction control jet firings equation 5-16 becomes 

(5-18) 

Here I is the 3x3 identity mamx. It should be noted that equation 5-18 represents simple 
rectangular integration of the initial velocities and constant forces to attain the new position 
and linear velocity. Using equation 5- 18 to propagate the relative position state across each 
period of constant thrust during the acceleration bum, the relative position state at the end 
of the acceleration bum is calculated as 

(5-19) 

(5-20) 

There are no feed-forward jet firings during the coast period. The state transition 
mamx is used to propagate the relative position state from the end of the acceleration bum 
to the beginning of the deceleration bum. 

(5-2 1) 

The f ind  relative position state is determined by propagating XR\-) and VR(tD) thru 
the deceleration bum using equation 5- 18 across each period of constant force. 

(5-22) 

64 



In the above equations the contribution from each available reaction control jet has 
been included in the summations over 1 to N1+N2. If the j* jet is not firing during a 
portion of a maneuver then tj = 0 during the corresponding integration step. 

5.2 Trajectory Solution Algorithm 9 

The trajectory solver must solve the algebraic equations 5-7,5- 10, and 5-22 for the 
first and second bum firing times (tj and () in terms of the boundary conditions and the 
activity vectors Aj, Ai for j=l  to N1+N2. Since no manageable closed form solution is 

possible, the problem is parameterized in terms of the velocities at the beginning of the 
coast period, (Oa(k),  OR(^), VR(E)) and solved iteratively using Newton's Iterative Method 
(Newton-Raphson Method). Each iteration consists of two computational phases: 

Solve the rate equations for the tj and tj based on the current values of the coast 
velocity parameters and the initial and final velocity boundary conditions. 

Update the coast velocity parameters based on the final state error calculated using 
the jet firing times derived from the rate equations. 

Since the rate equations for each bum are linear algebraic functions of the 
corresponding set of firing times, the first stage of the iteration process may be formulated 
as two separate problems; one for each.bum. The acceleration burn rate equations 5-5, 5- 

8, and 5-20 may be written together in mamx form as 
r 

The relative translational velocity at the end of the acceleration period may be propagated to 
the end of the coast period once the acceleration burn fuing times are known 

and the deceleration rate equations may be written as 

(5-25) 
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These equations for acceleration and deceleration (5-24,5-26) may be considered as 
the structural constraint equation of a linear programming problem of the form 

Minimize qt ) = C t 

subject to AW = A t (5-27) 

and tj 2 0 for j = 1,2, ..., Ni+N2 

The Revised Simpiex method of solving this nine dimensional linear programming problem 
is developed in detail in Chapter 4 of this thesis. The revised simplex algorithm selects a 
set of at most nine reaction control jets and computes the corresponding firing times tj such 

that the structural and non-negativity constraints are satisfied and the objective function flt ) 
is minimized. In this application Yt ) is a fuel usage function. The nine activity vectors Aj 

corresponding to the nine reaction control jets selected by the revised simplex algorithm for 
each burn may be collected into a basis mamx B. The corresponding nine firing times tj 
are collected into the 9-vector t . 

The second stage of the trajectory solver is the update of the values of the 
optimization parameter vectors o,(tJ, o~(tJ, V R ( ~ ) )  in order to decrease the final state 
errors. 

The final values of the control variables ea(tf), eR(tf), rR(tf), are a function of the 
values of the corresponding coast velocity parameter vectors. Define the error functions 

gl(aa(k)), g2(m(k)), g3(VR(k)) as 

The optimal choice of the coast velocity parameters will result in gl, g2, a = 0. If these 
error functions are not zero then the coast parameters must be altered. The required values 
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of the coast velocity vectors may be written as the current value plus the required 
adjustment 

Since the command values of the control variables are constant, the partial derivatives of the 
error functions may be evaluated using equations 5-28 thru 5-30 

I 

If the current value of the coast parameters are close to the optimal values, the adjustment 
vectors are small and each of the gl, g2, a may be expanded in a Taylor series. Keeping 
only up to the fmt derivative terms 

(5-34) 

Since the left side of the each approximation will be zero for the optimum parameter value, 
the approximate change required in each coast velocity vector is given by 

(5-37) 

(5-38) 

(5-39) 

(5-40) 

(5-41) 
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(5-42) 

Substituting these expressions into equation 5-37 thru 5-38 and combining the results with 
equations 5-31 thru 5-33 yields the three parameter update equations 

(5-43) 

(5-45) 

The partial derivatives in these equations are 3x3 Jacobian matrices. Since expressions for 
the final control variable values in terms of the coast velocity parameters is not available, a 
chain rule expansion is used in place of each Jacobian. 

(5-46) 

(5-48) 

The 9x9 matrix B has been defined as the collection of basis activity vectors for the first 
bum. Since each activity vector consists of three sub-vectors, the basis matrix may be 
partitioned into three 3x9 sub-mamces 

B =  

- BG 1 
I --- 

BUR I 
--- I 

J 

(5-49) 

The partial derivatives of the final values of the control variables with respect to the first set 
of firing times are then determined from equations 5-7,5-10, and 5-22. 
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-- aea(tf) - B, diagd(tf - ij)] 
at' 

The structural constraint equation for each bum may be re-written in terms of the 
basic solution provided by the revised simplex algorithm. Since the collections of activity 
vectors in the bases B and B' are by definition an linearly independent sets, they may be i 

I inverted. 

(5-50) 

. - -  aeR(tf) - BUR diags[ftf - ij)] (5-5 1) 
ai 

If B' is the basis mamx corresponding to the second bum, the partial derivatives of the final 
values of the control variables with respect to the second set of firing times i ' are then 
determined from equations 5-7,5-10, and 5-22 and written as 

(5-53) 

(5-54) 

(5 -55)  
dt 

The partial derivatives of the fuing times with respect to the coast parameters are 
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For convenience the inverse basis matrices B and B' have been partitioned into 9x3 sub- 
matrices 

(5-59) 

Newton's method requires an initial approximation for the coast velocity parameters 
in order to begin the iteration process. The initial estimate of the rotation rate parameters 
for the absolute and relative attitude maneuvers is computed by approximating the entire 
maneuver as a constant rate eigenaxis rotation. The eigenaxis is defined as the unit vector 
perpendicular to the initial and final attitude quaternions. Ifio represents the initial attitude 
and & is the final attitude, then the maneuver quaternion & satisfies 

- - -  
Qf = Qo Qm (5-61) 

and thus may be calculated as 

(5-62) 

LrJ 

6 ,  a,  p, Y are the Euler Parameters of the rotation. The quaternion &, represents a rotation 
by an angle 

(p = 2  COS"6 (5-63) 

about a unit vector 

A constant rate rotational maneuver can then be described by the angular velocity vector 

w o a s t  =l&p (5-65) 

where 
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The initial approximations for the coast angular velocities for the absolute and relative 
rotational maneuvers are computed using equations 5-61 thru 5-66. 

The initial relative translational velocity approximation is derived from the 
Clohessy-Wiltshire formulation for the relative motion of the two spacecraft (equation 5- 
11). Since the initial velocity estimate should be chosen to provide a final relative position 
near the commanded position, the estimate is computed from the first three of the six C-W 
equations. If the initial and final bums are truly impulsive, then the displacements of the 
vehicles will only take place during the coast portion of the maneuver and the position 
equations are written as 

This expression is solved for the desired coast velocity by multiplying thru by @it and 
rearranging terms: 

The state transition matrix sub-matrices in these expressions are computed for the fixed 
length of the maneuver. Equation 5-68 provides a reasonable estimate of the translation 
coast velocity parameter as long as the inverse exists. From equation 5- 12 

(5-69) 1 0 2 ( 1 -  C) 
@,,(t) = S 0 

- 2 ( 1 -  C) 0 S 
- 

and the inverse is 

- 
(5-70) 

This inverse will exist everywhere except where the denominator of the coefficient term is 
zero. The factors in the denominator may be expanded and like terms collected yielding 
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By inspection this last expression is zero whenever sinqot is zero. The factor in 
parenthesis is also zero when sin qot = 0 and cos q0t = 1. Figure 5.2 shows a plot of this 
functionfortherange0 S q0t I 4 ~ .  

Figure 5.2 
Determinant of 0," vs 8 = riot 0;; does not exist at the zero crossing angles. 

In addition to the zeroes at multiples of x, (qot = 0, x, 2x, 3x .--),  a zero occurs at 

approximately 2.81346~. At the zeroes the state transition sub-matrix 0," becomes 

for qot = 0, 2x, ... 
(5-72) 0 

0 
0 0 

-3qot 0 
= 1, [ 0 0 ] for qot = x, 3x, ... 

4 0 0 (5-73) 
rl0 
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for q0t = 2.8341611: 1 (5-74) 

-24.30400 0 3.66628 

0 0.55306 
0.55306 0 

Equation 5-72 shows that the out-of-plane and radial components of the final position are 
not effected by the coast velocity during maneuvers lasting one reference orbit period. 
Equation 5-73 demonstrates that the out-of-plane final position is also not effected by the 
coast velocity for maneuvers lasting half a reference orbit period. The first and third 
columns of the matrix in equation 5-74 are parallel vectors and therefore the change in the x 

and z components of the final position cannot be independently varied by adjusting the 
coast velocity when the maneuver is scheduled for approximately 1.4 nominal orbits. 
When the inverse does not exist the system is not completely controllable using a single 
two bum maneuver. To reach the final state a sequence of maneuvers must be performed. 
The planning and optimization of these multi-maneuver sequences is beyond the scope of 
this thesis. 

1 

53 No*nal Trajectory Generator 

The trajectory solution algorithm described in the last section determines a set of 
feed forward jet firing commands for both the acceleration and deceleration bums of the 
two bum maneuver based on a linearized model of the two vehicle system. During the 
coast portion of the maneuver a feedback controller is employed to compensate for non- 
linearities in the actual vehicle dynamics and unmodelled environmental dishirbances. The 
primary inputs to the feedback controller are the current values of the desired attitude of the 
master vehicle with respect to an external reference frame, the desired attitude of the slave 
vehicle with respect to the master, and the desired position of the slave vehicle with respect 
to the master. The nominal trajectory generator computes the desired states a.t each point in 
the coast phase of the maneuver using the linearized models employed by the trajectory 
solution algorithm. 

The linearized equations governing the absolute attitude of the master vehicle and 
the relative attitude of the slave vehicle with respect to the master vehicle have been derived 
under the assumption that each vehicle is experiencing a small angular rate. In section 5.1 
it was shown that the angular velocities at the end of the acceleration bum are 
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(5-75) 

(5-76) 

Integrating these equations across the acceleration burn (to to k) while following the 
jet firing profrle in figure 5.1 yields the angular displacement vectors at the beginning of the 
coast phase. 

(5-77) 
j= 1 

During the coast phase of the maneuver the vehicles are assumed to be experiencing 

torque free motion. The equations of motion may be written 

Wa = o 3 ma =constant (5-80) 

(5-81) C ~ R  = o OR =constant 

Integrating each of these equations from the end of the acceleration bum to the 
current time yields an attitude change vector which is used to update the quaternions 
representing the absolute attitude of the master vehicle and the attitude of the slave relative 
to the master. 

The quaternions representing the rotations Aea and AeR are (see equation 2-50) 

(5-84) 

where the 3-vectors qa and g~ are defined in terms of the magnitudes of the rotations 
dea and AOr and the corresponding rotation axes 2, and & as 
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The Euler parameters 6, and 6~ are defined as 

There are no feed-forward jet firings during the coast period. The homogeneous 
form of the C.W. equations is used to propagate the relative position state from the end of 
the acceleration bum to the current time. 

I 

(5-85) 

(5-86) 

(5-87) 

(5-88) 

Similarly, the attitude quaternions at the end of the acceleration burn are calculated 
from ea(tc) and ea(&> as 

(5-89) 

The desired absolute and relative attitude quaternions are then calculated during the coast 
phase from the expected attitude at the end of the acceleration bum and the quaternions 
representing the change due to the constant mast rate. 

The translational motion of the slave spacecraft relative to the master in a near 
circular orbit was shown to be governed by the Clohessy - Wiltshire equations in Chapter 
3. The relative position and translational velocity of the two spacecraft at the end of the 
acceleration bum are given by 

Ni+N2 

j=l 
~ ( b )  = rR(t0) + VR(W tc + C a~,(f~ tj - i{) (5-92) 

j= 1 
(5-93) 
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(5-94) 

The quaternions q,(t), GR(t) and the vectors ma, OR, rR, VR are computed on each 
autopilot pass during the coast phase of the two bum maneuver and passed to the feedback 
level of the cooperative autopilot. 

. 
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C H A P T E R  6 

P H A S E  S P A C E  R E G U L A T O R  

6.0 Introduction 

During the coast phase of the two burn maneuver the two spacecraft are perturbed 
from the nominal trajectory by environmental disturbances, the unmodelled non-linear 
dynamics and the granularity of the reaction control jet firings. A feedback control loop is 
used to generate jet firing commands in order to compensate for these effects and keep the 
spacecraft tracking the desired trajectory within a specified tolerance. In this thesis a Phase 
Space Regulator 2 is employed as the feedback controller. 

The Phase Space control law was developed for the control of a single spacecraft 
performing six degree of freedom on-orbit maneuvers and was successfully flight tested as 
part of the shuttle OEX autopilot in 1985. The Phase Space control law combines the 
velocity to be gained principle with concept of a phase sphere in order to compute a 
velocity impulse request to drive the system to the commanded state. This slection presents 
the Phase Space control law and develops the nine degree of freedom cooperative control 
phase space regulator. 

6.1 Velocity to be Gained 

Originally developed as a method of formulating guidance equations, the velocity fo 

be gained algorithm computes the change in the velocity required for the system to follow a 
coasting trajectory from the current state to the specified target state. The state of a general 
n-degree of freedom system is described by the n-dimensional state vector x and the first 
derivative of the state x. Given a target state a and a target velocity &J the state error and 
velocity error are defined as 

& = X - %  

& = X - &  
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The velocity to be gained vector vg is defined as the difference between the velocity 
required to satisfy the coast to target constraints (vr) and the current velocity of the system. 

The determination of an appropriate expression for the required velocity vr in terms of the 
current error state of the system is a central issue in most guidance problems. For the 
phase space controller the required velocity is expressed as the sum of a convergenr 
velocity vc and the desired velocity at the target state G. 

The velocity to be gained can be re-written in terms of the convergent velocity as 

vg = vc+ id - x 

This states that the velocity to be gained is simply the convergent velocity minus the current 
velocity error. The purpose of the convergent velocity is to drive the current vehicle state x 
toward the desired state and thus the state error vector toward zero. An efficient method 
of driving a vector to zero is to align the time rate of change of the vector with the vector 
itself. Thus the convergent velocity vector is aligned with the current state error vector and 
may be written as 

Here is the unit vector in the direction of the state error and 'c' is the desired convergence 
rate. The velocity to be gained is thus written in terms of the direction of the state error 
and the velocity error as 

2 vg = -CIe + id - x 

Ideally this velocity to be gained control law precisely controls the state and the 
velocity of the system at the desired state. In practice however, several difficulties arise. 
In systems employing ordoff (bang-bang) actuators, precise control of the system velocity 
is especially difficult. Each actuator provides a finite acceleration and thus truly impulsive 
rate changes are not possible. As a result the implementation of the velocity requests lags 
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the velocity to be gained computation.- Additional rate errors are introduced during the 
implementation of the velocity request due to the minimum impulse and discrete ordoff 
switch time constraints on the actuators. These small rate errors cause the system to 
overshoot or drift away from the target state. Consequently attempts to control the system 
state to an exact target point will result in excessive actuator activity. In the next section the 
phase sphere concept is introduced as a method of accommodating these rate errors while 
controlling the system state to a desired accuracy. 

6.2 Phase Sphere 

A standard method of circumventing the difficulty of imprecise rate control inherent 
in the use of on/off actuators is the introduction of a small target region representing the 
acceptable levels of error in each state variable in place of the single target state. The target 
region is defined as an n-dimensional deadband in which actuator activity is inhibited and in 
which the system is allowed to coast freely. This approach increases fuel economy and 
decreases the number of actuator ordoff cycles at the cost of a small amount of accuracy. 

The control objective of the deadband control approach is to maintain each element 
of the state vector xi within a specified 'deadband' of the corresponding target state element 
Xdi. The target region is described by the n deadband constraints 

-dbi c xq c +dbi 

The full set of these n double sided constraints on the n state variables defines a 2n sided 
rectangular parallelepiped centered on the origin in the n-dimensional error space. The 
length of a side of this rectangular parallelepiped is twice the value of the corresponding 
deadband dbi. Figure 6.1 shows a deadband volume defined in 3-space. 

Since the numerical values of the individual dbi may be very different, the error 
vector x, indicates the direction of the largest errors rather than the direction in which the 
state variables are furthermost from the established target volume. In practice the 
numerically largest element of the error vector could be within its deadband while the 
numerically smallest element could be outside its deadband. In order to apply control in a 
direction which will cause the state to most rapidly converge on the deadband volume a 
new normalized error vector is calculated by normalizing each component of the error 
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Figure 6.1 
A deadband volume in the 3-dimensional 

state error space. 

vector Xei by the corresponding deadband value dbi. The elements of the normalized error 
vector are 

Where FG and Ei are the ith elements of the normalized desired state and current state 
vectors. Note that though &, &, and % are referred to as normalized vectors, in general, 
they are not unit vectors and their direction is not the same as the original x, m, x,. vectors. 
In addition note that each element of these normuiized vectors is a dimensionless quantity. 

The deadband constraints of equation 6-8 are expressed in the n-dimensional 
normuiized error space as 

-1 <j7,<+1 (6-10) 

In this form the constraints define a hypercube centered at the origin of the n-dimensional 
normuiized state error space. The length of each side of the hypercube is 2. 

A simpler, though slightly more restrictive deadband volume is described by the n- 
dimensional unit hypersphere inscribed in the hypercube, (figure 6.2). Using this simpler 
deadband volume the n control objective constraints (equation 6-10) may be replaced by a 
single scalar constraint in terms of the n o d i z e d  state e m r  vector Ze 

1 

[ 3 & ] 5 <  1 
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The inscribed hypersphere is referred to as a phase sphere. The unit radius phase sphere 
represents the state target region in the normalized error space. 

Figure 6.2 
The unit phase sphere in the 3-dimensional 

normalized state error space. 

6.3 Phase Space Control Law 

The Phase Space Control Law utilizes the phase sphere concept as the primary 
method for scheduling the values of the convergence rate parameter (c) in the velocity to be 
gained calculation (equation 6-7). When the normalized error state lies within the unit 
radius phase sphere the state control objective is satisfied and the convergence rate 
parameter is set to a small value. Conversely, outside the phase sphere the state error has 
exceeded the acceptable threshold and the value of the convergence rade parameter is 
increased in order to supplement the velocity error correction with a velocity component 
along the current error vector and drive the state back toward the deadband region. 

As discussed the in the previous section, the convergent velocity component of the 
velocity to be gained vector should be aligned in the direction of the largest state excursion 
relative to the defined deadband region rather than in the direction of the numerically 'largest 
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error. The velocity to be gained calculation is thus modified to incorporate the nonmzlized 
state error unit vector in the convergent velocity calculation. 

vg = - c c  + id - ri; (6-12) 

Due to the inability to precisely control the system velocity in the presence of 
environmental disturbances, actuator restrictions and/or state measurement errors, the phase 
space controller is unable to maintain the system state at the commanded value with zero 
velocity error. Consequently the state of the system tends to drift away from the target state 
and toward the perimeter of the deadband region. Ideally, when the state error encounters 
the edge of the phase sphere, control is applied and the component of the drift velocity in 
the direction of the normalized error is reversed. The system then coasts back through the 
deadband volume with the new convergent velocity until it again reaches the perimeter of 
the deadband volume and an additional velocity correction is made. As this process 
continues the system tends to oscillate within the deadband region. This oscillation about 
the target state is the well known limit cycling phenomena. 

It is impractical to attempt to reverse the velocity at the precise moment when the 
state error reaches the edge of the phase sphere. During the finite amount of time required 
to implement the velocity change request the system state will travel beyond the phase 
sphere boundary. The amount and direction the system will overshoot the specified control 
tolerance is determined by the effectiveness of the actuators and the velocity of the system 
at the time it encounters the phase sphere perimeter. 

To prevent any control variable from exceeding its maximum allowable value the 
velocity correction must be initiated before the normalized state error intercepts the 
perimeter of the unit radius phase sphere. As a divergent drift rate in the ith control 
direction (xi) is driven to zero by a constant actuator acceleration component in the ith 
direction (ai) the system will travel a distance 

(6- 13) 

Expressed as a fraction of the specified maximum allowable error in the i* control variable 
direction (dbi) this becomes 

(6-14) 
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Thus in order to prevent undesirable excursions of the system state away from the target 
state a new set of error thresholds described by 

- (1  - bi) < Zei < +(1 + bi) (6-15) 

must be employed to determine the appropriate points at which a corrective maneuver 
should be initiated. These n doubIe sided constraints describe a parallelepiped in the n- 
dimensional normalized error space. Since the values used for xi and ai are not precisely 
known and may vary with disturbance levels and the state of the system, a second n- 
dimensional hypersphere is defined as a practical approximation of this complex surface. 
The radius of this second phase sphere is calculated as 

rm = 1 - b  (6-16) 

where 

(6-17) 

The values used for Xi- and a& are anticipated maximum and minimum values and should 
be determined empirically for the specific system under consideration. The inner sphere 
convergence rate parameter 'c' is a reasonable first approximation for xi-. 

This second phase sphere provides an error threshold at which control may be 
applied with a high confidence of reversing the divergent drift velocity before any error 
state exceeds its maximum allowable value. The second phase sphere is centered at the 
origin of the normalized error space, concentric with the original unit radius phase sphere. 

The two phase spheres partition the normalized error space into three distinct regions, 
(figure 6.3). 

Region 1: The volume inside the inner phase sphere. When the normalized error 
vector lies within the inner sphere actuator activity is inhibited and the 
convergence rate parameter (c) is set to a small value. 

Region 2: The buffer region between the two phase spheres. In this region the 
actuators may be employed to implement the calculated velocity change 
request (vg). The convergence rate parameter (c) is set to a small value 
since the normalized error vector still lies within the unit phase sphere. 
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Region 3: The region outside the unit phase sphere. In this region the actuators 
may be employed to implement the calculated velocity change request 
(vg). The convergence rate parameter (c)  is set to a large value since the 
normalized error vector lies outside the unit phase sphere; indicating at 
least one of the control variables has travelled an unacceptable distance 
from the target state. 

Figure 6.3 
Two dimensional cross section of the 

phase sphere geometry 

The value of the convergence rate parameter takes on two distinct values. In regions 
1 and 2 the convergence rate is selected to be large enough to generate at least the minimum 
impulse velocity request required to drive the system away from the phase sphere perimeter 
and small enough to provide a reasonable coast time between limit cycle velocity 
corrections. The value of the convergence rate in region 3 must be large enough to provide 
a timely convergence on the target region but must not exceed any system velocity 
constraints. 

Figure 6.4 is a limit cycle error trajectory. At the point a the system is at the target 
state but has a small drift velocity. The normalized error grows as the system drifts away 
from the target state until it intersects the inner phase sphere (point 6). A corrective velocity 
change is then implemented and the system re-enters the inner phase sphere at the point c. 

Actuator activity is then inhibited and the system coasts until it encounters the perimeter at 
point d and another corrective velocity change is implemented. 
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Figure 6.4 
Two dimensional view of a limit cycle trajectory. 

Each corrective velocity change adds the calculated velocity to be gained to the 
current system velocity. 

1 x+ = x- + Yg 

A -  

= i- + (- cig + i d  - i-) 

The new velocity to be gained is then calculated as 

(6- 18) 

(6-19) 

= -46 - $) 
L 

Ideally the velocity imparted to the system is exactly the calculated Vg and the direction of 
the normalized error vector is not altered significantly during the burn. In that case the new 
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velocity to be gained is a very small vector. As the system coasts through the inner phase 
sphere the direction of the normalized error will change and the velocity of the system will 
be altered in response to system dynamics and external disturbances. The velocity to be 
gained gradually increases as the system travels away from the state corresponding to point 
b. 

Figure 6.5 is a convergent normalized error trajectory. The system state is initially 
outside the acceptable state error range (point a). A velocity correction, or a series of 
velocity corrections, are implemented in order to provide and maintain the appropriate 
convergence velocity. The system state encounters the outer phase sphere at b and the 
convergence rate parameter is reduced to the limit cycle rate value. At the point c the 
velocity has been reduced tc this smaller convergence rate and the limit cycle motion 
begins. 

Figure 6.5 
Two dimensional view of a convergent trajectory. 
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6.4 The Cooperative Control Phase Space Regulator 

The application of interest in this thesis is the control of the motion of two space 
shuttles operating in close proximity. The linearized equations of motion of Ihe vehicles are 
derived in chapters 2 and 3. The 9-dimensional state of the two vehicle system is specified 
by the current attitude of the master vehicle with respect to the M50 inertial coordinate 
frame (e*), the attitude of the slave vehicle With respect to the master vehicle (OR), and the 
position of the slave vehicle with respect to the master (rR). The velocity of the system is 
the first derivative of the state, (UA, OR, rR). 

A cooperative maneuver is commanded by specifying a final command state, final 
command velocity, and a coast time of flight. The nominal trajectory generator provides a 
nominal trajectory consisting of an open loop set of jet of acceleration jet firings, nominal 
time histones of each state variable during the coast phase of the maneuver, and an open- 
loop set of deceleration jet firing commands. During the coast phase of this maneuver the 
system will be perturbed from this nominal trajectory as a result of the actual non-linear 
vehicle dynamics, environmental disturbances, and the granularity of the reaction control 
jets. The purpose of the cooperative control phase space regulator is to compensate for 
these effects and keep the two vehicle system tracking the nominal linear trajectory to 
within the specified tolerance by commanding corrective jet firings. 

The phase space regulator for this 9-dimensional system is formulated as three 
separate 3-dimensional phase space algorithms; one for the absolute attitude channel, one 
for the relative attitude channel, and one for the relative position channel. Each 3- 
dimensional phase space is described by a set of three deadband values (dbi), a low and 
high convergence rate parameter (~12, c3), and an inner sphere radius (m). The three 
phase space algorithms are operated in parallel, each generating a three dimensional velocity 
to be gained vector. 

The velocity to be gained vector for each control channel is computed as described 
in the last section. The normalized error vector is calculated and its magnitude compared to 
the radii of the phase spheres in order to determine the value of the convergence rate. The 
convergent velocity is calculated as the product of this convergence rate and the negative of 
the normalized error unit vector. The velocity to be gained is the difference between the 
convergent velocity and the velocity error. 
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A corrective jet f i n g  is executed whenever any of the three normalized error 

(1) traverses its inner phase sphere boundary from region 1 to region I1 of the 
normalized error space, 

(2) traverses its outer phase sphere boundary from region I1 to region I1 of the 
normalized error space, 

(3) lies in region I1 of its normalized error space and is increasing, 
(4) lies in region I11 of its normalized mor space and the corresponding 3- 

dimensional velocity error exceeds a specified threshold. 

vectm 

The third condition for initiating a feedback jet firing causes the state to converge more 
rapidly to the desired target rather than remain near the outer sphere boundary; This has the 
effect of lowering the value of the average error during a maneuver. The fourth condition 
for initiating a feedback jet firing is included to ensure a sufficiently rapid convergence of 
large state errors while keeping the number of jet firings reasonably small. 

When at least one of the above conditions is met the three 3-dimensional velocity to 

be gained vectors are assembled as a single 9 dimensional velocity request and passed to 
the jet selection algorithm (Chapter 4). The jet selection algorithm determines the 
appropriate jets and corresponding firing times to impart the nine dimensional velocity 
change. Thus though the velocity requests are computed on a channel by channel basis all 
channels are compensated when one channel satisfies one of the three conditions above. 
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CHAPTER 7 

I 
7.1 The Test Environment 

P E R F O R M A N C E  V E R I F I C A T I O N  T E S T S  

The development and verification testing of the cooperative controller included both 
module level and system level testing. This section describes the test environment and 
presents a discussion of the system performance. Three test scenarios demonstrating the 
features, operation, and performance of the cooperative controller are examined in detail: 

(1) A long duration maneuver consisting of a commanded change in the attitude 
of the master vehicle with respect to the M50 frame, the attitude of the slave 
with respect to the master, and the position of the slave with respect to the 
master. 

(2) A short duration translation maneuver performed both with and without 
reaction control jet failures. 

(3) . A V-bar docking approach using different jet cost coefficient values in the 
jet selection cost algorithm. 

In each case the ability of the system to design a satisfactory maneuver, execute this 
planned trajectory within specified accuracy limits, and to hold the specified final state after 
the maneuver is complete is evaluated. 

The system level tests of the cooperative controller are conducted using the C.S. 
Draper Laboratory two vehicle simulator. This simulator is a derivative of the Draper 
Space Station simulator and has been adapted to run on an IBM PS2 Model 50 desk top 
computer. The simulator is coded in FORTRAN and is currently running under IBM DOS 
3.3. 

I 
The simulator models the independent rigid body motion of two active spacecraft. 

Each spacecraft is modelled using an input deck containing the vehicle mass properties 
(I, rcm, m) and the locations and thrust directions of the reaction control jets. Due to the 
relatively short duration of the maneuvers of interest in this thesis, the mass property values 
are modelled as constants. The rotational motion of each spacecraft is modelled using the 
non-linear Euler's Moment Equations. The translational motion of each spacecraft is 
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modelled using Kepler 's equation for the motion of two bodies using a spherical gravity 
field. The equations of motion are integrated using a Fourth Order Runge-Kutta method. 

The simulator provides a sequencer to supervise the execution of the environment 
and flight control software. Data links from the flight control modules to the sensor and 
actuator modules are provided. In this thesis, no attempt to model sensor dynamics or 
other sensor noise sources has been made. All controller inputs are thus the truth values 
computed by the environment software. 

Data recording is perfoxtned at approximately 1.04 hz. (every 0.96 seconds). 

7.2 Long Maneuver Test 

The cooperative controller employs the "two burn" trajectory solver (chapter 5 )  to 
generate a linearized trajectory which carries the two spacecraft from the initial state to the 
commanded final state. During long maneuvers small rate errors generate attitude and 
position errors large enough to require the cooperative controller to command midcourse 

correction maneuvers. A failure to perform appropriate midcourse corrections will allow 
the'system state to diverge from the planned trajectory and will result in large final state 
errors. The accuracy of the implementation of the midcourse corrections is limited due to 
reaction control jet minimum impulse constraints and the granularity of the odoff switch 
times. As a result new small rate errors are introduced as the system compensates for 
current state errors. The cooperative control system should drive the two shuttle system to 
the commanded state using a reasonably small number of corrective jet firings. The 
purpose of the long duration maneuver test is to demonstrate the ability of the cooperative 
controller to plan and track a somewhat compIex relative motion trajectory and then . 

formationkeep at the final commanded state. For comparison purposes the maneuver is 
also implemented using two separate single vehicle maneuvers. The fuel efficiency of this 
cooperative maneuver is then compared to a similar maneuver implemented using two 
separate single vehicle maneuvers. 

7.2.1 Cooperative Control During a Long Maneuver 

In this test, the two space shuttles are travelling in a circular low earth orbit with 
zero relative translational and relative rotational velocity (figure 7.1). Both vehicles are 
initially aligned with their respective LVLH coordinate frames. The slave vehicle is 
positioned forward of the master vehicle. Neither spacecraft is rotating withxspect to its 
LVLH coordinate frame: Le. the inertial angular velocity vector of each vehicle is equal to 
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I 

the angular velocity vector of the circular orbit. The quaternions describing the initial 
attitude of the master vehicle with respect to the M50 coordinate frame and the initial 
attitude of the slave vehicle with respect to the master vehicle are respectively 

Q-B-Mm .452676 345757 .280830 -.030224 1 
Q-VLB =[  .9999998 0.0 .00001157 0.0 1 (7- 1) 

The initial relative position of the two shuttles is 

mL-ms =[ 507.6 0.0 0.0 1 (ft) (7-2) 

The initial angular velocity of the master vehicle with respect to the M50 frame and the 
initial angular velocity of the slave with respect to the master are respectively 

0-V1 = [ 0.0 -.001161 0.0 1 (rad/sec) 

The initial relative translational velocity is 

The two vehicle system is commanded to a new state described by : 

Q-B-MN = [ .0320071 -.3752774 -.5317485 .7585419 1 
Q - V U  =[ 0.0 0.0 -1.ooooo 0.0 1 
REL-pOS =[ 100.0 0.0 60.0 1 (ft) 
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5 

507.6 F T  

SLAVE MASTER 

Figure 7.1 
The initial state of the two vehicle system 

and the acceleration phase jet firings. 

The commanded final attitude of the master vehicle has been specified such that at 
the end of the maneuver the vehicle will be in a 90" pitch down orientation with respect to 
the final LVLH coordinate frame. The slave vehicle is commanded to a final orientation 
pitched 180" with respect to the master vehicle. The relative position command places the 
center of mass of the slave shuttle 100 ft below and 60 ft ahead of the center of mass of the 
master shuttle, (figure 7.2). The commanded coast time for the maneuver is 500 seconds. 

Figure 7.2 
The final state for the two vehicle system 

and the deceleration phase jet firings. 
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The commanded final translational velocity, angular velocity of the master with respect to 
the M50 inertial coordinate frame, and the angular velocity of the slave with respect to the 
master are all zero. Note that since the vehicles are originally aligned with the LVLH 
frames and thus rotating with respect to M50, the controller must perform the maneuver. 
and dissipate the initial angular velocity of the two spacecraft. 

In addition to initial state and commanded state values, the cooperative controller 
requires an array of nine deadband values (one per control variable), a value for the radius 
of the inner phase sphere and convergent rate for each of the three control channels, as well 
as cost coefficient values for the primary and vernier reaction control jets on each 
spacecraft. Table 7.1 and table 7.2 give the values of these parameters used in this test. 
These values have been selected as a nominal set and are not intended to represent an 
extreme controller configuration. 

Table 7.1 
Phase Space Regulator Parameters 

Master Attitude Re1 Attitude Re1 Position 
Parameter Phase Space Phase Space Phase Space 

Inner Phasesphere Radius .85 .85 .85 
Convergence rate (Reg 1&2) .@)05 ( n d / s d  .(MI05 (rad/=) 0.05 (-) 

Convergence rate (Reg 3) BO284 (nd/s=) .00284 (nd/s=) 0.10 (-) 

deadband (x,y,z) .05, .05, .0%d) .05, .05, . O W )  5.0, 5.0, 5.03) 

Table 7.2 
Reaction Control Jet Cost Coefficients. 

RCS Cost Coefficient 

Primary Jets 
Vernier Jets 0.0287 0.0287 

The cooperative controller computes and then implements a maneuver profile 
consisting of an acceleration phase, a coast phase, a deceleration phase, and a 
formationkeeping phase. Figure 7.1 shows the original configuration of' the two shuttle 
system and indicates the jets fwed during the acceleration phase. The jet numbers and 
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corresponding f ~ g  times for the acceleration burn are shown in table 7.3. Since the flight 
control software module is executed at 12.5 hz. the ordoff status of a jet may only be 
changed every 0.08 seconds. The times given in table 7.3 are the actual implementation 
times; the commanded firing time rounded to the nearest 0.08 seconds. Note that jet 
number 29 on the slave vehicle was not actually fired since the commanded firing time was 
less than 0.04 seconds. 

Table 7.3 
Acceleration phase jet firings. 

Master 
Jet# ITime 

Slave 
Jet# ITime 

II I I 27 I 1.52 II 1 I 2.96 I I 

15 
24 
36 

1.42 33 
0.40 21 
0.40 13 

29 

0.72 
0.64 
0.08 
0.00 

Figure 7.2 shows the configuration of the two shuttles at the end of the maneuver 

and the jets fired to eliminate the residual coast velocities and bring the system to rest at the 
desired state. The corresponding jet numbers and firing times are in table 7.4. Note that 
three of the jets selected by simplex for this deceleration firing were assigned firing times 
less than 0.04 seconds and thus were not fred by the jet sequencer. 

Tab11 
Deceleratioi 

Master 
Jet# Time 

33 1.60 
21 1.52 
7 1.12 

7.4 
I jet firings. 

SI; 
Jet # 

15 
27 
6 

33 
1 1  

e 
rime 

2.72 
2.64 
0.08 
0.00 
0.00 

The relative position trajectory in the x-z plane of the reference LVLH coordinate 
system centered on the master vehicle is shown in figure 7.3. The pitch profiles of the 
master vehicle with respect to the reference LVLH frame and the slave vehicle with respect 
to the master are shown in figures 7.4 and 7.5. 
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Figure 7.3 
Relative Position Trajectory (LVLH) 

6 K) 

I I I 
0 100 200 300 400 500 600 700 

Time (seconds) 

-1001 

Figure 7.4 
Pitch Profile of Master Vehicle with respect to LVLH. 
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Test 3.2: -Pitch Angle -- Veh #2 wrt Veh #1 

Time (seconds) 

Primary 

Figure 7.5 
Pitch Profile of Slave Vehicle with respect to Master 

Master Slave Total 
20/3.12 14/2.32 34/5.44 

During the 500 sec. coast phase of the maneuver the Phase Space Regulator 
(chapter 6) monitors the state and velocity errors, formulates a velocity to be gained 
request, and determines when corrective jet firings should be implemented. Eleven 
corrective actions were implemented during the coast phase of this maneuver. The average 
time between corrective actions was 45 sec.; the longest time between corrective actions 
was over 100 sec. Table 7.5 summarizes the jet firing activity during the coast phase of 
this test. 

Vernier 
Total 

Table 7.5 
Coast Phase Reaction Control Jet Activity. 

I 

5 / 1.76 0 /O.OO 5 / 1.76 
25 / 4.88 14 / 2.32 39 / 7.20 

I I I I 

values are ( #  of firings ) / ( aggregate firing time) 

The velocity to be gained request to be implemented during a corrective set of jet 
f ~ n g s  is often small, thus the simplex jet selection algorithm frequently assigns firing 
times which are below the minimum jet on time. As a result most of the corrective 
maneuvers are performed with fewer than nine reaction control jets and do not deliver the 
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precise velocity requested by the phase space controller. Small rate errors are rksponsible 
for the cycling of the state variable errors visible in figures 7.6 thru 7.8. 

Test 3.2: Veh #1 Attitude Error 
0.06 

0.04 

n 0.02 

3 
W e o  

-0.04 

-0.06 

0.06 

0.04 

n 0.02 
3 
$ 0  W 

1 
-0.02 

-0.04 

: Deadband -0.05rad 
......................... 1 .......................... ._ ......................... : .......................... _. .................. \ ....... - ......... : ..................... -- 

100 200 300 400 500 6cH) 700 

Time (seconds) 
Figure 7.6 

Attitude Error: Master Vehicle wrt M50 

Test 3.2: Relative Attitude Error 
/Deadband 4.05rad 

........................ : ............................ : .............................................................................................................. ............ --- .... - ...... 

. . ._. . . . . . _.. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . ., . . . .. . .. . . . . . . . . .. . ... .. . ,. . . . . . . . . . . . .. . . . . . . . . . . . . ,.. ... ... . . . . . . . . . . , . . . .. ... . . . . . . . .... .. ............. ........... ....... 
\Deadbani -0.05rad 

0 1 0 0  200 300 400 500 600 71 
-0.06 
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Figure 7.7 

Attitude Error: Slave Vehicle wrt Master 
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-Deadband -5.oOft 

6 

4 

2 
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-2 

-4 

-6 , 

Test 3.2: Position Error (Veh #1 Body Frame) 
/ Deadband +5.00ft 

.......... .............................................................................................. . .........................A ................................................... 

Master Slave 
Primary 11/ 1.44 7/0.66 

Total 
18/2.10 

During the formationkeeping phase of the maneuver (505.76 - 650.88 sec.) the 
phase space regulator is used to maintain the current state at the commanded state value. In 
this 145 sec. period the cooperative controller implements three corrective maneuvers. 
Table 7.6 summarizes this jet activity. 

Vernier 
Total 

3 / 3.92 0 / 0.00 3 / 3.92 
14/5.36 7 /Oh6 21 /6.02 

values are (a of firings ] / ( aggregate firing time) 
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The cooperative controller maintained each of the control variable enors within its 
specified deadband throughout the 650 sec. test, (figure 7.6 - 7.8). As described in chapter 
6, the phase space regulator initiates a corrective action whenever the normalized error state 
crosses the inner phase sphere. Figure 7.9 shows the magnitude of each of the normalized 
error vectors and indicates the cross over pints corresponding to the initiation of corrective 
jet fuings. 

+ = Feedback correction firing 
= Open - loop deceleration firing 

Time (seconds) 

Figure 7.9 
Magnitude of the N o d z e d  Error Vector. 

The state variable errors at the end of the coast phase, at the end of the deceleration 
maneuver, and at the end of the test are given in table 7.7. All compare favorably with the 
specified deadbands. 
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@ end of @ end of 
coast phase deceleration 

-.00072 .OOO6689 
Vl-Att-Err .01589 .0160397 

(rad) .0264407 .0266003 

@ end of 
test 

.028289 1 
-.O 1277 13 
-.00998 12 

RelAtt-En 
(rad) 

7.2.2 Non - Cooperative Maneuver 

.0088385 .0114901 -.OW264 

.0040098 .0033326 .0094189 
-.0272224 -.0277083 -.003866 

In this test the cooperative maneuver described in the last section is divided into two 
single vehicle maneuvers. The slave vehicle performs a +90 degree pitch maneuver and 
translates 407.6 ft. aft and 60 ft. down relative to an LVLH reference coordinate system 
centered on the location of the master vehicle. The master vehicle holds its position relative 
to the LVLH frame and performs a -90 degree pitch maneuver. Each vehicle plans its own 
trajectory and performs its maneuver without knowledge of the motion of the other vehicle. 
This test emulates a scenario where two separate autopilots agree to perform a pre-planned 
coordinated operation. 

Rel-Pos-En 
(ft) 

This test involved two computer runs: one for the slave vehicle motion and one for 
the master vehicle motion. The motion of each vehicle is controlled using the cooperative 
controller designed in this thesis with the jets on the other vehicle flagged as unavailable. 
The command input for the "ghost" vehicle state is set at its initial state so that its error state 
could not cause feedback initiated corrective maneuvers. 

.7540 .O 108 .2240 
- .197 3 -. 1362 .lo10 
1.3516 1.09 14 .2285 

The final state command for each vehicle is selected so that the final state of the two 
vehicle system is identical to the final state command used in the cooperative control case. 
Table 7.8 shows the jet firings used by the two vehicles during the acceleration burns. 

1 0 0  



Table 7.8 

Master 

6 .24 
24 .16 
1 .08 

36 .OS 

Jet# Time 
Slave 

Jet # Time 
1 6.0 

33 .72 
21 .56 
13 .32 
9 .24 
29 .08 

Table 7.9 gives the deceleration burn activity for each vehicle. 

Jet ## 

Table 7.9 
Deceleration iet firings. 

Time Jet # Time 

A comparison of these tables to the corresponding acceleration and deceleration tables in the 
last section show that the jets selected in each case are very similar. Table 7.10 summarizes 

9 
13 
21 
33 
1 

non-cooperative case the slave spacecraft performs the entire translation whereas in the 
cooperative case each vehicle performed a portion of the translation. The rotational 
maneuver performed by each vehicle is the same in both the cooperative and non- 
cooperative tests. 

Since the two spacecraft are identical and are aligned during the acceleration and 
deceleration bums, the amount of fuel consumed performing the translation maneuver is 
expected to be insensitive to to variations in the percentage of the translation performed by 
each vehicle. If the two spacecraft are not aligned during the acceleration and deceleration 
bums, have different mass properties, different actuator characteristics, or are otherwise 

1 

.24 

.24 

.16 

.16 

.16 

27 
15 
6 

33 
21 

2.48 
2.40 
1.36 
1.28 
1.04 
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not equally efficient in translation then the fuel usage in the cooperative and non- 
cooperative case would not be equal. 

Non-Cooperative 
Control 

Feed-Fc 

Cooperative Control 

4.88 sec 2.32 sec 7.20 

31 firings 49 firngs 80 f d g s  
15.62 sec 6.96 sec 22.58 sec 

Non-Cooperative 
Control 

Table 7.10 
ward Jet Firing Activity Comparison. 

Master Slave Total 

Accel 3.74 4.40 8.14 

Decel 4.42 5.44 9.86 

total 8.16 9.84 18.00 

A d  0.56 7.92 8.48 

DeCel 0.96 8.56 9.52 

total 1.52 16.48 18.00 
(values are seconds of jet activit 

Table 7.11 compares the corrective jet f i rng  activity for the two tests. In the non- 
cooperative case each vehicle attempts to independently compensate for the small rate errors 
which cause its state error to exceed the phase sphere threshold. In the cooperative control 
architecture each corrective maneuver is computed to compensate for error components in 
all 3 control channels. For example, using cooperative control the relative position error 
rate will be reversed when a corrective firing is initiated due to errors on either the absolute 
attitude or the relative attitude channels. In the non-cooperative control case jet firings on 
one vehicle do not effect the errors on the other vehicle. The cooperative control approach 
eliminates the duplication of effort inherent in the non-cooperative corrective jet firings. As 
a result the cooperative controller performed coast phase regulation of the state of the two 
vehicle system using 68 % less fuel and implementing 5 1 % fewer jet firings than the non- 
cooperative approach . 

Table 7.1 1 
Corrective Jet firings. 

1 I Master Slave Total I I 25 firings 14firings 39fuings I I Cooperative Control 
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7.3 Jet Failure Test 

The purpose of the short maneuver test is to investigate the effects of jet failures on 
the performance of the cooperative controller during a simple translational maneuver. The 
test is executed under four different conditions: 

All reaction control jets available on both the master and slave vehicle. 

Forward jets on the slave vehicle unavailable. This situation could arise if 
there was a major failure in the forward RCS system or if firings of the 
forward jets were inhibited by the crew in order to prevent jet plume 
impingement on the master vehicle during a nosefirst close inspection or 
docking approach maneuver. 

Forward jets on the slave vehicle and all the down (+Z in body frame) firing 
jets on the master vehicle are unavailable. In this scenario neither the master 
or slave vehicle is completely controllable in six degrees of freedom. This 
test investigates the ability of the cooperative controller to exploit the 
available control assets on both vehicles in order to control the state of the 
system. 

Forward jets on the slave vehicle and all the primary jets of the master 
vehicle unavailable. The remaining jets on the master vehicle provide low 
authority attitude control only; they do not provide translational control. 
This scenario is designed to demonstrate the effect of unavailable jets on the 

vehicle which is only capable of performing attitude corrections. 
performance of a single maneuvering vehicle during an approach to a 

Identical initial state and final commanded state values are used in the four test 
cases. In each test case the two space shuttles are initially travelling in low earth orbit as 
shown in figure 7.10(a). The master vehicle is in a circular orbit and is aligned with the 
LVLH coordinate frame. The slave vehicle is orbiting above the master and is pitched -90" 
with respect to the master vehicle. Neither vehicle is rotating with respect to the LVLH 
frame. 
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SLAVE 

I 
Figure 7.10 

Initial state (a) and final state (b) of the two vehicle system. 

The attitude quaternions, position vector, angular and linear velocity vectors describing the 
initial state of the system are given as: 

Q-B-MSO =[ .452676 345757 .280830 -.030224 1 
Q-V2B =[ .7071068 0.0 .7071068 0.0 1 
WL-ms =[ 25.0 0.0 -225.0 1 (ft) 

0-v 1 = [ 0.0 -.001161 0.0 1 (rad/sec) (7-6) 

~ v 2 - V l  = [ 0.0 0.0 0.0 1 (rad/sec) 

ML-VEL = [ 0.0 0.0 0.0 1 (ft/sec) 
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The desired maneuver for this test is a relative translation of - 100 ft. in the direction 
of the master vehicle 2 body axis. The coast time for the maneuver is set at 90 sec. The 
relative position in the x and y directions as well as the relative attitude are commanded to 
remain constant. The attitude of the master vehicle is command to be aligned with the 
reference LVLH frame at the end of the coast period. The slave vehicle therefore remains 
in a -90 pitch attitude with respect to the master vehicle and the LVLH frame. The values 
describing the commanded final state for this test are 

C B - M s  =[ .4365087 3428057 .3053541 -.07679619 1 
Cv2-B =[ .7071068 0.0 .7071068 0.0 1 
W L - m S  =[ 25.0 0.0 -125.0 1 (ft) 
0-v 1 = [ 0.0 0.0 0.0 1 (rad/sec) (7-7) 

The phase space parameters used in this test are the same as those used in the long 
duration maneuver described in the last section. The values of the inner phase sphere radii, 
the convergence rates, and the deadband values are given in table 7.1 and 7.2. The 
following sections present the results from each test cases. 

7.3.1 All Jets Available 

The "all jets available" test case provides a performance benchmark against which 
the cases using a partially depleted set of reaction control jets may be compared. In this run 
the full set of 38 primary jets and 6 vernier jets are "available" on each vehicle for a total of 
88 jets. As outlined in chapter 4, the jets on each vehicle are considered as clusters of 
similar jets for the purpose of jet selection. A representative jet from each of the 20 clusters 
on each vehicle (40 jets total) is used as an input to the simplex jet selection algorithm. 

In this test the cooperative controller computes and then implements a maneuver 
trajectory which satisfied the initial and final states specified above. Figure 7.1 1 shows the 
original configuration of the two spacecraft and indicates the jets fired during the 
acceleration phase of the "all jets available" maneuver. The corresponding firing times are, 
given in table 7.12. 
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MASTER 

2.00 
0.16 
0.16 

Figure 7.11 
Acceleration jet firings. (All jets available) 

27 3.92 
15 3.84 
9 0.16 

Table 7.12 

29 
43 

Acceleration jet firngs (All jets available) 

I !! Master Slave 
1 

0.0 13 0.16 
0.0 

I Jet# I Time 11 Jet# ITime 

106 



Figure 7.12 shows the vehicles at the command state and indicates the jets fred 
during the deceleration phase of the maneuver. The corresponding firing times are 
provided in table 7.13 

Master 
Jet# Time 

21 1.12 
33 . 1.12 
7 1.04 
17 0.0 

I MASTER 

Figure 7.12 
Deceleration jet firings. (All jets available) 

Slave 
Jet # Time 

1 3.84 
33 0.64 
21 0.56 
1 1  0.08 
29 0.0 

Table 7.13 
Deceleration jet firings (All jets available) 

\ Note the extensive use of jet #1 on the slave shuttle during the deceleration firings. 
Though at the time of the deceleration f k g s  the mass centers of the vehicles are separated 
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forward of the center of mass of the slave vehicle. The hot gas plume from this jet is 
impinging upon all equipment in the open payload bay of the master vehicle. From an 
operational standpoint this is undesirable and should be avoided. 

The simple relative position trajectory of the spacecraft is shown in figure 7.13 in 
the x-z plane of the reference LVLH coordinate frame centered on the master vehicle. Since 
the commanded final attitude of the master vehicle is specified with respect to M50 and the 
relative position of the slave vehicle is specified in the master vehicle coordinate system, the 
relative position vector appears to rotate in the LVLH frame during the formationkeeping 
phase of the test. 

0 

-50 

-200 

Test 4.0: Position -- In-Plane (LVLH) 

. . . . . . . .  ......... 

... 

.... 

.................. 

................... 

-250 
-100 -50 0 50 100 150 

X Position (ft) 

Figure 7.13 
Relative Position Trajectory (LW) 

During the 90 second coast phase and the 83 second formationkeeping phase of the 
maneuver the phase space regulator monitors the state and velocity errors, computes the 
velocity to be gained request, and initiates corrective jet firings when these errors approach 
the specified thresholds. Figure 7.14 shows the magnitude of the normalized error vectors 
for this test case. The errors remained small during the coast phase of the maneuver and no 
corrective burns were required. However, as a consequence of the granularity of the 
individual reaction control jet f ~ n g  times during the implementation of the deceleration 
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bum, slightly larger relative angular velocity errors are induced and the relative attitude 
error eventually exceeds the inner phase sphere threshold at 125.44 seconds. Table 7.14 
shows the actual firing times for this comtive maneuver. 

Master 
Jet # Time 

2 0.24 
9 0.08 
17 0.08 

1 

0.8 

0.6 

0.4 

0.2 

Slave 
Jet # Time 

15 0.08 
24 0.08 
36 0.08 

Test 4.0: Magnitude of the Normalized Error Vectors 
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0 
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80 

Figure 7.14 
Magnitude of the Normalized Enor vectors. 

The final state errors at the end of the coast phase, the end of the deceleration burn, 
and the end of the test are in table 7.15. Figures 7.15 - 7.17 are respectively the time 



histories of the master vehicle attitude error, the relative attitude error, and the relative 
position error. In all cases the errors are within the specified deadband tolerances. 

@ end of @ end of 

-.000737 -.001014 
V1-Att-m -.MI4279 -.004587 

-.(MI1572 -.001657 

coast phase deceleration 

(rad) 

0.06 

@ end of 
test 

.023 130 

.003542 

.004288 

0.04 

Rel-Att-Em 
(rad) 

Rel-Pos-Err 
(ft> 

h 0.02 
3 
3 0  

E w -0.02 

.003 1 14 .0037338 -.003068 

.022364 -023 1894 .024800 

.006493 .006673 .005 8 8 8 

.7447 -.377 1 1.9310 

.0353 .0396 - .6427 
-. 1943 -.0740 -.1709 

-0.04 

Table 7.15 
State Variable Errors. 

test 4.0: Veh #1 Attitude Error 

......... 

. . . . . . . . .  

... - . -. -. 

. .  
................................................................................... 

.. .......C......... 

-w.u ".".d 

i el 
........ ........ ....... .j.. ....... .;. ........ ;. . . . . . .  .\. . . . .  

......................................................................... \ .  
2 :  

................... (_..... ............................................... 

0 20 40 60 80 100 120 140 160 180 

Time (seconds) 

-0.06 

Figure 7.15 
Attitude Error: Master Vehicle wrt M50. (All jets available) 
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Figure 7.16 
Attitude Error: Slave Vehicle wrt Master (All jets available) 

* test 4.0: Relative Position Error (Veh #1 Body Frame) 
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Figure 7.17 
Relative Position Error. (All jets available) 
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73.2 Slave Shuttle's Forward Jets Unavailable 

Master 

2 2.64 
9 0.24 
13 0.24 
43 0.08 

Jet # Time 

The system is commanded to perform the z axis transition described by the initial 
and final states given in equations 7-6 and 7-7 above. In this case however, primary jets 
#1 thru #14 and vernier jets #39 and #40 on the slave shuttle are flagged as unavailable. 
This set comprises the entire suite of reaction control jets forward of the center of mass of 
the slave shuttle and effectively removes 8 of the 40 cluster representatives nominally 
available to the two spacecraft simplex jet selection algorithm. Since these jets are 
unavailable, the simplex jet selection algorithm cannot employ them as part of acceleration, 
deceleration or any of the feedback initiated corrective jet firings. 

Slave 
Jet # Time 

27 4.00 
15 3.92 
33 0.24 
21 0.16 
17 0.0 

The cooperative controller computes an open-loop trajectory consisting of an 
acceleration phase, a coast phase, and a deceleration phase. Figure 7.18 shows the initial 
configuration of the two spacecraft and indicates the acceleration jets fired to begin the 
maneuver. Note that slave vehicle jets #9 and #13 (forward-down-left and forward-down- 
right) are not selected as in the "all jets available" case; slave aft jets #21 and #31 are fired 
instead. Table 7.16 gives the complete set of jet firings and the corresponding firing times 
for the acceleration phase of the maneuver. 
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2 

MASTER 

Figure 7.18 
Acceleration jet firings. (Slave forward jets unavailable) 

The deceleration bum is executed as the vehicle reaches the commanded state. 
Figure 7.19 shows the jets fired and table 7.17 contains the corresponding jet firing times 
for the deceleration phase of the maneuver. Note the absence of slave vehicle jet #1 from 
the firing pattern and the significant increase in the firing times of the upwardly firing jets 
(#7,21,33) on the master vehicle. The cooperative control trajectory planner has computed 
a new accelerate, coast, decelerate trajectory which can be flown using only the available 
reaction control jets. The resulting relative position trajectory of the two spacecraft in the x- 

z plane of the reference LVLH coordinate fiame centered on the master vehicle is shown in 
figure 7.20. 

113 



MASTER I 

~~ 

Master Slave 
Jet# ITime Jet # ITime 

I 

27 
4 

Figure 7.19 
Deceleration jet fuings. (Slave forward jets unavailable) 

Table 7.17 
Deceleration iet firings. 

0.80 
0.0 

2.24 29 0.0 
0.80 
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Figure 7.20 
Relative Position Trajectory (Slave forward jets unavailable, LVLH frame). 

The performance of the system during the coast maneuver is only slightly degraded 
by the unavailability of the slave shuttle's forward RCS jets. Figures 7.21 - 7.23 show the 
errors in the master vehicle attitude with respect to M50, the relative attitude errors, and the 
relative position errors. In this test case slightly larger rate errors are: induced by the 
granularity of the jet firings than in the "all jets available" case. Consequently the relative 
attitude error exceeds its inner phase sphere threshold at 52.56 seconds and the master 
vehicle attitude error exceeds its inner sphere threshold at 120.56 seconds. 
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Attitude Error: Master Vehicle wrt M50. (Slave forward jets unavailable) 
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Figure 7.23 
Relative Position Error. (Slave forward jets unavailable) 

Note that the rate of change of the normalized magnitude of the master vehicle 
attitude error is not rapidly reversed as the normalized error exceeds the inner phase sphere 
at 120.56 sec (figure 7.24). During this corrective maneuver, simplex assigned long firing 
times to a pair of the low acceleration vernier jets instead of selecting the higher acceleration 
primaries and the correspondingly shorter firing times. The simplex cost of each jet firing 
is directly proportional to the firing time of the jet and includes no additional penalty for 

undesirably long firing times. Thus the optimal choice is dependent on the direction of the 
9-dimensional velocity to be gained vector and the cost per second of each of the available 
jets. In this case the velocity to be gained vector is more closely aligned along the direction 
of the activity vectors of master vehicle verniers #39 and #44 than any priinary jet. 

To implement an excessively long set of jet firing commands, the cooperative 
controller scales each firing time such that the longest corresponds to a value of 4.96 
seconds. In this manner the direction of the velocity change is preserved though its 
magnitude is diminished. At the end of the 4.96 sec firing a new velccity correction is 
computed and immediately implemented. Using this method a long corrective maneuver is 
implemented in a piecewise optimal sense. 
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Test 4.1 : Magnitude of the Nmalized E m  Vectors 
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Figure 7.24 
Magnitude of the Normalized Error Vector. (Slave forward jets unavailable) 

Figure 7.24 shows that during the corrective maneuver (120.56 - 132.08 sec) the 
rate of change of the normalized master vehicle attitude error is decreased. However due to 
the duration of the maneuver the error has drifted beyond the unit phase sphere threshold. 
When the next segment of the corrective maneuver is computed at 132.24 sec the larger 
"region #3" value of the convergence rate (c) is used in the velocity to be gained calculation 
(equation 6- 12). In order to deliver the new larger velocity change simplex selects a set of 
primary jets and the errors on all the phase space channels are rapidly decreased. 

Since the slave shuttle reaction control jets have no effect on the absolute attitude of 
the master shuttle with respect to M50, the unavailability of the forward slave vehicle jets 
did not interfere with a rapid reversal of the master vehicle attitude rate error. This behavior 
was a consequence of the relative weight assigned to the primary and vernier jets in the 
simplex cost function. The determination of a method of blending vernier and primary jet 
commands while satisfying maximum firing time constraints is an area of possible future 
study. 
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Table 7.18 summarizes the feedback initiated jet activity during the coast and 
formationkeeping phases of this test. 

Primary 

Table 7.18 
Feedback initiated jet firings. (Slave forward jets unavailable) 

Master Slave Total 
22/3.12 12/2.56 3415.68 

Vernier 
Total 

7 / 17.04 0 / 0.00 7 / 17.04 
29 / 20.16 12 / 2.56 41 / 22.72 

I I I I 

values arc ( I  of firings ) / ( aggregate firing time) 

7 3 3  Slave's Forward Jets & Master's +Z Jets Unavailable 

In this test the system is commanded to perform the z axis translation described by 
the initial and final states given in equations 7-6 and 7-7 above. In addition to the slave 
vehicle forward jets disallowed during the last test (#1 thru #14, #39, #40), all the down 
firing (+z) jets on the master shuttle are flagged unavailable (9,10,13,14,24,25,26, 
36,37,38, and verniers 39,40,42,44). Specifically, jets used in the last test and their 
obvious replacements are now unavailable; this test stresses the ability of the system to 
accommodate jet failures. In this configuration neither of the individual shuttles is 
completely controllable in 6 degrees of freedom, and therefore neither is capable of 
performing a single pursuit vehicle approach to the other. 

The cooperative controller computes an open-loop trajectory consisting of an 
acceleration phase, a coast phase, and a deceleration phase. Figure 7.25 shows initial 
configuration of the two spacecraft and indicates. the acceleration jets fired to begin the 
maneuver. Note that since the +z jets on the master vehicle are unavailable, the cooperative 
controller uses jets #21 and #33 to provide the required + pitch impulse. Table 7.19 gives 
the complete set of jet firings and the corresponding firing times for the acceleration phase 
of the maneuver. 
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Figure 7.25 
Acceleration jet firings. (Slave forward and master +Z jets unavailable) 

Master 

2 2.88 
33 0.32 
21 0.32 
43 0.08 
4 0.0 

Jet # Time 
Slave 

Jet # Time 
27 4.48 
15 4.40 
21 .24 
33 .24 
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Figure 7.26 shows the jets fired and table 7.20 contains the corresponding jet f ~ n g  times 
for the deceleration phase of the maneuver. Similar to the last test, the impulse provided by 

7.27. 

2.40 
2.32 
2.32 
0.80 
0.72 

I MASTER 

21 0.16 
33 0.16 
29 0.00 

Figure 7.26 
Deceleration jet firings. (Slave forward and master +Z jets unavailable) 
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Time 11 Jet# ITime 
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Test 4.4: Position -- In-Plane (LVLH) 
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Figure 7.27 
Relative Position Trajectory 

(Slave forward and Master +Z jets unavailable, LVLH frame). 

Though neither spacecraft is completely controllable in six degrees of freedom, their 
relative motion and the absolute attitude of the two vehic€e system is controllable as a 9 
degree of freedom system. The cooperative controller accurately controls the relative states 
of the two vehicles in a scenario where either vehicle acting as a single pursuit vehicle could 
not. Figure 7.28 - 7.30 show the errors in the master vehicle attitude with respect to M50, 
the relative attitude errors, and the relative position errors. 
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Figure 7.28 
Attitude Error: Master Vehicle w-rt M50. 

(Slave forward and Master +Z jets unavailable) 

Figure 7.29 
Attitude Error: Slave Vehicle wrt Master 

(Slave forward and Master +Z jets unavailable) 
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Figure 7.30 
Relative Position Error. 

(Slave forward and Master +Z jets unavailable) 
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Figure 7.31 
Magnitude of the NormalizedError Vector. 

(Slave forward and Master +Z jets unavailable) 
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The plot of the magnitude of the normalized error vectors in figure 7.31 shows that 
as in the other test cases the errors are well controlled and remain within the unit phase 
sphere. In this test a single corrective jet f ~ n g  maneuver was required at t = 129.92 
seconds during the formationkeeping phase of the test. 

i 

Traditional proximity operations are conducted using a single pursuit vehicle to 
approach or formationkeep with a passive target vehicle. The target vehicle may not 
actually be passive and may be capable of performing independent attitude control. This 
test case investigates the performance of this traditional approach during a period of 

Similar to the test case described in the last section, primary jets #1 thru #14 and 
vernier jets #39 and #40 on the slave shuttle are flagged as unavailable to simulate either a 
serious reaction control system failure or a desire to avoid forward jet plume impingement 
on the target (master) vehicle. In addition to these jets all the primary jets on the master 
vehicle (jets #1 thru #38) are also flagged as unavailable. The trarislational control 
authority provided to the master vehicle by the remaining low acceleration vernier jets is 
insignificant and the vehicle may be considered only capable of attitude control. Under 
these conditions the master vehicle provides an adequate approximation of a passive target 
vehicle. 

The system is commanded to perform the z axis translation described by the initial 

state and commanded final state in equations 7-6 and 7-7 above. The cooperative controller 
parameters used in this test case are identical to those used in the previous two test cases 
and are given in table 7.1 and table 7.2. 

The cooperative controller attempts to compute an open-loop trajectory consisting of ' 

an acceleration phase, a coast phase, and a deceleration phase which carries the system to 
the commanded final state. Due to the degraded control authority of the system, the 
simplex jet selection algorithm is unable to select a set of reaction control jets to satisfy the 
velocity change requirements. In both the "all jets available" and the "forward slave jets 

vehicle, (see tables 7.12 and 7.16). This jet provides an impulse in the -x direction without 
applying a torque to the slave spacecraft. In this test case all the primary jets on the master 

I 

I unavailable" test cases the acceleration maneuver utilized primary jet #2 on the master 
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vehicle are unavailable and no combination of the jets available on the slave spacecraft can 
provide an equivalent relative velocity impulse without also generating a significant relative 
rotational velocity impulse. In the terminology used in chapter 4, the set of jets available in 
this test fails to span the 9 dimensional velocity space and thus the system is not completely. 
controllable. 

73.5 Summary of Jet Failure Tests 

In this section the robustness of the cooperative controller to reaction control jet 
unavailability was investigated. The four test cases conducted provided examples of 
varying degrees of degraded control authority of the two vehicle system. 

In the first test case (all jets available) both the master and the slave vehicle are 
completely controllable. The cooperative controller performs the commanded maneuver 
using a total of 19.44 sec of jet on time; the smallest amount used in any of the four cases. 

In the second case the slave vehicle is uncontrollable in 6 degrees of freedom. The 
cooperative controller is able to control the 9 dimensional state of the two vehicIe system by 
exploiting the natural actuator redundancy provided by the reaction control jets available on 
the "healthy" master vehicle. 

In the third test case neither the slave or the master spacecraft is completely 
controllable in six degrees of freedom. Even so, the cooperative controller is again able to 
coordinate reaction control jet firings on the two vehicles and control the system in the nine 
dimensional state space. 

The fourth test case is the traditional pursuit vehicle control approach to proximity 
operations. Since the master vehicle is completely passive in translation, the controllability 
of the relative position of the two vehicles is entirely dependent on the controllability of the 
pursuit vehicle. Since the forward jets on the pursuit vehicle are unavailable, the pursuit 
vehicle is not completely controllable in translation and the maneuver cannot be 
accomplished. 

The ability of the cooperative controller to maintain control of the system of two 
spacecraft when the single pursuit vehicle control system cannot control the relative states 
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of the vehicles is a principle benefit of the cooperative control approach to proximity 
operations. 

7.4 V-Bar Approach Test 

The purpose of this test is to demonstrate the ability of the cooper,ative controller to 
exploit the control assets available on both vehicles in order to perfatrm fuel efficient 
maneuvers. The cooperative controller is exercised in several test cases %using different jet 
costs and jet availability configurations. Performance comparisons are made based on the 
jets selected, the duration of the jet fdngs (fuel consumed) and the behavior of the two 
vehicles. A standard docking approach along the mean velocity vector of the target vehicle 
is commanded in each instance. 

In the Clohessy - Wiltshire equations developed in chapter 3, (equation 3-43), 
when z=O, and x, z = 0 then x, z = 0. The x axis of the local LVLH coordinate system is a 
locus of equilibrium points which may be exploited during proximity operations. Since the 
direction of the x-axis corresponds to the direction of the orbital velolcity vector of the 
reference circular orbit, this direction is referred to as V-BAR. Standard pursuit vehicle 
rendezvous operations often involve a v-bar approach. 

In the v-bar approach test the master and the slave vehicle are travelling in the same 
circular orbit, (figure 7.32a). The slave vehicle is positioned 150 ft forward of the master 
vehicle. The master vehicle is pitched +90° with respect to its LVLH fiame and the slave 
vehicle is aligned with the master. The complete description of the initial state of the two 

shuttle system is given by the absolute and relative attitude quaternions, the relative position 
vector (body frame), the absolute and relative angular velocity vectors, and the relative 
linear velocity vector. 

QB-MSO =[ S18667 .619413 -.121514 S76669 1 
QJ2-B =[ 1.0 0.0 0.0 0.0 1 
REL-POS =[ 0.0 0.0 150.0 1 (ft) 

0-v1 = [ 0.0 0.0 0.0 l(rad/Sec) 

o - V ~ - V ~  = 0.0 0.0 0.0 1 (rad/sec) 

REL_vEL = [ 0.0 0.0 0.0 1 (ft/sec) 

(7-8) 
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SLAVE 

MASTER 

- 

Figure 7.32 
(a)The initial state of the two vehicle system 

(b) The commanded final state of the two vehicle system. 

The vehicles are commanded to decrease the distance between them to 50 ft while 
maintaining the attitude of the master vehicle with respect to the M50 frame and the attitude 
of the slave vehicle relative to the master vehicle constant, (figure 7.32b). The coast time 
for the maneuver is 100 seconds. The final state of the maneuver is given by 

Q_B-M50 =[ S18667 A19413 -.121514 S76669 1 
QV2-B =[ 1.0 0.0 0.0 0.0 1 
REL-POS =[ 0.0 0.0 50.01 (ft) 

0-Vl = [ 0.0 0.0 0.0 l(rad/Sec) (7-9) 

128 



This test is executed four times using different actuator descriptions in order to 
demonstrate the ability of the cooperative controller to perform the maneuver using different 
subsets of the jets residing on the two vehicles. The differences in both fuel efficiency and 
the behavior of the system will be highlighted. The cases presented are: 

(1) Master vehicle reaction control jets unavailable. All slave vehicle jets 
available. 

(2) All reaction control jets available on the both vehicles. 

(3) Master vehicle reaction control jets twice as fuel efficient as slave reaction 
control jets. All jets available. 

(4) "Upward firing" (-2 in body frame) reaction control jets on both the master 
and the slave vehicle are three time less fuel efficient than the other jets. All 
jets available. 

These test cases are discussed individually in the following sections. 

7.4.1 Master Vehicle Jets Unavailable 

In this test case811 of the reaction control jets on the master shuttle are flagged as 
unavailable and may not be fired by the cooperative controller. This test case reduces to the 
single vehicle pursuit solution to the proximity operations problem. The entire maneuver is 
performed by the slave vehicle. Figure 7.33 shows the initial state of the two shuttles and 
indicates the jets fired during the acceleration burn. Table 7.21 contains the actual firing 
times for each jet. 

Figure 7.33 
The initial state of the two vehicle system 

Acceleration jet firings indicated. 
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Table 7.2 1 

The slave vehicle coasts toward the master at a velocity of approximately 1 ft/sec. 
After 100 sec the slave performs the deceleration set of jet firings in order to null the 
relative velocity and begin formationkeeping at the target 50 ft point. Figure 7.34 shows 
the jet firing pattern at the final state. Table 7.22 gives the actual firing times. 

Figure 7.34 
The final state of the two vehicle system 

Deceleration jet firings indicated. 

130 



Table 7.22 
Deceleration Dhase jet firings. 

Slave 

33 
6 

21 
27 

Master 

2.48 
2.40 
2.08 
0.08 

Jet# ITime 

I 1 H 

Jet# ITime 

Firing the up (-z) jets on the slave shuttle nulls its velocity in the LVLH frame and 
concludes the two bum maneuver. The slave then begins to formationkeep at the 
commanded final state. The master shuttle has not been perturbed from reference circular 
orbit and thus the two vehicle system is not translating with respect to the reference LVLH 
frame. 

During this maneuver the phase space regulator commanded two corrective sets of 
jet firings, one at 16.80 sec (during coast) and one at 124.88 sec. (during 
formationkeeping). These two corrective maneuvers account for 12 jet firings and for a 
total of 3.84 seconds of fuing time. 

7.4.2 All Jets Available 

In this test case all reaction control jets on both the master and the slave vehicles are 
available to the cooperative controller. The cooperative controller selects the most efficient 
combinations of jets based on the geometry of the activity vectors and the thrust level of 
each jet. In the jet select cost function the cost coefficient value used for all the primary jets 

is c=l.O, for all the vernier jets ~4 .0287 .  Figure 7.35 show the acceleration jets fired in 
this test case. Table 7.23 shows the actual firing times used for each jet. 

Table 7.23 
Acceleration Dhase iet firings. 

L I! Master Slave I 
I Jet# I Time 11 Jet# ITime I 

0.0 
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1 

Figure 7.35 
The initial state of the two vehicle system 

Acceleration jet firings indicated. 

From the firing pattern in figure 7.35 it is clear that the cooperative controller is 
performing a single vehicle approach by the master vehicle. This solution is primarily a 
result of an asymmetry in the reaction control jets on a shuttle spacecraft. Though each 
primary reaction control jet used on the shuttle is identical to all the other primaries, the 
effectiveness of each jet is altered by its placement on the vehicle. Specifically, on the 
space shuttle the aft downward firing (+z) jets impinge upon the shuttle itself. This 
impingement has the effect of decreasing the net thrust attained by fuing the jet. 

The cost coefficients for the aft +z jets are traditionally set to the same value as the 
other primary jets (see section 7.2.4 below) because they consume fuel at the same rate. 
Since the two vehicles in this test. have been commanded to perform an approach maneuver, 
the cooperative controller must select the acceleration jets to be fired from either the set of 
down fuing jets on the slave vehicle or the up (-2) firing jets on the master. Since the up 
jets do not impinge on the vehicle, and cost the same as the down jets, they are more 
efficient and are selected. 

It must be emphasized that the shuttle reaction control jet model accounts for the 
forces and torques on a shuttle due to impingementfrom its own jets. It does not account 
for impingement effects due to jets from a neighboring vehicle. 
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The vehicles coast for 100 sec and then perform the open-loop deceleration f ~ n g s .  
Figure 7.36 shows the firing pattern and table 7.24 contains the actual firing times. 

Master 
Jet# Time 

- 0.0 

I f 

Slave 
Jet # Time 

33 2.48 
6 2.40 

21 2.08 
27 0.08 

SLAVE 

"27 

Figure 7.36 
The final state of the two vehicle system 

Deceleration jet firings indicated. 

In the deceleration maneuver the relative efficiency of upward firing (-z) jets is 
again the dominant consideration in optimizing the fuel consumption of the two burn 
approach. In order to null the relative approach velocity the cooperative controller must 
select the deceleration jets from either the master vehicle -z jets or the slave vehicle +z jets. 
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Firing the less efficient master vehicle +z jets will cause the velocity of the master vehicle in 
the LVLH frame to decrease and the two vehicle system to formationkeep about a fixed 
point in the LVLH frame. The cooperative controller selects the more efficient solution, 
and fires a set of -z jets on the slave vehicle. As a result the slave vehicle accelerates to 
match the LVLH velocity of the master vehicle. The two vehicles attain the commanded 
final state and formationkeep about a point moving slightly faster than the reference circular 
orbit. 

. 

During this maneuver the phase space controller did not initiate any corrective jet 
firings. 

7.43 Master Vehide More Efficient Than Slave Vehicle 

In this test case the cost coefficient for the jets on the master vehicle are set to values 
equal to half the values used for the jets on the slave vehicle. The smaller cost coefficient 
indicates to the cooperative controller that the master vehicle jets use fuel at half the rate of 
the slave vehicle jets. In this test all reaction control jets on both the master and the slave 
vehicles are available to the cooperative controller. The cooperative controller selects the 
most efficient combinations of jets based on the geometry of the activity vectors, the thrust 
levels of each, and the cost per second of firing time. Figure 7.37 shows the acceleration 
jets fired in this test case. Table 7.25 shows the actual firing times used for each jet. 

1 

V 
27 

Figure 7.37 
The initial state of the two vehicle system 

Acceleration jet fvings indicated. 
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Master 
Jet # Time 

7 2.32 
21 2.24 
33 2.24 
27 0.08 

Table7.25 ~ 

Acceleration Dhase jet fuings. .. - 
Slave 

Jet # Time 
- 0.0 

c 

The firing pattern in figure 7.37' shows that in this case the .most efficient solution to 
the two burn maneuver employs the master vehicle -z jets during the acceleration bum. As 
a result the master vehicle closes at approximately 1 ft/sec on the slave vehicle which 
remains in an unperturbed circular orbit. 

The vehicles coast for 100 sec. and then the deceleration set of jet firings is 
implemented. Figure 7.38 shows the jet firing pattern and table 7.26 contains the 
corresponding jet f ~ g  times. 

f 

Figure 7.38 
The final state of the two vehicle system 

Deceleration jet fuings indicated. 
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Table 7.26 
Deceleration phase jet firings. 

I Master II Slave 1 
I J e t #  I Time 11 

24 3.44 
9 1.76 
13 1.76 
2 1.44 

In this test the decrease in the cost of the master vehicle primary jets has offset the 
inefficiency of the +z primaries discussed in the last section. The +z jets on the master 
vehicle are fired, the closure velocity reduced, and the final command state reached. As in 
the test case presented in section 7.4.1 the system is not translating with respect to the 
LVLH frame at the end of the deceleration bum. 

It should be noted that the cooperative controller did not "blend" jets from both 
vehicles during the maneuver due to constraints on the attitudes of the vehicles. Each jet 
provides a torque as well as a linear force. Thus to perform a pure translation the torques 
on each vehicle must sum to zero. It would be inefficient to fire "translation" jets on both 
vehicles and additional "torque nulling" jets as well. 

7.4.4 Upward Firing Jets Less Efficient 

In this test case the cost coefficient parameters for the upward firing (-z) jets on 
both vehicles are set to a value three times the standard value used for the other jets. This 
situation could actually arise if a spacecraft had two sets of very dissimilar actuators. In 
this test all reaction control jets on both the master and the slave vehicles are available to the 
cooperative controller. The cooperative controller selects the most efficient combinations of 
jets based on the geometry of the activity vectors, the thrust levels of each, and the cost per 
second of firing time. Figure 7.39 shows the acceleration jets fired in this test case. TabIe 
7.27 shows the actual firng times used for each jet. 
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.L I 

Master 
Jet# Time 

15 0.80 
27 0.64 
33 0.08 

Figure 7.39 
The initial state of the two vehicle system 

Acceleration jet fkhgs indicated. 

Slave 
Jet # Time 

36 3.28 
24 3.20 
9 1.52 
13 1.52 

The jet firing pattern in figure 7.39 is different than the pattern observed in the three 
prior approach cases. Due to the high cost of the master vehicle up firing (-z) jets, the 
down firing (-z) jets on the slave vehicle are used to impart the required translation velocity 
to the system. This combination produces an additional velocity component in the +x body 
axis direction which caused jet #1 on the slave vehicle to be employed during the single 
vehicle case presented in section 7.4.1 (figure 7.33). In this test case the cooperative 
controller employs the +x jets on the master vehicle (these jets were unavailable during the 
single vehicle test). Jet #33 is used for only one control cycle to counter the small torque 
associated with the jet 15 & 27 combination. 
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The slave vehicle coasts toward the master for 1 0 0  sec and then the decelerauon jets 
are fred. Figure 7.40 shows the firing pattern and table 7.28 contains the actual firing 
times. 

Jet # 
24 

I I 

Time Jet # Time 
3.28 15 0.72 

SLAVE 

36 
9 
13 
44 

15 W 27 

3.28 27 0.56 
1.60 33 0.08 
1.60 
0.32 

Figure 7.40 
The final state of the two vehicle system 

Deceleration jet firings indicated. 

Table 7.28 
Deceleration phase jet firings. 

Master Slave I I! I 

In this deceleration maneuver the cooperative controller selects the down (+z) 

master vehicle jet combination over the costlier up firing slave vehicle jets. The master 
vehicle is thus accelerated until its translational velocity matches the approach velocity of 
the slave vehicle. The cooperative controller compensates for the additional velocity in the 
+x body direction induced by the 9,13,24,36 jet combination by commanding short firings 
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of the +x jets on the slave vehicle. The two vehicles attain the commanded final state at the 
end of the deceleration burn and formationkeep about a point moving slightly slower than 
the reference circular orbit. 

TEST CASE 

Master Jets Unavailable 

All Jets Available; Std Cost 

Master Jet Cost = 1/2 
Both Veh. -Z Jets Cost = 3 

During this test the phase space controller initiated 3 corrective maneuvers 
consisting of 25 individual jet fuings for a total of 8.72 seconds of firing time. 

OPEN - LOOP 
No of Jets Total Time 

g 18.96 

9 14.24 
9 18.80 
15 . 22.48 

7.45 S U ~  of V-bar Tests 

3.84 

0.0 
2.72 

8.72 

This series of four tests demonstrated the fuel efficiency and the versatility of the 
cooperative controller. In each test case (master jets unavailable, all jets available with cost 
coefficient = 1, master jet costs=1/2, -Z jet costs=3) the cooperative controller planned and 
executed a two bum trajectory which carried the two spacecraft system from the initial to 
the commanded final states. In all four test cases the phase space regulator feedback loop 
maintained the state errors within the specified deadbands during the coast and 
formationkeeping phases of the test. Table 7.29 summarizes the reaction control jet activity 
for each test case. 

22.80 

14.24 
10.76 
31.40 

-bar tests 
FEEC 

No of Jets 

12 

0 
5 

25 

-1 Total Time 

In table 7.29 the fuel savings of the two vehicle cooperative control approach (case 
2) over the single pursuit vehicle approach (case 1) is evident. The two vehicle all jets 
available maneuver used 57% fewer jet firings ( 9 vs 21) and 37% less fuel (in these cases 
fuel usage is directly proportional to aggregate firing time; 14.24 vs 22.80). The 
cooperative controller solution is more efficient as a direct result af the use of more 
effective master vehicle jets in place of some of the slave vehicle jets employed by the 
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single vehicle pursuit solution. The increased fuel economy resulting from the 
incorporation of the actuators on both spacecraft into the maneuver solution is a principle 
advantage of the cooperative control approach to proximity operations. 

In the nominal cooperative control test the cost parameters associated with each jet 
are unity. Consequently the jets are selected based on the their effective thrust and the 
geometry of the problem. In the third and fourth test cases the ability of the cooperative 
controller to blend actuators of dissimilar fuel consumption rates was demonstrated. In test 
case #3 the cost parameter for all master vehicle jets was set equal to 1/2. Though the 
aggregate firing time increased (14.2 to 21.52 s a . )  as low cost geomemcally less efficient 
master vehicle jets were included into the solution in place of high cost slave vehicle jets, 
the fuel usage cost decreased (14.24 to 10.76). 

In case four the cost parameter for all up (-z) firing reaction control jets was set to 
3. In order to avoid the increased fuel costs associated with these jets the cooperative 
controller substituted geometrically less effective unity cost down (+z) firing jets during 

both the acceleration and deceleration maneuvers. The resulting cost of the maneuver is of 
course larger than the cost computed in case 2, but it is lower than the cost of the case 2 jet 
firing profile with recomputed using the higher cost parameter value. 

In addition to verifying the fuel efficiency of the cooperative controller these four 
tests also demonstrate the controller's versatility. In the third test case (master vehicle jet 
costs = 1/2) the cooperative control solution reduces to a single active pursuit vehicle 
approach. Unlike the true single vehicle approach to proximity operations however, the 
cooperative control approach guarantees that the vehicle performing the pursuit maneuvers 
is the more efficient of the two vehicles. The relative efficiency of the two vehicles may 
change drastically due to changes in the availability of the actuators, mass properties, the 
relative geometry of the vehicles, or the commanded maneuver. The cooperative controller 
adapts to all these changes in real time. 

In the second and fourth test cases, the cooperative controller fires a combination of 
reaction control jets from each spacecraft in order to implement the two burn trajectory 
solution. The initial bum in each solution accelerates one of the vehicles to an appropriate 
approach velocity. To complete the maneuver a second open-loop burn is commanded at 
the end of the coast period. Rather than decelerating the approaching vehicle, this burn 
accelerates the second vehicle until the relative velocity of the two spacecraft is nulled and 
the commanded relative position is attained. This type of coordinated proximity operations 
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maneuver is unique to the cooperative control approach. It cannot be performed using only 
one active vehicle and would be extremely difficult to perform accurately and efficiently 
using two independently controlled vehicles 

I 
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C H A P T E R  a 

S U M M A R Y  AND C O N C L U S I O N S  

8.0 Conclusions 

A new controller capable of controlling the joint maneuvers of two general "active" 
spacecraft during proximity operations has been developed. This 9 degree of freedom 
cooperative controller controls the attitude of the master vehicle with respect to an inertial 
coordinate frame as well as the attitude and position of the slave vehicle'with respect to the 
master. The cooperative control design developed in this thesis is a two-tiered system; an 
open-loop trajectory solver is used to plan a linearized two bum (accelerate, coast, 
decelerate) maneuver trajectory and a phase space regulator is used to maintain the system 
of two vehicles on this trajectory. A simplex algorithm is employed to determine the 
minimum fuel combination of reaction control jets on both the master and the: slave vehicles 
which satisfies each velocity change request. The cooperative controller has been 
successfully implemented for a system of two space shuttle spacecraft conducting joint 
maneuvers in low earth orbit. 

Preliminary tests of the cooperative controller using the two shuttle example have 
verified that cooperative control is a viable alternative to the traditional "pursuit vehicle" 
approach to proximity operations. The ability of the open-loop trajectory solver to plan a 
complicated two vehicle maneuver which drives the system to a commanded final state has 
been demonstrated. The ability of the phase space regulator loop to maintain the system 
state on the planned nine degree of freedom linearized trajectory and perform 
formationkeeping functions within specified tolerances and with an acceptable level of 
reaction control jet activity has also been verified. 

The cooperative controller has been shown to be more robust to jet failures than a 
single vehicle control system. When several reaction control jets on the pursuit spacecraft 
were designated "unavailable", the vehicle was no longer completely controllable and was 
unable to perform the commanded approach to the target vehicle. In this same situation the 
cooperative controller was able to exploit the available control authority of the control jets 
on both the pursuit vehicle and the "healthy" target vehicle in order to control the two 

vehicle system and complete the commanded maneuver. Furthermore, in a case where 
neither the target or the pursuit vehicle was completely controllable, the cooperative 
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controller was able to control the nine degree of freedom system and direct it to the 
commanded final state. In all cases examined, the additional redundancy achieved by 
including the target vehicle reaction control jets in the set of usable actuators made the 
cooperative controller more robust to jet failures than the single pursuit vehicle control 
system. 

Two cooperatively controlled vehicles were also shown to be more efficient than a 
single pursuit vehicle. During a 100 second v-bar approach maneuver, the cooperatively 
controlled two-vehicle system performed 57% fewer jet f h g s  and used 37% less fuel than 
a single pursuit vehicle performing the same maneuver. In addition, during a more 
complicated 500 second maneuver the cooperatively controlled system was demonstrated to 
be moreefficient than a set of two non-cooperative maneuvering vehicles. In this case the 
cooperative controller commanded 51% fewer jet firings and used 68% less fuel than the 
two independently controlled vehicles. Though the savings of the cooperative control 
approach vary depending on the maneuver and the efficiency of the available reaction 
control jets, the cooperative controller is never less fuel efficient than either a single pursuit 
vehicle or pair of maneuvering vehicles. 

8.1 Contributions 

This thesis has emphasized the extension and integration of several existing 
approaches to single spacecraft control to the more complex problem of the cooperative 
control of two spacecraft. The significant contributions of this work are: 

(1) The formulation of the nine degree of freedom, two spacecraft, joint 
maneuver trajectory solver. 

(2) The formulation of the nine dimensional phase space algorithm for the two 
vehicle system. This system utilizes a separate phase space representation 
of each of three 3-dimensional control channels and a single 9-dimensional 
velocity to be gained vector. 

(3) The development of the proximity operations Cooperative Controller. This 
controller is a new approach to the solution of the proximity operation 
control problem; it exploits the maneuverability of both the target and the 
master spacecraft in order to control the relative position and attitude of the 
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two spacecraft and the attitude of one of the vehicles with respect to an 
inertial reference frame. The controller is robust to reaction control jet 
failures and performs fuel efficient proximity operations maneuvers. 

(4) The validation of the cooperative controller design using a software 
simulation of a two space shuttle system and by comparison to the 
performance of a single vehicle controller in similar proximity operations 
scenarios. 

8.2 Recommendations for Additional Work 

The cooperative controller controls nine degrees of freedom of the two spacecraft 
system. During various phases of the mission it may be Operationally desirable to control 
the two spacecraft in 12, 6,  or even 3 dimensions. (If the two vehicle system is not 
completely controllable in 9 dimensions it would be desirable to attempt to control just the 

relative position and relative attitude.) Since the jet selection algorithm is readily formulated 
for each of these cases it may be desirable to expand the basic cooperative controller to 
include these specialized control modes. 

As currently formulated the jet selection algorithm returns a solution which includes 
"imaginary jets" when the two vehicle system is not completely controllable (chapter 4). It 
may be advantageous to incorporate a "controllability alarm" which directs specific action 
(eg. reduce the order of the controller) when the system is unable to perform a commanded 
maneuver. (The shuttle OEX autopilot incorporated such an alarm..) 

A major cause of state error drift rates observed in the testing performed on the 
cooperative controller is the minimum impulse and on/off granularity of the reaction control 
jets. If control actuators with various control granularities could be blended in such a 
manner as to eliminate a large portion of the drift rates the frequency of corrective jet 
activity could be drastically reduced and additional fuel savings would result. 

The cooperative controller computes a single two burn trajectory to transfer the two 
spacecraft from the initial state to the commanded final state. In some instances this single 
maneuver trajectory may be fuel inefficient or even impossible. (In chapter 5 it was shown 
that the out-of-plane position is not controllable for transfers spanning integer multiples of 
half an orbit.) A method for planning and optimizing a multi-segment trajectory could be 
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used to provide intermediate state commands to the cooperative controller. Such a system 
will certainly be required if the cooperative controller is to be applied to the control of a pair 
of autonomous or semi-autonomous spacecraft. 

Finally, in this thesis the cooperative controller was assumed to reside on the 
"master" spacecraft. While this designation was convenient for the discussion purposes, 
the algorithm does not have to reside on a particular vehicle. In fact it will be desirable to 
have the cooperative controller running on both spacecraft simultaneously. In this manner 
neither vehicle is "surrendering control" to the other spacecraft. Both spacecraft are 
computing the cooperative solution and then comparing answers. If at any point the 
separate controllers loose synchronization or disagree, the cooperative maneuver is broken 
off and the vehicles transition to a single vehicle control mode.. This architecture is 
especially attractive for operations within the proposed spacestation command and control 
zone. Spacestation will be required to provide "direct command and control of unmanned 
vehicles and support monitoring and advising of manned spacecraft operating within the 
within the command and control zone".10 
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