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and

Richard H. Gallagher
Clarkson University
Potsdam, New York 13675

SUMMARY

The equilibrium equations and the compatibility conditions are fundamental
to the analyses of structures. However, anyone who undertakes even a cursory
generic study of the compatibility conditions can discover, with lTittle effort,
that historically this facet of structural mechanics had not been adequately
researched by the profession. Now the compatibility conditions (CC's) have
been researched and are understood to a great extent. For finite element dis-
cretizations, the CC's are banded and can be divided into three distinct cate-
gories: (1) the interface CC's, (2) the cluster or field CC's, and (3) the
external CC's. The generation of CC's requires the separating of a local re-
gion, then writing the deformation displacement relation (ddr) for the region,
and finally, the eliminating of the displacements from the ddr. The procedure
to generate all three types of CC's is presented and illustrated through exam-
ples of finite element models. The uniqueness of the CC's thus generated is
shown.

The utilization of CC's has resulted in the novel integrated force method
(IFM). The solution that is obtained by the IFM converges with a significantly
fewer number of elements, compared to the stiffness and the hybrid methods.

INTRODUCTION

: In the analyses of structures both the conditions of equilibrium and of
compatibility come into play, except for the trivial statically determinate
case. However the conditions of equilibrium are the most familiar to struc-
tural analysts, perhaps because of a concern about the internal forces required
for design and the wide acceptance of equilibrium as a universal and natural
concept. In contrast, the concept of compatibility is much Tess familiar to
structural analysts. The compatibility conditions (CCS's) were not known until
mathematicians formulated them about a century ago (ref. 1), Tong after the
equilibrium equations (EE's) had been derived. Even so, the early forms of the
compatibility conditions were developed mainly for the manual analyses of sim-
ple structures and were based on the concept of redundant structural elements.
The notion of cutting the redundant members, which leads to the conditions of
compatibility that have to be restored (henceforth referred to as classical
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compatibility conditions (CCC's)), was formulated in the precomputer era.
Formulating CCC's for large-scale computations proved inconvenient and ineffi-
cient, so they have almost disappeared from current structural engineering
practice. The general, and mathematically rigorous, compatibility conditions
(analogous to St. Venant's strain formulation in elasticity (ref. 1)) have been
formulated for finite element analysis. These finite element CC's are referred
to as the global compatibility conditions (GCC's) or simply CC's. The GCC's
are banded, and they are amenable to computer automation. (In stiffness analy-
ses, Iinkage and continuity of displacements at element interface are popularly
referred to as the compatibility conditions; in a strict sense, such con-
straints are continuity conditions.)

The utilization of compatibility conditions has resulted in the integrated
force method (IFM) (refs. 2 to 16). In the IFM all the internal forces are
treated as the primary unknown, and the system equilibrium equations are cou-
pled to the global compatibility conditions in a fashion paralleling approaches
in continuum mechanics, such as the Beltrami-Michell formulation in elasticity
(ref. 17).

The compatibility conditions, in basic form, have been introduced and com-
pared with the CCC's in references 2 to 4. The purposes of this report are to
(1) describe the physical aspects of the compatibility conditions, including
the interface CC's of finite element models; (2) demonstrate the generation of
GCC's from their local counterparts; and (3) illustrate the benefits that
accrue from the use of the global compatibility conditions in finite element
analysis.

The subject matter of this report is presented in the subsequent five sec-
tions. In the second section the governing equations of the IFM are presented.
In the third section we demonstrate the procedure to generate the compatibility
conditions, and these concepts are illustrated in the fourth section. 1In the
fifth section, comparison of results obtained by the IFM, the stiffness method,
and the hybrid methods are presented, and the conclusions are given in the
sixth section.

EQUATIONS OF THE INTEGRATED FORCE METHOD

In the integrated force method, a discretized structure for the purpose of
analysis 1s designated as structure (n,m) where (1) structure denotes the types
of structure (truss, frame, plate, shell discretized by finite elements, their
combinations, etc.) and (2) n and m are force and displacement degrees of
freedom fof and dof, respectively. The structure (n,m) has m equilibrium
equations and r = n - m compatibility conditions. The m EE's, [BI{F}
= {P}, and the r CC's, [CI[GI{F} = {8R}, are coupled to obtain the governing
equations of the IFM as follows:

[B] \
[[C][G] {F} {SR} (SI{F} = {P} (1

where

[B] mx n equilibrium matrix
[C] r x n compatibility matrix



[G] nx n concatenated flexibility matrix (containing material
properties) and it links deformations {R} to forces {F} as
{B} = [GI{F}
{P} m-component load vector
{6R}  r-component effective initial deformation vector such that
: {6R} = -[C1{Ro} where {Bp} 1s the n-component initial deformation

vector
[S] nxn IFM governing matrix

The matrices [BJ], [C], [G], and [S] are banded, and they have full row ranks of
m, v, n, and n, respectively.

The solution of equation (1) yields the n-forces {F}. The m-displacements
{X} are obtained from the forces {F} by back substitution (ref. 9) as

{x} = DJI{LGI{F} + {Bo}} (2)

where [J] is the m x n _deformation coefficient matrix defined as
[J] =m rows of [[SI-11T.

Equations (1) and (2) represent the two key relations of the IFM for fi-
nite element analysis that are needed to calculate forces and displacements,
respectively.

GENERATION OF THE COMPATIBILITY CONDITIONS

The compatibility conditions and the associated coefficient matrix [C] are
obtained from St. Venant's strain formulation in elasticity (ref. 1) as an ex-
tension to discrete structural mechanics. The strain formulation is i1lus-
trated through the plane stress elasticity problem. The strain displacement
relations (SDR) of the problem are

au h
Ex T ax
av
= — (3a)
ey 3y 3
u Qv
Yxy = 3y X

Since in the SDR three strains (eyx, ey, yxy) are expressed as functions of two
displacements (u,v), the SDR contains one tompatibility condition, which can be
obtained by eliminating the two displacements from the three SDR as

=0 (3b)

ay2 X

The two steps that are necessary to generate CC's from St. Venant's strain
formulation are (1) establish the strain displacement relations given by equa-
tion (3a) and (2) eliminate displacements from the SDR to obtain the compati-

bility condition given by equation (3b).



In the mechanics of discrete structures, the equivalent of SDR are the de-
formation displacement relations (DDR). (Deformations of discrete analysis {3}
are analogous to strains {e} of elasticity.) The DDR can be assembled directly
or obtained on an energy basis by utilizing the well known equality relation of
internal strain energy and external work, which can be written in the case of a
discrete structure (n,m) as

3 (B = 3 (TP (42)

Equation (4a) can be rewritten by eliminating loads {P} in favor of internal
forces {F} by using the EE ([BI{F} = {P}) to obtain

3 MTIBIGFY = 5 (FYT(B)  or  F{RT(BI(X} - (B)} =0  (4b)

Since the force vector {F} is not a null set, we finally obtain the following
relation between member deformations and nodal displacements:

(8} = [B1T{X} (5

The expression glven by equation (5) represents the global deformation dis-
placement relation applicable to any finite element model whose system equilib-
rium equations can be symbolized as [BJ{F} = {P}. In the DDR, n-deformations
{R} are expressed in terms of m-displacements {X}; thus, there are r =n -m
constraints on deformations, which represent the r compatibility conditions
of the structure (n,m). The r CC's, in terms of total deformations, can be
obtained by the elimination of m-displacements from the n DDR, and in matrix
notation the CC's can be written as

(C1{B} = {0} (6a)

The CC's, in terms of elastic deformations {B}, that are given by equation
(6b), are obtained from equation (6a) and from the definition of the total de-
formation {B}, which is composed of the initial deformations {B} and the
elastic deformations {B} as {B} = {B} + {B}o Thus

[C]{B}e = {6R} (6b)

where

{8R} = -[CI{Rg}
[Cl] r xn global compatibility matrix

The efficient generation of the CC matrix [C] is the subject matter of this
report. The matrix [C] is rectangular and banded, and it has full row rank r.
The CC's are kinematic relationships that are independent of sizing design
parameters (such as area of bars, moments of inertia of heams, etc.), material
properties, and external loads. The compatibility conditions depend on the
fnitial deformation in the structure. For numerical efficiency, directly
eliminating displacements from the DDR to obtain CC's is not recommended for
large-scale computations. Instead, the global compatibility matrix [CI is
efficiently generated by utilizing such physical features of the compatibility
conditions of finite element models as bandwidths, the determinacy of the grid

points, and so on.



PROCEDURE TO GENERATE GLOBALCOMPATIBILITY CONDITIONS

To generate the CC's, (1) separate a local region from the structural
model on the basis of interface, cluster, or external bandwidth considerations
as explained Tater in this section; (2) establish the local deformation dis-
placement relations (ddr) for the local region, and eliminate the displacements
from the ddr to obtain the CC's for the region under consideration: and (3) re-
peat steps (1) and (2) until all r CC's of the structure (n,m) are generated.
These steps are elaborated in the section Illustrative Examples. The order of
generation of the CC's is immaterial; however, we recommend generating the in-
terface CC's first, since these are most numerous, followed by the cluster
CC's, and finally, the external CC's.

Bandwidths of the Compatibility Conditions

The CC's of discretized structures are banded. On the basis of bandwidth
considerations, the CC's are divided into three distinct categories: (1) in-
terface compatibility conditions, (2) cluster or field compatibility condi-
tions, and (3) external compatibility conditions. By assuming the example of
a finite element model as shown in figure 1, the three types of compatibility
conditions can be illustrated as in figure 2.

Interface Compatibility Conditions

Numerous interfaces internal to the structure are created in the discre-
tization processes. The interface is the common boundary shared by two or
more elements. In the model shown in figure 1, the common boundary along
nodes 1 and 7 is the interface between elements 1 and 2, the boundary connect-
ing nodes 12 and 17 is the interface between elements 13 and 14, and so on.
The interface between elements 1 and 2 is shown in figure 2(a). The deforma-
tions of elements 1 and 2 must be compatible along the common boundary defined
by nodes 1 and 7, which gives rise to interface compatibility conditions. The
number of CC's at the interface depends on the element types (such as membrane,
flexure or solid tetrahedron, etc.) and element numbers. The maximum bandwidth
of the interface compatibility condition can be calculated as

i
MBH, . = Z (Fof yy) (7a)
3=

where

MBWicc maximum bandwidth of the interface compatibility conditions
JT total number of elements present at the interface
fofej force degrees of freedom of the element j present at the interface

The bandwidth MBWj.. represents the maximum bandwidths of the interface
compatibility conditions written either in terms of forces {F}, as in
[(CI[GI{F} = {0} (here we are referring to the bandwidth of the product matrix
(CI[G], or in terms of deformations {B}, as in [CI{R) = {0} (here the
bandwidth is that of the compatibility matrix [CI). The actual bandwidth of
the compatibility matrix [C] is smaller than its maximum bandwidth. The
interface compatibility conditions of discrete analysis are analogous to the
boundary compatibility conditions in elasticity (ref. 8). The interface CC's
are the most numerous
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in any finite element model. These are generated by writing the deformation
displacement relation for the Tocal region (such as shown in fig. 2(a) for the
interface defined by nodes 1 and 7) and then eliminating the displacements from
the local ddr as explained in the section Illustrative Examples. For the in-
terface shown in figure 2(a), there are two elements (i.e., JT = 2). Let us
assume that both are membrane elements; the fof of the triangular element
foft is 3 and that of the quadrilateral element, fofg 1s 5. Then the MBW;j¢c
calculated from equation (7a) is 8.

Cluster Compatibility Conditions

Consider any element in the model shown in figure 1, such as 19. Ele-
ment 19 along with its eight neighboring elements are shown in figure 2(b).
The deformations of element 19 must be compatible with its neighboring elements
(14 to 16 and 18 to 23). The CC's of the cluster of elements are referred to
as the cluster compatibility conditions, which essentially represent the field
CC's of St. Venant's strain formulation. The maximum bandwidth of the cluster
CC's can be calculated as

MBH, . = Z (Fof ) (7b)
3=

where

MBWccc  maximum bandwidth of the cluster compatibility conditions
JTC total number of elements present in the cluster

Assuming that quadrilateral elements have fofy = 5 and triangular ele-
ments have foft = 3, the MBW.. of the cluster shown in figure 2(b) can be
calculated from equation (7b) as 41.

In a finite element idealization, the number of cluster compatibility
conditions are fewer than the number of interface CC's. Generating cluster
compatibility conditions requires the establishment of the ddr for the local
cluster (such as shown in fig. 2(b) for element 19) and then elimination of
the displacements from the local ddr as explained in the section Illustrative
Examples.

External Compatibility Conditions

Reactions are induced at the nodes where displacements are restrained. If
such restraints are sufficient only for the kinematic stability of the struc-
ture, then the structure is externally determinate, and it has no external com-
patibility conditions. 1If, however, the restraints on the boundary exceed the
number of rigid body motions of the structure, then the structure is externally
indeterminate. The degree of external indeterminacy can be calculated as

follows:
R =N -N (7¢)

where



Rext number of external indeterminacy

X number of displacement components suppressed on the boundary

Nf¢ number of boundary conditions required only for the kinematic stability
of the structure

Let us assume that the finite element model shown in figure 1 represents a
membrane structure. Then its external indeterminacy Reyxt =7 - 3 = 4, since
the number of actual boundary restraints Ny 1is 7 and the kinematic stability
requirement Nf 1is 3.

To calculate the bandwidth of the external compatibility conditions, sepa-
rate the local region connecting any two boundary nodes. Let the number of
elements between the two nodes be represented by JTE, then the bandwidth of the
external CC's is given by

ITE
MBH, ., = Z (Fof ) (7d)
1=

where
MBWecc  maximum bandwidth of the external compatibility conditions

Assuming as before that the quadrilateral elements have fofy = 5 and the
triangular elements have foft = 3, the bandwidth of the external CC's shown in
figure 2(c) can be calculated from equation (7d) as 8.

If the boundary represents a determinate boundary, then no boundary CC's
will be generated. The boundary CC's are obtained by eliminating the displace-
ments from the deformation displacement relations written for the local bound-
ary segment (e.g., for the model shown in fig. 1, the segment containing nodes
1 and 3 and elements 2 and 3, also shown in fig. 2(c)) by following the proce-
dure explained in Illustrative Examples.

The interface, cluster, and external CC's represent the local CC's. ATl
three categories of local CC's are concatenated to form the system or the glo-
bal CC's of the structure (n,m). The sum r = rjcc + rcee + Tece of the num-
ber of interface CC's, cluster CC's, and external CC's is equal to r =n -m
of the model. The values of rjce, rcce, and race can be calculated for
discrete models; however it is not necessary to determine their values before
generating the CC's.

[LLUSTRATIVE EXAMPLES

Examples of a few structures that are idealized by triangular membrane
elements and bar elements are presented to illustrate the generation of global
compatibility conditions from the local conditions such as interface CC's,
cluster CC's, and external CC's. In the examples, triangular elements given
by Przemieniecki (ref. 18) and standard bar elements, which are adequate to
illustrate the compatibility concepts yet simple enough for closed-form
presentation, are chosen. The elements are shown in figure 3. The membrane
element has three force unknowns, Fie, Fpe, and F3g; its six displacement
degrees of freedom are Xjg, X2g, . . . , Xge (fig. 3(a)). The bar element



has one force and four displacement unknowns (fig. 3(b)). For the membrane
element, the 6 x 3 equilibrium matrix [B]y and its symmetrical flexibility
matrix [Glg of dimension 3 x 3 are obtained in closed form (ref. 18) as

'—Q]Z 0.0 Q3]'
'm]z 0.0 m3]
QIZ 'QZ3 0.0
[Bl, = (8a)
m"z 'm23 O-O
0.0 23 -2
| 00 M3 “M31 ]
where % and m1 denote the direction cosines of the direction vector de-
fined by the edge 1j; and
2
7t)
[ sin 63
sin 6. sin © cos ezcot 62 - v sin ®, cos O,cot &, - v sin 9,
1 2

sin e,
sin 6251n 63

X |cos ezcot 82 - v sin 62 cos e3cot 83 - v sin 63

sin 92

cos ezcot 62 - v sin 62 cos e3cot 93 - v sin 63 T e3sin 8] J

(8b)

where

E  Young's modulus
v Poisson's ratio
t membrane thickness

The angles ©5 are defined in figure 3(a).

Even though the 6 x 6 elemental stiffness matrix for the membrane can be
generated in closed form, its explicit form is too complicated for presentation
here.

Example I - The Membrane

Generation of the interface compatibility conditions is illustrated
through the example of a membrane shown in figure 4(a). The membrane is made
of steel, with Young's modulus E = 30 ksi and Poisson's ratio v = 0.3;

8
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dimensions a and b are 100 in. and thickness t = 1 in. The membrane is
subjected to concentrated loads. The example is also solved herein by the IFM,
and the stiffness solution in symbolic form is included for comparison. The
membrane is idealized by two triangular elements. The discretization has six
force degrees of freedom, which are the concatenation of the two element force
unknowns such that

(F}' - (F, = F F, = F F (9a)

te1r Fa = Fagpe o o o0 Fg= Fagy)d

where the subscript 1iej 1indicates the ith force of element j.

A corresponding deformation component Bk 1is associated with each force
component Fk. The six-component deformation vector of the membrane is

T
{B} = (B] = B]e], BZ = Bze], e ey [36 = [3392) (gb)

The five system displacement degrees of freedom shown in figure 4(a) are rep-
resented by {X} as

007 - Xy, X X a0

20 e 5)
The membrane is designated "membrane (6,5)" since it has six force and five
displacement unknowns. Membrane (6,5) has five EE's and one CC (i.e.,

=(n-m = (6-5) = 1).

Equilibrium equations of the membrane (6,5). - The five system EE's of
membrane (6,5), in terms of the six forces, are obtained from the elemental
equilibrium matrices (refer to eq. (8a)) by following finite element assembly
technique as

N
_ - 1 ~
1.0 0.0 0.7071 0.7071 0.0 0.0 (50.00
F
0.0 0.0 -0.7071 -0.7071 -1.0 0.0 | 2 100.00
F
0.0 1.0 07071 07071 0.0 0.0 3 > = ¢ 5o.oo$ an
: F
0.0 0.0 0.0 0.0 1.0 o0.0||*? 50.00
F
0.0 0.0 0.0 0.0 0.0 1.0 | 2 100.00
F ~ -
. 6

Since the system equilibrium matrix [B] has the dimension 5 x 6, the five EE's
(eq. (112) cannot be solved for the six forces; one CC is required to augment
the five EE's to a solvable set of six equations in six unknowns.

Compatibility condition for membrane (6,5) or the interface compatibility
conditions. - Membrane (6,5) has one CC; therefore its local CC and global CC
are represented by the same equation. The first step in the generation of the
CC is to establish the deformation displacement relation for the membrane. The
6 x 5 global DDR is obtained from equations (5) and (11) as




B, F 1.0 0.0 0.0 0.0 0.0] X
B, 0.0 0.0 1.0 0.0 0.0 X,
B 0.707 -0.7071 0.7071 0.0 0.0 |
< > - X, ? (12)
By 0.707 -0.7071 0.7071 0.0 0.0
B 0.0 1.0 0.0 1.0 0.0 | *a
B L 0.0 0.0 0.0 0.0 1.0/ | X
. V. .

Even though the single CC for this simple problem can be obtained by
direct elimination of the five displacements from the six ddr given by equa-
tion (12), this procedure is not recommended because it can become numerically
expensive for large structures. The concept of node determinacy, which greatly
enhances computational efficiency in the generation of CC's, is presented next.

The Node Determinacy Condition

Node determinacy for general application is presented first; then it is
specialized for membrane (6,5). Forces in determinate structures can be ob-
tained from EE's alone; such determinate forces do not participate in the CC's.
The concept of determinate structure is extended to the nodes or grid points
of a finite element model, and to enhance computational efficiency, determinate
nodes or grid points are identified and eliminated at intermediate stages of
the generation of CC's.

Take any node of a finite element model, for example the node i. Let
Ki represent the number of force components present in the EE's written for
node 1. Let Ly Trepresent the displacement degrees of freedom of the node 1,
which also is the number of EE's that can be written at that node. The inde-
terminacy of node 1, designated (NR3), is defined as

- L (13

If NRj = 0, then node i is designated determinate. Forces present at a de-
terminate node i, referred to as determinate forces, do not participate in the
compatibility conditions since such forces can be determined from the nodal
equilTibrium equations alone. Consequently, for determinate node i, Ky forces
along with Ly EE's, which correspond to Lj = Ky displacements, can be
dropped simultaneously from the equilibrium matrix [B] to obtain the reduced
equilibrium matrix [Bl (r1) without affecting the CC's in any manner. Dropping
of forces ard displacements is also equivalent to the elimination of appro-
priate columns and rows of the deformation displacement relations. The reduced
deformation displacement relation (designated DDR,j) that is obtained after im-
posing the node determinacy condition has the following form:

- (rl) )7

DOR_, » (8} ¢ (14)

= [B]

In equation (14), matrix [B](“)T has a dimension of {(n - Ky) « (m - Kj)}.
The deformation vector {Y(r1) has the dimension n - Kj, and displacements
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(x}(r1D) are of dimension m - Kj. As expected, the number of CC's contained in
the DDRy] given by equation (14) is r =n-m or r = {(n - Ky) - (m - Ky},
since no CC has yet been generated. The node determinacy condition has reduced
the number of deformation displacement relations from n to n - Kj; however,
the number of compatibility conditions remains the same. The motivation behind
dropping determinate variables at the intermediate stage of the generation of
the CC is to enhance node determinacy at as many grid points as possible.

For the example of membrane (6,5), observe that the last two of its EE's,
given by equation (11), have two determinate forces, Fg and Fg, and that
these correspond to the two displacements X4 and Xg5 at node 4; therefore
Ky =2 and Ly =2. The node 1 =4 1is determinate since NRj = Ky - Lj = 0.
The reduced DDRyy that is obtained by taking into consideration the determinacy
for node 4 has the following explicit form:

\
rB] F 1.0 0.0 0.0
X
B, 0.0 0.0 1.0 !
< ) = X, (15)
B 0.707 -0.707 0.707
X
By 0.707  -0.707 0.707)| 3
.,

The number of CC's given by the DOR,y (eq. (15)) still remains one (r =m - n

= 1), since no CC has yet been generated. The local structure that is obtained
after the elimination of the determinate node 4 is shown in figure 4(b). Stince
node 1 is fixed and node 4 has been dropped, the local ddryy given by equa-
tion (15) corresponds to the DDR of nodes 2 and 3, which represents the inter-
face between elements 1 and 2. The interface DDR has four deformations (87,
B2, B3, and PBg) expressed in terms of three displacements (Xj, Xz, and X3).
The elimination of the three displacements from the four DDR given by equa-
tion (15) yields the only CC associated with the interface of the two membrane
elements 1 and 2 along their common boundary defined by nodes 2 and 3). It has
the following explicit form:

(B3 - B4) =0 (16)

The CC given by equation (16) represents the deformation balance condition
along the interface of adjoining elements. Such CC's are referred to as the
interface CC's. For the membrane model, each interface has one interface CC.
However the number of CC's at an interface of any discrete model will depend
on the type and number of elements that are connected to the interface. For
example, the flexure problem given in the section Benefits Derived from the
Compatibility Conditions has three CC's at each interface. The interface CC's
represent the majority, though not all of the CC's of a finite element ideal-
tzation. Generating interface CC's requires that the ddr for the local inter-
face be established and then that the displacements be eliminated from it.

The CC, [CI1{B} = {0}, for membrane (6,5), which is given by equation (16),
has to be expressed in forces, [CI[GI{F} = {0}, so that it can be coupled to
the EE's (eq. (11)) to obtain the IFM governing equations, [S]{F} = {P}*. De-
formations {B} are transformed into forces {F} by the constitutive relation
{8} = [GI{F}. Here, the 6 x 6 matrix [G] is the block diagonal concatenation

1



of element matrices {Gg} (see eq. (8b)) for elements 1 and 2. The interface CC
(B3 -~ B4 = 0) 1n terms of forces has the following form:

()
F

0.5 0.5 1.0 -1.0 -0.5 -0.5K TR an

Fe
N C
For membrane (6,5) the maximum bandwidth of the CC (MBWjcc) is 6. The actual
bandwidth of the compatibility matrix [C] (BWyctyal ¢? fs 2. The actual CC
bandwidth of the composite matrix [CI(G] (BWictyal cg’ is 6.

The integrated force method solution for membrane (6,5). - For
completeness, the solution of membrane (6,5) by the IFM is presented. The IFM
governing equation [SI{F} = {P}* 1s obtained by coupling the EE's (eq. (11))
to the CC (eq. (17)) as

: () )

1.0 0.0 0.7071  0.7071 0.0 0.0 |1 50.00

0.0 0.0 -0.7071 -0.7071 -1.0  0.0||F, 100.00

0.0 1.0 0.7071 07071 0.0 0.0/ | 50.00

0.0 0.0 0.0 0.0 1.0 0.0 F ) - { 50.00 Y A
0.0 0.0 0.0 0.0 0.0 1.0||* 100.00

e emm e m———— I I -5 R

0.5 0.5 R R U7 I

The solution to equation (18) yields the six forces. The five displacements
are obtained from the forces by back substitution in equation (2) as

- C N N
Fil [ 200.00) X 0.152
F2 200.00 X, -0.126
F ~168.60

{2 ) - < Y and { X ) - { 0.152 $ a9
Fa _43.58
Fi 50.00 X4 0.0260
Fe 100.00 Xs 0.152

N °J . y ~ T ~ 7
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Analysis of the membrane by the stiffness method. - For comparison, the
membrane 1s also analyzed by the stiffness method. The stiffness equations are
well known but complicated; therefore, the analysis is carried out in symbolic
form. To establish the paralleism between the IFM and the stiffness method, a
slightly different procedure than normal is followed; the purpose will become
evident in the process of the solution. For the membrane, a displacement vec-
tor {Xc} of dimension 12 that represents the concatenation of the 2 elemental
displacement degrees of freedom (see fig. 4(c)) is defined as:

= X X ., =X (20)

1e1” Xe2 = Xpepr - - - 0 X

T
X = X c12 = Xgeo’
where the subscript 1iej represents the ith displacement component for the

jth element.

Notice the similarities between the displacement vector {Xc} of equa-
tion (20) and the force vector {F} given by equation (9a). These vectors rep-
resent the concatenation of the elemental displacements and the elemental force
degrees of freedom, respectively. The equilibrium matrix in the stiffness
method, in terms of concatenated displacement vector {Xc}, is obtained by fol-
lowing assembly techniques as

[[K]] : [KZJ]{XC} - (P} @21

The stiffness matrix [Ky] has the dimension 3 x 6. Its three rows represent
contributions to the EE's at node 2 along Xj, and at node 3 along X, and X3
(see fig. 4(a)). Likewise, the matrix [K2] has the dimension 5 x 6, which con=
tributes to the equilibrium at node 2 along Xj, node 3 along X, and X3, and
node 4 along X4 and Xg. Equation (21), which represents 5 EE's in terms of
12 unknown displacements cannot be solved for the 12 variables. Seven dis-
placement continuity conditions are required to augment the EE's given by
equation (21) to arrive at a solvable 12 x 12 system. The seven displacement
continuity conditions of the membrane are as follows:

N
Xle1 = ©

X9e1 = 0

X361 = X302
X1 = Xgen ¢ (223)
Xge1 = %12

Xge1 = 0

X200 =0 )

The seven displacement continuity conditions can be represented by a single
matrix equation
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[CTY1}X} = {0} (22b)

where the matrix [CTY] is the displacement continuity matrix of the dimension
7 x 12.

The displacement continuity conditions that are given by equation (22) and
the EE's in terms of displacements that are given by equation (21) are coupled
to obtain the 12 x 12 equation system (eq. (23)) from which the 12 concatenated
displacements X, can be obtained:

[K]:Kz] P
_______ (X3} ={ ——- 23)
[(CTY] 0.0

From the displacements, the internal forces can be calculated by back
substitutions.

From the structures of IFM equations (egs. (1) and (18)) and from the
equation of the stiffness method (eg. (23)), we observe the following: ~ (1) In
the IFM, the EE's, written in terms of forces, are augmented by the CC's, also
in terms of forces; (2) in the stiffness method the EE's are expressed in terms
of displacements and these EE's are augmented by the displacement continuity
conditions; and (3) the IFM equations (eq. (18)) are fewer in number, and also
sparser than the stiffness equations (eq. (23)). Details about equation spar-
sity and the computations required to generate the solution by the IFM and the
stiffness method are given in reference 14. The IFM satisfies both the EE's
and the CC's simultaneously, whereas the stiffness method is based on the EE's
and displacement continuity conditions.

Example Il - The Two-Bay Membrane

The generation of both the interface and the cluster CC's are illustrated
by using the example of a two-bay membrane shown in figure 5. The membrane is
discretized by eight triangular elements, and it has eight nodes. The model,
designated "membrane (24,15)," has n = 24 force unknowns and m = 15 dis-
placement unknowns. Membrane (24,15) has m=15 EE'sand r=n-m=9
CC's. Because of the increase in complexity, the algebra for the example is
presented in symbolic form. The system equilibrium matrix [By] of dimension
15 x 24 for membrane (24,15) is assembled by following standard techniques.
The global deformation displacement relations (GDDR) that correspond to the
equilibrium matrix [Byl can be symbolized as

GDOR » (B} = [Bm]T{X} (24)

The GDDR (given by eq. (24)) contains 9 CC's, since its 24 deformations are
expressed in terms of 15 displacements. The model shown in figure 5 has eight
interelement boundaries, defined by nodes 1 and 5, and nodes 5 and 8, and so
on. From example I, we know that each interface has one CC; therefore, the
eight interfaces yield eight CC's, which can be generated by following both
parts of step I, explained in the following paragraphs. Steps I(a), I(b), II,
and III, are parts of the general procedure to generate the CC's. For clar-
fty, the steps are explained by using the example of membrane (24,15) as an

j1lustration.
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Step I(a) - Local structure and interface compatibility conditions. - Con-
sider any interface - for example, the interface along nodes 1 and 5 (between
elements 1 and 2) for membrane (24,15). Separate the interface and the ele-
ments as shown in figure 6(a). The local structure shown therein is statically
unstable; therefore impose adequate numbers of restraints to make the local
structure kinematically stable. The restraints do not influence the CC's, and
they can be imposed at any of the nodes of the local structure. The structure
requires 2 restraints, which are imposed at node 5. The stable local struc-
ture (6,5 has one interface CC, designated as CCyj;. The deformation displace-
ment relation for the local structure, designated ddr y, is extracted from the
global GDDR. The local ddr| ) consists of six deformations (By, B2, . . . , Bg)
expressed in terms of five displacements (Xy, Xg, Xg, Xg, and X7). The sing?e
compatibility condition in ddriy, is generated by following the procedure given
for example I, and it turns out to be (33 - B4 = 0.

Step I(b) - Update the global deformation displacement relations. - The
number of GDDR of the structure (n,m) is reduced after the generation of each
CC. The reduced GDDR, which is designated GDDR,y, has m; = m rows and
ny = n - n¢y columns, where ngy represents the number of CC's generated in
step I(a). For the example in step I(a), ncy 1is 1 since only one CC was
generated in Step I(a). The row and column dimensions of GDDRyy are
ny = (24 - 1) = 23 rows and my = 15 columns. The GDDR,.7 contains eight CC's
since only one out of r = 9 CC's of structure (24,15) has been generated.
The GDDR,; 1s obtained by dropping one deformation displacement relation from
the GDDR. Any deformation that has participated in the CC generated in step
I(a) can be dropped. For the example, deformation B3 or 4 can be dropped.

Step Il - Local structure and its interface compatibility conditions. -
The local structure consisting of elements 2 and 3 is separated next, and its
interface CC's along nodes 2 and 6 are generated by following steps I(a) and
I(b). Steps I and II are repeated until all the interface CC's have been gen-
erated. For this problem there are eight interface CC's at the end of whose
generation the GDDR,g will have 16 rows and 15 columns containing 1 CC.

Steps I and II are sufficient to generate all the interface CC's, which
are the most numerous CC's in all finite element models. Since the interface
CC depends on the few elements that are common to the interface, the computa-
tion time required for the generation of such CC's after the equilibrium matrix
has been established is insignificant compared to the total solution time.

Step IIT - Cluster compatibility conditions. - In a finite element model,
a cluster is defined as a series of adjoining elements. The cluster compati-
bility conditions represent constraints on the deformations of the elements
that belong to the cluster. A cluster can be generated for any element. For
membrane (24,15), take element (4). The cluster for this element, shown in
figure 6(b), consists of four elements, 2 to 4 and 8, and six nodes, 1 to 3,
5, 6, and 9. Let us designate its deformation displacement relation as ddrgLy.
The cluster is stable, so there is no need to impose any of the restraints in-
dicated in step I(a). 1If the cluster was unstable, then it would be necessary
to impose the additional constraints indicated in step I(a). The ddrcp) of the
cluster contains nine deformations, B4, Bg, Bg to Bjyp, and B2 to B24g
(note that @5, B7, and PBg have been eliminated during the generation of the
interface CC), which are expressed in terms of nine displacements, X; to X3,
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Xeg to Xg, Xy4, and Xyg5. The cluster, which has nine deformations expressed
in nine displacements is determinate and contains no additional CC's.

The second cluster that is defined for element 2 is shown in figure 6(c).
The ddrcpo of the second cluster contains 7 elements and 14 deformations (since
7 deformations have been dropped during the generations of the 7 interface CC's
belonging to the cluster), expressed in terms of 13 displacements. The cluster
contains one CC, which 1s obtained by following step I(a):

{0.447(B6 - BZ + BS - BZO) - B]G - BIZ + 0.894(81 - Bs + 817 - 323)} =0
(25)

Step I(b) should be exercised to reduce the GDDRcy2. The GDDRgyp has 13 de-
formations expressed in terms of 13 displacements, and it contains no CC's,
thereby indicating that all 9 CC's (8 interface CC's and 1 cluster CC) have
been generated for membrane (24,15).

Example 3 - The Stiffened Membrane

The generation of external CC's and interface CC's when different element
types are present in the discretization is illustrated by taking the example of
the stiffened membrane shown in figure 7(a). This membrane is discretized by
8 membrane elements and 16 bar elements. Nodes 1 and 3 of the membrane are
fully restrained. The fof of the membrane (n = 40) consists of the 24 mem-
brane forces and 16 bar forces. The dof of the membrane is m = 14. The
membrane 1s designated "membrane (40,14);" it has 14 EE's and r = (40 - 14)
= 36 CC's., The global deformation displacement relation for the structure,
designated as GDORgy and consisting of 40 deformations expressed in terms of
14 displacements, is assembled by following standard techniques.

Interface compatibility conditions of membrane (40,14). - The first inter-
face, which is defined by nodes 1 and 5, and associated membrane elements 1
and 2, and bars 9 to 12 and 16, is considered. One boundary constraint, the
displacement at node 2, is imposed for its overall stability as shown in fig-
ure 7(b). This local structure has n j = 11 fof consisting of six membrane
forces and five bar forces, and m_; = 5 dof. The local structure, shown in
figure 7(b), is designated as SML_y (11,5); its six (rp 7 = 6) interface compat-
ibility conditions, which can be generated by following step I, are:

(B3 - By) =0 (26)
3\

B]‘Bgso

By - Byg =0

By - By =0 > (27)

BS‘B]Z—O

Bg — By =0




The CC given by equation (26) represents the membrane-to-membrane inter-
face compatibility condition, and those given by equation (27) represent the
five membrane-to-bar interface CC's.

Steps I and II are repeated for interfaces 4 and 5, 4 and 8, 5 and 8,
5and 9, 5 and 6, 2 and 6, and 2 and 5 to generate, respectively, 3, 3, 3, 3,
2, 3, and 1 additional local interface CC's. After the generation of the
24 interface compatibility conditions, the reduced deformation displacement
relation has 2 CC's and consists of 16 deformations that are expressed in
terms of 14 displacements.

Cluster and external compatibility conditions of membrane (40,14). - Step
III is evoked and yields two compatibility conditions: one is a cluster CC
identical to the CCC of membrane (24,15) as given by equation (25), and the
other B4 + Byg = O, which represents a constraint on the deformations between
boundary nodes 1 to 3, is the external compatibility condition of the membrane.
Generation of the external CC is further explained with the example of a bridge
truss.

External compatibility conditions of a bridge truss. - A bridge truss sup-
ported at two nodes that are far apart (see fig. 8(a)) illustrates the genera-
tion of external CC's. The bridge truss being analyzed can be designated as
truss (26,20); it has 20 EE's and 6 CC's, and its global GDOR has 26
deformations expressed in terms of 20 displacements. Skeletal structures such
as trusses and frames do not have any interface CC's; their CC's can be either
cluster or external ones.

Cluster compatibility conditions of the truss (26,20). - The cluster for
element 1, consisting of six bars, is shown in figure 8(b). The unstable
cluster is made stabie by imposing a constraint at node 3. The cluster, desig-
nated "bay (6,5)," has one CC, which is obtained by following step I. At this
time any one bar, for example bar 1 that corresponds to deformation f;, is
dropped; the resulting bay (5,5) is shown in figure 8(c). Steps I and II are
repeated until all five cluster CC's are generated and the structure shown in
figure 8(d) is obtained.

External compatibility conditions. - The reduced structure shown in fig-
ure 8(d) has 1 CC since its ddr consists of 21 bar deformations expressed in
terms of 20 displacements. The single CC is obtained by first imposing a node
determinacy condition that reduces the ddr to six deformations expressed in
five displacements and then by eliminating the displacements. The external CC
(B + B1g + Byg5 + B2o + Bpg = 0) represents a homogeneous constraint on all
the deformations between boundary nodes 1 and 12, as shown in figure 8(e). The
bandwidths of the external CC's for restrained nodes that are far apart, typi-
cally encountered in long span bridges, can be large from physical considera-
tions, since the deformations between fully constrained node of a truss that

5

are far apart have to be zero EE: Bj(i) = 0). The larger bandwidths of few
i=]
external CC's do not impose any major problem because in the IFM the solution

process s carried out by using sparse matrix techniques. Quite often such ex-
ternal CC's can be trivially generated by mere inspection.
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Uniqueness of Compatibility Matrix

The compatibility conditions are homogeneous equations; therefore the
CC's can be multiplied by any nonsingular matrix, for example [Ryl, to obtain
the feasible compatibility matrix [Cyl given by equation (28). The feasible
matrix [Cyl is a linear combination of the rows of matrix [CI:

(R,ICCI{B} = {0} or (C,1{r} = {0} (28)

The procedure presented in this paper generates the matrix [C] and not [C,].
This can be proved by observation. Take the example of the two membrane inter-

face CC's (CCy and CCy) defined as:
(29a)

[l
o

CCy =2 By - By =
CCZ > Bk3 - Bk4 = O (29b)

A linear combination of CC; and CCy yields a feasible compatibility condition
CC3 as

CC3 = Bk] - Bkz + Bk3 - Bk4 =0 (29¢)

Notice that in equation (29c), deformations of CCy such as Bky; and Bk2
and deformations of CCy such as Bkx3 and Bkgq are present. However, after
the generation of CCy, one of the two deformations PBgj; or Bko must be
dropped (step I(b)); therefore their combination cannot occur in subsequent
CC's. In other words, after CCy has been generated, the feasible compatibility
condittion CC3, which includes CCy cannot be obtained. Dropping a deformation
that has participated in the CC, immediately after its generation, avoids the
possibility of its further participation in any other CC. The process gener-
ates the matrix [C] and not its combinations such as the usable CC matrix [C,].

Therefore the unique [C] matrix is generated.
Product of Compatibility and Equilibrium Matrices - a Null Matrix

The product of the CC matrix [C] and [EE] matrix [B] is a null matrix
(rc1ell = [01). This can be verified by direct substitution of the DDR in the

CC's as
[CI{B} = {0} (30a)

and

{B} = [B]T{X} _ (30b)

Next, eliminate deformations in favor of displacements between equations (30a)
and (30b) to obtain

(81'CC] = [CI'[B] = [O] (30¢)

The null product property of the two fundamental EE and CC operators implies
that errors in equilibrium equations can propagate to the compatibility con-
ditions and vice versa.
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BENEFITS DERIVED FROM COMPATIBILITY CONDITIONS

The accuracy of solutions obtained by the integrated force method, the
stiffness method, or the hybrid method is of paramount importance, since all
are approximate formulations. All methods attempt to satisfy the equilibrium
equations written in terms of forces or displacements. However, explicit com-
patibility conditions, in a strict sense, are imposed only in the integrated
force method. Any improved solution accuracy, of the integrated force method
over the other formulations should be a consequence of the explicit presence
of the global compatibility conditions in the IFM. Based on the theory of the
integrated force method, a Generalized Integrated Force Technique (GIFT) com-
puter code has been developed. To illustrate the solution accuracy in finite
element calculations, a plate bending problem is solved by the GIFT code and
other standard analyzers such as MSC/NASTRAN (ref. 19), ASKA stiffness codes
(ref. 20), a mixed formulation MHOST (ref. 21), and Chang's hybrid method
(ref. 22).

The plate parameters considered (see fig. 9) are the following: size of
the plate; a = b = 40 in. (101.6 cm); aspect ratio a/b, varied between 1 and 2;
thickness of plate, h = 0.2 in. (5.08 mm); Young's modulus, E = 30 000 ksi
(21 091.81 kg/mm%); Poisson's ratio, v = 0.3; and magnitude of concentrated
load at the center, P = 500 b (226.795 kg). Both simply supported and clamped
boundary conditions are considered.

To compare solution accuracy, the problem is solved by using two types of
elements: a four-node rectangular element and a three-node triangular element.
The IFM elements assume three forces (such as a shear force and two bending
moments) and three displacements (a transverse displacement and two slopes) per
node, as depicted in figure 9. A cubic polynomial with 12 constants is used to
approximate the transverse displacement in the element field. Normal moments
My and My are assumed to have linear distributions, and the twisting moment
Mxy 1s constant in the element domain (ref. 14).

The elements of the general purpose programs NASTRAN, ASKA, and MHOST are
specialized to generate only the flexure solution. The elements used are the
foilowing: (1) QUAD4 (both ASKA and MSC/NASTRAN have QUAD4 elements),

(2) TRIB3 (triangular element of ASKA program), (3) TRIA3 (triangular element
of MSC/NASTRAN), and (4) TUBA3 of ASKA code (a higher order triangular element
with six dof per grid point). For the first three elements, which are well
known in the literature and popular in practice, the bending response of the
elements represents three dof per node.

The hybrid elements have more unknowns, for example, for flexural re-
sponse. Chang's program has the equivalent of seven unknowns at the nodes,
whereas the mixed formulation MHOST has more unknowns per grid point. The IFM
elements and the stiffness elements (such as QUAD4 of MSC/NASTRAN, QUAD4 of
ASKA, TRIB3 of ASKA, and TRIA3 of MSC/NASTRAN) are equivalent with respect to
their nodal degrees of freedom. The hybrid and TUBA3 elements are higher order
elements than those of the IFM.

In the stiffness method, nodal stress parameters that are calculated from
displacements by back substitution are discontinuous and ambiguous at grid
points (ref. 23); therefore calculation of forces at the nodes are routinely
avoided in the stiffness method. In this situation the noncontroversial nodal
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displacement is used in the comparison. Remember however that in the IFM,
forces are the primary variables from which the secondary displacement un-
knowns are obtained by back substitution. The central deflection of the plate
We, given by Timoshenko (ref. 24), is 0.2036 in. (5.715 mm).

MacNéal (ref. 25) introduced a grading scheme for the evaluation of finite
elements as follows:

¢2-percent error
2- to 10-percent error
10- to 20-percent error
20- to 50-percent error
>50-percent error

MO O W >

The results obtained by all four formulations were graded by using MacNeal's
scheme and are presented in tables I to III. Results obtained by the IFM and
the stiffness formulations are also presented graphically in figures 10 and 11.
The IFM results for simply supported and clamped boundary conditions for dif-
ferent aspect ratios are presented in table IV. From the numerical results of
the plate flexure problem presented in tables I to IV and figures 10 and 11, we
observe the following:

(1) For the IFM rectangular element, convergence occurs for the first
model, which consists of four elements. If symmetry is taken into considera-
tion, then convergence occurs for a single-element idealization. Both stiff-
ness (MSC/NASTRAN and ASKA) and hybrid methods (MHOST and Chang's) converge
slowly. To achieve an A grade, MSC/NASTRAN QUAD4 element idealization requires
36 elements, whereas ASKA QUAD4 secures only a B grade, even for 100 elements.
The hybrid method of Chang secures an A grade for 64 elements, whereas MHOST
secures a B grade for the same Tevel of discretization.

(2) For the IFM triangular elements (see fig. 11), the result is dis-
cernible from an analytical solution for the first model, which has four ele-
ments, but even so, the result displays engigeering accuracy. The next model,
with eight elements, converges to the analytical solution and also achieves an
A grade. None of the stiffness elements, such as TRIA3 of MSC/NASTRAN and
TRIB3 and TUBA3 of ASKA, could secure a grade of A, even for models with fine
discretization.

(3) The IFM result for a simply supported boundary follows the pattern of
a clamped boundary; namely, it secures a grade of A for the first model, which
has four elements. The IFM element retains an A grade for aspect ratios up to
1.6, but for the ratio 2.0, a total of eight elements, which corresponds to a
2 x 4 mesh, is required to secure an A grade. Other examples more or less fol-
lTow the pattern depicted in tables I to IV. Overall the IFM convergence rate
is very fast whereas both the stiffness and hybrid methods converge sliowly or

struggle to do so.

CONCLUSTIONS

1. The structural mechanics profession recognizes that both equilibrium
equations (EE's) and compatibility conditions (CC's) are essential for stress
analysis. However, the compatibility conditions in typical finite element cal-
culations were promoted via such concepts as cutting and closing the gaps, or
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displacement matching at nodes (deflection or slope should have unique values)
and so on. Although such concepts are somewhat related to the CC's of finite
element models, they do not represent the true CC's that are analogous to the
strain formulation of St. Venant. The true compatibility conditions of finite
element analysis have been understood to a great extent, though we do not claim
that the understanding is total. Attempts should be made by the profession to
understand the CC's in totality, rather than to avoid them because they are
mathematically formidable or analytically more difficult than the familiar
equilibrium equations.

2. In finite element analysis, the system equilibrium equations in terms
of forces or displacements can be assembled from element matrices. The ques-
tion is, can such an assembly technique be developed for the compatibility con-
ditions also? The generation of compatibility conditions is not equivalent to
the direct-assembly technique of the finite element analysis, even though there
is a close resemblance in that the global compatibility conditions are assem-
bled from their local counterparts such as interface CC's, cluster CC's, and
external CC's. We do not yet know a direct assembly scheme, but such a possi-
bility has not altogether been ruled out. We do, however, believe that the
compatibility generation scheme given in this paper is rather elegant, since
element characteristics, connectivities, and such, which are already contained
in the equilibrium equations (and consequently in the deformation displacement
relation because it is the raw ingredient of CC's) are referred to only once.

3. The compatibility conditions are unique. The computation time required
to generate the CC's is a small fraction of the total solution time.

4. The quality of the solution in approximate methods is dependent on the
extent to which equilibrium equations and compatibility conditions are satis-
fied. Since the integrated force method (IFM) satisfies both the EE's and the
CC's simultaneously, the solution via the IFM is accurate, as expected. The
stress parameters obtained by the stiffness and hybrid methods do not satisfy
the EE's even at the cardinal grid points; therefore solution quality by such
methods 1s prone to be poor in comparison to IFM results.

5. Since all the finite element formulations are approximate in nature,
we recommend generating solutions via the integrated force method, and by the
stiffness method and then comparing them, rather than qualifing the results
obtained by any one formulation by successive mesh refinements.
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APPENDIX - SYMBOLS

a,b dimensions of rectangular element
[B] equilibrium matrix of dimension m x n
[Ble element of equilibrium matrix
(Bly system equilibrium matrix
[C] compatibility matrix of dimension r x n
CcC compatibility condition
CcCcC classical compatibility condition
[CTY] displacement continuity matrix
ddr Tocal deformation displacement relation
dof displacement degrees of freedom
E Young's modulus
EE equilibrium equations
{F} force vector of dimension n
fof force degrees of freedom
(G] flexibility matrix of dimension n x n
(Glq element flexibility matrix

* GCC global compatibility conditions
GDDR global deformation displacement relations
IFM integrated force method
[J] deformation coefficient matrix of dimension m x n
JT total number of elements at interface
J7C total number of elements in cluster
JTE total number of elements between two boundary nodes
(K1 stiffness matrix of dimension mx m
Q1j,m1j direction cosines along edge 1]
MBW maximum bandwidth

Mx,My,Mxy plate bending moments
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YXys ExsEy

v

Subscripts:

cce
eJ
ecc,ext
ice

q

t

0

number of displacement variables
indeterminancy of node 1
number of force variables

load vector of dimension. m

number of compatibility condition; (n - m)

IFM governing matrix of dimension
strain displacement relations
membrane thickness

membrane displacement components
central deflection of plate
displacement vector of dimension m
concatenated displacement vector
deformation vector of dimension n
kth deformation component

strain components

Poisson's ratio

cluster compatibility conditions
element j

external compatibility conditions
interface compatibility conditions
quadrilateral

triangular

fnitial

Superscripts:

r
ril

T

number of compatibility conditions
reduced
transpose
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TABLE I. - REPORT CARD FOR RECTANGULAR ELEMENT
WITH CLAMPED BOUNDARY CONDITION

Number of elements IFM | MSC/NASTRAN | ASKA
for full plate (mesh) QUAD4 QuAD4
4 (2x2) A F F
16 (4x4) A B B
36 (6x6) A A
64 (8x8) - A l
100 (10x10) - -
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TABLE II. - REPORT CARD FOR INTEGRATED FORCE
METHOD WITH RECTANGULAR ELEMENT

Number of elements Aspect | Clamped Simply
for full plate (mesh) | ratio boundary | supported
boundary

4 (2x2) 1.00 A A

16 (4x4) 1.00 A A

4 (2x2) 1.20 A -

4 (2x2) 1.40 A -

4 (2x2) 1.60 A -

4 (2x2) 1.80 B -

4 (2x2) 2.00 B -

8 (2x4) 2.00 A -

TABLE III. - REPORT CARD FOR RECTANGULAR ELEMENT

Number of elements IFM | Mixed Hybrid
for full plact (mesh) method method
MHOST Chang
(ref. 22)
4 (2x2) A F F
16 (4x4) A C C
64 (8x8) A B A

TABLE IV, - REPORT CARD FOR TRIANGULAR ELEMENT

Number of elements IFM | MSC/NASTRAN | ASKA ASKA
for full plate TRIA3 TRIB3 | TUBA3

4 B F - F

8 A D F F

16 A C - -

32 - B C D

128 - - B B
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(a) Interface CC.

Figure 1. - Finite element model.
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(b) Cluster or field CC's.
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(c) External CC's.
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Figure 2. - Bandwidth of compatibility conditions (CC's).
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(a) Membrane element; Fy, Fo, and F3 are force degrees of freedom (fof) and Xy, X5, . . .

are displacement degrees of freedom (dof).
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(b) Bar element; F is fof and Xy, X5, X3, and X, are dof.

Figure 3. - Membrane and bar elements.

28



X3, P3 Xz, Ps
X, Py
i3 4
b
" A
———————— 8 ———

(a) Membrane.
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{b) Interface nodes 2 and 3.

Figure 4. - Analysis of membrane.
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Figure 5. - Two-bay membrane.
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{c) Conatenated model.
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{a) Interface CC.

MEMBRANE
ELEMENTS —<

(b) Determinate cluster.

_~<BAR ELEMENTS

(a) Model with 8 membrane elements and 16 bar elements.

(c) Indeterminate ciuster.

Figure 6. - Compatibility conditions for two-bay membrane.

{b) Interface CC.

Figure 7. - Composite (membrane and bar) structure.
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(a) Bridge truss.
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(b) Indeterminate cluster. (c) Determinate cluster.
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(d) Reduced truss structure.
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(e) Extenal CC's.

Figure 8. - Compatibility conditions of a bridge truss.
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DISPLACEMENT

DISPLACEMENT
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Figure 10. - Rate of convergence for rectangular elements.
METHOD
TIMOSHENKO
——(Q—  INTEGRATED FORCE
—e[]-- ASKATRES
ASKA TUBA3
-—/\—-  MSCNASTRAN TRIA3
125 |— O
;T <
1.00 n
—
o / _
/ —
-
/ -
75 — //
/7
! 7
50 — !
1
25 |— )
o | L Lol L bl
10° 10! 102

METHOD

NUMBER OF ELEMENTS, LOG N

Figure 11. - Rate of convergence for triangular elements.
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