NASA
 Reference Publication 1231

1990

National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division

Atlas of Albedo and
 Absorbed Solar Radiation
 Derived From Nimbus 7
 Earth Radiation Budget
 Data Set-November 1978 to October 1985

G. Louis Smith

Langley Research Center
Hampton, Virginia
David Rutan
PRC Kentron, Inc.
Aerospace Technologies Division
Hampton, Virginia
T. Dale Bess

Langley Research Center
Hampton, Virginia

Introduction

The weather and climate of the Earth are driven by solar radiation which is absorbed by the Earth and its atmosphere and subsequently emitted as outgoing longwave radiation (OLR). Because of the importance of understanding the flows of radiation into and out of the Earth and its atmosphere, Earth radiation budget (ERB) instruments were flown on the Nimbus 6 and 7 spacecraft (Smith et al. 1977; Jacobowitz et al. 1984). These instruments included wide-field-of-view (WFOV) radiometers to provide measurements from which the reflected solar radiation and OLR can be computed. The Nimbus 6 and 7 WFOV radiometers began providing data in July 1975 and November 1978, respectively. As of the present paper, the Nimbus 7 ERB WFOV radiometers continue to operate and produce data. Major advantages of the ERB data are that they are broadband measurements, they cover a period of more than 10 years, and they are of good quality.

This paper is an atlas of monthly mean global maps of albedo and absorbed solar radiation (ASR) for November 1978 to October 1985 derived from measurements from the shortwave WFOV radiometer aboard the Nimbus 7 spacecraft. The deconvolution method which is used to produce the maps and tables is briefly discussed here so that the user may understand their generation and their limitations. A full description of the albedo retrieval method is given by Smith and Rutan (1990).

Bess and Smith (1987a, 1987b) have used the resolution enhancement technique of Smith and Green (1981) and Bess, Green, and Smith (1981) to produce atlases of monthly mean global maps of OLR based on 3 years of Nimbus 6 and 7 years of Nimbus 7 data. Those atlases also include tabulations of the spherical harmonic coefficients which quantify these OLR distributions for use by researchers. The atlas herein of albedo and ASR together with the OLR atlases define the two radiation streams whose balance governs the Earth's climate. A study of the climate of Earth by definition requires a long-term data set. This paper includes 7 years of albedo and ASR maps and provides a resource for researchers studying the radiation budget of the Earth. A companion paper (Smith, Rutan, and Bess 1990) provides similar data, based on Nimbus 6 data, for July 1975 to May 1978.

Data Set

The Nimbus 7 spacecraft was launched into a Sunsynchronous orbit with an inclination of 99°, an altitude of 955 km , and a daytime Equator crossing time near noon. From this altitude, the field of view of the WFOV radiometer is an area with a radius
equal to the arc for a geocentric angle of 30°. As shown herein, the resolution of information retrievable from the WFOV measurements is approximately 10°. Thus, the North and South Poles are within the resolution distance of the instrument during each orbit, and the measurements, in effect, provide global coverage.

The shortwave radiometer consists of a thermopile detector, which measures the radiant flux impinging on it, covered by a high-grade quartz dome which filters out radiation with wavelengths longer than $5 \mu \mathrm{~m}$ (Smith et al. 1977; Jacobowitz et al. 1984). The digitized measurements are processed and calibrations are applied to produce data in terms of physical units, and these data are then recorded on the Solar and Earth Flux Data Tapes (SEFDT) by the Nimbus 7 Data Processing Team. These tapes include the time, latitude, and longitude for each of the measurements and are available from the National Space Science and Data Center, NASA Goddard Space Flight Center, Greenbelt, Maryland.

Measurements are nominally recorded every 16 seconds, but operational problems usually reduce the number of data points actually available. Because of spacecraft power limitations, the ERB instrument was operated in a duty cycle of 3 days on and 1 day off from launch until September 1983, after which it operated full time for extended periods. For the portion of the orbit during which the spacecraft was over the sunlit portion of Earth, there were 20000 usable shortwave WFOV measurements in November 1978, when the Nimbus 7 ERB instrument began operation. For the next year, there were 33000 to 43000 usable shortwave measurements for each month. During succeeding years there were 38000 to 50000 shortwave measurements each month until the last year included herein (1985), when there were 56000 to 66000 usable measurements each month. With 20000 or more shortwave measurements in a month, the sampling of the Earth was adequate to produce good albedo maps.

Method of Analysis

Although the WFOV radiometers are operationally simple, the analysis of the data is somewhat complex. The measured quantity is the shortwave radiant flux which impinges on the radiometer. This flux is an integral over the entire field of view of the radiometer. (See fig. 1.) The problem of analysis of WFOV measurements is thus to solve this integral equation for the albedo field. The spatial resolution which is retrievable from the WFOV data is quite large. The technique for solution of the measurement equation is treated by Smith and Rutan (1990) and is based on Smith (1981). This section gives a
summary of the method and the limitations which are imposed by the low-resolution measurement.

The measurement equation for reflected solar radiation may be written as

$$
\begin{align*}
& m\left(\Theta_{S}, \Phi_{S}, \Theta_{H}, \Phi_{H}\right)= \frac{1}{\pi} H \int_{\mathrm{FOV}} R\left(\Theta_{T}, \Phi_{T}, \theta, \phi-\phi_{H}, \xi\right) \\
& \cos ^{*} \xi G(\alpha) A\left(\Theta_{T}, \Phi_{T}\right) d \Omega \tag{1}
\end{align*}
$$

where m is the measurement in $\mathrm{W} / \mathrm{m}^{2}$ at the sensor. (A list of symbols appears after the references.) The geometry of the measurement is shown in figure 2. The colatitude and longitude of the subsatellite point are Θ_{S} and Φ_{S}. The colatitude and longitude of the subsolar point are Θ_{H} and Φ_{H}, and the solar irradiance at the Earth's position is H. The mean value of H (i.e., the solar constant) is taken to be $1368 \mathrm{~W} / \mathrm{m}^{2}$, and variation of H due to the eccentricity of the Earth's orbit is taken into account. The function $\cos ^{*} \xi$ is defined by

$$
\cos ^{*} \xi\left\{\begin{array}{lr}
=\cos \xi & \left(0^{\circ} \leq \xi<90^{\circ}\right) \\
=0 & \left(\xi \geq 90^{\circ}\right)
\end{array}\right.
$$

The sensor directional response is $G(\alpha)$, where α is nadir angle of the scene from the spacecraft location. For the WFOV radiometer, which responds as a flat plate, $G(\alpha)=\cos \alpha$. The albedo A at a point at the top of the atmosphere is a function of colatitude Θ_{T} and longitude Φ_{T} of the Earth scene, and is assumed to be constant with local time and solar zenith angle. The top of the atmosphere is taken to be at an altitude of 30 km . The bidirectional reflection function R expresses the anisotropy of the reflected radiation as a function of scene location (Θ_{T} and Φ_{T}), viewing geometry (described by θ and $\phi-\phi_{H}$), and solar zenith angle (ξ).

The measurement equation (1) is an integral equation which can be solved for the albedo in the form

$$
\begin{equation*}
A\left(\Theta_{T}, \Phi_{T}\right)=\sum_{n=-N}^{N} \exp \left(\operatorname{in} \Phi_{T}\right) f_{n}\left(\Theta_{T}\right) \tag{2}
\end{equation*}
$$

The $f_{n}\left(\Theta_{T}\right)$ terms are solutions of the discrete form of equation (1), which is Fourier resolved in longitude and expressed as

$$
\begin{equation*}
\mathbf{B}_{n} \mathbf{f}_{n}=\mathbf{g}_{n} \tag{3}
\end{equation*}
$$

where the components of \mathbf{g}_{n} are values of an η grid of the complex Fourier transform $g_{n}(\eta)$ in longitude of the measurement map. Because the \mathbf{B}_{n} matrices are
singular, the f_{n} terms are computed by the method of singular value decomposition (e.g., Twomey, 1977), whereby they are written as

$$
\begin{equation*}
\mathbf{f}_{n}=\sum_{j=1}^{M} \lambda_{n j}^{-1}\left(\mathbf{v}_{n j}^{T} \mathbf{g}_{n}\right) \mathbf{u}_{n j}+\sum_{j=M+1}^{J} \sigma_{n j} \mathbf{u}_{n j} \tag{4}
\end{equation*}
$$

where M is the number of resolvable terms and J is the number of points in the Θ_{T} grid. The $\lambda_{n j}$ and $\mathbf{u}_{n j}$ terms are singular values and singular vectors of the \mathbf{B}_{n} matrices, and as such are discrete approximations to the eigenvalues and eigenfunctions of the measurement integral equation. The $\mathbf{v}_{j n}$ terms comprise a set of vectors which is reciprocal to the $\mathbf{u}_{j n}$ set. The $\sigma_{n j}$ values are the singularvector coefficients which are unobservable, that is, not resolvable.

The $\sigma_{n j}$ values cannot be determined from the solution of equation (3) for two reasons. First, terms which include $\sigma_{n j}$ are those with high wave numbers; this results in a limitation of resolution in the final results. Second, there are unobservable parts of the solution because of low solar illumination near the terminator, which for Nimbus 7 is at high latitudes. The method of singular value decomposition thus has the advantage of defining which parts of the albedo field can be determined from the measurements (the first summation of equation (4)) and which parts cannot be determined from the measurements, that is, they are unobservable (the second summation of equation (4)). For the present work, the unobservable parts were computed from the compilation by Ellis and Vonder Haar (1976).

Example Application

The major aspects of the albedo retrieval technique are demonstrated in this section for the month of September. September provides a near-equinox case, for which all points of the Earth are sunlit during some days of the month. Thus, the domain of the albedo solution is $90^{\circ} \mathrm{N}$. to $90^{\circ} \mathrm{S}$. $\left(90^{\circ}\right.$ to $\left.-90^{\circ}\right)$ for September. A solar declination of 2.9° was used for September. Because the solar declination is small and the spacecraft crosses the Equator near noon, the illumination conditions are very nearly symmetric in terms of the orbit angle η from the Equator crossing.

The first step of the retrieval is to compute the singular values $\lambda_{n j}$ and singular vectors $\mathbf{u}_{n j}$ of the measurement matrices \mathbf{B}_{n}. Figure 3 shows that for September the singular values $\lambda_{n j}$ decrease exponentially with increasing latitudinal wave number j. This rapid decrease of $\lambda_{n j}$ with j is of considerable importance in equation (4). For large j, any error in
g_{n} is magnified by the large value of $\lambda_{n j}^{-1}$, so that exponentially increasing errors dominate the high-order terms. This problem puts a practical restriction on the number of terms in the first summation of equation (4), thereby limiting the resolution obtainable from the WFOV measurements.

The singular vectors $\mathbf{u}_{n j}$ form a complete set for each n, so that any albedo distribution can be expressed in terms of $\mathbf{u}_{n j}$. Some singular vectors $\mathbf{u}_{n j}$ are shown in figures $4(\mathrm{a})$ to $4(\mathrm{~d})$ for the zonal case ($n=0$). Because of the near symmetry of solar illumination for this case, the odd singular vectors are very nearly symmetric, and the even singular vectors are very nearly skew symmetric. They vanish at the poles for all but the highest order vectors. The highest order singular vectors have zero or nearzero eigenvalues, so that the terms which describe the albedo at the poles cannot be retrieved from WFOV data and are, therefore, included in the second summation of equation (4). Physically, the low solar illumination over the small areas at the poles produces only a negligible effect on WFOV measurements regardless of albedo; thus, the measurements contain very little information on albedo for the poles.

The shortwave WFOV measurement results are now considered. The monthly mean map of shortwave WFOV measurements is formed in terms of longitude of the subsatellite point and orbit angle η with a 5° by 5° resolution grid system. ${ }^{1}$ Figure 5 shows the shortwave WFOV measurement map for September 1981. The map is next decomposed into a Fourier series for each η grid value, the result being the set of complex \mathbf{g}_{n} vectors. Figures 6(a) and 6(b) show the results for $n=0$ to 5 . For September, the $g_{0}(\eta)$ distribution is fairly symmetric, corresponding to the nearly symmetric illumination for the Nimbus 7 orbit and the somewhat symmetrical zonal distribution of albedo with latitude.

The measurements appear in the albedo in the terms $\mathbf{v}_{n j}^{T} \mathbf{g}_{n}$. Figure 7 shows the magnitudes of these terms for $n=0$ (zonal case) as a function of their order j (i.e., the latitudinal wave number). This inner product is the projection of g_{n} onto $\mathbf{v}_{n j}$ as a basis set. These terms form two sequences. One sequence (the upper set of points) consists of odd-order terms, which decrease exponentially with increasing order j. The sequence decreases because the integration over the field of view of incoming radiances by the WFOV radiometer smooths out features of the albedo field.

[^0]The other sequence (the lower set of points) consists of even-order terms, which are much smaller than those of the first sequence. The near symmetry of the zonal average measurements causes the smallness of the even-order terms.

The effect of the $\lambda_{n j}^{-1}$ multiplier is to undo the smoothing effect of the WFOV measurement. The terms $\lambda_{n j}^{-P}\left(\mathbf{v}_{n j}^{T} \mathbf{g}_{n}\right)$ are the projections of the retrieved albedo onto the $\mathbf{u}_{n j}$ basis. Figure 8 shows the magnitudes of these terms for $n=0$ for September 1981 as a function of order j. As a consequence of the division by $\lambda_{n j}$, these terms do not show rapid convergence. Smith and Rutan (1990) discuss the number of terms which should be used in the first summation in equation (4). The number of terms which is used for each longitudinal wave number is listed in table I for each month in this atlas.

Figure 9 shows the $f_{0}\left(\Theta_{T}\right)$ profile (i.e., the zonal average albedo) as computed from the measurements in the first summation for varying number of terms M for September 1981. The retrieved albedo converges except at high latitudes, where there is difficulty because of illumination and sizes of zones as discussed earlier. These results are not acceptable at the high latitudes, where the albedo is quite high because of snow and ice cover and also increased Rayleigh scattering in the atmosphere at large solar zenith angles. The high-latitude part of the solution comes from the second summation, which is computed from a priori data taken from Ellis and Vonder Haar (1976). Figure 10 shows the latitudinal profile of the contribution of the second summation to albedo for varying M. The case $M=0$ corresponds to the a priori albedo profile. For increasing M, terms are deleted from the second summation, and the effect is to leave the unobservable albedo distribution at high latitudes. The total estimate of albedo uses both summations and is shown in figure 11 for $M=18$. The a priori information is only included in the zonal average term ($n=0$).

If the albedo is the same as the a priori albedo for the unobservable regions, then no error is incurred by this procedure. The error is the deviation of the albedo from the a priori albedo in these regions. Nevertheless, the unobservable component provides a useful measure of the potential for error.

The dependence of observability on latitudes is summarized in figure 12, which shows a northern winter case for the Nimbus 7 spacecraft. From 40° N. to $70^{\circ} \mathrm{S}$. (region IV) the albedo can be retrieved with no significant contribution from the unobservable part of the albedo distribution. In this region the albedo is defined by the WFOV measurements. In latitudes $67^{\circ} \mathrm{N}$. to $50^{\circ} \mathrm{N}$. (region II) and $80^{\circ} \mathrm{S}$. to
$90^{\circ} \mathrm{S}$. (region VI) the WFOV measurements provide very little information. In latitudes $50^{\circ} \mathrm{N}$. to $40^{\circ} \mathrm{N}$. (region III) and $70^{\circ} \mathrm{S}$. to $80^{\circ} \mathrm{S}$. (region V) the WFOV measurements provide significant information, but the part of the distribution which is unobservable in the WFOV measurements is also significant. These are transition regions between regions IV and II and regions IV and VI. The albedo is physically undefined for latitudes poleward of $67^{\circ} \mathrm{N}$. (region I) because this region is in darkness for the example shown.

These boundaries are a function of the orbit characteristics of the spacecraft. In particular, the boundaries of the observable regions are a function of the solar declination angle and, thus, of the time of year. Figure 13 shows the variation of the observable regions during the year. The Nimbus 7 has an unobservable region which is approximately 20° in latitude in each hemisphere plus a transition region of approximately 10° for most of the year.

Although the albedo is unobservable in the high latitudes, the more important parameter is the absorbed solar energy ASR, for which the albedo is only an intermediate parameter. At the high latitudes the solar irradiance is small, so the effect of albedo errors is reduced. Figure 14 shows zonal profiles of the incident solar radiation, the ASR, and the component of ASR due to the unobservable component of albedo. The ASR contribution due to the unobservable component of albedo is quite small. Thus, for the purpose of computing ASR from WFOV measurements, observability does not create a problem for large-scale features. Small-scale features cannot be retrieved, that is, the resolution of the ASR is limited.

Results

The method described in the previous sections has been used to compute monthly mean maps of albedo and ASR for November 1978 to October 1985 from Nimbus 7 ERB WFOV shortwave measurements. The zonal means of albedo are also listed for each month in table II. The zonal means for each month of the year have been averaged for the 7 -year data period to produce climatological zonal means for each month. These are shown in figure 15. Likewise, the zonal means of ASR are shown in figure 16.

The albedo maps show contours of albedo expressed in percent with intervals of 5 percent. Contours of albedos less than 30 percent are shown as dotted lines. The ASR maps show contours with intervals of $25 \mathrm{~W} / \mathrm{m}^{2}$, with contours of $250 \mathrm{~W} / \mathrm{m}^{2}$ or greater shown as dotted lines.

These geographical distributions of albedo and ASR are presented as a resource for researchers in studies of the radiation budget of the Earth. This atlas of shortwave data complements the atlases of
outgoing longwave radiation based on Nimbus 6 and 7 WFOV measurements as analyzed by Bess and Smith (1987a, 1987b).

NASA Langley Research Center
Hampton, VA 23665-5225
November 3, 1989

References

Bess, T. Dale; Green, Richard N.; and Smith, G. Louis 1981: Deconvolution of Wide Field-of-View Radiometer Measurements of Earth-Emitted Radiation. Part II: Analysis of First Year of Nimbus 6 ERB Data. J. Atmos. Sci., vol. 38, no. 3, Mar., pp. 474-488.
Bess, T. Dale; and Smith, G. Louis 1987a: Atlas of Wide-Field-of-View Outgoing Longwave Radiation Derived From Nimbus 6 Earth Radiation Budget Data SetJuly 1975 to June 1978. NASA RP-1185.
Bess, T. Dale; and Smith, G. Louis 1987b: Atlas of Wide-Field-of-View Outgoing Longwave Radiation Derived From Nimbus 7 Earth Radiation Budget Data SetNovember 1978 to October 1985. NASA RP-1186.
Ellis, James S.; and Vonder Haar, Thomas H. 1976: Zonal Average Earth Radiation Budget Measurements From Satellites from Climate Studies. Atmospheric Science Paper 240 (NGR 06-002-102), Colorado State Univ., Jan. (Available as NASA CR-149319.)
Jacobowitz, Herbert; Soule, Harold V.; Kyle, H. Lee; House, Frederick B.; and NIMBUS 7 ERB Experiment Team 1984: The Earth Radiation Budget (ERB) Experiment: An Overview. J. Geophys. Res., vol. 89, no. D4, June 30, pp. 5021-5038.
Smith, G. Louis 1981: Deconvolution of Wide-Field-of-View Satellite Radiometer Measurements of Reflected Solar Radiation. Preprints-Fourth Conference on Atmospheric Radiation, American Meteorological Soc., pp. 166-172.
Smith, G. Louis; and Green, Richard N. 1981: Deconvolution of Wide-Field-of-View Radiometer Measurements of Earth-Emitted Radiation. Part I: Theory. J. Atmos. Sci., vol. 38, no. 3, Mar., pp. 461-473.
Smith, G. L.; and Rutan, D. 1990: Deconvolution of Wide-Field-of-View Measurements of Reflected Solar Radiation. J. Appl. Meteorol., vol. 29, Jan.

Smith, G. Louis; Rutan, David; and Bess, T. Dale 1990: Atlas of Albedo and Absorbed Solar Radiation Derived From Nimbus 6 Earth Radiation Budget Data Set-July 1975 to May 1978. NASA RP-1230.
Smith, W. L.; Hickey, J.; Howell, H. B.; Jacobowitz, H.; Hilleary, D. T.; and Drummond, A. J. 1977: Nimbus-6 Earth Radiation Budget Experiment. Appl. Opt., vol. 16, no. 2, Feb., pp. 306-318.
Twomey, S. 1977: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Elsevier Scientific Publ. Co.

Table I. Number of Singular Vectors Used for Each Longitudinal Wave Number

Month		Number of singular vectors for wave number of-											
		0	1	2	3	4	5	6	7	8	9	10	11
Nov.	1978	30	16	10	4	4	4	2	2	2	2	2	2
Dec.	1978	36	28	26	12	2	2	2	2	2	2	2	2
Jan.	1979	36	30	26	6	2	2	2	2	2	2	2	2
Feb.	1979	26	16	12	4	2	2	2	2	2	2	2	2
Mar.	1979	38	30	16	6	4	2	2	2	2	2	2	2
Apr.	1979	28	26	18	4	4	2	2	2	2	2	2	2
May	1979	32	30	26	4	4	2	2	2	2	2	2	2
June	1979	32	26	24	10	6	2	2	2	2	2	2	2
July	1979	36	22	14	4	4	2	2	2	2	2	2	2
Aug.	1979	34	18	16	6	4	2	2	2	2	2	2	2
Sept.	1979	38	24	22	12	4	4	2	2	2	2	2	2
Oct.	1979	36	30	16	6	4	2	2	2	2	2	2	2
Nov.	1979	32	26	20	6	2	2	2	2	2	2	2	2
Dec.	1979	34	26	20	10	4	2	2	2	2	2	2	2
Jan.	1980	30	30	26	6	4	2	2	2	2	2	2	2
Feb.	1980	34	28	24	6	2	2	2	2	2	2	2	2
Mar.	1980	38	30	22	6	4	2	2	2	2	2	2	2
Apr.	1980	32	28	28	6	6	4	2	2	2	2	2	2
May	1980	30	24	22	6	2	2	2	2	2	2	2	2
June	1980	34	22	16	4	2	2	2	2	2	2	2	2
July	1980	34	28	20	4	2	2	2	2	2	2	2	2
Aug.	1980	34	22	20	8	6	2	2	2	2	2	2	2
Sept.	1980	30	24	22	6	2	2	2	2	2	2	2	2
Oct.	1980	36	28	18	6	2	2	2	2	2	2	2	2
Nov.	1980	30	28	20	4	2	2	2	2	2	2	2	2
Dec.	1980	34	28	20	8	4	2	2	2	2	2	2	2
Jan.	1981	30	24	12	6	2	2	2	2	2	2	2	2
Feb.	1981	30	26	22	8	6	2	2	2	2	2	2	2
Mar.	1981	36	18	12	4	2	2	2	2	2	2	2	2
Apr.	1981	34	30	28	8	6	4	2	2	2	2	2	2
May	1981	34	22	20	4	4	2	2	2	2	2	2	2
June	1981	32	28	24	4	2	2	2	2	2	2	2	2
July	1981	34	22	20	4	4	2	2	2	2	2	2	2
Aug.	1981	34	30	26	6	4	2	2	2	2	2	2	2
Sept.	1981	36	24	22	6	4	4	2	2	2	2	2	2
Oct.	1981	34	24	18	4	4	2	2	2	2	2	2	2
Nov.	1981	34	18	12	6	4	2	2	2	2	2	2	2
Dec.	1981	36	26	22	6	4	2	2	2	2	2	2	2
Jan.	1982	30	28	12	4	2	2	2	2	2	2	2	2
Feb.	1982	30	22	20	4	2	2	2	2	2	2	2	2
Mar.	1982	32	28	16	4	2	2	2	2	2	2	2	2
Apr.	1982	30	28	24	6	6	4	2	2	2	2	2	2
May	1982	34	26	18	2	2	2	2	2	2	2	2	2
June	1982	32	24	20	6	4	2	2	2	2	2	2	2
July	1982	32	22	20	6	4	2	2	2	2	2	2	2
Aug.	1982	36	26	12	4	4	2	2	2	2	2	2	2
Sept.	1982	32	24	18	8	6	4	2	2	2	2	2	2

Table I. Concluded

Month	Number of singular vectors for wave number of--											
	0	1	2	3	4	5	6	7	8	9	10	11
Oct. 1982	30	28	22	4	4	4	2	2	2	2	2	2
Nov. 1982	30	28	22	6	4	4	2	2	2	2	2	2
Dec. 1982	34	30	28	6	4	2	2	2	2	2	2	2
Jan. 1983	34	32	18	8	6	4	2	2	2	2	2	2
Feb. 1983	30	18	16	6	2	2	2	2	2	2	2	2
Mar. 1983	36	30	28	6	4	2	2	2	2	2	2	2
Apr. 1983	36	28	26	6	4	2	2	2	2	2	2	2
May 1983	32	26	16	6	4	2	2	2	2	2	2	2
June 1983	30	26	18	4	4	2	2	2	2	2	2	2
July 1983	30	24	14	4	2	2	2	2	2	2	2	2
Aug. 1983	34	26	22	6	4	2	2	2	2	2	2	2
Sept. 1983	32	24	22	4	4	4	2	2	2	2	2	2
Oct. 1983	30	26	20	4	4	2	2	2	2	2	2	2
Nov. 1983	32	24	12	6	6	4	2	2	2	2	2	2
Dec. 1983	34	28	26	4	4	4	2	2	2	2	2	2
Jan. 1984	32	18	12	4	4	2	2	2	2	2	2	2
Feb. 1984	36	28	22	6	6	4	2	2	2	2	2	2
Mar. 1984	32	26	12	4	4	2	2	2	2	2	2	2
Apr. 1984	28	26	18	6	4	2	2	2	2	2	2	2
May 1984	32	26	24	6	4	2	2	2	2	2	2	2
June 1984	30	30	22	4	4	2	2	2	2	2	2	2
July 1984	30	26	26	8	6	4	2	2	2	2	2	2
Aug. 1984	30	22	18	6	4	2	2	2	2	2	2	2
Sept. 1984	32	24	22	6	4	4	2	2	2	2	2	2
Oct. 1984	30	28	20	4	2	2	2	2	2	2	2	2
Nov. 1984	30	26	12	6	2	2	2	2	2	2	2	2
Dec. 1984	34	28	26	6	2	2	2	2	2	2	2	2
Jan. 1985	30	28	16	6	4	2	2	2	2	2	2	2
Feb. 1985	30	26	20	4	4	2	2	2	2	2	2	2
Mar. 1985	36	28	18	6	4	2	2	2	2	2	2	2
Apr. 1985	28	28	22	8	4	2	2	2	2	2	2	2
May 1985	32	24	22	6	6	4	2	2	2	2	2	2
June 1985	32	24	16	4	4	2	2	2	2	2	2	2
July 1985	30	22	18	6	4	2	2	2	2	2	2	2
Aug. 1985	34	24	20	4	2	2	2	2	2	2	2	2
Sept. 1985	32	26	20	4	4	2	2	2	2	2	2	2
Oct. 1985	30	28	22	4	4	2	2	2	2	2	2	2

Table II. Zonal Albedo Means for 1978 to 1985
(a) November 1978 to October 1979

LATITUDE	NOV	DEC	JAN	FEB	\boldsymbol{L}	APR	LAY	JUN	JUL	AUG	SEP	OCT
85-90 N					. 516	. 642	. 647	. 627	. 57	. 573	. 566	
80-85 N					. 69	. 637	. 647	. 613	. 550	. 577	. 593	
75-80 N					. 586	. 648	. 661	. 619	. 520	. 650	. 611	576
70-75 N				. 566	. 625	. 630	. 606	. 536	. 442	. 458	. 663	536
65-70 N	. 625		. 53	. 61	. 597	. 673	. 508	. 426	. 36	. 381	. 451	. 549
65	. 521	. 53	. 529	. 619	. 513	. 496	. 423	. 369	. 35	. 371	. 379	524
55-60 N	. 487	. 478	. 625	. 507	. 469	. 419	. 363	. 356	. 367	. 366	. 378	. 448
50-55 N	. 441	. 574	. 503	. 478	. 436	. 378	. 327	. 337	. 336	. 330	. 356	. 374
45-50 N	. 394	. 532	. 453	. 441	. 403	. 363	. 313	. 312	. 312	. 300	. 296	. 349
40-46 N	. 364	. 386	. 404	. 399	. 350	. 337	. 303	. 289	. 285	. 272	. 267	. 395
35-40 N	. 347	. 368	. 370	. 357	. 320	. 297	. 282	. 261	. 255	. 227	. 253	. 288
35 N	. 323	. 342	. 394	. 322	. 298	. 268	. 260	. 237	. 236	. 207	. 228	. 240
25-30 N	. 279	. 263	. 288	. 282	. 261	. 248	. 244	. 226	. 227	. 220	. 222	. 222
20-25 N	. 237	. 246	. 24	. 229	. 22	. 208	. 219	. 214	. 21	. 21	. 219	. 207
15-20 N	. 221	. 21	. 212	. 187	. 189	. 179	. 193	. 210	. 216	. 213	. 204	. 196
10-16 N	227	. 212	. 188	. 179	. 170	. 189	. 199	. 231	. 243	. 236	. 216	. 217
-10 N	. 233	. 230	. 188	. 193	. 194	. 209	. 224	. 258	. 248	. 294	. 222	. 236
0-6 N	. 231	. 214	. 207	. 206	. 216	. 222	. 225	. 245	. 229	. 210	. 212	. 223
-5 S	. 221	. 246	. 217	. 217	. 213	. 210	. 202	. 207	. 20	. 20	. 201	. 205
5-10 S	. 21	. 231	. 218	. 222	. 210	. 193	. 192	. 191	. 19	. 192	. 199	. 199
10-15 S	. 210	. 208	. 221	. 208	. 199	. 185	. 194	. 188	. 196	. 179	. 199	. 192
15-20 S	. 207	. 205	. 217	. 191	. 196	. 187	. 196	. 193	. 20	. 192	. 202	. 195
20-25 S	. 204	. 19	. 204	. 198	. 206	. 20	. 212	. 215	. 205	. 212	. 210	. 209
30 s	. 202	. 216	. 196	218	. 210	. 231	. 244	. 242	. 239	. 220	. 218	. 219
30-36 S	. 218	. 23	. 201	. 22	. 231	. 258	. 273	. 266	. 278	. 264	. 250	. 239
35-40 S	. 267	. 23	. 226	. 233	. 273	. 28	. 301	. 298	. 291	. 311	. 277	. 274
40-45 S	. 301	. 282	. 272	. 289	. 300	. 310	. 341	. 360	. 322	. 311	. 299	. 302
45-50 s	. 334	. 313	. 317	. 353	. 348	. 352	. 390	. 418	. 407	. 330	. 347	. 329
50-65 S	. 371	. 370	. 351	. 372	. 4	. 406	. 498	. 485	. 497	. 426	. 386	. 374
55-60 S	. 424	. 372	. 384	. 372	. 414	68	. 488	. 624	. 532	. 534	. 425	. 440
60-65 S	. 602	. 445	. 428	. 4	. 440	. 499	. 545	. 629	. 617	. 568	. 636	. 530
65-70 s	. 616	. 661	. 512	. 649	. 576	. 536	. 598		. 501	. 642	. 679	. 641
70-75 S	. 743	. 660	. 641	. 683	. 79	. 573				. 506	. 739	. 731
75-80 S	. 812	. 740	. 797	. 743	. 771	. 605					. 705	. 757
80-85 S	. 759	. 677	. 721	. 712	. 716						. 652	. 730
85-90 S	. 640	. 699	. 628	. 647	. 661						. 633	. 690

Table II. Continued
(b) November 1979 to October 1980

LATITUDE	NOV	DEC	JAN	FEB	MAR	APR	NAY	JUN	JUL	AUG	SEP	OCT
85-90 N	----				. 527	. 653	. 654	. 624	. 577	. 584	5	
80-85					. 6	. 645	. 648	28	572	. 620	. 567	
75-80					. 596	. 650	60	. 620	. 536	. 588	. 670	. 580
70-75				. 6	. 63	. 623	09	. 520	. 448	451	. 549	. 548
65-70	. 62		. 536	. 5	. 603	. 561	. 6	. 410	. 375	. 344	. 481	. 570
60-65	. 538	. 530	. 533	. 528	. 514	. 482	. 430	. 359	. 358	. 354	. 398	. 548
55-60 N	. 523	. 460	. 528	. 499	. 453	. 408	. 375	. 3	. 351	. 376	. 352	6
50-65 N	. 490	. 547	. 505	. 450	. 4	. 366	. 345	. 347	. 343	. 342	49	9
50 N	. 433	. 505	. 456	. 4	. 419	. 345	. 330	. 388	. 323	. 306	. 335	. 340
45	. 367	. 367	. 405	. 388	67	. 321	. 313	. 296	. 276	. 283	. 282	. 335
35-40 N	. 3	. 356	. 369	. 358	. 336	. 294	. 289	. 254	. 244	. 241	. 237	. 293
30-95	. 297	. 339	. 336	. 3	. 308	. 270	. 250	. 236	. 237	. 226	. 237	. 248
25-30 N	. 27	. 273	. 289	. 27	. 261	. 2	. 228	. 219	. 226	298	. 236	239
20-25 N	. 237	. 25	. 239	2	. 2	. 2	08	. 212	. 215	. 215	. 210	. 226
15-20 N	. 2	. 205	195	. 191	. 188	. 181	. 1	. 218	. 223	. 203	212	204
10-15 N	. 220	. 199	. 181	. 16	. 172	. 178	. 19	. 2	. 2	. 236	23	222
10 N	. 231	. 22	. 186	. 18	. 193	. 203	. 22	. 246	. 248	. 238	. 2	40
$5 N$	230	. 2	. 202	. 203	16	. 223	. 229	. 239	. 235	. 214	197	. 216
5 S	. 214	. 2	220	. 214	. 213	. 212	. 203	. 20	. 197	. 209	. 197	198
10 S	. 204	. 225	. 23	. 2	. 209	. 189	. 185	. 192	. 18	. 198	. 194	. 201
15 s	. 2	. 2	. 2	. 217	. 198	1	. 18	. 198	. 199	. 181	. 178	. 193
15-20 S	. 200		. 208	. 201	. 191	. 196	. 191	. 188	. 195	. 198	191	188
20-25 S	. 202	. 202	. 19	. 193	. 199	. 202	. 20	. 20	. 198	. 216	. 219	206
25-30 S	. 212	. 206	. 189	1	. 204	16	. 233	50	. 250	. 208	. 21	216
35 S	. 227	21	20	. 213	. 222	. 25	. 269	. 27	. 28	. 248	. 223	. 228
35-40 S	. 2	. 224	. 232	. 24	. 263	. 29	. 30	. 295	. 29	. 30	. 283	. 262
40-45 S	. 277	. 279	. 277	. 2	. 2	. 323	. 33	. 356	. 3	. 307	. 328	289
45-50 S	. 91	. 305	. 321	. 327	. 342	. 354	. 376	56	. 446	. 337	. 328	. 317
50-55 S	. 345	. 362	. 357	. 36		. 398	22	. 633	. 5	. 465	. 359	. 377
55-60 S	. 391	. 367	. 38	. 397	. 400	61	. 478	. 5	. 567	. 597	. 479	449
60-65 S	. 478	. 438	. 422	. 431	. 429	99	. 54	. 62	. 5	. 62	. 6	527
65-70 S	. 595	. 546	. 505	. 509	. 555	. 5	. 605		. 499	. 570	. 71	636
70-75 S	. 685	. 640	. 631	. 646	. 700	. 582				. 510	. 708	753
75-80 S	. 709	. 730	. 721	. 759	. 745	. 616					. 665	. 803
80-85 S	. 668	. 6	. 707	. 746	. 710					---	. 640	. 765
85-90 S	. 610	. 598	. 62	669	. 673						. 634	. 700

Table II. Continued
(c) November 1980 to October 1981

LATITUDE	NOV	DEC	JAN	FEB	$\boldsymbol{M A R}$	APR	MAY	JUN	JUL	AUG	SEP	OCT
85-90 N	----			----	. 521	. 661	. 655	. 618	. 581	. 584	. 565	
80-85 N					. 600	. 700	. 679	. 599	. 583	. 616	. 585	
75-80 N					. 590	. 717	. 681	. 694	. 542	. 584	. 609	. 578
70-75 N				. 575	. 644	. 648	. 590	. 508	. 440	. 461	. 697	. 542
65-70 N	. 6		. 533	. 530	. 644	. 544	. 482	. 397	. 365	. 347	. 611	. 560
60-65 N	. 642	. 6	. 537	. 541	. 660	. 478	. 413	. 348	. 356	. 349	. 404	. 538
55-60 N	. 536	. 498	. 541	. 624	. 451	. 433	. 360	. 347	. 344	. 361	. 360	. 455
50-55 N	. 508	. 603	. 523	. 4	. 400	. 377	. 334	. 335	. 326	. 322	. 361	. 365
45-50 N	. 4	. 546	. 4	. 4	. 396	. 935	. 335	. 317	. 314	. 292	. 332	. 330
40-45 N	. 367	. 365	. 393	. 362	. 363	. 324	. 317	. 304	. 281	. 277	. 274	. 323
35-40 N	. 308	. 393	. 343	. 396	. 311	. 303	. 284	. 280	. 248	. 241	. 251	. 289
30-35 N	. 286	. 939	. 321	. 315	. 290	. 269	. 259	. 245	. 232	. 224	. 249	. 249
25-30 N	. 268	. 287	. 299	. 277	. 268	. 247	. 235	. 222	. 227	. 238	. 226	. 240
20-25 N	. 2	. 2	. 2	. 229	. 217	. 220	. 206	. 210	. 226	. 227	. 211	. 228
15-20 N	. 205	. 21	. 203	. 196	. 183	. 183	. 191	. 208	. 232	. 227	. 217	. 204
10-15 N	. 2	. 2	. 189	. 18	. 1	. 18	. 199	. 228	. 235	. 251	. 218	. 215
10 N	. 2	. 2	. 199	. 1	. 18	. 21	. 22	. 24	. 238	. 236	. 227	. 231
5 N	. 2	. 199	. 207	. 202	. 206	. 21	. 236	. 218	. 228	. 198	. 232	. 212
S	. 207	. 230	. 213	. 222	. 221	. 211	. 203	. 190	. 201	. 189	. 205	. 195
5-10 S	. 216	. 220	. 226	. 222	. 206	. 200	. 179	. 190	. 192	. 181	. 193	. 201
10-15 S	. 21	. 20	. 2	. 21	. 1	. 1	. 183	. 185	. 209	1	. 206	. 196
15-20 S	. 2	. 2	. 217	. 209	. 200	. 1	. 1	. 1	. 192	92	. 194	. 196
20-25 S	. 1	. 20	. 204	. 197	. 191	. 21	. 19	. 215	. 192	. 210	. 190	. 216
25-30 S	. 2	. 2	. 1	. 190	. 1	. 21	. 234	. 253	. 240	. 208	. 226	. 221
30-35 S	. 2	. 21	. 20	. 21	. 236	. 2	. 28	. 274	27	. 260	. 242	. 225
35-40 S	. 2	. 2	. 239	. 248	. 257	. 292	. 30	. 306	. 284	. 319	. 249	. 261
40-45 S	. 286	. 289	. 2	. 270	. 288	. 337	. 927	. 375	. 333	. 313	. 306	. 294
45-50 S	. 312	. 311	. 311	. 316	. 360	. 348	. 394	. 457	. 443	. 332	. 360	. 321
50-55 S	. 340	. 353	. 342	. 373	. 395	. 389	. 478	. 618	. 636	. 459	. 364	. 377
55-60 S	. 402	. 346		. 399	. 389	. 483	. 638	. 642	. 554	. 695	. 420	. 452
60-65 S	. 490	. 423	. 410	. 421	. 445	. 668	. 675	. 524	. 523	. 627	. 584	. 531
65-70 S	. 589	. 533	. 487	. 515	. 60	. 60	. 602		. 498	. 673	. 737	. 641
70-75 S	. 670	. 631	. 622	. 678	. 734	. 608				. 513	. 764	. 765
75-80 S	. 717	. 735	. 732	. 777	. 748	. 613					. 705	. 819
80-85 S	. 689	. 693	. 724	. 755	. 701						. 650	. 778
85-90 S	. 616	. 606	. 632	. 666	. 666						. 633	. 703

Table II. Continued
(d) November 1981 to October 1982

LATTIUDE	NOV	DEC	JAN	$\boldsymbol{F E B}$	$\boldsymbol{M} A R$	APR	MAY	JUN	JUL	AUG	SEP	OCT
85-90 N					. 5	. 653	. 658	. 622	. 676	. 585	. 561	
80-85 N					. 6	. 667	. 686	.622	77	. 621	. 568	
75-80 N					. 656	. 684	. 693	. 628	. 652	. 594	. 583	. 571
70-75 N				. 674	. 691	. 646	. 608	. 637	. 454	. 460	. 577	. 625
65-70 N	. 63		. 5	. 690	. 604	. 562	. 508	. 412	. 347	. 351	. 621	. 643
60-65 N	. 668	. 6	. 541	. 5	. 566	. 480	43	. 357	. 330	. 357	. 427	. 644
65-60 N	. 5	. 6	. 6	. 525	. 482	. 422	. 384	. 357	. 357	77	. 355	. 499
50-55 N	. 5	. 603	. 545	. 476	. 404	. 383	. 343	. 342	. 344	. 339	. 338	15
45-50 N	. 4	. 6	. 4	. 4	. 376	. 341	. 391	. 318	. 308	. 300	. 337	. 343
40-45 N	. 348	. 36	. 4	. 37	. 370	. 308	. 309	. 309	. 284	. 281	. 300	4
35-40 N	. 318	. 34	. 36	. 36	. 337	. 300	. 280	. 278	. 262	. 240	. 249	. 307
30-35 N	. 3	. 33	. 318	. 388	. 29	. 292	. 263	. 249	. 238	. 217	. 238	. 280
25-30 N	. 276	. 269	. 295	. 2	. 27	. 259	. 243	. 240	. 227	. 235	. 247	. 236
20-26 N	. 225	. 252	. 251	. 297	. 241	. 223	. 216	. 229	. 223	. 224	. 227	. 217
15-20 N	. 21	. 2	. 2	. 1	. 191	. 1	. 2	. 21	. 216	. 217	. 216	. 215
10-15 N	. 2	. 2	. 1	. 1	. 1	. 1	. 2	. 226	. 242	. 247	. 298	209
10 N	. 2	. 2	. 20	. 1	. 19	. 193	. 227	. 26	. 261	. 249	40	. 218
$5 N$. 2	. 2	. 21	. 19	. 21	. 22	. 237	. 230	. 228	18	10	33
$5 S$. 2	. 2	. 21	. 22	. 2	. 21	. 20	. 199	. 191	. 206	. 199	18
6-10 S	. 198	220	. 223	. 22	. 21	. 1	. 178	. 203	. 198	. 198	. 205	. 192
10-16 S	. 199	. 213	. 221	. 21	. 19	. 18	. 188	. 203	. 196	. 188	. 188	. 191
15-20 S	. 2	. 2	. 21	. 21	. 18	. 20	. 200	. 196	. 192	. 210	. 183	196
20-25 S	. 2	. 1	. 2	. 1	. 203	. 20	. 200	. 222	. 218	. 225	. 210	. 190
25-30 S	. 21	. 21	. 1	. 1	. 2		. 226	. 259	. 252	. 209	. 219	204
30-35 S	. 239	. 226	. 20	. 214	. 2		. 267		. 261	. 244	. 223	237
35-40 S	. 252	. 231	. 2	. 246	. 248	. 291	. 29	. 30	. 28	. 305	. 270	263
40-45 S		. 287	. 2	. 2		. 3	. 32	. 3	. 352	. 30	. 324	289
45-50 S	. 318	. 309	. 323	. 3	. 368	. 3	. 398	. 470	. 446	. 323	. 332	. 939
60-55 S	. 3	. 369	. 3		. 360	. 4	. 487	. 631	. 508	. 449	. 349	. 388
55-60 S	. 392	. 3	. 3	. 3		. 6	. 546	. 548	. 623	. 691	O	. 429
60-65 S	. 4	. 4	. 417				. 581	. 524	. 607	. 628	. 601	. 613
65-70 S	. 690	. 6	. 5	. 6			. 606		97	. 576	. 698	. 654
70-75 S	. 675	. 6	. 635	. 6	. 7	. 694				13	. 700	775
75-80 S	. 717	. 7	. 737	. 7	9	. 613					1	. 805
80-85 S	. 688	. 679	. 723	. 765	. 677						. 6	. 755
85-90 S	. 618	. 693	. 631	. 667	. 663						. 628	. 692

Table II. Continued
(e) November 1982 to October 1983

LATITUDE	NOV	DEC	JAN	FEB	$\boldsymbol{M A R}$	APR	IAY	JUN	JUL	AUG	SEP	OCT
85-90 N					. 519	. 656	. 647	. 626	. 576	. 579	563	
85 N					. 598	. 679	. 664	. 630	. 576	09	. 562	
75-80					. 686	. 6	. 679	. 625	47	78	. 564	. 681
70-75				. 679	. 638	. 63	. 6	7	. 454	456	. 549	. 558
65-70 N			. 6	. 539	. 64	. 639	. 602	. 395	. 361	. 356	498	13
60-65 N	. 541	. 6	. 566	. 568	. 566	476	. 433	. 349	. 346	. 357	24	53
55-60 N	. 6	. 4	. 576	. 547	. 463	. 493	. 392	46	. 354	. 362	. 369	3
50	. 509	. 6	. 5	. 496	. 409	. 379	. 35	. 342	. 338	. 318	60	. 486
45-60 N	. 4	. 5	. 479	. 423	. 396	. 33	. 326	. 396	. 309	. 287	338	45
40-45 N	. 3	. 36	. 3	. 37	. 36	. 321	. 908	. 313	. 288	. 272	296	283
35-40 N	. 3	. 3	. 340	. 3	. 323	. 31	. 286	. 277	. 257	. 232	246	. 303
30	. 299	. 3	. 330	. 338	. 3	. 2	. 256	. 255	. 227	. 214	236	. 301
25-30 N	. 2	. 288	. 298	. 2	. 282	. 25	. 236	. 2	. 221	. 232	. 238	. 239
20-25 N	. 246	. 257	. 246	. 238	. 22	. 21	. 212	. 216	. 212	. 220	. 211	. 206
15-20 N	. 212	. 209	. 216	. 193	. 1	. 172	. 181	. 193	. 206	. 215	. 197	45
10-15 N	. 208	. 210	. 191	. 17	. 165	. 1	. 176	. 205	. 235	. 244	. 2	65
N	. 2	. 232	80	. 1	. 159	. 180	20	. 230	. 252	. 242	2	. 236
N	. 220	. 21	. 210	. 19	193	. 206	226	23	. 229	. 213	. 216	220
s		. 249	. 246	. 23	. 236	. 229	. 216	. 216	. 209	. 203	. 197	. 225
5-10 S	. 20	. 2	. 2	. 238	. 233	. 226	201	. 198	20	. 190	. 197	. 201
S	. 202	. 197	. 216	. 210	. 216	. 199	. 188	. 178	. 190	. 17	. 181	173
15-20 S	. 194	. 205	. 206	. 200	. 206	. 188	. 183	. 184	. 188	. 187	. 1	. 181
20-25 S	. 20	. 192	. 195	200	. 1	08	. 203	. 220	. 226	205	. 203	2
25-30 S	. 220	00	. 1	196	. 204	. 221	238	25	25	. 205		205
30-35 S	. 224	6	. 20	. 2	. 23	37	. 25	. 26	. 263	26	. 218	216
S		. 2	. 224	. 246	. 2	. 291	. 280	. 300	29	31	. 269	50
s					. 291	. 335	. 3	. 36	. 36	. 30	. 332	. 270
S		. 3		. 316	. 369	. 344	. 3	. 429	. 446	. 326	. 344	. 282
50-55 S	. 3	. 360	. 337	. 361	. 387	. 377	. 446	. 489	. 498	. 441	. 356	. 329
55-60	.	. 368	. 361				. 495	. 5	11	. 671	. 454	413
60-65 S	. 4	. 432	. 415	. 4	. 445	. 564	. 6	. 616	. 500	. 06	. 609	. 484
65-70	. 589	. 545	. 501	. 508	. 605	. 596	. 693		. 494	. 560	. 710	. 513
s	. 678	. 63	. 6	. 668	. 7	. 607				. 07		526
75-80 S	. 720	. 728	. 717	. 770	. 71	. 613					. 670	62
80-86 S	. 685	. 682	. 716	. 750	. 697						. 63	616
85-90 S	. 61	. 604	. 632	. 665	. 664						. 632	. 666

Table II. Continued
(f) November 1983 to October 1984

LATITUDE	NOV	DEC	JAN	FEB	MAR	APR	NAY	JUN	JUL	AUG	SEP	OCT
85-90 N	----	----			. 521	. 656	662	. 636	. 583	. 56	. 564	
80-85 N					. 593	. 653	. 681	. 632	. 579	. 532	. 563	
75-80 N					. 565	. 664	. 692	. 619	. 546	. 502	. 565	. 574
70-75 N				. 589	. 60	. 6	. 608	. 508	. 449	. 432	. 551	. 518
65-70 N	. 634		. 6	. 66	. 62	. 576	. 486	. 392	. 358	. 350	. 499	. 522
60-65 N	. 56	. 539	. 64	. 588	. 578	. 489	. 406	. 361	. 352	. 311	. 425	. 512
55-60 N	. 565	. 481	. 561	. 656	. 486	. 395	. 370	. 367	. 369	. 310	. 368	. 467
50-56 N	. 525	. 577	. 533	. 472	. 407	. 353	. 348	. 352	. 346	. 301	. 346	. 398
45-50 N	. 4	. 528	. 470	. 406	. 387	. 346	. 327	. 330	. 312	. 265	. 332	. 340
40-45 N	. 368	. 367	. 392	. 389	. 381	. 334	. 311	. 305	. 281	. 232	. 288	. 308
36-40 N	. 318	. 3	. 3	. 361	. 39	. 30	. 288	. 270	. 249	. 211	. 236	. 290
30-35 N	. 302	. 337	. 316	. 303	. 28	. 283	. 256	. 247	. 229	193	. 230	. 261
25-30 N	. 27	. 280	. 299	26	25	256	. 236	. 241	237	194	. 246	227
20-25 N	. 226	. 256	. 252	242	. 231	. 215	. 216	. 230	234	. 208	227	. 218
15-20 N	. 206	. 207	21	. 20	18	. 181	. 189	. 220	218	212	. 206	. 226
10-15 N	. 222	. 210	. 202	. 17	159	. 175	. 187	. 232	228	. 207	. 217	228
10 N	. 230	. 239	. 209	. 193	. 18	. 192	. 213	. 240	. 237	. 203	. 225	. 229
5 N	. 213	. 198	. 205	. 208	. 199	. 210	. 223	. 219	. 219	. 19	. 20	. 219
s	. 203	. 219	. 198	. 206	. 210	16	. 205	. 19	. 203	. 171	. 19	. 196
10		. 214	. 20	. 213	22	. 21	. 192	. 188	. 202	. 161	. 197	. 184
s	. 2	. 20	. 21	. 212	. 213		. 191	83	195	. 16	. 181	. 198
16-20 S	. 20	. 21	. 202	. 195	18	190	. 190	. 189	199	171	175	204
20-25 S	20	. 19	. 191	. 199	. 1	. 197	. 210	. 217	. 234	. 179	. 201	. 198
25-30 S	. 217	. 212	. 195	. 207	. 221	22	. 247	. 247	. 263	. 202	. 219	. 209
30-35 S	23	. 22	. 207	. 214	. 2	. 255	. 272	. 271	. 272	. 238	. 234	. 237
35-40 S	25	. 226	. 229	. 246	. 253	. 281	. 291	. 305	302	. 258	. 284	. 260
40-45 S	. 277	. 27	. 271	. 288	. 31	. 316	. 396	. 359	. 372	. 268	. 331	. 287
45-50 S	. 31	. 30	. 3	. 320	. 36	. 3	. 398	423	451	. 309	. 33	. 337
50-55 S	. 351	. 356	. 358	. 362	. 36	. 436	. 458	. 48	. 501	. 392	. 348	. 387
55-60 S	. 398	. 35	. 383	07	. 383	. 491	. 508	. 525	. 516	. 468	451	. 435
60-65 S	. 475	. 43	20	87	. 481	. 52	. 560	. 523	. 507	. 50	605	. 625
65-70 S	. 692	. 547	. 507	. 503	. 606	. 556	. 607		. 502	. 508	. 704	. 662
70-75 S	. 694	. 643	. 636	. 649	678	. 587				. 503	. 707	. 774
75-80 S	. 725	. 731	. 7	. 7	. 685	618					. 66	. 798
80-85	. 682	. 679	. 710	. 767	. 668						. 639	. 753
85-90 S	. 616	. 601	. 632	. 674	. 664						. 633	. 697

Table II. Concluded
(g) November 1984 to October 1985

LATMTUDE	N	D	JAN	FEB	$\boldsymbol{M A R}$	APR	MAY	JUN	JUL	AUG	SEP	OCT
85-90 N					. 5	. 65	. 662	. 628	. 677	. 588	. 664	
80-85 N					. 6	. 6	. 6	. 610	. 561	. 612	. 565	
75-80 N					. 691	. 662	94	. 596	. 629	. 583	. 569	. 575
70-75 N				. 6	. 6	. 642	. 621	. 497	. 446	. 466	. 554	. 522
65-70 N	. 630		. 6	. 53	. 642	. 584	. 511	. 384	. 364	. 371	. 498	. 532
60-65 N	. 642	. 5	. 5	. 5	. 559	. 50	. 495	. 350	. 349	. 366	. 417	. 528
55-60 N	. 529	. 4	. 6	. 53	. 4	. 426	. 388	. 365	. 357	. 369	. 357	. 483
60-55 N	. 498	. 5	. 53	. 4	. 4	. 382	. 34	. 355	. 342	. 333	. 340	. 407
45-50 N	. 4	. 6	. 484	. 4	. 4	. 9	. 3	. 325	. 318	. 304	. 334	. 399
40-46 N	. 3	. 5	. 418	. 39	. 37	. 32	. 30	. 299	. 287	. 279	. 298	. 307
35-40 N			. 3	. 35	. 3	. 29	. 286	. 274	. 247	. 230	. 250	. 298
30-35 N	. 2	. 3	. 33	. 32	. 2	. 276	. 257	. 250	222	. 212	. 238	. 277
25-30 N	. 262	. 28	. 301	. 28	. 2	. 259	. 233	. 235	. 230	. 232	. 238	. 238
20-25 N	. 230	. 260	. 25	. 23	. 227	. 22	. 209	. 221	225	. 224	. 212	. 215
15-20 N	. 2	. 2	. 2	. 2	. 19	. 19	. 18	. 21	. 210	. 219	. 202	. 217
10-15 N	. 2	. 21	. 19	. 1	. 18	. 18	. 20	. 2	. 228	. 242	. 231	. 219
10 N	. 230	. 231	. 1	. 18	. 18	. 19	. 22	. 245	. 241	. 239	241	. 221
$5 N$. 217	. 203	. 209	. 199	. 19	. 20	. 2	. 220	. 215	. 214	. 21	. 218
5 S	. 199	. 232	. 21	. 21	. 21	. 2	. 200	. 1	. 193	. 208	. 197	. 203
10 S	. 2	. 2	. 21	. 22	. 2	. 2	. 195	. 185	. 195	. 197	. 199	. 192
10-15 S	. 2	. 2	. 220		. 1	. 2	. 197	. 191	. 192	. 184	5	. 200
15-20 S	. 1	. 21	. 2	. 2	. 2	. 1	. 1	. 1	. 194	. 20	. 186	. 208
20-25 S	. 206	. 20	. 1	. 1	. 1	. 1	. 2	. 224	. 223	. 217	. 215	. 210
25-30 S	. 2	. 2		. 1	. 2	. 2	. 242	. 251	. 25	. 215	. 227	. 221
30-35 S	. 2	. 2	. 20	. 2	. 2	. 2	. 271	. 270	. 267	. 259	. 231	. 245
35-40 S	. 2	. 235	. 23	. 2	.	. 275	. 297	. 303	. 299	. 310	. 275	. 264
40-45 S	. 280	. 289	. 2	. 2	. 2	. 3	. 3	. 366	. 369	. 303	. 323	. 284
45-60 S	. 3	. 812	. 323	. 3	. 358	. 36	. 408	. 443	. 446	. 327	. 332	. 322
50-55 S	. 347	. 358	. 356		. 388	. 4	. 462	. 507	. 496	. 454	. 357	. 371
55-60 S		. 355	. 379		. 3		. 509	. 538	. 512	. 590	67	34
60-65 S	. 492		. 413	. 4	. 4	. 5	. 559	. 528	. 506	. 623	. 621	. 540
65-70 S	. 6	. 6	. 4	. 5	. 5	. 5	. 607		. 502	. 574	. 716	. 675
70-75 S	. 687	. 640	. 629	. 6	. 7	. 5				. 518	2	. 775
$75-80 \mathrm{~S}$. 727	. 727	. 726	. 769	. 794	. 618					. 669	. 792
80-86 S	. 692	. 677	. 714	. 750	. 695						. 699	. 748
85-90 S	. 621	. 601	. 634	. 668	. 666						. 639	. 696

Figure 1. Wide-field-of-view coverage geometry.

Figure 2. Geometry of Earth, satellite, Sun, and scene.

Figure 3. Singular values $\lambda_{n j}$ of measurement matrices for Nimbus 7 for September.

(a) u_{1} and u_{2}.

Figure 4. Singular vectors $u_{0 j}$ of measurement matrices for Nimbus 7 for September.

Figure 4. Continued.

(c) u_{15} and u_{16}.

Figure 4. Continued.

Figure 4. Concluded.

Figure 5. Shortwave WFOV measurement map for Nimbus 7 for September 1981.

(a) $n=0$ (zonal profile).

Figure 6. Profiles of measurement map Fourier components $g_{n}(\eta)$ for September 1981.

Figure 6. Concluded.

Figure 7. Magnitudes of zonal average measurements $g_{0}(\eta)$ with $\mathbf{v}_{n j}$ as basis for September 1981.

Figure 8. Magnitudes of zonal average albedo $f_{0}\left(\theta_{T}\right)$ with $\mathbf{u}_{n j}$ as basis for September 1981.

Figure 9. Zonal average albedo profile $f_{0}\left(\theta_{T}\right)$ for September 1981 built from combination of observable terms.

Figure 10. Latitudinal profile of unobservable part of zonal average albedo profile $f_{0}\left(\theta_{T}\right)$ (second summation in eq. (4)) based on a priori data for September 1981.

Figure 11. Total estimate of zonal albedo profile formed from 18 terms. Also shown are observable part and unobservable part of solution based on a priori information for September 1981.

I	Albedo physically undefined	IV	Albedo observable
II	Low information in WFOV	V	Transition region
III	Transition region	VI	Low information in WFOV

Figure 12. Dependence of observability on latitude for typical northern winter case for Nimbus 7 orbit.

Albedo observable

Low information in WFOV

Transition region

Albedo physically undefined

Figure 13. Variation of observable regions with time of year for Nimbus 7 orbit.

Figure 14. Zonal average profiles of incident and absorbed solar flux for September 1981.

(a) November, December, January, and February.

(b) March, April, May, and June.

Figure 15. Seven-year zonal mean albedos.

(c) July, August, September, and October.

Figure 15. Concluded.

(a) November, December, January, and February.

(b) March, April, May, and June.

Figure 16. Seven-year zonal mean absorbed solar radiation.

(c) July, August, September, and October.

Figure 16. Concluded.
ALBEDO (\%)

ABSORPTION W/(M*M) NOV 1978

ALBEDO (\%)
DEC 1978

ALBEDO (\%) JAN 1979

ABSORPTION W/(M*M) JAN 1979

ALBEDO (\%) FEB 1979

ヨロกIIยา
ABSORPTION W／（ M＊M）
FEB 1979

$$
\begin{aligned}
& \text { ヨロחII } 1 \text { ㄱ }
\end{aligned}
$$

ALBEDO (\%) MAR 1979

ABSORPTION W/(M*M)

Al.BEDO (\%)

ABSORPTION W/(M*M)
APR 1979

ALBEDO（\％）
MAY 1979

ヨロローII 1 า
ABSORPTION W／（ M＊M） MAY 1979

 ヨロח\IIオา
ALBEDO (\%)
JUN 1979

ABSORPTION W/(M*M)

$$
1|1||1||1|||1|| 1 \mid
$$

$\exists ロ \cap \perp I \perp \forall 7$
ALBEDO (\%)
JUL 1979

ABSORPTION W/(M*M)

ALBEDO (\%)
AUG 1979

ABSORPTION W/(M*M)

$\begin{aligned} & 70- \\ & 60 \end{aligned}$	
	13 T
${ }_{40}^{50}$	(1)
30	-
${ }^{10}$	
-	- $-1,0,0$,
-20	-2500 1
-40-	150 ¢
-50-	100 y^{2}
-60-	50.0
${ }_{-80}^{-70}-$	
	1 - 1
	$160-140-120-100-80-60-40-200020 \begin{array}{lllllllllll} & 40 & 60 & 80 & 100 & 120 & 140 & 160 & 18\end{array}$

ALBEDO (\%)

ABSORPTION W/(M*M)

$$
||||||||||||||||\mid
$$ $\exists ロ \cap \perp I \perp \forall 7$

ALBEDO (\%)
OCT 1979

ABSORPTION W/(M*M) OCT 1979

$$
||||||||||||||||\mid
$$ $\exists ロ \cap \perp I \perp \forall 7$

ALBEDO (\%)
NOV 1979
ABSORPTION W／（ M＊M）

 ヨロกIIナา

$$
||1|||||||||||\mid
$$ $\exists ロ \cap \perp I \perp \forall 7$

ALBEDO (\%) JAN 1980

 JOก1II $\forall 7$
ABSORPTION W/(M*M)
JAN 1980

ALBEDO (\%)

ABSORPTION W/(M *M)
FEB 1980

ALBEDO (\%)
MAR 1980

ABSORPTION W/(M*M)
MAR 1980

ALBEDO (\%)

ABSORPTION W/(M*M)

ALBEDO (\%) MAY 1980

[^1]ABSORPTION W／（ M＊M）

 ヨロกIIナา

ALBEDO(\%) JUN 1980

ABSORPTION W／（ M＊M）
 ヨロกIIナา

ALBEDO（\％） JUL 1980

[^2]ABSORPTION W/(M*M)
JUL 1980

[^3]ALBEDO (\%)

ABSORPTION W/(M*M)
AUG 1980

ALBEDO $(\%)$
SEP 1980

 JロกIIIH7

ABSORPTION W/(M*M)

 ヨロกIİา

(\%)
 OCT 1980
 ALBEDO

ヨロก1I1
ABSORPTION W/(M*M)
OCT 1980

$\downharpoonright||||||||||||||||\mid$ Jロก1II $\forall 7$
ALBEDO (\%)
NOV 1980

ABSORPTION W／（ M＊M）
NOV 1980

ヨロロII 1 ㄱㄱ

ALBEDO (\%)
DEC 1980
ABSORPTION W/(M*M)
DEC 1980

ALBEDO (\%)
JAN 1981
ABSORPTION W/(M*M)

年		

ALBEDO（\％）
FEB 1981

ヨロロムI』もา
ABSORPTION W/(M*M)

$\lfloor|||||||||||||||\mid$ JOП1II
ALBEDO（\％）

[^4]ABSORPTION W／（ M＊M）

ALBEDO (\%)
APR 1981

ABSORPTION W／（ M＊M）
APR 1981
促

ALBEDO（ $\%$ ）
MAY 1981

－～岂
－ 9
$\underset{-180-160-140-120-100-80}{\perp} \frac{\mid}{-60}$
$$
|||||||||||||||\mid
$$ ヨロП1II
ABSORPTION W/(M*M)

ALBEDO ($\%$)
JUN 1981

ABSORPTION W／（ M＊M）

ALBEDO (\%)
JUL 1981

ABSORPTION W/(M*M)
JUL 1981

ALBEDO ($\%$)
AUG 1981

ABSORPTION W／（ M＊M）
AUG 1981

\square	
O－6	
$-$	
－$-2.250-300$	
\bigcirc	
${ }_{50.0}^{100}$	

ヨロกIIナา	

ALBEDO (\%)

[^5]ABSORPTION W/(M*M) SEP 1981

ALBEDO (\%) OCT 1981

ABSORPTION W/(M*M)

$3{ }^{2}$	

 ヨロกII 1 ㄱ
ALBEDO (\%)
NOV 1981
ABSORPTION W/(M*M)

ALBEDO (\%)
DEC 1981

JOMIIIU7

90
80
70
60
50
40
40
30
20
10
-10
-10
-20
-30
-40
-50
-60
-70
-70
-90
-90 ヨロロムIIもา
ALBEDO (\%) JAN 1982

ABSORPTION W/(M*M)

$$
|||||||||||||||\mid
$$

ALBEDO (\%)
FEB 1982

$$
|||||||||||||||\mid
$$

JOחIII甘7
ABSORPTION W/(M*M)

$$
||||||||||||||||\mid
$$ JOกIII甘า

ALBEDO (\%)
MAR 1982

ヨロกII $\forall 77$	

ABSORPTION W/(M*M) MAR 1982

ALBEDO (\%)

ABSORPTION W/(M*M)

[^6]ALBEDO (\%)

ABSORPTION W/(M*M)

ALBEDO (\%) JUN 1982

ABSORPTION W／（ M＊M） JUN 1982

ヨロกIIナา

ALBEDO ($\%$)
JUL 1982
ABSORPTION W/(M*M)

- $500 \cdots$ -	
(
150	-200
	$100-3$
50.0	

$$
|||||||||||||||||l|
$$ JOก1II甘า

ALBEDO (\%)
 AUG 1982

ABSORPTION W/(M*M)
AUG 1982

ALBEDO (\%)
SEP 1982

ABSORPTION W／（ M＊M）

[^7]ALBEDO (\%) OCT 1982 1

ABSORPTION W／（ M＊M）

 ヨロกIIナา
ALBEDO (\%) NOV 1982

ABSORPTION W/(M*M)
NOV 1982

(\%) DEC 1982

ALBEDO (\%) JAN 1983

$$
|||||||||||||||\mid
$$ JロกII

ABSORPTION W／（ M＊M）

[^8]ALBEDO (\%)
FEB 1983

$$
1|1|||||||||||\mid
$$
ヨOחIIIU7
ABSORPTION W/(M*M)

ALBEDO（\％）
MAR 1983

ヨロחムIIもา

ABSORPTION W/(M*M) MAR 1983

1111111111111111

ALBEDO (\%)
APR 1983

JロחIII

ABSORPTION W/(M*M) APR 1983

ALBEDO (\%) MAY 1983

ABSORPTION W／（ M＊M）

 ヨロกIIナา
ALBEDO (\%)
JUN 1983

ABSORPTION W/(M*M)
JUN 1983

 JロกIIリㄱ
ALBEDO (\%)
JUL 1983

ABSORPTION W/(M*M)
JUL 1983

ABSORPTION W／（ M＊M） AUG 1983

[^9]ALBEDO (\%)

$W /(M * M)$

SEP 1983

$$
|||||||||||||||||l|
$$ $\exists ロ \cap \perp I \perp \forall 7$

ALBEDO ($\%$)
OCT 1983

ABSORPTION W／（ M＊M）
OCT 1983

 ヨロกIIリㄱ
ALBEDO (\%)
NOV 1983

ABSORPTION W/(M*M)
NOV 1983

 JロחIIIオา

ALBEDO ($\%$)
DEC 1983

ABSORPTION W/(M*M)
DEC 1983

ALBEDO ($\%$)
JAN 1984

ABSORPTION W/(M*M)

ヨロก1IIUา
ALBEDO（\％）

ヨロกIIナา
ABSORPTION W/(M*M)

ALBEDO (\%)
MAR 1984

 ヨロกII 1 า
ABSORPTION W/(M*M)

ALBEDO (\%)
APR 1984

ABSORPTION W/(M*M)

ALBEDO (\%)
MAY 1984

ABSORPTION W/(M*M)
MAY 1984

ヨロחII 1 ㄱ

ALBEDO (\%) JUN 1984

 JOПIIIUา

ABSORPTION W/(M*M)
JUN 1984

ALBEDO (\%)

ヨOחIIIUา
ABSORPTION W/(M*M)

$$
|||||||||||||||||\mid
$$

ヨロกII \dagger ㄱ
ALBEDO (\%)

ABSORPTION W／（ M＊M）

 ヨロחIIIもา
ALBEDO（\％）
SEP 1984

[^10]ABSORPTION W/(M*M)
SEP 1984

 70חLII 1 า
ALBEDO $(\%)$
OCT 1984

ABSORPTION $W /(M * M)$
OCT 1984

-180	

[^11]ALBEDO (\%)
NOV 1984

ABSORPTION W/(M*M)

ALBEDO (\%)

ABSORPTION W/(M*M)

ALBEDO (\%)
JAN 1985

ABSORPTION W/(M*M)
JAN 1985

ALBEDO ($\%$)
FEB 1985

ABSORPTION W/(M*M)

$$
||||||||||||||||\mid
$$ JロกIIリㄱ

ALBEDO (\%) MAR 1985

ABSORPTION W/(M*M)
MAR 1985

ALBEDO (\%)

ABSORPTION W／（ M＊M）

ALBEDO（\％）
MAY 1985

ヨロกIIナา
ABSORPTION W/(M*M)
 ヨロחII 1 า

ALBEDO (\%) JUN 1985

ABSORPTION W/(M*M)

ALBEDO (\%)
JUL 1985

$$
c-3
$$

ABSORPTION W/(M*M)
JUL 1985

 ヨOחIIIオา
ALBEDO (\%) AUG 1985

ABSORPTION W／（ M＊M）

ABSORPTION W／（ M＊M）

ヨロחमIIもา
ALBEDO (\%)
OCT 1985

[^12]ABSORPTION W/(M*M)
OCT 1985

$\begin{aligned} & \text { 1. Report No. } \\ & \text { NASA RP-1231 } \end{aligned}$	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Atlas of Albedo and Absorbed Solar Radiation Derived From Nimbus 7 Earth Radiation Budget Data Set-November 1978 to October 1985		5. Report Date January 1990
7. Author(s) G. Louis Smith, David Rutan, and T. Dale Bess		8. Performing Organization Report No. L-16591
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665-5225		$\begin{array}{r} \text { 10. Work Unit No. } \\ 672-40-05-70 \\ \hline \end{array}$
		11. Contract or Grant No.
12. Sponsoring Agency Name and AddressNational Aeronautics and Space AdministrationWashington, DC 20546-0001		13. Type of Report and Period Covered Reference Publication
15. Supplementary Notes G. Louis Smith and T. Dale Bess: Langley Research Center, Hampton, Virginia. David Rutan: PRC Kentron, Inc., Aerospace Technologies Division, Hampton, Virginia. Atlas of Nimbus 6 data for July 1975 to May 1978 is presented in NASA RP-1230, 1990.		
16. Abstract An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. This atlas contains 7 years of continuous data from November 1978 to October 1985. The data were retrieved from measurements made by the second Earth radiation budget (ERB) wide-field-of-view instrument, which flew on the Nimbus 7 spacecraft in 1978. The deconvolution method used to produce these data is briefly discussed so that the user may understand their generation and limitations. These geographical distributions of albedo and absorbed solar radiation are provided as a resource for researchers studying the radiation budget of the Earth. This atlas complements the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185 and RP-1186, also based on the Nimbus 6 and 7 ERB data.		
17. Key Words (Suggested by Authors(s)) Earth radiation budget Albedo Nimbus 7 Wide-field-of-view radiometer Shortwave radiation Satellite radiation measureme	18. Distribution St Unclassified Su	atement -Unlimited bject Category 47
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price 202 A10

[^0]: 1 The orbit angle is used rather than latitude of the subsatellite point because for the fixed orbit inclination of 99° the latitude is defined uniquely, but at high latitudes there may be measurements for both ascending and descending parts of the orbit, so that the latitude does not uniquely define the viewing conditions.

[^1]:
 JOก1IIナา

[^2]:

 ヨロПIIリา

[^3]: ヨロחIII

[^4]: | 90 |
 | :--- |
 | 70 |
 | 70 |
 | 60 |
 | 50 |
 | 40 |
 | 30 |
 | 20 |
 | 20 |
 | 10 |

 ヨロПIIリา

[^5]: ヨOח1IIH7

[^6]:
 ヨロחII $\forall 7$

[^7]:
 ヨロกIIナา

[^8]: ヨロロII $\forall 7$

[^9]:

[^10]:
 ヨロחㄴIリㄱ

[^11]: $\begin{aligned} & 90 \\ & 90 \\ & 700 \\ & 60 \\ & 50 \\ & 40 \\ & 30 \\ & 20 \\ & 10 \\ & 10 \\ & -10 \\ & -20 \\ & -30 \\ & -40 \\ & -50 \\ & -60 \\ & -70 \\ & -80 \\ & -90 \\ & -90\end{aligned}=$ ヨロחमII

[^12]: $$
 |||||||||||||||\mid
 $$

 ヨOחII 1 ㄱ

