
i

Concurrency Control for Transactions
with Priorities' ? pfl' :'

I /-A@---

Keith Marzullo /p -6 /-i / .

Department of Computer Science
Cornel1 University
Ithaca, NY 14853-7501

~

'This work was supported by the Defense Advanced Research Projects Agency (DoD) under ARPA
order 6037, Contract NO01 40-87-(2-8904.

c

https://ntrs.nasa.gov/search.jsp?R=19900008007 2020-03-19T23:59:28+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42824931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

Concurrency Control for Transactions with
Priorities*

Keith Marzullot
Cornel1 University

Department of Computer Science

April 30, 1989

Abstract

Priority inversion occurs when a process is delayed by the actions
of another process with less priority. With atomic transactions, the
concurrency control mechanism can cause delays, and without taking
priorities into account can be a source of priority inversion. In this
paper, three traditional concurrency control algorithms are extended
so that they are free from unbounded priority inversion.

Keywords: Priority inversion, concurrency control, real-time da-
tabases.

In a real-time system, the actions of some process may be more urgent than
those of another. For example, the first process may need to synchronize
with a physical process and sp must must a deadline. If both processes have
access to common resources that cannot be shared, the less urgent process
may delay the more urgent one by holding onto the resource. This situation

'Submitted to the 10th Reol-Time Systems Symposium, Los Angeles, December 1989.
+This work was supported by the Defense Advanced Research Projects Agency (DoD)

under ARPA order 6037, Contract N00140-87-C-8904 The views, opinions, and findings
contained in this report are those of the authors and should not be construed as an official
Department of Defense position, policy, or decision.

1

1
.

is commonly called a priority inversion [7,4]. There are several approaches
to this problem, but the simplest is to simply force the less urgent process
to relinquish the resource in favor of the more urgent process. Priority
schedulers are an example of the implementation of this strategy'.
In database management systems, the concurrency control mechanism is a
scheduler through which a process may be delayed by the actions of another
process. In this paper, some common concurrency control algorithms are
extended so that priority inversions are detected and broken. Transactions
will inherit their process's priority, and a transaction will be aborted or
delayed if it could delay a more urgent transaction. A transaction is delayed
while a less urgent transaction is aborted; we assume that aborts have a
fixed overhead and can be taken into account when determining the running
time of a transaction.
In this paper, we assume that the transactions submitted by a process are
not known a priori. The schedulers presented here guarantee that the ac-
tions of a transaction cannot be delayed for more than a bounded time by
the actions of transactions with less priority. A transaction, however, may
be starved by the actions of transactions with more priority. In practice,
these kinds of concurrency control algorithms are important for data base
systems that support real-time transactions ([8] , [l]). They are also im-
portant for real-time process control problems with concurrently accessed
shared data.

We make the somewhat unusual assumption that priorities are assigned
from a partial order rather than a total order. By doing so, we subsume
the more typical priorities. We also allow more flexibility in specifying the
inadmissible delays; with a total order, we may needlessly constrain the
system. We also assume priorities are statically assigned.

This is not a practical paper, in that we have not implemented the algo-
rithms presented here. Concurrency control algorithms are developed by
making some decisions on what the equivalent serial order should be. Our
goal in this paper is to re-examine these decisions when priorities are also
considered. The amount of complexity some of these algorithms took on is
surprising. There are some comments on the practical application of these

'In this paper, the more urgent process will be said to have more priority than the less
urgent process.

2

algorithms in the conclusions of the paper.

In section 1, we describe the properties a concurrency control mechanism
must have if it is to support transactions with priorities. In section 2 we
develop a general concurrency control mechanism based on serialization
graph testing algorithms that detects priority inversions. While easy to
understand, such algorithms are complex to implement since a directed
graph must be maintained and updated with each operation submitted to
the scheduler.

There are two popular concurrency control mechanisms where the sched-
uler use a much simpler data structure at a cost of reduced concurrency.
One (two-phase locking) delays operations to ensure serializability while
the other (timestamp order) aborts operations to ensure serializability. In
section 3 we show the typical extension of two-phase locking does prevent
priority inversion when the priorities are drawn from a connected order. In
section 4 we develop a timestamp order mechanism that detects priority
inversion.

In this paper, we follow the notation and system model found in [2].

1 Concurrency Control

Suppose we have a set of processes submitting operations under transac-
tions to a database scheduler. Each process can submit an unspecified
number of transactions.
There exists a partial order >- of priorities over the transactions, where
pl + p~ means process 1 has priority over process 2. A transaction Ti
submitted by pi has the same priority as pi , so we can also write expressions
like TI + 2'2. The database scheduler knows + but has no other information
about the transactions any process will submit. A transaction's priority is
static; it cannot be changed by the scheduler or the process submitting the
transaction.

Our goal is to devise a concurrency control algorithm that:

1. ensures the resulting execution is serializable, and

3

2. does not delay nor reject an operation of Ti due to the action of Ti
when T; >- Tj.

In general, a scheduler can delay, reject or accept operations in order to
guarantee the resulting execution is serializable. Typical schedulers abort
a transaction by rejecting one of its operations. In our schedulers, a transac-
tion will be aborted when an operation is submitted by another transaction
with more priority.

The scheduler wil l also ensure that properties other than serializability are
met by the resulting execution. For example, suppose a transaction T2 reads
the value of a variable x written by transaction TI. It is a bad idea to let T2
commit before 2'1 terminates. If TI decides to abort, T2 will have committed
using a value that was not produced by a committed transaction, possibly
leaving the database in an inconsistent state. So, a scheduler should delay
the commit from T2 until 2'1 decides to commit or abort. The property
preserved by this delaying action is called recoverability.

A more dramatic delay is a cuscaded abort. Using the above example, since
2'2 has read x written by TI, if TI decides to abort, then T2 must also
abort. Again, the scheduler can prevent this condition by delaying some
operations. For example, the read of x by T2 could have been delayed until
it was after the termination of TI.
In both cases, the delay of a transaction (T2) was caused by a transaction
(Tz) reading a value from an uncommitted transaction (TI). This is a
priority inversion when 2'2 >- 2'1. The priority inversion can be represented
graphically. A reads from graph (or RFG') is a directed graph with all
currently active transactions as nodes. There are two kinds of edges in
a RFG. A priority edge from T; to Tj is drawn with a dashed arrow, and
indicates Ti + Tj. A reads b o r n edge from T; to Tj is drawn with a solid
arrow and indicates there is a value x that was written by T; and later read
by Tj. Figure 1 is a RFG showing T2 >- 2'3, T2 has read from TI and TI
has read from T3. A cycle in a RFG that that contains one priority edge
represents a potential priority inversion. For example, in Figure 1 aborting
transaction T3 will force the abort of 2'2 via 2'1. We will call such cycles
priority inversion cycles.

The following theorem argues this more formally.

4

I
1 .

Figure 1: Reads-From Graph

Theorem 1 If the RFG of a set of transactions contains a priority inversion
cycle, a priority inversion can occur.

Proof: Suppose we have a RFG that contains such a a cycle. Let the two
transactions with the priority edge between them be Ti to Tj such that
Ti + Tj. By the definition of a RFG, Tj is active. If 2'; wishes to commit, it
must delay until T - j commits; otherwise, the resulting execution would
not be recoverable. Additionally, if Tj aborts Ti must (transitively) abort.
Both cases represent a priority inversion. 0

A purely conservative scheduler is a scheduler that never rejects an opera-
tion (thereby aborting the transaction submitting the rejected operation);
it only delays operations until it is safe to execute them. Theorem 1 implies
that there are no purely conservative schedulers that avoid priority inver-
sion. Suppose such a scheduler existed, and it were submitted the operation
wjz where p; + p j . By theorem 1, if Ti were to submit the operation riz,
it would introduce the possibility of a priority inversion. So, the scheduler
must delay the write operation until it knows that T; will not submit a r;z
before Tj commits. Since the nature of the transactions submitted by pi
are unknown to the scheduler, it must delay wjx forever.

5

Theorem 1 doesn’t give a complete characterization of all priority inver-
sions; it only deals with those due to cascaded aborts. For example, suppose
we have the following history with T; + Tj:

At this point, Ti must abort due to the actions of Tj; otherwise, the execu-
tion will not be serializable. We will say Ti is ordered before Tj in a history
H if, in any serial history equivalent to H, Ti occurs before Tj. Suppose
Ti is ordered before Tj where T; + Tj. If Tj commits before Ti terminates,
T; could submit some operation that conflicts with Tj. This new operation
violates serializability, and since Tj has committed, Ti must abort. To avoid
this priority inversion, the schedulers developed here will generate histories
with the following property.

Definition 1 A history H is priority committed i f for all pairs of transac-
tions T;,Tj in H , i f T; is ordered before Tj and T; + Tj, then ci < cj.

A purely aggressive scheduler is a scheduler that never delays an operation;
it rejects operations that violate its scheduling policy. A practical scheduler
that generates priority committed histories will probably not be a purely
aggressive scheduler. With a purely aggressive scheduler, if Ti were ordered
before Ti, 2’; + Ti, Ti were active, and Tj submitted a commit, a purely
aggressive scheduler would have to abort T’. This abort could be unneces-
sary; if instead the scheduler delayed the commit until Ti committed, the
history would still be priority committed.

2 Priority Serialization Graph Testing

Serialization graph testing schedulers (or SGT schedulers) [6,2] guarantee
serializable executions by maintaining a serialization graph. This graph
contains nodes for all active and “relevant” committed transactions (de-
scribed below). The scheduler ensures this graph contains no cycles, thus
guaranteeing a serializable history.

6

SGT schedulers are more of theoretical than practical interest. They are
easy to understand and argue correct, but the overhead of maintaining a
serialization graph may not justify any increase in concurrency over other
schedulers. In this section, a SGT scheduler will be extended to avoid prior-
ity inversions. This extension increases the complexity of the scheduler. In
particular, much of the simplicity of SGT schedulers comes from aborting
a transaction only when it submits an operation. As noted in section 1,
this policy cannot be used when avoiding priority inversion.

A SGT scheduler operates as follows. When a transaction T, submits an
operation pix, the scheduler tentatively adds conflzct edges from all vertices
Tj to T; if there exists an operation qjx executed earlier that conflicts with
p i x . If pix creates a cycle in the serialization graph, the scheduler aborts
T;, since the resulting execution would not be serializable. Once aborted,
T; is removed from the graph along with all edges either into or out of Ti.
If p;x does not create a cycle, the tentative edges can be made permanent
and the operation executed.

To ensure the executed instructions are recoverable, the scheduler delays
the commit from T; until all transactions from which T; read have also com-
mitted. Once T; has committed, Ti can be removed from the serialization
graph when it cannot be involved in any future cycles. Since all operations
after T;’s commit will be ordered after T;, any new edges will be added lead-
ing out of Ti. This means T; can be removed when there are no edges in the
graph leading into Ti. We will assume such transactions are automatically
removed.
A priority serialization graph testing scheduler (or PSGT scheduler) follows
a similar strategy, with the caveats outlined in section 1. In particular, the
rejection strategy of SGTcan cause a priority inversion. Instead of aborting
the transaction that submitted the operation, we may have to abort a
transaction with less priority. By generating priority commit histories, we
will always be able to abort such transactions.

However, this strategy complicates the scheduler. If the submitted oper-
ation is a write, it could conflict with several unordered reads. Each new
conflict can create a distinct cycle in the serialization graph. With SGT,
all cycles are avoided by rejecting the new operation; with PSGT, we may
have to abort a different transaction from each cycle.

7

Additionally, the PSGT scheduler will need to avoid priority inversions
caused by cascaded aborts. The scheduler can do so by maintaining a
RFG and checking for priority inversion cycles. Maintenance of a RFG
is not as straightforward as a serialization graph. When a transaction is
aborted, the reuds-fi-om relation changes which in turn may introduce new
priority inversion cycles. For example, consider the following history where
TO % T17 T29 T3.

w l x ; W ~ X ; w3x; rox

The only priority inversion cycle is (To, T3). Once T3 is aborted, the cycle
(To, Tz) is created, and when T? is aborted the cycle (To, TI) is created.

One way simplify detecting and removing priority inversion cycles is to
augment the RFG. An augmented RFG will contain a vertex for each active
transaction, and three kinds of edges:

1. Priority edges, as in a RFG.

2. Read-from edges, as in a RFG, except that the edge is labeled with
the name of the variable that was read.

3. Writeafter edges, also labeled with the name of a variable. When
a transaction T, writes a variable 5, a write-after edge labeled 5 is
drawn from the last transaction that wrote x (if it is still active) to
Ti.

When a read-from edge is added to the augmented RFG, the graph can
be traversed to determine which transactions should be aborted. Let the
function Abort(T, v, p) be the set of transactions that must be aborted due
to the read of variable v written by T ; p is the priority of the transaction
that submitted the original read operation. The functions read(T, x) and
write(T, z) encode the reads-from and write-after edges; i e . they are the
transaction from which T read x and wrote x after, respectively. Abort is
recursively defined as follows.

8

Abort(T, v, p)
if p + T +{T} U Abort(write(T, v), v, p)
0 p 3 T +V variables w read by T:

fi
U, Abort(read(T, w): w, p)

Figure 2 shows an example, where writefrom edges are drawn as doubled
arrows. When 2'1 submits r l x , the function Abort(T2, x , TI) is evaluated,
yielding {T', 2'4). TZ will also be aborted as a cascaded abort.

Figure 2: Abort(T2, z, TI) = {T3, T4}

A PSGT scheduler executes as follows. Let Ti be a transaction that has
submitted an operation pix to the scheduler.

If pi is a read or write operation:

1. Add the operation to the serialization graph as described above.
Let C be the set of cycles created by adding the new edges. If
IC1 = 0, skip to step 3.

9

2. If Ti can be aborted without introducing a priority inversion; i. e.

3~ E C : VTj E c : Ti # Tj

then reject the submitted operation, abort transaction Ti and
await the next submitted operation. Otherwise, choose a set of
transactions from the cycles in C that, when aborted, will remove
all cycles (the selection process will be described shortly); abort
these transactions, and proceed with step 3.

3. Add the appropriate edge to the augmented RFG. If the oper-
ation is a read, determine the set of transactions to abort, and
abort them. The transaction that must be aborted are those in
Abort(read(Ti, X , Ti).

0 If pi is a commit operation, the scheduler must ensure the history is
priority committed. The commit operation is delayed until all trans-
actions ordered earlier than Ti in the serialization graph are either
committed or of less or incomparable priority.

PGST maintains serializability in the same way SGT does; by maintaining
an acyclic serialization graph. PGST avoids priority inversion by the (as yet
unspecified) method used to select transactions to abort, described next.

Not all of the cycles in C need to be distinct; there can be cycles c1,c2 such
that cy n c 2 3 {Ti}. Note that if c1 C c2, c2 is broken when c1 is broken, and
c1 must be broken. In order to reduce the number of aborted transactions,
the scheduler should examine the cycles in order of ascending length. The
scheduler accumulates a list of transactions A to abort; if, when examining a
cycle c, it is found that dnc # 0, the scheduler need not select a transaction
from c to abort. Otherwise, the scheduler can choose any active transaction
from c; by the property of priority committed histories, any one with less
priority relative to Ti is still active.

Some issues have been glossed over for brevity. For example, the aug-
mented RFG must be updated when transactions from C are aborted, and
a transaction must be able to find the value of a variable after a cascaded
abort.

10

3 Preemptive Two-Phase Locking

If we assume + is connected (i . e . all processes have comparable priorities),
two-phase locking ([3], [2]) can be easily extended to detect and eliminate
priority inversion. Basic strict two-phase locking uses the following rules:

1. A transaction Ti acquires a lock on a data item before referencing the
item. These locks are typically read or write locks (also called share
and exclusive locks) depending on the submitted operation. Ti delays
until the required lock is available.

2. All locks held by Ti are released after Ti commits.

In order to avoid priority inversion, a preemptive version of two-phase lock-
ing (PZPL) cn be used. When Ti tries to acquire a lock, it waits until either
the lock is free or all processes holding the lock with conflicting access have
less priority. In the latter case, the scheduler then aborts the transactions
holding the lock and gives it to Ti. Since all committed transactions follow
the original two-phase rules, PZPL generates serializable histories. Ad-
ditionally, while ZPL is susceptible to deadlock, PZPL limits deadlock to
occur only among transaction with the same priority. If a set of deadlocked
processes have different priorities, there must exist a priority inversion, and
PZPL will detect it and remove it.

P W L does not have cascaded aborts, so it cannot generate priority inversion
cycles in the RFG. A transaction Ti reads from another transaction Tj only
after Ti commits, and only active transactions are in the RFG, so the RFG
will contain no reads-from edges.

PZPL generates priority committed histories without additional delays at
commit. If Ti is ordered before Tj, either there exists two conflicting
operations pix < QjX or there exists a transaction Tk such that Ti is or-
dered before T k and T k is ordered before Tj. For strict two-phase locking,
(pis < qjz) (ci < cj), and since the commits form a total order, if
(Ti ordered before Tj) + (c; < cj). This simplicity comes at a cost, how-
ever. For example, consider the submitted history wzz; wlz ; c2; c1 where
TI >- 2'2. Under PSGT, the commit from T2 is delayed until after the
commit of TI; under P W L , T2 is aborted by the write from TI.

11

As it currently stands, P W L does not detect priority inversions with non-
connected orders. Let TI,T2,T3 have priorities 2'2 + T3, and let T3 acquire
an exclusive lock on x and TI acquire an exclusive lock on y. If TI attempts
to acquire the lock on x it will block since TI 3 T3. If 2'2 then attempts to
acquire the lock on y it too will block since T2 3 TI. We now have T2 transi-
tively blocked on 2'3, which is a priority inversion. Extending P2PL to work
with partial priority orders complicates the algorithm; it must examine the
owner of all locks held by processes transitively blocking the request.

4 Priority Timestamp Order

Timestamp order (TO) schedulers ([9], [2]) operate by assigning transac-
tions a timestamp when they start. The timestamp, typically an integer,
places the transaction in a total order with respect to all other transactions.
The scheduler ensures operations occur in an order consistent with the total
timestamp order. Since the transactions are totally ordered, the history is
serializable. The scheduler typically assigns timestamps in the order the
transactions start, but this is not necessary; the scheduler guarantees the
operations respect any order assigned by the timestamp allocation rule.

Associated with each variable x in the data base is a read stump x . r and a
write stamp Z.W. These stamps are the timestamps of the last transaction
to read and write x respectively. When Ti with timestamp s i submits an
operation to a TO scheduler:

1. If it is a read operation: if si < Z.W then the read is too late and Ti is
aborted; otherwise, x.r is set to si and the read is executed.

2. If it is a write operation: if si < x.r then this write is too lute and Ti
is aborted; otherwise, the write is executed if si > x.w, and x.w is set
to si.

3. If it is a commit operation, it is delayed until all transactions that
T, has read from have committed. There are several ways to achieve
this property ([2]).

A timestamp concurrency control algorithm that detects priority inversion
(PTO) allocates timestamps such that priority inversion cycles in the RFG

12

I’

cannot occur. A timestamp s; for Ti is uniquely allocated from a total order
such that it meets the following two conditions:

1. For all committed transactions Tk, s, > sk.

2. For all active transactions Tj: if Tj + Ti then si > s j and if T; + Tj
then sj > S i .

The first condition is the same as for typical TO schedulers: to do otherwise
implies the later transaction must appear to have run before a committed
transaction. The second condition guarantees that the RFG will contain
no priority inversion cycles: a reads t o m edge cannot go from a transaction
with less priority to one with more priority. Since the timestamps have a
total order, there can be no reads t o m path from a transaction with less
priority to one with more priority.

It is not difficult to generate timestamps that obey the above twoconditions.
If a timestamp is represented as a number, the number space must be dense.
Consider transactions Tj with timestamp S j and Ti + Tj with timestamp
s i < s,. For any n, if n new transactions start with priority between 2‘; and
Tj, n timestamps with values si < s < S j must be assigned. In practice this
shouldn’t be a real problem, and in extreme cases the scheduler can abort
Tj.
PTO must use a different comparison rule than TO. With TO, a transaction
is aborted if it submits its operation too late: that is, it has too low a
timestamp. Under PTO the transaction with more priority could be the
one that is late, so the transaction that acted too earZy should be aborted.
Like PSGT, there can be several such transactions that acted too early. For
example, consider the history w2x;r3x;wl32 where TI + Tz + T3. The first
two operations happened too soon, and T’ and T3 are aborted. Instead of
associating a single read and write timestamp with a variable, a list of read
timestamps and write timestamps must be kept. For recoverability, each
list must contain at least one timestamp from a committed transaction.
This lists can grow arbitrarily long, but in practice this shouldn’t be a real
problem. A timestamp can be removed horn a list if the list contains a larger
timestamp of a committed transaction. In extreme cases, the scheduler can
abort the active transaction with the largest timestamp; e.9. transaction
Tj in the example above.

13

Since it is necessary to store lists of timestamps, the value of a write can
also be stored with its timestamp. By doing so, fewer aborts will occur
since a write can never be done too early. A database that stores histories
of variables is called a multiverison database ([2,5]).

When T, with timestamp s; submits an operations, PTO uses the following
rules:

1. If it is a read operation: s, is entered into x.r . The largest entry s in
x.w such that s < s; is found, and the value written at that time is
returned.

2. If it is a write operation: si is entered into x.w along with the value
being written. Let s be the smallest timestamp in x.w greater than
s,, or 00 if s, is the largest timestamp. All transactions Tk in x.r that
have timestamps in the range si < s k < s are aborted (there may be
no such transactions), as they read x too early.

3. If it is a commit operation, it is delayed until all transactions with
timestamps less than si have committed. Once the transaction suc-
cessfully commits, for each variable x in 2‘;’s read (cf. write) set, the
timestamp lists x.r (cf z.w) can be truncated: all timestamps less
than si can be removed.

When a transaction Tj is aborted, its timestamps are removed from all
variable timestamp lists. Additionally, transactions that read from Tj must
also be aborted. For each variable x in Tj’s write set, let s be the smallest
time stamp in x.w that is larger than sj, or 00 if no such timestamp exists.
All transactions T k in x.r such that s j < sk < s read from Tj, so they are
aborted.

PTO ensures serializability by using timestamps from a total order, and
ensures there are no priority inversions for recoverability by its timestamp
generation rule. The main weakness with PTO is the delay in the commit
rule. Suppose a transaction only wishes to update x but is started at
the same time a long-running transaction with more priority is active.
Even if the two transactions never reference the same variables, the shorter
transaction must wait for the longer running transaction to complete. With
both PZPL and PSGT, the shorter transaction will be able to complete

14

,

without delay. For PTO to do similarly, it must either maintain the actual
reads born relation as PSGT does, or know more information about the
transactions (such as a transaction’s read set and write set).

5 Discussion

This paper examined three common concurrency control algorithms and
showed how each could be extended to avoid priority inversion. The results
are mixed:

0 Without some knowledge of the transactions that will be submitted,
there are no purely conservative concurrency control schedulers nor
any practical purely aggressive concurrency control schedulers that
avoid priority inversion.

0 Traditional aggressive schedulers, like serialization graph testing and
timestamp order schedulers abort a transaction by rejecting an op-
eration when submitted. This method cannot be used when priority
inversion must be avoided. Instead, a transaction that submitted its
operation earler must be aborted, so the more urgent transaction can
continue. This policy increases the complexity of aggressive sched-
ulers. In the case of serialization graph testing, it isn’t clear that
the increased concurrency would ever compensate for the increased
complexity, given a reasonable workload.

The traditional conservative scheduler, two phase locking, can be eas-
ily extended to avoid priority inversion when the priority relation is
connected. The extension for nonconnected priorities is somewhat
more complex.

0 Timestamp order schedulers, when extended to avoid priority inver-
sion, suggest using a multiversion concurrency control algorithm. The
extended algorithm is not much more complex than a traditional mul-
tiversion timestamp order algorithm. However, transactions with less
priority can be needlessly delayed unless read sets and write sets are
declared when a transaction starts.

15

,

The algorithms presented here have not been implemented, and their rela-
tive performance has not been examined in any detail. Additionally, only
the priorities of transactions has been to schedule or abort operations.
Other information could be used, such as the remaining running time of a
transaction ([l]). It isn’t clear what kind of information would be useful
for the more aggressive schedulers.

These algorithms were developed as part of the Cornell RR Project, where
which we are developing both theory and tools for building real-time reli-
able systems. Part of this project is the development of a process control
system, which will eventually contain a database-like component. Our
next step with the algorithms in this paper will be to evaluate them in the
context of the RR project.

Acknowledgements This work profited from many discussions the au-
thor had with Ozalp Babaoglu and Fred Schneider, as well as with Jacob
Aizikowitz, Ken Birman, Robert Cooper and Pat Stephenson.

References

[l] Robert Abbot and Hector Garcia-Molina. Scheduling real-time trans-
actions. SIGMOD Record, 17(1):71-81, March 1988.

[2] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[3] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Communications
of the ACM, 19(11):624433, November 1976.

[4] Ozalp Babao glu, Keith Marzullo, and Fred Schneider. Priority inver-
sion. In preparation.

[5] David Reed. Implementing atomic actions on decentralized data. ACM
Transactions on Computer Systems, 1(l), February 1983.

[6] G. Schlageter. Process synchronization in database systems. ACM
Transactions on Database Systems, 3(3):248-271, September 1978.

16

[7] Lui Sha, Ragunathan Rajikumar, and John P. Lehoczky. Priority in-
heritance protocols: An approach to real-time synchronization. Tech-
nical report, Carnegie Mellon University Departments of CS, ECE and
Statistics, May 1988.

[8] John A. Stankovic and Wei Zhao. On real-time transactions. SIGMOD
Record, 17(1):4-10, March 1988.

[9] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. A CM Transactions on Database
Systems, 4(12):180-209, June 1979.

17

