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An Analysis of Scatter Decomposition

David M. Nicol*

The College of William and Mary

Joel H. Saltz t

Institute for Computer Applications in Science and Engineering

Abstract

This paper provides a formal analysis of a powerful mapping technique known as scatter decomposi-

tion,. Scatter decomposition divides an irregular computational domain into a large number of equal sized

pieces, and distributes them modularly among processors. We use a probabilistic model of workload in
2--:
.__

one dimension to formally explain why, and when scatter decomposition works. O__r first result is that if

correlation in workload is a convex function of distance, then scattering a more finely decomposed domain

yields a lower average processor workload variance. Our second result shows that if the workload process

is stationary Gaussian and the correlation function decreases linearly in distance until becoming zero

and then remains zero, scattering a more finely decomposed domain yields a lower expected maximum

processor workload. Finally we show that if the correlation function deer eases linearly across the entire

domain, then among all mappings that assign an equal number of domain pieces to each processor, scat-

ter decomposition minimizes the average processor workload variance. The dependence of these results

on the assumption of decreasing correlation is illustrated with situations where a coarser granularity

actually achieves better load balance.

*This research was supported in part by NASA contracts NASI-18107 and NAS1-18605, and NSF Grant ASC 8819373.

tSupported in part by NASA contracts NAS1-18107 and NAS1-18605, the Office of Naval Research under contract No.

N00014-86-K-0310, and NSF gra_nt DCR 8106181.
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1 Introduction

Scatter decomposition [1], (also described as modular mapping [4]) is an effective method for parallelizing

a large class of irregular scientific programs that are tied to physical domains. Examples include a wide

variety of techniques for numerically solving time dependent partial differential equations, and other, less

numerical domain-oriented simulations. Scatter decomposition divides the domain into a set of rectangular

regions with the same spatial size and geometry. The regions are labeled using Cartesian coordinates, and

are mapped to processors by applying the mod function to the label in each coordinate. For example, Figure

1 shows how a two dimensional irregular grid for a PDE is decomposed into strips (marked by the heavy

lines) and assigned to processors. The execution of all workload related to a subregion is a basic unit of
/

schedulable work which we call a cluster. A duster's granularity is controlled by the parameters defining the

region size, in this case the strip width.

Scatter decomposition's success lies in its ability to balance workload without ever actually analyzing it.

Any region of high workload tends to be subdivided and distributed among processors. Scatter decomposition

is a technique applied to many problems in many contexts [1, 2, 4, 5, 9, 11, 14, 17]. Its success has been

explained informally in [1] and [4], by appealing to the physics and numerics of many scientific computations.

While these explanations suffice for most practitioners, the literature lacks a full formal analysis of why scatter

decomposition balances workload. This paper provides some such analysis, identifying model assumptions

under which scatter decomposition can be expected to effectively balance load. As such, our work is a

necessary prerequisite for any future formal treatment of the very important problem of managing the

inherent tensions between load imbalance and communication costs in a scatter decomposition.

The object of this paper is to construct and analyze a performance model to explain when and why scatter

decomposition works. The model is based on a number of simplifying assumptions to promote tractability.

As such, it should not be viewed as a model that accurately predicts performance quantitatively. Rather,

it should be viewed as a model that ezplains performance qualitatively. Specifically, we model workload in

a one dimensional domain as a continuous second-order" stationary process. This means that we associate

a random workload with every point in the domain, assume that the mean workload at every point is the

same, assume that the workload variance at every point is the same, and assume that the covariance between

the workloads at any two points is uniquely determined by their distance. The model takes the domain to

be divided into some n = 2d clusters of equal size, mapped modularly onto P = 2P processors. Throughout

this paper we take P to be fixed, and d _> p. The degree of the decomposition is defined to be d. Given one

scatter decomposition, another of higher degree can be constructed by splitting each cluster into two, then

by modularly mapping the resulting set of clusters.

We derive three main results, each of which has a different set of assumptions concerning the correlation

function.



1. Assumption: The correlation function is convex. Result: Increasing the degree of a scatter decompo-

sition does not increase the common processor workload variance.

. Assumptions: The workload process is stationary and Gaussian. The correlation function decreases

linearly until reaching zero, then remains zero (an elbow function). Result: There exists a degree

do, such that if do < dl < d2, then the expected maximum processor workload under a scatter

decomposition of degree d2 is no larger than the expected maximum processor workload under a

scatter decomposition of degree dl.

. Assumption: The correlation function decreases linearly across the entire domain. Result: For any

number of clusters 2 i, among all mappings that assign 2 i-v clusters per processor the modular mapping

minimizes the average processor workload variance.

Performance ultimately is measured in terms of finishing time, so that the expected load of the most

heavily loaded processor is an appropriate metric. One of our results addresses this metric directly. Average

processor workload variance is a secondary measure, although intuition does suggest that decreasing the

variance while keeping the mean constant will decrease the expected maximum. Consequently, all these

results confirm our intuition that modularly mapping increasingly finer grained workload leads to better

load balance. It should be noted that increased communication overhead is the price paid for this balance,

and is a cost we do not include in this model. One should not interpret these results as saying that better

overall performance can always be achieved by increasing the degree. For a given domain, there will be an

optimal degree that balances the conflicting goals of low communication costs and good load balance.

A brief analysis of scatter decomposition can be found in [15]. However, that analysis assumes statistical

independence between all cluster workloads, and seems to consider the effects of scatter decomposition on

a given architecture as the problem size is increased. As such it is an inappropriate model for studying the

effects of changing the mapping of a single given problem. Treatments of other problems have used stochastic

models of workload to estimate the expected finishing time; but invariably those models concern statistically

independent workloads, e.g. the analyses in [3] and [6]. These results are inadequate for analyzing scatter

decomposition. When all workload is independent, then aggregated workload is independent, and there is

no performance benefit to be gained by scattering. Scatter decomposition is successful precisely because the

workload is not independent. Our contribution is to propose and analyze a model that includes workload

correlation, and explain why increasingly finer partitions mapped modularly tend to balance the load better.
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2 Analysis

In this section we study a probabilistic model of workload, and the performance of different mappings. For

the sake of simplicity we constrain our model to be one-dimensional. This assumption does not negate

the utility of the model; any multi-dimensional problem partitioned into hyper-strips can be viewed as a

one-dimensional problem. Such partitions greatly simplify the programming needed to exchange information

between processors. In fact, our experience in mapping a land-battle simulation using scatter decomposition

was that strip partitions minimized the execution time [10]. This was also our experience in mapping a

regular scientific code onto the Intel iPSC/1 [16].

Our analysis concerns the effect of scatter decomposition on load balance, in the absence of commu-

nication or synchronization costs. By understanding how load balance in isolation is affected by the de-

composition/mapping decisions, we are better able to understand the tension between load imbalance and

communication/synchronization overheads. The model we use is intended to be descriptive, rather than

predictive; the analysis is qualitative rather than quantitative. We doubt that the end benefits of fitting a

model to performance data will justify the costs of doing so. Nevertheless we feel there is worth in formally

affirming the intuition behind scatter decomposition.

2.1 When and Why Scatter Decomposition Works

Our model explains the success of scatter decomposition by showing that it induces correlation between

processors' workloads. To see the performance benefits of correlated workloads, imagine that a random

workload is generated and partitioned so that the same amount of work is assigned to every processor. A

processor's workload is random, but all processors always finish at the same time, because their workloads

are perfectly correlated. This situation is optimal, because all processors are busy all the time. Now

imagine that the workload at every point is statistically independent of any other. No matter what the

domain decomposition or mapping, processor workloads are statistically independent. In fact, the expected

maximum processor workload is the same regardless of granularity, so long as the same volume of domain

is assigned to each processor. The "ideal" of random but highly correlated processor workloads cannot be

achieved in this artificial scenario.

Scatter decomposition works because irregular workloads are not statistically independent: high workload

tends to appear in contiguous regions. A sufficiently fine-grained decomposition will split the region up,

modular assignment will spread its workload around. The contribution of that region to one processor's

workload is highly correlated with the contribution of a nearby region to a different processor's workload. If

the underlying workload is highly correlated in nearby regions, then scatter decomposition induces correlation

between processors' workloads. We have observed this phenomenon in our own experiments with a one-



dimensionalfluidflowcomputationusingadaptivegridding[11].Thefluidsproblemexhibitsirregulargrids

similarto thoseinFigure1.

Foragivenproblem,thesampleautocorrelationfunction[12](p.437)isastatisticalestimateofcorrelation
betweenpointworkloads,asa functionof thedistancebetweenthem.Autocorrelationsrangebetween1

and-I; thelargertheautocorrelation,themoresimilartheworkloadsoftwopointsat agivendistancetend
to be.Zerocorrelationimpliesstatisticalindependence;increasinglynegativecorrelationsimplyincreasing
dissimilaritybetweenworkloads.Figure2 showsthesampleautocorrelationfunctionat onetime-stepina

fluidflowcomputation.Notonlydoescorrelationdiminishasafunctionof distance,it canreasonablybe

modeledasaconvex"elbow"functiond_(t) = _r_ max{0, 1 - at} over an appropriate range of t, and some

> 0. This corresponds nicely with two of our results, one of which assumes elbow correlation, the other of

which assumes a convex _:orrelation function.

There are situations where scatter decomposition will not work well. Consider a one dimensional domain

discretized into 1000 points, numbered between 0 and 999, to be mapped onto ten processors. Randomly

choose some "base" number b E [0, 99], and imagine that every hundredth point beginning with b has a

computational cost of 1000, while all other points have a computational cost of 1. If one evenly divides the

domain into ten subregions and maps then] modularly, every processor has 1099 units of computation to

execute. Scatter a decomposition of twenty subregions, and half the processors each have a computational

cost of 2098, while the other half each have a cost of 100. Modularly assign each point individually, and

processor (b mod 10) has a cost of 10090, while every other processor has a cost of 100. In this situation

mapping increasingly finer-grained workload leads to decreasing performance. Due to b's randomness this

workload model is stochastic] and is second-order stationary. Two points at a distance 100m for m = 1,..., 9

will always have the same workload. The correlation function at all distances 100m consequently has value

one. It has some fixed smaller value for all other distances. The principle reason this problem defeats fine-

grained scatter decomposition is the periodicity. One should be extremely careful using scatter decomposition

in the presence of strong periodic behavior, if there is any chance that the periodicity of the modular mapping

Can align with the periodicity of workload. The assumptions of the models we study do not admit periodicity.

2.2 Model Preliminaries

We consider the behavior of a computation over a real line interval, divided into n clusters, and mapped onto

P processors. Both n and P are taken to be powers of two, and n > P. We are interested in the average

process0r workload variance, and in the expected workload of the processor that takes the longest time to

complete. Without loss of generality we take the real interval to be [0, 1]. Assume that every point p E [0, 1]

has a certain work in_ensi¢y W(t). The time required to process [a, b] is the integral of W(t) from t = a to

t = b. We assume that the intensities W(t) are unknown, but we are willing to model our uncertainity by

4
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assuming that W(t) is a random variable, and that W(t) can be viewed as a second-order stationary process

[13] over t E [0, 1]. Thus we suppose that E[W(t)] = # for all t E [0, 1], that Var[W(t)] = or2 for all t E [0, 1],

and that Cov[W(t), W(s)] depends only on It - s[. To emphasize this point we will denote the covariance

function as Coy(It - s]). These assumptions are reasonable if we are unwilling or unable to differentiate

between the likely behavior of the computation at t and at s. We do not assume that W(t) = W(s), we

simply assume that we have the same degree of uncertainity about W(t) and W(s).

The execution time for [a, b] is

T(a,b) = W(t) el.

T(a, b) has mean value (b - a)p. The variance of T(a, b) is

= E[T(a,b) 21- (b- a)2# 2

= E[W(t)W(s)] dt ds - (b- a)_lz 2

=- CoY(IS-t[) dt ds - (b-a)2# 2.

Var[T(a, b)]

(1)

Following a decomposition into n clusters, the ith cluster's workload is T(i/n, (i + 1)/n), and is denoted

as c,(n). The random vector of cluster workloads is denoted C(n) :< co(n),..., cn-l(n)>.

We are interested in the covariance matrix ¢r_ for the cluster workloads. For i _¢ j we have

/(,+l)l,_ f(j+l)l,_a2 = Cov(t - s) dt ds. (2)
Cov[c,(n), c_(,)] = ( c)_; _'/- "J/-

Var[ci(n)] is simply Var[T(i/n, (i + 1)/n)], given above. The sequence co(n), cl(n) .... , C,_l(n) is second-

order stationary, a fact easily deduced from equations (1) and (2). To emphasize this we define the function

¢:

¢(IJ - il, n) = Cov[c,(n),

Note that ¢(0, n) is a cluster's variance.

An assignment of clusters to processors is described by a P x n assignment matrix whose ij-th entry

is 1 if cj(n) is assigned to processor i, and is 0 otherwise. Given assignment matrix .A, the multiplication

AC yields a P x 1 random vector whose jth component is the sum of the execution times of all clusters

assigned to processor j. The vector of mean processor loads is the matrix-vector product .AB_, where p,, is

the n element vector with p/n in each coordinate. The covariance matrix of .AC is the product .Aa_.A T,

where .AT is the transpose of .A. The overall execution time is the maximum processor execution time, or

max{(.Ac)T}. This quantity is random.



ForanyprocessorPi, let -4(i) denote the set of clusters assigned to it under A, and let Li(-4, n) be Pi's

random workload. BY definition the variance of Li(A, n) is given by

Var[Li(M,n)] = (Acr_AT)ii

= E ¢(0, n) + E ¢([J " kI' n). (3)

_j(,)_(i) <cj(,),c,(,)> e_(i)× _(i)

The first component of this expression is the sum of variances of all clusters assigned to Pi. The second

component is a sum of cluster covariance terms (we Will call these cc terms), that depends on the assignment.

Similarly, the covariance between processors Li(-4, n) and Lj(A, n) is given by a sum of cc terms:

Cov[Li(A, n), Lj(A, n)] -- _ ¢(1 k - rnl, n) (4)

<ok (,,),¢..(n)> __(i) x _(j)

The sum of all cluster ¢ovariance matrix terms always equals the sum of all processor workload variances

and covariances 1
n-ln-1 P-1 P-1

i=O j=0 i=O j=0

This implies a balance between processor workload variances and covariances (and hence correlations); if by

changing .4 we reduce the average processor workload variance, then we are increasing the average inter-

processor workload correlation.

The indices of the sums (3) and (4) have special structure when -4 describes a modular mapping. We

know that if cj(n) and c_(n) are assigned to the same processor, then IJ - k[ is a multiple of P. Under a

modular mapping each processor will have n/P clusters. Among these there are n/P - 1 pairs of clusters

whose indices are exactly P apart, n/P - 2 pairs whose indices are exactly 2P apart, and so on. Since n and

P determine the specifics of the mapping we may drop the notational dependence of Li(-4, n) on -4. Under

the modular mapping we may write the common processor workload variance as

(_/p)-i

Yar[L(n)] = (n/P)¢(O, n) + 2 _ ((n/P) - k)¢(kP, n). (5)
k=l

To consider processor workload covariance under a modular assignment take i < j, and consider a

cluster ca(n) assigned to processor Pi- It has cc terms with all processor Pj clusters era(n) such that

[a - rn[ mod P = j - i or [a - m I mod P = P - j + i. There are ((n/P) - k) cc terms arising from clusters

whose indices are kP + j - i apart (for k = 0,..., (n/P) - 1); there are ((n/P) - k) cc terms arising from

clusters whose indices are kP - j + i apart (for k = 1 ..... (n/P) - 1). We may therefore write

(.IP)-t (./P)- 1

Cov[L_(n), L i(n)] -- _ ((n/P) - k)¢(kP + j - i,n) + _ ((n/P)- k)¢(kP- j + i, n)
k=O k=l

1 this conservation law proved to be invaluable when debugging detailed expressions for the processor workload variance and

_o,,_rlan_es,e.g. (12) and (13).



(_/P)-t

= (n/P)¢(j-i,n)+ _ ((n/P)-k)¢(kP+j-i,-n)+
k=l

(,-,/P)-x

_, ((n/P)- k)¢(kP- j + i,n). (6)
k=l

2.3 Decreasing Workload Variance

Under very general assumptions one can show that increasing the degree of a scatter decomposition reduces

the common processor workload variance. The necessary assumptions are that the workload process be

second-order stationary, and that its covariance function be convex.

The first step is to show that ¢(IJ - il, n) is a convex function of ]j - i I over the range 1,2 ..... n - 1.

Towards this end assume that x > 1/n and define

LJ°[[1/" [=+l/.W(s)W(t)dt ds]I(n,x) = E .1=

[lln[x+lln= Cov(t - s) dt ds
dO Jar

[1/n [_oo _co ]
= Cov(t - s) dt - Cov(_ - s) at ds

.1.0 +l/n

Taking the derivative with respect to z we find that

I(n, _) = (Cov(= + _/n - .) - Coy(= - _)) a_.
.*0

The difference being integrated increases in z due to Cov(t) convexity, implying that the derivative of I(n, z)

with respect to x increases in z--one characterization of a convex function. By stationarity Cov[c_(n), ci (n)] =

Coy[co(n), Clj_i I(n)]; furthermore Coy[co(n), clj_il(n)] = I(n, lJ - il/n)" Consequently Cov[ci(n), cj (n)] is a

convex function of lJ - il once IJ - il >__1 (it may indeed be convex over the entire range, but that fact has

not been shown, and is not needed).

We are interested in the effects of moving from a scatter decomposition with degree d - 1 to one with

degree d. To analyze these effects we make the following observation. Consider a domain partitioned into

n = 2a clusters, which is mapped by modularly assigning pairs of clusters: co(n) and c_(n) are assigned to

processor O, c2(n) and ca(n) are assigned to processor 1, and so on. This mapping is identical to the scatter

decomposition of degree d- 1; the pair Of clusters co(n), cl (n) viewed from the d degree mapping is the same

as the single cluster co(n�2) viewed from the d- 1 degree mapping. We will show that the modular mapping

with degree d- 1 produces processor variances that are no smaller than those of the modular mapping with

degree d.

Split each cluster ci(n/2) into two equal sized clusters. The sum of the two split cluster variances plus



twicetheir covariancemustequalthevarianceofci(n/2). That is,

¢(0, n12) = 2¢(0, n) + 2¢(1, n). (7)

Similarly, take two clusters ci(n/2) and cj(n/2)i and split each into two equal sized clusters. The total

covariance between the four split clusters must equal the covariance between the two unsplit clusters. Thus

¢(lJ- i],n/2) = 2¢(2[j- i l,n) + ¢(2[j- i[ + 1,n) + ¢(2[j- i[- 1,n). (8)

Note that the index values must double when taken with respect to n rather than n/2 clusters.

Substituting the right-hand-sides of equations (7) and (8) into equation (5) and working through the

algebra, we find that

(n/(2P))--I

Var[L(n/2)] = (n/P)¢(O, n) + (n/P)¢(1, n) + 2 __, ((n/P) - 2k)¢(2kP, n)+
k=l

(nl(2P))- 1

((n/P) - 2k) [¢(2kP + 1, n) + ¢(2kP - 1, n)].
k=l

Using this expression and (5), we compute the difference Yar[L(n/2)]- Yar[L(n)]. All terms involving

¢(2kP, n) cancel, for k = 0,..., n/(2P) - 1. Each remaining term from Yar[L(n)] has the form 2((n/P) -

2k - 1)¢((2k + 1)P, n), for k = 0,..., n/(2P) - 1. We split each such term into the sum (n/P - 2k)¢((2k +

1)P, n) + (n/P - 2k - 2)¢((2k + 1)P, n), and pair these with Var[n(n/2)] terms as follows:

(n/(2P))-I

Var[L(n/2)] - Var[L(n)] = E ((n/P - 2k)(¢(2kP + 1, n) - ¢((2k + I)P, n)) -
k=0

(n/P- 2k- 2) (¢((2k + 1)P,n) - ¢((2k + 2)P - 1, n)) ). (9)

One characteristic of a convex function g is that for fixed y the difference g(x) - g(x + y) is a decreasing

function of x. Every two terms we have paired differ in their index arguments by exactly P - 1, e.g.,

¢(2kP + 1, n) and ¢((2k q[ 1)P, n). Since ¢ is a convex function of the index argument once the index is at

least 1, we have for every k _

¢(2k[P -t- i,n) -¢((2k + 1)P, n) > ¢((2k + i)[P , n) : ¢((2k + 2)P" 1,n).

Tlxe left:hand,side expression in this inequaiity is weighted more heavily in equation (9) than is the right-

hand-side expression. It follows that Yar[L(n/2)] - Yar[L(n)] > O, proving our first result.

Theorem 1 Suppose the workload process W(t) is second-order stationary with a convex covariance func-

tion. Then increasing the degree of a scatter decomposition does not increase the proces_or workload variance.

[]
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2.4 Decreasing Expected Maximum Workload

Next we demonstrate circumstances where increasing the degree of a scatter decomposition reduces the

expected workload of the most heavily loaded processor. The argument is to show that under appropriate

assumptions the correlation between any two processors' workloads increases as the degree increases. We

then cite a result from the literature proving that the expected maximum decreases in this situation.

We assume that the workload process {W(t)} is a stationary Gaussian process 2 [7]. Additivity properties

of the Gaussian then ensure that the vector of n clusters has a jointly normal distribution [7](Chapter 6) and

that under any assignment, the processors' workloads are jointly normal. We also assume that the correlation

function is Coy(t) = a 2 max{0, 1 - st}, where c_ = 2v/ma > 1 for some integers v, ma > O. The restriction

on a is used to simplify certain calculations. 5 = 1/a is the smallest distance t at which Coy(t) = O. Our

results apply when the degree is large enough so that subinterval [0, 5] is partitioned into at least P = 2p

clusters. If the degree is d, then the number of clusters in [0, 5] is 52a. Now let do be the least d such that

52 d mod 2p = 0. Equivalently, do is the least integer d such that m_2 d-p-v is an integer. Clearly do < p+ v.

Our results apply when the degree is at least do.

We can compute functional forms for ¢(IJ - il, n) given this explicit definition of Coy(f). Performing the

integration given by (2) one determines that

{ _(n- c_lj- il) if [j-i I < 5n
¢(IJ - il, n) = _2. if IJ - il = 5n (10)

0 if ]J - il > 5n

These calculations take advantage of the fact that 5 is a multiple of 1/n. The variance of a cluster is

determined by evaluating (1), yielding

O.2

¢(0, n) = _--_(n -- s/Z). (11)

Given equations (10) and (11) we can compute processor workload variance and covariance under scatter

decomposition. General expressions for these quantities are given by (5) and (6). For large values of k, some

terms in those sums vanish, being zero. Our assumption that the scatter decomposition has degree do or

larger ensures that terms which vanish are easily characterized, 3 and that those clusters whose indices are

exactly 5n apart are assigned to the same processor. All ¢(kP, n) terms in (5) vanish for k > 5n/P; we have

¢(kP, n) = cr2a/(6n3) for k : 5niP. We may rewrite the variance as

(6nip)-1 \ )Var[L(n)] = (n/P) _ + __, (n/P- k) ng + (n/P - 5n/P) \ 6n 3)
k=l

2note that this assumption is stronger than we have used so far, due both to stationarity rather than second-order stationarity,

and due to the assumption of a specific workload distribution

3This is not the case for smaller degrees. A large number of special cases must be constructed and analyzed. This task

seemed to us to be more tedious than is warranted by the anticipated correspondingly stronger result.



= a2((6-_p6__/3)+ 1-a/P3n_ 3_l-a) (12)

Calculationof thisequalityismuch simplifiedwith the use ofa symbolic mathematics package.

The processorworkload covarianceissimilarlyhandled. Assume that {< j. k = 6niP again delineates

where ¢ terms vanish: ¢(kP + j - i, n) = 0 for all k >_ 8n/P, and ¢(kP - i + j, O) = 0 for all k > 8n/P. We

may rewrite (6) as

(6niP)-1

/-.-,X-" ((n/P)- k) °'_(n -o_(kP + j -i))
n 3

0.2

Cov[Li(n),Lj(n)] = (n/P)-_-ff(n- a(j - i)) + _-
k=l

$n/P k) a2(n - a(kP - j + i))
((n/P) - n3

k=l

(= a2 6- 62/3 1
-P-_ + 3n_ -p-_.. (13)

The correlation between Li(n) and Lj(n) is the ratio Cov[Li(n),Ll(n)]/Var[L(n)]. For all d >_ do we

obtain the correlation using (13) and (12), and can treat the ratio as a continuous function of n. It is

interesting to note that as n increases the correlation approaches unity. This supports our intuition that

partitioning the domain into increasingly finer clusters and mapping them modularly induces correlation

between processor workloads. In fact, the tendency towards unity is monotonic. Taking the derivative with

respect to n we find that the derivative is positive if

(4/3 - 26/3)(j - i) + 26/9 - 2/3 > 0.

This inequality holds, since (4/3 - 26/3) > 2/3. Consequently, for all n = 2d > 2a° we must have

Cov[Li(2n), Lj (2n)]/Var[L(2n)] > Cov[Li(n), Lj(n)]/Var[L(n)].

Next we use this relationship to analyze the expected maximum processor workload.

The following result is based on the Normal Comparison Lemma [8](p.81) and is the key to our observa-

tions concerning the expected maximum processor workload.

Theorem 2 (Leadbetter et al.) Let _0,... ,_k be standardized jointly normal random variables, and let

rlo,..., rlk be standardized jointly normal random variables, such that Cov(_i,_j) <_ Cov(rh, _j) for each i,j,

i ¢ j. Then for every u,

Pr {max{_0,...,_}} < u)} < Pr {max{T0,...,r/k} _< u}},

and hence

E[max{_0 .... , _k }] _> E[max{r/0,..., .k}].

10



[]

Thestandardizationof a random variable X is the scaled random variable Z = (X - re)Is, where m

and s are X's mean and standard deviation, respectively. The mean of a standardized random variable is

zero and its variance is one; the covariance between two standardized random variables is the correlation

between their corresponding unstandardized forms. Let Zi(n) be the standardized workload of processor Pi

given a domain of n clusters. Cov[Z,(n), Zj(n)] = Cov[Li(n), Lj(n)]/Yar[L(n)], which we have shown to be

increasing in n. If h > n (equivalently, if one scatter decomposition has higher degree than another), then

E[max{Zo(n),..., Zp_l(n)}] > E[max{Z0(fi) ..... Zp_I(h)}]. (14)

The expected maximum workload is

E[max{Lo(n),.,, Lp_l(n)}] = E[ max {Li(n) + Yar[L(n)]l/2Zi(n)}]
' 0<i<P-1

= ,/P + Var[n(n)]l/2E[o<n_<_a__l{Zi(n)} ].

Theorem 1 shows that Yar[n(n)] > Var[L(2n)]; this along with inequality (14) proves our second result.

Theorem 3 Let {W(t)} be a stationary Vaussian process, with a covariance function Coy(t) = tr2 max{0, l-

ed}, where c_ = 2V/ma >_ 1 for some positive integers ma, v. Let there be 2p processors, and let do be the

least integer d such that ma2 d-p-v is an integer. If d2 > dl > do, then the expected maximum processor

workload of a scatter decompositionwith degree d2 is no greater than that of a scatter decomposition with

degree dl.

D

2.5 Minimization of Average Workload Variance

Our final result gives conditions where for a given n, among all "balanced" assignments--those placing n/P

clusters per processor--the modular mapping minimizes the average processor workload variance. To prove

this result we assume that the covariance function decreases linearly across the entire domain: Coy(s) =

_r2(1 - as), for some a satisfying 0 _< ot _< 2. The result is based on a procedure that takes any assignment

and constructs another whose sum of processor workload variances is no larger. The repeated application of

this procedure produces a modular assignment. Consequently, modular assignments minimize the average

processor workload variance.

The arguments to follow specify individual covariance terms. These arguments are clearer using the

Cov[ci(n), cj (n)] notation rather than ¢(lj-iI, n). It is straightforward to determine the form ofCov[ci(n), cj (n)]

under the present assumptions:

{ -_(n- alj- il) if IJ- il > 0= (15)
.--v(n - a/3) if IJ - il = o

11



Let .A1 be any assignment matrix describing a balanced assignment. Without loss of generality, we

assume that under .A1 the processors are numbered so that P0 is assigned c0(n), P1 is assigned the smallest

indexed ci(n) that is not assigned to P0, and in general Pj is assigned th e smallest indexed cluster that is

not assigned to any of Pc, P1,..., Pj- 1.

We will say that cj(n) is in place if it is assigned to processor Pj rnode. Note that all clusters are in place

under a modular assignment. We construct another balanced assignment .A2 by finding the smallest indexed

ci(n) that is not in place, and by putting it in place. Let c! denote this cluster, let Ps denote the source

processor that has c/ under .A1, and let PT denote the target processor P/ rood P. Let cg be the smallest

indexed cluster assigned to PT such that g > f. A2 is constructed from .A1 by giving cI to PT, and c0 to Ps.

Figure 3 illustrates these definitions. We will prove that the sum of processor variances under A2 bounds

that sum under .A1 from below; consequently the average workload variance under .A2 is no greater than

that under .A1.

Recall that under any assignment raatrix A the variance of Pi's work load is given by

Var[L,(A, n)] = (A0,2cAT)i i

= Var[c,(.)]+ (16)
_j(,,)e A(0 < _,(,,), ck(,,)> _ A(1) ×_t(0

and that

Cov[Li(Ai n), Li(A, n)] = _] Cov[ck(n), cm(n)]
<ck,c,_>EA(i)xA(j)

It is clear from (16) that the variance of any processor other than Ps or PT is by unaffected by swapping cf

and %. To prove the desired result we need only show that the swap does not increase the sum of PT and

Ps variances. The change in processor variances caused by the swap is entirely due to changes in the sum of

cluster covariance (cc) terms in each processor. After swapping c/ and ca, each cluster c_(n) assigned to Ps

loses the cc term Coy[el(n), c,(n)] and gains the term Cov[%(n), ci(n)]. We let ALs denote the sum of all

such changes among clusters in Ps to the left of c!, and let Ls denote the number of such clusters. Similarly

/xn s denotes the sum of changes among clusters in Ps to the right of cg and Rs denotes the number of such

clusters; /XMs denotes the sum of changes among clusters in Ps with indices between f and g. Expressions

for these quantities are derived using equation (15):=

0. 2

/XLs = _ (Cov[co(n),c,(n)]- Cov[cf(n),ci(n)]) -- --_(g- f)Lsa;

s'<!

o-2

= - Cov[c!(nl,c (nl])=
_i(.)e.%(s)

j>g

0-2

%(.)_.%(s) _k (.)e,_(s)
f<k<g f<k<0

12



Thechangein Ps's variance after the swap is the sum AL s + AM s "[- An s ,

We can similarly describe the change in PT'S variance with the definitions

ALT

0.2

___ (Cov[c](n), ci(n)] - Cov[cg(n), c/(n)]) = _-5g.a(g - f)LT4;
ci(n)E.A_(T)

i<]

0.2

ART= (Coy[c:(.), - Coy[cA-), = - :)RT4.
¢jEA2(T)

J>g

No term analogous to AM s is necessary since there are no clusters in PT with indices between f and g.

The change in the sum of Ps's variance with PT's variance is given by the sum of all the A terms

defined above. We will show that the sum of A terms is bounded from above by 0. At this point a number of

observations are useful. Since all ci(n) with i < f are in order, it follows that LT <_ Ls. Thus ALsWAL T <_ O.

It remains to show that AR s + AR T + AM s <_ 0. We know that

0-2

ARs + ART : ---_(RT -- Rs)(g-- f)c_; (17)

furthermore, since n/P = LT+RT+ 1, we must also have Rs <_ RT. We proceed to show that the magnitude

of AM s is no greater than the magnitude of (17) and consequently prove the larger result.

m = n/P - Ls - Rs - 1 is the number of clusters in Ps whose indices lie strictly between f and g. AMs

is maximized when the indices of these clusters are as large as possible; when k = g - 1, g - 2 .... , g - m.

With such indices, the sum of cg's cc terms in Ps is

0" 2 m

- i. 4).
n---_

i=1

Likewise, the sum of c]'s cc terms in Ps is

2 rn

_(n-(g-f-i)4).
i----i

From this, we see that AMs when maximized can be written as

0" 2 rn 0" 2 rn 0" 2

i=1 i=1

But note that

m = n/P-Ls-Rs-1

<_ n/P - LT -- Rs - 1

= (niP - LT -- RT -- 1) + (RT -- Rs)

= (RT - Rs),

13



sothat
£r 2

ARs + ART + AMs = -_(--(RT -- Rs)(g- f)a + m. (g - f)o 0 __ O.

Consequently, swapping c/ and cg does not increase the sum of Ps and PT'S variance. Furthermore, the

swap does not affect the sum Of other processors' variances. Repeatedly applying this procedure puts every

cluster in place, which is the modular assignment. This discussion has proved the following theorem.

Theorem 4 Let {W(t)) be a second-order stationary process, with a covariance function Coy(s) = or2(1 -

c_s), where 0 < a < 2. Let P and n be given such that P divides n evenly, and let .AM be the P x n

assignment matrix describing the modular mapping. Then for any P × n assignment matrix A describing a

balanced assignment,

[3

P-1 P-1

(l/P) ___(.AM¢_AMT),, < (l/P) ____(.Ao'_.AT),.
i=0 i=0

In the event that the workload process is Gaussian and stationary, we can show that increasing the degree

reduces the expected maximum processor workload. We determine the processor variance and covariance

under scatter decomposition by substituting the values given by (15) into (5) and (6). Assume that i < j.

Working through the algebra one determines that

and that

Var[L(n)] = c_2 fll-___/3 -t- --IlP)_
3n 2 ,] '\ .1"--

The derivative with respect to n of C[Li(n), Lj(n)]lVar[L(n)] is positive if

(4/3 - 2a/3)(j - i) + 2_/9 - 2/3 > 0.

This is always true over the range c_ E [0, 2]. Consequently the same arguments used to prove Theorem 3

can be applied here.

3 Summary

Scatter decomposition is an attractive method for mapping domain-oriented computations with irregular

workloads to parallel architectures. Scatter decomposition partitions the domain into n equal-size pieces,

and maps them modularly onto P processors. This paper uses a formal probabilistic model of correlated

workload in a one-dimensional domain to explain why and when scatter decomposition works. First, we

show that periodicity in workload correlation Can lead to load imbalaneeunder scatter decomposition if the

14



correlationperiodalignswith theperiodof themodularmapping.Consequentlyweconsidernonperiodic
workloadcorrelationfunctions.

Ourfirst resultshowsthat if workloadcorrelationisa convexfunctionofdistance,thenscatteringwith

increasinglyfinergrainedclustersdecreasesa processor'sworkloadvariance,therebyincreasingtheaverage

inter-processorworkloadcorrelation. Since the processor workload mean is unaffected by this change, one

anticipates that the expected maximum workload will correspondingly decrease.

Our second result affirms this intuition under a stronger set of assumptions: the workload process is

Gaussian, and the correlation function decreases linearly in distance until it reaches zero and then stays at

zero. We then show that once a scatter decomposition is sufficiently fine-grained, making the grain-size finer

reduces the expected maximum processor workload.

Our third result shows that under slightly different assumptions still, among all possible "balanced"

mappings scatter decomposition minimizes the average processor workload variance. This result depends on

the correlation function decreasing linearly across the entire domain. In this case it is also true that if the

workload process is Gaussian, then scattering a finer-grained decomposition reduces the expected maximum

processor workload.

These analytic results serve to formally verify the intuition behind scatter decomposition. However,

the results only concern load balance. The additional communication cost of decreasing granularity is

not built into this model. Extensions to this work might find the optimal granularity by determining

a quantitative estimator of the expected maximum workload and the expected communication cost as a

function of granularity. An overall execution time model would be constructed depending on the influence

of architecture on the communication costs, and then optimized.
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