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Ai_tra_

Techniques were developed and .described for Performing three-dimensional finite element

analysis of plain weave composites. This paper emphasizes aspects of the analysis which are

different from analysis of traditional laminated composites, such as the mesh generation and

representative unit cells. Tire analysis was used to study several different variations of plain
weaves which illustrate the effects of tow waviness on composite moduS, Poisson's ratios, and

internal strain distributions. In-plane moduli decreased almost linearly with increasing tow
waviness. The tow waviness was shown to cause large normal and shear strain concentrations

in composites subjected to uniaxial load. These strain concentrations may lead to earlier

damage initiation than occurs in traditional cross-ply laminates.

Introduction

Traditionally, advanced composite structures have been fabricated from tape prepreg, which

was stacked to form a laminate. This type of construction tends to give optimal in-plane stiffness

and strength. Since the primary loads usually are in-plane, this fabrication procedure appeared

logical. However, there are at least two reasons why the usual laminated construction may not

be best. First, secondary loads due to load path eccentricities, impact, or local buckling can

sometimes dominate the failure initiation because of the low through-thickness strength of
traditional laminates. Second, for thick laminates there are many laminae which must be

assembled. This results in tedious labor with many opportunities for mistakes in orienting the

laminae.

Weaving is an alternate fabrication technique which has received considerable attention

recently. The interlacing of fiber bundles in woven composites increases out-of-plane strength.
Woven mats are thicker than a traditional lamina, hence fabrication of thick composites is less

labor intensive and less prone to assembly error. These enhanced properties are obtained at

the expense of some in-plane stiffness and strength. How much stiffness and strength is lost

depends on the weave architecture. Because of the immense variety of possible weaves, it is not

practical to determine optimal weave architecture through tests alone. Analytical models are

needed which can predicl tire effect of various weave parameters on the mechanical properties.

Most of the analytical tuodels which currently exist for woven composites were developed

for prediction of moduli (eg. ref. 1, 2, 3). These models are based on many simplifying
assumptions, similar to those found in classical laminate theory, which may be appropriate

for moduli prediction, but which preempt the extension of the model for strength prediction.

Models developed for stress analysis have generally been quasi-three-dimensional (Q3D) (ref. 4,

5). Since a Q3D analysis only models a single representative plane, little of the 3-D character
of a woven composite is included. Ref. 2 includes some 3-D analysis, but the model was far

too crude to permit stress analysis. Ref. 6 used a more refined 3-D finite element model than

that in ref. 2, but the model was still probably not sufficiently refined for stress analysis (No

stress distributions were reported.). There has been no detailed 3-D analysis of the stresses or

strains in woven composites.

This paper has two objectives. The first objective is to describe a refined finite element

based 3-D analysis of woven composites. Figure 1 shows a schematic of the repeating unit

for a single mat of a plain weave composite, which is the particular woven form considered in

this paper. The grid which overlays the tows in fig. 1 is there to clarify the geometry of the
tows. The discussion of the analysis will emphasize aspects of the analysis which would be new

to persons who have only analyzed conventional laminated composites. The second objective

is to present a few results which illustrate the effect of tow waviness on the effective moduli,

Poisson's ratios, and the internal strain distributions.
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GI2, G23, GI3

H
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X, y, Z

_x,Ey,_z

_:1, E2, _'3, _12, E23, El3

V12, P23_ /'J13

Vxy_ Vxz, lZzy

Analysis

Constitutive coefficients

6 x 6 constitutive m;atrix

Young's moduli for orthotropic t0w

Average normalized Yt_ung's moduli for woven composite

Restraint forces in x-, y-, and z-directions, respectively, for
load case i : :

Shear moduli for orthotropic tow

Average normalized siiear moduli for woven composite

Half-thickness of finite element model

tlalf-lengths of wavy and straight parts of tow

Applied load in the x-direction

Displacements in x-, y-, and z-directions

Specified displacements in x-, y-, and z-directions

llalf-width of finite element model (W = l I + 12)

Cartesian coordinates

Normal strains

Strains with respect to malerial coordinate system

Poisson's ratios for orthotropic tow

Average normalized Poisson's ratios for woven composite

Three-dimensional fiHite element analysis was used to study the behavior of plain weave

composites. The finite element method was selected because of its flexibility in modeling
complex shapes, spatial variation of nmterial properties, and arbitrary boundary conditions.

For moduli calculations a crude modelcan be used; for detailed stress analysis a much more

refined model can be a._sembled, without any significant increase in professional manhours

(compared to a crude model). In the following sections various aspects of the analysis will be

discussed. First the configurations will be described, followed by sections on the finite element

meshes and the material properties.

Configurations

The configurations analyzed consisted of mats of plain weave stacked to make a laminate.

Figure 2 shows symmetric and unsymmetric stacking of the mats. The symmetry in fig. 2a is

with respect to the interfaces between the mats.The geometry of an actual laminate is expected

to be a complicated mix of these stackings. For this initial study the symmetric idealization in

fig. 2a wilt be used. Such a laminate can be considered to be an assemblage of unit cells llke

that indicated in fig. 1. l_ecau_ of symmetry within the unit cell, only one-fourth of the unit

cell is actually modeled. Admittedly, this is a highly idealized plain weave composite. In actual

composites the "synchrony" of the waviness in the mats could hardly be assured. Also, the
interface between mats would not be planar, Furthermore, the shape of the tow cross-sectiol_ :::

is likely to vary much more than is practical to model. In spite of the simplifications intrinsic
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to theunit celldefnition,thissimplifiedcelldefinitionis probablya reasonable starting point

for detailed 3-D stress an_.lysis. Fig. 3a- shows a coarse finite element model of a plain weave.

This model has a fairly small length of wavy tow (11) compared to the length of straight tow

(12)- Several different ratios of wavy to straight tows were considered. The ratio was varied by
holding tile length ll constant and varying 12. The tow dimension H was also held constant.
The term waviness ratio will be used as a measure of the fraction of tow which is inclined

relative to theioad direction. The waviness ratio is defined to be I1/(ll +/2). Note that tow

waviness varies inversely wil.h tow width for a plain weave; narrow tows result in very wavy
wea, ve8.

Both extension and shear loadings were used. The boundary conditions for extension and

shear were implemented quite differently, so they will be discussed separately. The dimensions

and coordinate directions discussed below are defined in fig. 3a.

The boundary conditions for extension loads involve constraints on both displacements and
net normal force on the same plane. Because of symmetry, there are no shear forces on the

planes. Imposing a specific displacement (zero or non-zero) is a simple matter in finite element

analysis (eg. specifying u = 0 on x = -W). Imposing a constraint on both displacements and

forces on the same plane is much more complicated. For example, imposing the condition that

v = constant on y = W and that the net restraint force is zero is not simple. Multi-point

constraints could be imposed, but this is a complicated programming task and the number
of nodes involved would result in a marked increase in the bandwidth of the equations. The

approach taken herein is simple and does not affect the bandwidth. This approach, which is

ba._ed on the principle of superposition, will be explained next by describing the steps required

to obtain uniaxial loading of the unit cell in the x-direction. Because superposition is used,

this approach is limited to linear analysis.

The first step is to impose normal constraints on all six faces of the finite element model.

constrain u on x = :I:W

constrain v on y -I-W

constrain w on z = rt:H

(1)

A displacement u = _o is imposed on x _ W and the other constrained displacements are

set to zero. The normal constraint forces are calculated for the three planes x = W, y = W,

and z = H and are defined to be Fx_, F 1 and F1, where the superscript indicates that these are
forces from loading case one. The subscript indicates the direction of the force (and implicitly

the plane on which the force acts). Next, a displacement v = vo is imposed on y = W and the

other constrained displacements are set to zero. The corresponding constraint forces Fx2, F_2

and Fz2 are determined. Finally, a displacement w = Wo is imposed on z = H and the other

constrained displacements are set to zero. The corresponding constraint forces F3, F3 and F 3
are determined. These nine constraint forces are used in the following equations.

(2)

The unknowns are the load in the x-direction ,P, and the scaling coefficients a and b. The

last two equations express the condition that the net normal force on the y = W and the z = H
planes must be zero. Solving the l_t two equations yields



b= +
3 2

These values of a and b can be used in equation (2) to determine the load.
normal strains and two of the average Poisson's ratios are

(3)

The average

UO

2W
a u o

2W

bwo
$z "

2H
_y

Ex

Cz

Ex

(4)

The effective Young's modulus in the x-direction Ex is calculated using the following energy
balance equation

puo 1-i_, 2: :jot (5)

For the models conshlered in this paper one could have calculated _'z based on just the

the average stress on the plane x = W and the specified strain. In the more general case, the

geometry might be such that there is no simple cross-sectional area which could be used to

determine average stress. Such would be the case for the configuration in fig. 1 if the neat resin

regions were left out.

The remaining Poisson's ratios and Young's moduli can be determined in a similar manner.

The exact boundary conditions for shear loading of an infinite array of unit cells require

many multi-point constraints to impose anti-symrr_etry. Such boundary conditions permit the

faces of the model to warp. The multi-point constraints complicate the analysis and significantly
increase the computational cost. Hence, the approximate boundary conditions given below were
used.

for G_:

u = ay and v : ax on x : =l=W and y : :l=W (6a)

forGuz:

v = az and w = ay on y : 4-W and z : -4-H (st,)

for _xz:

u : az and zo = ax on z : +W and z = -t-H (8c)

These boundary conditions are very simple to impose. Consider the case of shear in the

xy plane. Known non-zero displacemenLg are prescribed on four faces. On z = =t=H the

displacement w is set to zero. This is posible because on the average, shear in the zy plane
does not cause normal strain in the z-direction for the plain weave configuration studied herein:

This is not generally true for textiles. For other material architectures a superposition procedure

(like that described earlier) might be necessary.
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Finit_ E_ Meshes

Fig. 3 shows typical coarse and refined meshes for the plain weave composite. The coarse
mesh had 595 nodes and 96 elements. The fine mesh had 3793 nodes and 768 elements. The

elements were 20-node isoparametric hexahedrons. The meshes exhibit cyclic symmetry. In

fact, a mesh is synthesized from the basic unit in fig. 4 rotated at 0°, 90°, 180°, and 270 ° about
the z, axis.

In order to minimize the number of elements required, compatibility of displacements was

not completely maintained at the center of the model. Fig. 5 illustrates the incompatability.

Elements A and B are the same as those so labeled in fig. 3a. They are shown separated
in fig. 5 to show the interface between the two elements and to show element C. There

is some incompatabihty in the displacements because node 9 is not connected to any node

in element A. However, since the resin material (eg. element A) is much more compliant
than the tows, this approximation in the modeling is probably not significant. Even with the

various simplifications, the internal shape of the mesh is fairly complicated. Work is needed to

determine what refinements to the modeling would yield the greatest improvements in accuracy.

Some of the meshes had a larger ratio of wavy tow to straight tow than other meshes. Fig. 6
shows a mesh with a waviness ratio of .5, compared to a waviness ratio of .167 for the mesh in
fig. 3.

Material Properties

The material properties chosen were for a hypothetical linear elastic graphite/epoxy com-

posite. The tow properties were selected to be the same as for unidirectional tape prepreg
material. The resin Was assumed to be isotropicl The table below summarizes the assumed

material properties.

Generic Graphite/Epoxy* Neat Resin**

Ell 13.4E10 Pa .345E10 Pa
E22 1.02El0 Pa .345E10 Pa
E33 1.02E10 Pa .345E10 Pa
ul2 .3 .35

.49 .35
via .3 .35
GI2 .552E10 Pa .128El0 Pa
G23 .343E10 Pa .128E10 Pa
G13 .552E10 Pa .128E10 Pa

There are two angles which describe the orientation of a tow at any point. There is a

primary rotation about the z-axis of either 0° or 90°. This angle is constant for a particular
tow. There is also a secondary rotation about the x- or y-axis due to the waviness. The amount

of rotationabout the x- and y-axes varies spatially. This second rotation was determined based

on the directio n of the normal to th e surface defined by four of the midside nodes, which are

labele d a, b, c, and d in fig. 7. The surface normal direction was calculated as the cross product

N = ca x db. Appendix A describes the material property transformations required because
of these rotations. A right-handed coordinate system is assumed, Positive rotations are defined

to be counterclockwise from the material axis to the global axis (or clockwise from the global
axis to the material axis).



Results and Discussion

Several configurations were analyzed to determine the effect of tow waviness on effective

moduli, Poisson's ratios, and internal strain distributions. The results of these analyses will be
discussed in this section.

Figs. 8a and 8b show the effect of tow waviness on the effective moduli and three of the

Poisson's ratios. The ProPerties are normalized by those for a conventional (0/90)8 laminate

fabricated from tape material. For reference, the properties for a (0/90)s laminate are listed
below.

Ex = 7.25ElOPa Ez = 1.27E10 Pa

Gzy = .552E10 Pa Gyz = .426E10 Pa

vxy -- .0424 vzy = .0795 vxz = .455

Most of the results were generated using coarse models. A few results were generated using

refined models. The differences in the moduli for the coarse and fine models were insignifcant,

so only the results for the coarse mesh are shown in fig. 8a. There was more difference between
the coarse and fine models for the Poisson's ratios. Hence, results for both model refinements

are shown in fig. 8b. The solid lines are the results for the coarse model. The solid circles are
the results for the fine model.

Fig. 8a shows that E_, E: and Gxy decrease almost linearly with increased waviness. The
waviness has the largest effect on/_x. Some of the decrease can be attributed to the increase

in resin content as waviness increases. The volume of neat resin pockets increases from 3.2

percent for the case with a waviness ratio of .167 to 12.5 percent for the case with a waviness

ratio of .5 . The transverse shear modulus Gy: increases with increased waviness. Fig. 8b

shows that the in-plane Poisson's ratio Pxy decreases with increased waviness. The other two
Poisson's ratios Px: and vzy increase with waviness. The variation is essentially linear. There

is more difference between the results for the coarse and refined models for large waviness than

for small waviness. Numerical values of the coarse model results in fig. 8 are tabulated in
Table 1.

No experiments were performed as part of this study, but some qualitative comparisons can

be made with the results in ref. 9. Ref. 9 presents analytical and experimental in-plane modulus

results for a plain weave, oxford weave, 5 harness satin weave, and an 8 harness satin weave. No

results were presented for a (0/90/90/0) tape laminate, but the 8 harness satin results should
have close to the same moduli, since it has low waviness. The loss in axial stiffness Ez shown in

fig. 8 agrees qualitatively with ref. 9. Fig. 8 shows a decrease in Pzy with increased waviness,
but the analytical results in ref. 9 predicts no change and the experiments showed an increase.

Fig. 8 shows a decrease in Gxy with increased waviness, which agrees with the experimental

results in ref. 9, but which disagrees with the analytical results. There is obviously a need for

further analytical and experimental work to clarify the source of these inconsistencies.
Strain distributions were calculated for weaves with waviness ratios of .167 and .5. Refined

finite element meshes were used. The procedure for smoothing the strains to obtain nodal
strains is described in Appendix B. Because of limited space, only a few of the results will be

presented here. Also, only uniaxial loading was considered for the results herein. The results

will be presented in terms of isostrain contours. The strains are normalized by the magnitude of

the applied axial strain. These strains are calculated relative to the material coordinate system,

in which the w-axis is along the tow direction, the w-axis is in-plane and perpendicular to the

W-axis, and the x3-axis is perpendicular to the other two axes. Since no convergence study

was performed, the results should be considered qualitative.

For the case with a waviness ratio of .167, fig. 9 shows the 0° tow for which strain contours

will be presented. Fig. 10 identifies the analogous area for the case with a waviness ratio of .5.

The area in fig. 10 labeled ABCD is identical in geometry to the area labeled ABCD in fig. 9.



Hence, the only difference between the two models is the straight-tow region in the mesh with
the smaller waviness ratio.

Fig. 11 shows contours of constant, el for the case witl! a waviness ratio of .167. The largest

strain concentration is at (x,y,z)=(0,0,0). There are strong, fairly complicated strain gradients

near (x,y,z)=(0,0,0), but a few tow thicknesses away from the y=0 plane, the variation in strain
on any y = Yo plane is independent of Yo. A two-dimensional analysis would probably do a

reasonable job in tile region away from the y = 0 plane, but obviously could not predict the

peak strains, which Occur near the origin.
Figures 12a-12f show el, e2, e3, el2, e23, and e13 contours for the region labeled ABCD

in fig. 11. As just mentioned, the largest el occurs at the origin. The magnitude there is
approximately 2.7 times the average strain for the unit celi. This strain concentration would be

expected to cause fiber breakage at a lower global strain than would occur in a tape laminate.
Much of the strain concentration is likely due to tapering of the tow in both the x- and y-

directions to a zero thickness at the origin (see fig. 4). Herein lies a particularly sticky modeling

problem. Even though the tow cross section may actually vary as indicated by the finite element
model, the tapering is due to migration,not termination, of the individual fibers. That is, fibers

near the y = 0 plane which are aligned parallel to the x-axis away from the origin are squeezed
further away from the y = 0 plane as they approach the origin, resulting in a zero tow thickness

at the origin. This fiber migration causes a very complicated variation in the local constitutive

properties of the tow. There was no attempt in this paper to account for this. The straightening
of the tow under tensile loads causes an increase in E1 at point E and a decrease in el at point F.

Fig. 12b shows that the E2 strains are small. The peak magnitude occurs on the y - 0

plane, probably because that is the boundary of the tow, where there is an abrupt change in

local properties.
Fig. 12c shows that both the magnitude and variation of E3 are large. The presence of

large 63 strains has been previously reported in ref. (4). In that study a quasi-3D analysis was

used. Fig. 12c shows that the strain variation is nearly 2D in character, except where the peak

occurs. The large magnitude of _3 nught cause delamination.

A uniaxially-loaded conventional (0/90)s laminate fabricated from tape prepreg has no shear

strains away from free edges. Figs. 12d-12fshow that a plain weave fabric has significant shear
strains. The peak el2 is about the same magnitude as the average axial strain. Particularly

under fatigue loading, the el2 could lead to intra-tow cracking. The peak E23 (fig. 12e) is also

nearly as large as the average axial strain. The peak occurs along the tow boundary and might
lead to some inter-tow cracking, particularly under fatigue.

The e13 strain component (fig. 120 is by far the largest strain component. This strain

component is due to the eccentricity of the two ends of the tow. The very large magnitude

suggests that delamination initiation might be dominated by this strain component.
The strain contours for the case with a waviness ratio of .5 are very similar to those in fig. 12.

The contours for el and _13 are shown in fig. 13 to illustrate the similarity. Interestingly, the

peak strains tend to be larger for the less wavy weave for the same average axial strain. Table
2 lists the minimum and maximum strains for the two weaves. However, the less wavy weave

also has a higher axial stiffness. For a given average strain the average stress is higher for the
less wavy weave. If both weaves are subjected to the same average stress, the peak strains in

the more wavy weave are about as large or larger than for the less wavy weave, which is more

in line with intuition.

Conclusions

Techniques were developed and described for performing three-dimensional finite element

analysis of plain weave composites. The discussion of the analysis emphasized aspects of the
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analysiswhich are different from analysis of traditional laminated composites, such as mesh
generation and representative unit cells.

The analysis was used to study several different weaves to determine the effects of tow

waviness on composite moduli, Poisson's ratios, and internal strain distributions. The average
normalized composite moduli /_x, Gxy, and _'z all decreased with increasing waviness. The

average normalized out-of-plane shear modulus G:rz increased with increasing waviness. As

expected, there are significant strain gradients. The magnitude of these strain concentrations

suggest that damage initiation will occur at a significantly lower global strain than for a
traditional cross-ply laminate, llowever, some of the most severe strain concentrations occur

wtlere the weave geometry is most difficult to model with confidence. Experimental work is
needed to characterize tile variation of the fiber tow geometry and to document the initiation

of damage under static and fatigue loads.

NASA Langley Research Center

Hampton, VA 23665-5225

November , 1989
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Appendix A
Material Property Transformations

This appendix describes the material property transformations which are required between

the global and material coordinate systems. Transformations from one coordinate system
to another are needed for strains, stresses, and the material properties. Although the finite

element analysis calculates the strains and stresses relative to the global coordinate system, it is
reasonable to report them relative to the material coordinate system. The material properties

are know n relativ e to the material coordinate system, but the finite element formulation requires
the properties relative to the global coordinate system. Hence, there are transformations in
"both directions".

To obtain the strains with respect to the material coordinate axes requires a second order

tensor transformation. The transformation rule between the global and material coordinate

systems is given by (ref. 10)

where the E_j are the strains in the material coordinate system and aij - cosine of angle

' and zj axes which are the material coordinate axes and the global coordinatebetween the x i

axes, respectively. Fig. A1 illustrates the definition of the aij for a rotation abot_t the z-axis
only.

In expanded form, eqn. (A1) can be written as

c12

_c31 "

-el I •

_22

_33

El2

E21

E23

E32

El3

•E31.

(A2)

where

allall al2al2 al3al3 allal2 al2all a12a13 a13a12 ¢I11a13 al3all"

a21a21 a22a22 a23a23 a21a22 a22a21 a22a23 a23a22 a21a2,3 a23a21

a31a31 a32a32 a3,3a33 a31a32 a32a31 a32a3,3 a3,?,a32 a31a33 a33a31

alia21 a12a22 al3a23 alla22 a12a21 a12a23 a13a22 alla23 a13a21

a21all a22a12 a23a13 a21a12 a22all a22a13 a23a12 a21a13 a23all

a21a31 a22a32 a23a33 a21a32 a22a31 a22a33 a23a32 a21a33 a23a31

a31a21 a32a22 a33a23 a31a22 a32a21 a32a23 a33a22 a31a23 a33a21

alla31 al2a32 al3a33 alla32 al2a31 a12a33 a13a32 alia33 a13a31

-a31all a32a12 a33a13 a31a12 a32all a32a13 a33al2 a31a13 a33all

Assuming the strain tensor is symmetric (eij= eji), and performing trivial modification gives
the transformation in terms of the engineering shear strains, which are 2x the tensor shear
strains.

2_.

• Ell 1

= [7'2] 2 12

.2_13 J
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where

=

allall a12a12 a13a13 2a11_12 2a12013 2alla13

a21a21 a22a22 a23a23 2a21a22 2a22023 2a21a23

a31a31 a32a32 a33a33 2a31a32 2a32a33 2a31a33

alla21 a12a22 a13a23 alla22 -{-a12n21 a12a23 -b a13a22 alla23 Jc a13a21

a21a31 a22a32 a_a33 a21a32 -{-a22a31 a22a33 + a23a32 a21a33 -}-a23a31
alla31 a12a32 a13a33 a!la32 nu a12a31 a12a33 Jr a13a32 CIllf133 -$- a13a31

Stress is also a second order tensor, so the transformation is the same as for the tensor strains

(eqns. (A1) and (A2)). Since there is no distinction between engineering and shear stresses,

the further manipulations resulting in eqn.(A3) are not applicable.

The material properties are ordinarily defined with respect to the material coordinate axes,

but the finite element formulation requires that they be defined with respect to the global

coordinate ax.es. The material constitutive coefficients comprise a fourth order tensor. Hence,

the form of the transformation rule is (ref. 10)

Cijkl ----aimajnakoalpC'nop (A4)

Note that the aij in eqn. (A4) are different titan those in eqn. (Al), since the transformation

is in the opposite direction (ie. from the material axes to the global axes).

Eqn. (A4) is cumbersome. Alternately, we can derive a matrix form of the transformation

based on the invariance of the strain-energy density. Also, this alternate transformation makes

use of the already calculated matrix T2. The invariance can be expressed as

where

gT Dg -- fZT D'_ ' (Ah)

_11 1

g22 /
g33

L2gl3J

and D is a 6 x 6 constitutive matrix.

Eqns. (3) and (5) can be combined to obtain

_T D¢ -- £TTT D'T2 _

From eqn. (A6) it is obvious that the transformation rule is

(A6)

D= T[D'Tz (AT)

I0



X2

X'2

Oij = angle between X; and Xj

% =cos (e_j)

921

Xl

_ Positive rotationdirection

J'_X, 1

Figure A1. Definition of aij ['or rotation about x3 axis.
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Appendix B

Strain Smoothing

This appendix describes the procedure used to smooth the strains. The smoothing procedure

calculates nodal strains based on the strains calculated at the quadrature points. The procedure

is based on ref. 11. It is assumed that strains are available at 8 quadrature points. The ordering

of the terms in the matrices which will be described depends on the numbering sequence for

the corner nodes in a single element and the quadrature points. Fig. BI shows the numbering
sequence for the nodes and the quadrature points. For clarity in the sketch, some nodes and

quadrature points are not shown. Itowever, the numbering patterns for the hidden nodes and

points are the same as for those shown ......

The smoothing procedure begins with assuming a functional form for the strains within an
element. The form assumed herein is

e(z,, x2, x3) = Si(x,, =2, x3)C i sum or, i
(m)

where [Si] = [1 z2 x3 x,x2 z,z3 z2x3 XlZ2Z3]

Equation (B1) can be written for the 8 quadrature points in the following form:

[E]=

1 -A -A -A B B B -C
1 -A -A A B -B -B C
1 -A A -A -B -B B C
1 -A A A -B B -B -C
1 A -A -A -B B -B C
1 A -A A -B -B B -C
1 A A -A B -B -B -C

.1 A A A B B B C

•C 1.
C 2
C 3

C4
Cs
C6
C 7

.C 8 .

(B2)

where A -- 1/V_, B - 1/3, and C = A* B

Equation B2 can be solved for the coefficients C i.

[Ci]= [H]-I[eI] (B3)

where II is the coefficient matrix in equation B2.

With the C/ known, the strains at the nodes can be determined using equation (B1). The
smoothing procedure can be summarized in terms of a single matrix multiplication.

[e/n] = [T][E_] (B4)

where the subscripts n and q indicate nodal or quadrature values, respectively and the matrix

[T] is

'A B B C B C C D"
B C A B C D B C
C B B A D C C B
B A C B C B D C
B C C D A B B C

C D B C B CA B
D C C B C B B A

.C B D C B A C B

(BS)
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where
A=5+3*E

D=5-3*E

B"-I-E

C- -I+E

where E = v_

This procedure gives the nodal strains for an individual element. Most nodes in a mesh are

shared by several elements. A simple averaging procedure was used to smooth discontinuities in

the strain field. Since strain discontinuities are physically possible at bimaterial interfaces, the

averaging was performed among elements of the same material type. This averaging procedure
must be performed before transforming the strains to the material coordinate system.
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Figure B1. Numbering sequence for nodes and quadrature points.
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Table 1. Effect of Waviness on Moduli and Poisson's Ratios

(Coarse Mesh Results)

..... Waviness Ratio

.167 .25 .5

E_

Gzy

_xy

_Z

.92

.95

.96

1.10

.87

1.14

1.10

.88

.93

.94

1.14

.81

1,21

1.14

.75

.84

.87

1.22

.60

1.45

1.28

Table 2. Maximum Normalized Strains for Waviness Ratios of .167 and .5

Normalized Waviness Ratio = .167 Waviness Ratio = .5
Strain* Min. Max. Min. Max.

_3

_12

_23

_13

.44 2.7 .35

-1,0

-.83

-3.4

1.0

.83

3.4

-.82

-.68

-2.9

2.2

.27

1.2

.82

.68

2.9

*Normalized Strain = Strain/Specified Axial Strain
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cell modeled
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Figure 1. Schematic of plain weave unit cell. (Neat resin regions removed to show tow structure.)
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0 ° tOW

Resin

90 ° tow

(a) Symmetric stacking

Figure 2. Stacking of plain weave mats.
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Resin --_

0 ° tow-_

90° tow

(b) Unsymmetric stacking

Figure 2. Concluded.
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(a) Coarse mesh (595 nodes, 96 elements)

Figure 3. Typical finite element meshes.
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(b) Refined mesh (3793 nodes, 768 elements)

Figure 3. Concluded.
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Pure resin

_- Tow

Figure 4. Basic element group used to generate mesh.
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1

Figure 5. Close-up of elements A and B from Figure 3a. Elements are seperated to show

in comparability.

OO

90° tow -_
Resin

tow -_

2

Figure 6. Mesh with large waviness ratio.
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Figure 7. Calculation of element orientation.
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Figure 8. Effect of waviness on moduli and Poisson's ratio.
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Strain contours to
be presented for

this 0° tow

j- 90° tow

B

Figure 10. Identification of area for which strain contours will be presented. Waviness ratio = .5.
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Figure 11. Normalized axial strain, el/e°x.
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Figure 12. Normalized strain contours for 0° tow. Waviness ratio = .167.
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Figure 12. Concluded.
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Figure 13. Normalized strain contours for 0 ° tow. Waviness ratio = .5.
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