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Abstract

Results from the two most recent MSAT-X field experiments, the Tower-3 Experiment and
the JPL/FAA/INMARSAT MARECS-B2 Satellite Experiment, are presented. Results
that distinguish the unique propagation environment of the tower set-up are given and
explained. The configuration andflight variables of the aeronautical experiment which

used an FAA aircraft and an INMARSAT satellite are described. Results that highli_ght
the disturbances on the aeronautical satellite channel are presented. The roles of satellite-
induced signal variations and of multipath are identified and their impact on the link is
discussed.

1. Introduction

Field experiments have played a major role in validating the technolo_gies developed under
MSAT-X and in evaluating the end-to-end system performance. Th_s article summarizes
results obtained in the two most recent field experiments with emphasis on propagation-
related results.

The first experiment addressed is the Tower-3 (I3) Experiment conducted near Boulder,
Colorado, in July and August of 1988. It was the first end-to-end mobile field experiment
in MSAT-X [1]. A 1000-ft tower operated by NOAA was used as a platform to stmulate a
satellite transponder. As such, T3 offered only a simulated land-mobile environment,

nevertheless, it served as an invaluable end-to-end system checkout.

The second, and more recent experiment, is the Joint JPL/FAA/INMARSAT MARECS-
B2 Satellite Experiment. This was a complete aeronautical mobile experiment and
demonstration. The MSAT-X mobile terminal was flown on board a Boeing 727 and was

successfully demonstrated during flight. Due to damage sustained by the aircraft in a
windstorm immediately prior to the scheduled start of the experiment in January 1989, only
a ground check-out part was conducted in January. The flight segment was postponed and
successfully completed in March 1989.

In what follows, the Tower-3 experiment set-up is described first. Typical results from its

unique propagation environment are then summarized. This is followed by a brief
description of the FAA experiment configuration and some of its results.

2. Tower-3 Experiment and Results

2.1. The Tower Set-Up

The physical layout for the experiment is shown in Figure 1. The fixed station was set up
inside the trailer located as identified in the figure. The fixed station antenna was a dual
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helibowl with approximately 12 dB of gain and a 28 ° 3-dB beamwidth in elevation. (A
refined version of this antenna was used in the Marecs B2 Satellite Experiment.) The dual
helibowl wasplaced on the roof of the trailer. To simulate a satellite, an L-band translator
[1] was placedatop the tower and a patch antenna was placed facing downwards on a boom
extending horizontally from the top of the tower. The patch antenna by itself, i.e., in the
absence of the tower in its radiation field, is omni-directional with -7 dB of gain.

Mobile tests were performed with the mobile laboratory van travelling along the North-
South (N-S) and East-West (E-W) roads (Figure 1). The quantitative link performance
tests were performed at and between the calibrated points A through E, and F through H,
as shown the figure. Limiting the testing to these re_ions was required to reduce the
problem of excessive signal variation due to the change m range-- a problem that does not
exist in a satellite link.

2.2. Tower Propagation Environment

Preliminary pilot strength measurement runs along the N-S and E-W roads revealed large
signal fluctuations (up to 5 dB peak-to-peak). It was determined that this could be
significantly reduced by minimizing reflections off the tower structure. Consequently,
absorbing material was placed on the antenna mounting platform between the patch
antenna and the tower. This indeed resulted in a reduction of the observed fluctuations,
but also resulted in a sharp signal drop-off north of point E and immediately west of point
F. The complete elimination of tower antenna pattern ripples (which cause these spatial
signal fluctuations) is known to be a very difficult problem. Hence, no attempt was made
to eliminate these ripples.

The pilot signal was received at the van through JPL's mechanically steered medium gain
antenna. The received pilot power is shown m Figure 2 for the NoS road. Three signal
variation phenomena can be seen. The fastest variation is due to multipath, which is
minimal for the tower environment as will be discussed shortly. The relatively wide ripples
of about 1.5 dB peak-to-peak magnitude signal variations are due to the tower antenna

attern. The deep, sharp fades correspond to the telephone poles on the west edge of the
-S road. It is worth noting that the poles do not show up on the signal strength plots

taken with the van traveling alon_ the east side of the road away from the poles. This is
because the poles are no longer m the line-of-sight between the vehicle antenna and the
top of the tower.

Detailed data analysis was performed on the data gathered during the experiment [2]. One
of the experiment objectives was to characterize the multipath channel present at the tower
site. Least squares fitting techniques were applied to a host of multipath data gathered on
the N-S and E-W roads using the JPL mechanically steered, medium gain antenna. This
revealed that a Rician probability density function with a k factor (ratio of direct to
scattered signal powers) of 20 to 21 dB fits well the multipath environment experienced at
the tower site. This is shown in Figure 3. It was found that the fit could be further
enhanced if a running average is used to smooth the ripples due to the tower antenna [2].
Also of interest is the effect of the bin size on the fit obtained. This is illustrated in Figure
4. The high values of k obtained clearly indicates that the barren, flat tower site creates
very little multipath. The channel behaves much like an additive white gaussian noise
channel.

3. The Joint JPL/FAA/INMARSAT MARECS-B2 Satellite Experiment

The basic objective of the experiment was to demonstrate the voice and data link
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dPerformance in a typical aeronautical environment. Of particular importance was the
emonstration to the FAA of the quality and robustness of the MSAT-X speech codecs.

To support the objectives of the experiment, data to fully characterize the link and the
disturbances on the channel was gathered.

3.1 Experiment Configuration

Figure 5 depicts the experiment set-up. The configurations of the ground segment (1/89)
and the flight segment (3/89) are quite similar. The primary difference is that the Aircraft
Terminal (ACT) was placed on the roof of the FAA hangar during the ground segment
(and was referred to as the Ground Aircraft Terminal [GACT] [3,4]). With one exception,
the ACT components are identical to those in the GACT. The exception is the aircraft
antenna assembly used in the aircraft to mount the antenna to the inside of a passenger
window [5]. For logistical simplicity during flight tests a separate antenna and assembly
were used for each side of the fuselage. The ACT or GACT served as one end of the
MSAT-X link. Another MSAT-X mobile terminal was located at INMARSAT's Coast

Earth Station (CEST) in Southbury, CT. The mobile terminal was interfaced at IF to
COMSAT's hardware chain [3,4]. One and two-way data and voice links were established
through the MARECS-B2 satellite [4,6] located at 26 ° west longitude.

3.2 Flight Paths

Selection of the flight paths for the flight segment proved to be one of the more intri[_uing
aspects of the experiment. Factors relating to angle to satellite, doppler, path length, air
traffic and weather conditions had to be taken into account [5]. Originally, three flights
were planned, one each for the evenings of March 29, 30 and 31. Unseasonable weather

p.atterns with severe thunderstorms interfered however. The first flight took the strai[ght-
line path shown in Figure 6 between Salisbury, MD, and Boston, MA. The middle fhght

scheduled for 3/30 had to be cancelled due to very severe weather and lightning at the
FAA center which made fueling the plane hazardous. To avoid dangerous weather and
increase the experiment duration as much as possible on the last (or second) flight, the
southerly path from Atlantic City, NJ, to Charleston, SC, was taken on 3/31. Both flights
were flown entirely at a cruising altitude between eight and nine thousand feet. This was to
enable an airspeed in the 200 to 250 knot range. Unfortunately, that altitude placed the

plane in the middle of the thunderstorms, thereby creating a very rough experiment
environment replete with periods of intense turbulence.

3.3 Results

During the ground segment of the experiment both pilot and data channel signal power
were recorded at the GACT and the CES. The most salient observation made for this

additive white Gaussian noise (AWGN) channel (both ends are stationary) is signalpower
fluctuation due to variations in satellite loading. This is evident in the data collectedfrom
the digital readings of the power meter connected to the IF of the MSAT-X receiver. As
seen from a typical plot shown in Figure 7, the variation in the signal power of the forward

link is within +/- 0.8 dB. Smaller variation was generally observed at the CES on the
return link. Th_s is attributed to the fact that the automatic gain control on the return
transponder (the high gain channel used) is normally off.

During flight, turbulence and minor course corrections added to the fluctuations in the

received signal at the aircraft. From Figure 8 it is seen that the data channel signal power
varies within +/- 1.5 dB. A plot of the received pilot during the same test period is given
in Figure 9. It shows the general correlation and agreement between the s_gnals received
on the pilot and data channels (which are separated by 20 kHz in this experiment).
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Multipath is known to have a minor effect in the aeronautical satellite link. A Rician
density with k (ratio of direct to scattered powers) of 15 dB is well accepted. This small
amount of multipath is embedded in the short term signal fluctuations exhibited in Figure
9. System performance is measured in terms of bit error rate versus signal to noise ratio.
Preliminary analysis [5] has shown that despite flight dynamics only a small degradation of

about 0.5 dB is present relative to the AWGN channel observed in the ground segment.
This confirms tlaat multipath fading does not play a significant role in the satellite
aeronautical satellite link at hand.

4. Upcoming Field Measurements

The first true land mobile satellite experiment using the MSAT-X equipment will take
place in July 1989 in Australia. The MSAT-X mobile laboratory will be driven between
Sydney and Brisbane and in the vicinity of both cities. A wealth of propagation and system
performance data will be gathered and subsequently analyzed. Future articles will report
on both the propagation and system performance measurements to be made, and will aim
to elucidate the effects of the propagation environment on observed system performance.
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Figure 2. Pilot Signal Power Received at Van on North-South Road
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Figure 7. Data Channel Signal Level Variations in Ground Segment of Experiment
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