NASA
Reference
Publication
1216

March 1989

$$
\begin{aligned}
& \text { My Y Year Canon } \\
& \text { of Lunar Eclipses: } \\
& 1986-2035
\end{aligned}
$$

NASA
 Reference Publication 1216

1989

Fifty Year Canon of Lunar Eclipses: 1986-2035

N/SA

National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division

Fred Espenak
Goddard Space Flight Center
Greenbelt, Maryland

FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986-2035

Table of Contents

Introduction 1
Organization of the Canon 3
Description of Section 1 5
Description of Section 2 9
Description of Section 3 11
Accuracy of the Ephemerides 13
References 15
SECTION 1 - LUNAR ECLIPSE CATALOG: 1901-2100 17
SECTION 2 - ECLIPSE PATHS AND GLOBAL MAPS: 1901-2100 31
SECTION 3 - ECLIPSE PATHS AND WORLD MAPS: 1986-2035 79
APPENDIX A - Lunar Eclipses 195
APPENDIX B - Program MONECL 213

INTRODUCTION

Fifty Year Canon of Lunar Eclipses: 1986-2035 has been designed to compliment Fifty Year Canon of Solar Eclipses: 1986-2035 (NASA RP 1178 Revised). Like its companion volume, its primary goal is to provide a five decade reference of moderately detailed eclipse predictions and maps for use by the astronomical community. During the past century, Canon of Eclipses [Oppolzer, 1887] has served as an invaluable guide to both solar and lunar eclipses. However, with the advent of high speed electronic computers and modern ephemerides, eclipse predictions of far greater accuracy are possible today. Although such predictions are published annually in the Astronomical Almanac by the Nautical Almanac Office, this publication only becomes available three to six months before the beginning of each year. Canon of Lunar Eclipses: -2002 to +2526 [Meeus and Mucke, 1979] covers eclipses over an unprecedented 45 century interval. But due to the sheer number of eclipses covered in this work, the details for any one event must be rather brief. For instance, very little information is given concerning the visibility of an eclipse except for the geographic coordinates where the Moon appears at the zenith at greatest eclipse. While mathematical formulae are provided for calculating the Moon's altitude from any point on Earth, a map showing regions of visibility during each phase would convey a great deal of information at one glance.

Since Fifty Year Canon covers a much shorter time period, it's possible to include such maps in addition to diagrams showing the Moon's path through Earth's shadow. The graphical representation of this information provides the reader with an immediate appreciation of the geometry involved during each eclipse. Finally, data included with the figures and in the accompanying tables supplement the eclipse predictions.

Teachers, students, amateur astronomers and interested laymen should find this work useful as a general reference on eclipses during this century and the next. Lunar eclipses are one of the most dramatic and beautiful celestial phenomena visible to the naked eye. As such, they generate a great deal of interest among the general public and news media. Naturally, questions arise as to where a particular eclipse will be visible from, and when the next eclipse occurs. Unfortunately, there is very little information in print about the visibility of future eclipses and most references are obscure, not easily accessible and/or out of print. The eclipse path diagrams, world maps and detailed tables appearing in Fifty Year Canon should go far in addressing these issues.

ORGANIZATION OF THE CANON

Fifty Year Canon of Lunar Eclipses: 1986-2035 is composed of three major sections and two appendices. Section 1 is a catalog which lists the general characteristics of every lunar eclipse from 1901 through 2100. Section 2 graphically illustrates the path of the Moon through Earth's shadow and the global visibility of every lunar eclipse from 1901 through 2100. Finally, section 3 consists of detailed eclipse path figures and predicted contact times along with cylindrical projection maps (including political boundaries) of the global visibility for every lunar eclipse from 1986 through 2035.

Appendix A provides some general background on lunar eclipses and covers eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings during eclipses, eclipse brightness estimation and time determination. Appendix B is a listing of a very simple Fortran program which can be used to predict the occurrence and general characteristics of lunar eclipses. It makes use of many approximations while maintaining a reasonable level of accuracy and reliability. The program is based primarily on algorithms devised by Meeus [1982] and the ample comments should make the program selfexplanatory.

A detailed description of each section of Fifty Year Canon of Lunar Eclipses: 1986-2035 follows. INTENTIOAALHY BLANK

SECTION 1 - LUNAR ECLIPSE CATALOG: 1901 ~ 2100

Section 1 is a catalog which lists the general characteristics of every lunar eclipse during the two hundred year interval 1901 to 2100 . During the first century, there are 230 eclipses of which 83 are penumbral, 66 are partial and 81 are total. The second century contains 230 eclipses of which 87 are penumbral, 58 are partial and 85 are total. In order to achieve a realistic frequency and type distribution of present eclipses, it's necessary to sample a period commensurate with the 18 year 11 day Saros cycle. The period from 1986 to 2003 contains 41 eclipses of which $15(36.6 \%)$ are penumbral and 26 (63.4%) are umbral. Of these, 10 (24.4%) are partial and 16 (39.0\%) are total. Since the Saros cycle is not static, these figures will change. For example, eclipses in Saros series 113 change from partial to penumbral in 2006.

The first two columns of the catalog list the Gregorian and Julian Dates of each eclipse. The Julian Date is the number of days elapsed since Greenwich Mean Noon on 1 January 4713 BC. Column 3 lists the value for delta T (seconds) used in the calculations. Delta T is the difference between Terrestrial Dynamical Time and Universal Time. For the period 1901-1985, the values for delta T are determined from observations. Beyond 1985, the values for delta T are extrapolated and are only approximate since fluctuations in the Earth's rotation rate are unpredictable (See: Appendix A - Time Determination). Column 4 characterizes the nature of the eclipse as follows:

$$
\begin{aligned}
& \mathrm{T}=\text { Total Umbral Eclipse } \\
& \text { P }=\text { Partial Umbral Eclipse } \\
& \text { PN = Penumbral Eclipse } \\
& \text { PNb }=\text { Beginning Penumbral Eclipse } \\
& \text { (first eclipse of Saros series) } \\
& \text { PNe }=\text { Ending Penumbral Eclipse } \\
& \text { (last eclipse of Saros series) }
\end{aligned}
$$

The next column gives the Saros series to which the eclipse belongs. The Saros series numbers are consistent with those introduced by van den Bergh [1955]. Eclipses belonging to an even numbered Saros take place at the ascending node of the Moon's orbit (lunar ecliptic latitude decreases with each succeeding eclipse), while eclipses of an odd numbered Saros take place at the descending node (lunar ecliptic latitude increases with each succeeding eclipse). Column 6 lists the value GAMMA, which is defined as the minimum distance (equatorial Earth radii) of the Moon's center from the central axis of the shadow cone. This corresponds to the instant of middle or maximum eclipse. The sign
\qquad
of GAMMA indicates whether the Moon's center passes north (+) or south (-) of the shadow axis. Columns 7 and 8 give the penumbral and umbral magnitudes at the instant of middle eclipse. Eclipse magnitude is defined as the fraction of the Moon's diameter obscured by the penumbral or umbral shadow. For penumbral eclipses, the umbral magnitude is negative. For partial eclipses, the umbral magnitude is always greater than 0.00 and less than 1.00 . For total eclipses, the umbral magnitude is greater than or equal to 1.00 .

The Universal Time of middle eclipse (hours:minutes) is found in column 9. Middle eclipse is defined as the instant when the Moon passes closest to the axis of Earth's shadow. The semidurations (minutes) of the partial and total phases of each eclipse are listed in the next two columns. The semiduration of the partial phase is half of the time elapsed between the first and last external contacts of the Moon with Earth's umbral shadow. Similarly, the semiduration of the total phase is half of the time elapsed between the first and last internal contacts of the Moon with Earth's umbra. The start (U1) and end (U4) of the partial phase is calculated by subtracting or adding the partial semiduration to the instant of middle eclipse. Likewise, the start (U2) and end (U3) of the total phase is calculated by subtracting or adding the total semiduration to the instant of middle eclipse. Total eclipses have both partial and total phases while partial eclipses have partial phases only. Penumbral eclipses have neither partial nor total phases.

Columns 12 and 13 give the Moon's geocentric right ascension (hours) and declination (degrees) at middle eclipse, referred to the mean equinox of date. Finally, the last column lists the Greenwich Sidereal Time (hours) at 00:00 UT. The altitude and azimuth of the Moon during each phase of an eclipse depends on the time and the observer's geographic coordinates. Using the values tabulated in columns 12, 13 and 14, the Moon's altitude (a) and azimuth (A) may be calculated for any observer as follows:

$$
\begin{gathered}
\mathrm{h}=15(\mathrm{GST}+\mathrm{UT}-a)-\lambda \\
\mathrm{a}=\operatorname{ArcSin}[\operatorname{Sin} \delta \operatorname{Sin} \phi+\operatorname{Cos} \delta \operatorname{Cos} \mathrm{h} \operatorname{Cos} \phi] \\
\mathrm{A}=\operatorname{ArcTan}[-(\operatorname{Cos} \delta \operatorname{Sin} \mathrm{h}) /(\operatorname{Sin} \delta \operatorname{Cos} \phi-\operatorname{Cos} \delta \operatorname{Cos} \mathrm{h} \operatorname{Sin} \phi)] \\
\text { where }: \quad \begin{aligned}
\mathrm{h} & =\text { Hour Angle of the Moon } \\
\mathrm{a} & =\text { Altitude } \\
\mathrm{A} & =\text { Azimuth }
\end{aligned} \\
\text { GST }=\text { Greenwich Sidereal Time at 00:00 UT }
\end{gathered}
$$

$$
\begin{aligned}
\text { UT } & =\text { Universal Time } \\
a & =\text { Right Ascension of the Moon } \\
\delta & =\text { Declination of the Moon } \\
\lambda & =\text { Longitude of Observer (West }+ \text {, East -) } \\
\phi & =\text { Latitude of Observer (North }+ \text { South -) }
\end{aligned}
$$

These expressions do not include the effects of lunar parallax. atmospheric refraction or lunar orbital motion. At low altitudes, the errors may be on the order of 1°. Furthermore, the Moon's coordinates are strictly valid only at the time of middle eclipse. This may also lead to errors of about 1° for the beginning and end of the partial phase. With these caveats in mind, the expressions for altitude and azimuth are convenient and adequate for most planning purposes.

Finally, the geographic coordinates of the point where middle eclipse occurs in the zenith are:

$$
\begin{gathered}
\lambda=15\left(\mathrm{GST}+U T_{\mathrm{m}}-a\right) \\
\phi=\delta
\end{gathered}
$$

where: $\quad U T_{m}=$ Universal Time at Middle Eclipse

Diagrams of the Moon's path through Earth's shadow and maps of global visibility for every lunar eclipse are presented for the two hundred year period 1901 through 2100 (as tabulated in Section 1). The eclipse figures are plotted ten pair per page which typically covers four to five years. A typical pair are illustrated in Figure 2-1 for the total lunar eclipse of 17 August 1989.

Each diagram of the Moon's path through the shadow is plotted on the same scale with north at the top. The radius of the dark umbral shadow ranges from 0.64° to 0.78° and is surrounded by the lighter penumbral shadow with a radius of 1.17° to 1.31°. The axis of the shadow is marked by ' + ' and the cardinal points are plotted with respect to the axis. The ecliptic is represented by a dashed line which always passes through the shadow axis. The Moon's outline is plotted to scale at each of the umbral contacts as well as the external penumbral contacts and the instant of middle eclipse. Orbiting with an eastward motion, the Moon moves from right to left in each figure.

A heading at the top of every path diagram identifies the eclipse type (penumbral, partial or total), followed by the Gregorian date and the Universal Time of middle eclipse (hours:minutes) below the date. Directly beneath the eclipse type is the Saros series to which the eclipse belongs. In the lower left corner is the penumbral magnitude ' P ' and in the lower right corner is the umbral magnitude ' U '.

To the right of each eclipse path diagram is an azimuthal equal-area or Lambert projection map of Earth, centered on the north pole. At any one instant, the Moon is always visible from one hemisphere of Earth. For each of the umbral contacts as well as the external penumbral contacts, the hemisphere facing the Moon is indicated as follows. For the external penumbral contacts, the hemispheres are plotted with a dotted line. For external umbral contacts (start and end of partial phase), a solid line delineates the appropriate hemispheres. Finally, for interior umbral contacts (start and end of total phase), a dark solid line marks the hemispheres.

The eclipse is not visible (Moon below the horizon) from the darkly shaded regions bordered by the external penumbral contact curves. All other regions of Earth will witness some phase of the eclipse. As seen from the north pole, Earth rotates in the counter-clockwise direction. If we fix our frame of reference with Earth, then the Moon and the hemisphere facing it rotate clockwise with time. Starting from any point in the shaded region and moving clockwise, the first hemispheric curve encountered would be for first external penumbral contact (P1). This would be followed by the hemispheres for first external umbral contact
(U1) and first internal umbral contact (U2). The final three hemispheric curves correspond to last internal umbral contact (U3), last external umbral contact (U4) and last external penumbral contact (P4).

The geographic point where the Moon appears in the zenith at middle eclipse is indicated with an ' $*$ '. It appears opposite the shaded or non-visibility zone and lies in a region bordered by the two external penumbral contact hemispheres. From this region, every phase of the eclipse is visible. For locations between this zone and the shaded zone, some phase of the eclipse is in progress at moonrise (clockwise from ' $*$ ') or at moonset (counterclockwise from ' ${ }^{\prime}$ ').

Figure 2-1

Section 3 consists of a series of 114 path diagrams and visibility maps, one pair for every lunar eclipse during the fifty year interval 1986 to 2035. During this period, there are 42 penumbral eclipses and 72 umbral eclipses. The umbral eclipses consist of 28 partial and 44 total events.

Each lunar eclipse has two diagrams associated with it. The top figure shows the path of the Moon through Earth's penumbral and umbral shadows. Above and to the left of the path diagram is the time of middle eclipse (MID), followed by the penumbral (PMAG) and umbral (UMAG) magnitudes of the eclipse. The penumbral and umbral magnitudes are defined as the fraction of the Moon's diameter immersed in the penumbral and umbral shadows at middle eclipse. Below the eclipse magnitudes is the minimum distance (GAMMA) of the Moon's center from the shadow axis in units of Earth equarorial radii. To the upper right are the eclipse contact times (Universal Time or UT) which are defined as follows:

$$
\begin{aligned}
& \mathrm{P} 1=\text { First external contact of the Moon with penumbra } \\
& \text { (Penumbral eclipse begins) } \\
& \mathrm{U} 1=\begin{array}{r}
\text { First external contact of the Moon with umbra } \\
\text { (Partial eclipse begins) }
\end{array} \\
& \mathrm{U} 2=\text { First internal contact of the Moon with umbra } \\
& \text { (Total eclipse begins) } \\
& \mathrm{U} 3=\text { Last internal contact of the Moon with umbra } \\
& \text { (Total eclipse ends) } \\
& \mathrm{U4}=\begin{array}{l}
\text { Last external contact of the Moon with umbra } \\
\text { (Partial eclipse ends) }
\end{array} \\
& \mathrm{P} 4=\text { Last external contact of the Moon with penumbra } \\
& \text { (Penumbral eclipse ends) }
\end{aligned}
$$

In the lower left corner is the angle subtended between the Moon's center and the shadow axis at greatest eclipse (AXIS), and the angular radii of the penumbral (F1) and umbral (F2) shadows. The Moon's geocentric coordinates at maximum eclipse are given in the lower right corner. They consist of the right ascension (RA), declination (DEC), apparent semidiameter (SD) and horizontal parallax (HP). Below, the Saros series of the eclipse is given, followed by a pair of numbers in parentheses. The first number identifies the sequence order of the eclipse in the series, while the second number is the total number of eclipses in the Saros series. The Julian Date (JD) at middle eclipse is given, followed by the
extrapolated value of ΔT used in the calculations (ΔT is the difference between Terrestrial Dynamical Time and Universal Time).

The bottom map is a cylindrical equidistant projection of Earth which shows the regions of visibility for each stage of the eclipse. In particular, the moonrise/moonset terminator is plotted for each contact (i.e. - P1, U1, U2, U3, U4 and P4) and is labeled accordingly. The geographic position where the Moon is in the zenith at middle eclipse is indicated by an ' $*$ '. The region which is completely unshaded will observe the entire eclipse while the area shaded by solid diagonal lines will witness none of the event. The remaining shaded areas will experience moonrise or moonset while some phase of the eclipse is in progress. The shaded zones directly east of ' $*$ ' will witness moonset before the eclipse ends while the shaded zones directly west of ' $*$ ' will witness moonrise after the eclipse has begun.

ACCURACY OF THE EPHEMERIDES

The solar and lunar ephemerides used for these predictions are the same ones used in Fifty Year Canon of Solar Eclipses: 1986 - 2035. The solar ephemeris is based on the classic work of Newcomb [1895] and includes all planetary perturbation terms in longitude and latitude with arguments greater than 0.01 arc-seconds. The lunar ephemeris was developed primarily from the the work of Brown [1919] with modifications from Eckert, Jones and Clark [1954]. All solar perturbation terms in longitude and latitude with coefficients greater than 0.025 arc-seconds have been included. The cut-off for planetary perturbations is 0.025 and 0.01 in longitude and latitude respectively. Perturbations in lunar parallax include all terms with coefficients greater than 0.0010 . Finally, all terms additive to the Moon's fundamental arguments with coefficients greater than 0.025 arc-seconds have been retained.

In order to determine the accuracy of these ephemerides, they have been compared against the Jet Propulsion Laboratory's Developmental Ephemeris 200 (or JPL DE-200) for 260 full moon dates over the interval 1980 through 2000. The mean differences and standard deviations of the solar and lunar ephemerides with the JPL DE-200 are as follows:

Comparison of Solar/Lunar Ephemerides with JPL DE-200

	RA Mean (sec)	RA S. Dev. (sec)	Dec Mean $(\operatorname{arc}-\mathrm{sec})$	Dec S. Dev. $(\operatorname{arc}-\mathrm{sec})$
Sun	+0.037	0.044	-0.029	0.172
Moon	-0.001	0.041	-0.006	0.399

The agreement between these ephemerides is quite good and actually exceeds the accuracy required for lunar eclipse predictions as follows. Due to the variable attenuation of the terrestrial atmosphere, the edge of Earth's shadow is rather poorly defined and limits the measurement of contact timings to a precision of about 0.1 minute. Since the Moon's mean angular velocity in right ascension with respect to the Sun (and Earth's shadow) is 0.0343 seconds per second, the combined uncertainties in right ascension can be transformed into an uncertainty of 1.1 seconds in contact times. However, this uncertainty is almost an order of magnitude smaller than the measurable precision of contact timings.

Positional shifts of the magnitude determined above are far too small to detect when plotted at the scale of the eclipse path figures presented in Sections 2 and 3. In fact, lunar occultation measurements including corrections for the lunar limb profile would be required to detect such small differences.

In the generation of eclipse predictions presented in the Fifty Year Canon of Lunar Eclipses, the author has applied a -0.6 arc-second correction to the Moon's ecliptic latitude. This takes into account the difference between the Moon's center of mass and center of figure. In accordance with the Astronomical Almanac, Earth's umbral and penumbral shadows have been increased by 2% to approximate the effects of an opaque layer in the middle atmosphere. Finally, a correction of $\mathbf{- 1 . 3 4}$ seconds has been applied to the lunar ephemeris to reconcile it with the FK4 equinox.

REFERENCES

Astronomical Almanac for 1986 (Government Printing Office, Washington, D.C., 1985).
E. W. Brown, Tables of the Motion of the Moon (Yale University Press, New Haven, 1919).
W. A. Chauvenet, A Manual of Spherical and Practical Astronomy (Dover reprint, New York, 1960).
A. Danjon, L'Astronomie, 65, 51-53 (1951).
W. J. Eckert, R. Jones and H. K. Clark, Improved Lunar Ephemeris 1952-1959 (Government Printing Office, Washington, D.C., 1954).
F. Espenak, Fifty Year Canon of Solar Eclipses: 1986-2035 (NASA RP1178, Washington, D.C., 1987).

Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac (H. M. Stationary Office, London, 1974).
A. Kuhl, Physik. Zeitschrift, 29, 1 (1928).
P. Lahire, Tabulae Astronomicae (Paris 1707).
F. Link, Eclipse Phenomena in Astronomy (Springer-Verlag, New York, 1969).
J. Meeus and H. Mucke, Canon of Lunar Eclipse: -2002 to +2526 (Astronomisches Buro, Wein, 1979).
J. Meeus, Astronomical Formulae for Calculators (Willmann-Bell, Richmond, 1982).
S. Newcomb, "Tables of the Motion of the Earth on its Axis Around the Sun", Astron. Papers Amer. Eph., Vol. 6, Part I (1895).

Th. von Oppolzer, Canon of Eclipses (1887, tr. by O. Gingerich, Dover reprint, New York, 1962).
W. M. Smart, Text-Book on Spherical Astronomy, 6th Ed. (Cambridge University Press, Cambridge, 1977).
G. van den Bergh, Periodicity and Variations of Solar (and Lunar) Eclipses (Tjeenk Willink, Haarlem, Netherlands, 1955).

FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986-2035

SECTION 1 - LUNAR ECLIPSE CATALOG: 1901-2100

－	
¢	O~かoonoomす

11
$+N$
$10 N 1$ 11
CANON OF LUNAR ECLIPSES
MIDDLE
ECLIPSE
$(h: m)$

PENUMBRAL UMBRAL
MAGNITUDE MAGNITUDE

ZZZ
$\because H N Q O H 10 \infty 0 N$

 －

QQQHMNNmッサ

这《

नmaNQQNANO

かゅのヘ
$1 \dot{N} \dot{+} \dot{\sim}$

NQMAONH100 NTGNNQGOLN

$$
+\cdots \cdots N
$$

Z Z
ロトトトロスロ

$\cdots ๓ M+\infty \times 0 \% m+$

 $\infty \infty+\infty \omega+\infty$

 NNNNNNNNNN

[^0]

 DATE

$\forall n+\infty \infty \infty \pi n \cdots$ MIDDLE
ECLIPSE

MWNQロNNNNN

$\vdash \vdash \sum_{a}^{\infty} z_{a} z_{a}+\vdash a$

$+\infty \infty \infty$
110 内守守1111

[^1]

MホのNサのホのサか

a Z Z Z Z anロートロロ

ONNOONOQNG

 बत்

MIDDLE
ECLIPSE
（h：m）

DELTA PENUMBRAL UMBRAL

H－NNNHOQQ

$\cdots \infty \times \infty \times \infty \times \infty \times \infty \times \infty$
 a ロトトトa 늘

$\begin{aligned} & \pm \infty \\ & \infty+0 \\ & \infty \\ & \infty \end{aligned}$

 NNNNNNNNN

の日NNNさかくの日

 －ísiocNヘNo

$+\infty 0 \otimes \infty\llcorner\infty \sim \infty \infty$

のOOQOMFNNN $\cdots \cdots \infty \infty \infty \infty \infty \infty \infty \infty \infty$

$\cdots \infty \forall+寸 1010 \infty$

 Zu＞
7
7

$\rightarrow H N N O N Q \infty \sigma \cup$

MOON	MOON
RA	DEC

寸oか＋10NNmos o

 NOMLHOQ\＆NH

トロトでででるのロート
$N \infty \in+N \sim Q+\infty \omega$

のHサNOMNOMm

$\cdots+\infty \times \infty \times \infty \times \infty$

N

9 1，1，1 $\begin{array}{cc}\text { MIDDLE } & \text { PARTIAL } \\ \text { ECLIPSE } & \text { S．DUR．} \\ (\mathrm{h}: \mathrm{m}) & (\mathrm{m})\end{array}$
$\stackrel{N}{\infty}$
$\infty \infty$
NONO
$\rightarrow 9$

$\infty \infty \infty \sim \infty \infty$

$\infty \infty \infty \uparrow+\infty \in+\infty \infty$

©O～Mロルレロット

 pirनiनioiopopopo

 に

$\rightarrow N N N N N O N+O$

\square
 $\infty \oplus \sim N \sim \infty \infty \infty \infty$

$\underset{(\mathrm{m})}{\text { PARTIAL }}$	TOTAL	MOON
S．DUR		
(m)		

MIDDLE
ECLIPSE
$(\mathrm{h}: \mathrm{m})$

$\begin{array}{lllllll}\infty & \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & 0 & + \\ \infty & \infty & \infty & \infty & +\infty & \infty\end{array}$

トトトロ z z z z z_{a} ロa
$\begin{array}{llll}0 \\ \infty & \infty & -1 \\ \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty \\ \infty & \infty & \infty\end{array}$

$\cdots \infty-\infty \infty \infty \infty \infty \infty \infty$

トトロazaトトトトロ

サーNずMのNロロ

 $\begin{array}{lllllll}\infty & \infty & \infty & \infty & \infty & 0 & \dot{0} \\ \infty & \infty & -1 & \infty & \infty & \infty & \infty \\ \infty & \infty & 0\end{array}$

[^2]

$\infty \infty$						
$\cdots \mathrm{N}$	1			1		
0						1

DELTA TYPE SAROS GAMMA PENUMBRAL UMBRAL MALUDE MAGNITUDE

OSOHMNNNMN

 るスるスにトトトスa

 T OO OOOQOQQ

 $\cdots \cdots N+\infty \times \infty \rightarrow \infty$

NNN～NOOLOL NNNNNN1

CANON OF LUNAR ECLIPSES
PENUMBRAL UMBRAL
MAGNITUDE MAGNITUDE

OHNNNNOD00

GQinNNNNMNO
 NNWNNHFHNH

$\cdots m \infty \sigma+\infty 10 m+m$
 $\rightarrow 0.0$ HTOOQNNNNH

トトトロ～～～
20

 NNNMツツツツツッ

 $\begin{array}{lll}6 & 0 & 0 \\ 0 & 0 & 0 \\ N & 0 & 0 \\ N\end{array}$

QLNQNNNNNN
 ロ
のスススそのトトトス
$\because \infty+1 \sim \infty \infty \infty \times N$

 －

GST
$(\%$ UT $)$

＊©

 $\infty \dot{\infty}+\infty+\infty+\infty$

 －$\infty \times \underset{1}{\infty} \times \underset{1}{\infty}+\infty$	

かへののNQ日m＠サ

1 1 ©
1111
官官
E
\pm
+
+

1111

－

NOLNONNNNN

 $\cdots \forall-\infty \infty 1+\infty \times \infty$

QHNNNMmさせ NANNANNNNN

[^3]

$\infty \infty \infty$
0
0

CANON OF LUNAR ECLIPSES

5F	
	－${ }^{\circ}$
	－N゙フN

1
1

$$
\begin{aligned}
& 1 \infty \\
& \infty
\end{aligned}+
$$

UサनOONN

$z_{a} Z$

Z Z
20 P
T

 ばが てZロートトトロ Z Z Z

FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986-2035

SECTION 2 - ECLIPSE PATHS AND GLOBAL MAPS: 1901-2100

PARIIAL 25 JUL 1907

PENUMBRAL 13 JUL 1908
1471 21:34 UT

[^4]

PARTIAL 26 RUG 1923

TOTAL 14 AUG 1924
$127120: 20$ UT

$P=2.653 \quad 1 \quad U=1.658$

TOTAL 20 FEB 1924 12己 1 16: 9 UT

$F=2.551 \quad 1 \quad U=1.605$

PARTIAL 8 FEB 1925

PENUMBRRL 28 JAN 1926

PENUMBRAL 25 JUL 1926

TOTAL 26 SEP 1931

PARTIAL 14 SEP 1932

PENUMBRAL 12 MAR 1933

PENUMBRAL

PFRRTAL 26 JUL 1934

PENUMBRAL 5 RUG 1933
1081 19:46 UT

PARTIAL 30 JAN 1934

TOTAL 19 JAN 1935
123 1 15:47 UT

$P=2.477 \quad 1 \quad U=1.354$

$P=1.303 \quad 1 \quad 1=0.272$

PENUMBRAL 25 MRY 1937

PENUMBRAL 28 DEC 1936

PENUMBRAL 22 APR 1940

PARTIAL 20 FEB 1943

PENUMBRAL 6 JUL 1944

$\begin{array}{ccc}\text { TOFAL } & 7 \text { OCT 1949 } \\ 1 c_{i} & \text { I } & 2: 55 \quad 1 \mathrm{~T}\end{array}$
 $P=2.38 \quad 1 \quad 1=1.228$

TOTAL 2 APR 1950 191 20:44 UT

PENLIMBRAL 17 AUG 1951

PARTIAL 11 FEB 1952

$P=1.446^{\quad} \quad U=0.410$

PARTIAL 24 MAY 1956
1201 15:31 UT

$F=2.043^{1} \mathrm{~J}=0.970$

PARTIAL 29 NOV 1955

PENUMBRAL 8 DEC 1965

PENUMBRAL 27 RUG 1969

PENUMBRAL 4 MAY 1966

TOTAL 13 APR 1968

PENUMBRRL 25 SEP 1969
$146 \bigcirc$ 20:10 UT
$P=0.920 \quad 1 \quad \cup=-0.090$

PARTIAL 26 JUL 1972

PENUMBRRL 15 JUN 1973

PARTIAL 10 DEC 1973

PENLMBRAL 15 MAY 1984

PENUMBRAL 13 JUN 1984

PENUMBRAL 14 APR 1987

PENUMBRAL 26 JUL 1991

FARTIAL 21 DEC 1991

$\begin{array}{cccc}\text { TOTAL } & & 9 \text { DEC } 1992 \\ 125 & 1 & 23: 44 \mathrm{uT}\end{array}$

TOTAL 29 NOV 1993

$F=2.189 \quad{ }^{\prime} \quad U=1.092$

PENUMBRAL 18 NOV 1994

$\begin{array}{cccc}\text { TOTAL } & & 4 \text { JUN } 1993 \\ 130 & 13: & 0 \text { UT }\end{array}$

$P=2.578 \quad \mid \quad U=1.567$

PENUMBRAL 13 MAR 1998

PENUMBRHL 24 JUN 2002

TOTHL 4 MAY 2004
$131120: 30$ UT

$F=\operatorname{zocos} \quad \mathrm{l} \quad \mathrm{U}=1.309$
PARTIAL 5 JUL 2001

PENLMBRAL 26 MAY 2002

PENUMBRAL 6 RUG 2009

$$
14
$$

TOTfi 15 JUN 2011
13: 1 20:12 UT

$F=2.7121^{1} U=1.705$

PARTIPL $\quad 4$ JUN 2012

$$
P=1.3431^{\prime} u=0.376
$$

PARTIAL 25 APR 2013
11E I 20: 7 UT

PENUMBRRL 25 MAY 2013
150 (1) 4:10 UT

$F=0.040{ }^{\prime} U=-0.928$

$$
F=0.0177^{\prime} U=-0.993
$$

$$
F=[0.921 \quad 1 \quad U=-0.111
$$

PARTIAL 19 NOV 2021

$$
F=2.098 \quad^{1} \quad U=0.979
$$

$\begin{array}{ccc}\text { TOTAL } & 7 \text { SEP } 2025 \\ 128 & 1 & 18: 11 \mathrm{UT}\end{array}$

PARTIAL 28 AUG 2026

$P=1.990 \quad{ }^{\prime} \quad U=0.935$

PENUMERAL . 20 FEB 2027

PARTIAL $\quad 6$ JUL 2028

PENUMBRAL 18 JUL 2027

TOTAL 31 DEC 2028
125 1 16:52 UT

PENUMBRAL 30 OCT 2031

$z=0.7421 \quad y=-0.315$

TOTAL 18 OCT 2032

$$
P=2.1088^{1} U=1.108
$$

TOTAL 14 APR 2033 is I 19:12 UT

$$
F=2.197 \quad U=1.099
$$

PENUMBRAL 22 FEB 2035

$\begin{array}{cc}\text { TOTAL } & 7 \text { RUG } 2036 \\ 12 \mathrm{E}, & 2: 51 \mathrm{ut}\end{array}$

$F=2.553 \quad \mathrm{~V}=1.459$

PARTIHL 27 JUL 2037

PENUMBRRL 11 DEC 2038

TOTAL 31 JAN 2037
134 I 13:60 UT

$P=2.205 \quad 1 \quad U=1.213$

TOTAL 18 NOV 2040 136 I 19: 3 UT

$P=2.478 \mathrm{I}^{\mathrm{I}} \quad \mathrm{U}=1.402$

PENUMERAL 28 OCT 2042

TITAL 13 MAR 2044

PARTIAL 8 OCT 2052
$147 \quad 1$ 10:44 UT

PENLIMBRAL 26 JUL 2056

TOTAL 18 AUG 2054

PENUMBRAL 27 JUN 2056

$P=1.722 \quad \quad_{\mathrm{J}} \quad \mathrm{J}=0.762$

PARTIAL 11 DEC 2057

PARTIAL 19 NOV 2059

TOTAL 4 APR 2061

$F=2.131^{1} \quad u=1.039$

TOTAL 18 SEP 2062

$p=2.22$ i $^{\prime} \quad u=1.154$

FENUMBFAL 7 SEP 2063

TOTRL 11 JAN 2066

$$
P=2.252 \quad^{\prime} \quad U=1.142
$$

PARTIAL 19 OCT 2070

TOTAL 28 AUG 2072
129 1 16: 3 UT

$P=2.269 \quad 1 \quad U=1.171$

TOTAL 17 RUG 2073

TOTAL 4 MAR 2072
$124 \quad 1 \quad 15: 21$ UT

$P=2.223 \quad 1 \quad U=1.250$

PENUMBRAL 11 FEB 2074

PENUMBRAL 7 RUG 2074

PARTIAL 29 NOV 2077

FARTIFL 16 APR 2079

TOTAL 2 FEB 2083

PENUMBRAL 18 SEP 2081
$148 \square^{1}$ 3:33 UT

$$
P=0.953^{\quad 1} \quad U=-0.151
$$

TOTAL 29 JUL 2083

$$
130 \text { I 1: } 3 \text { UT }
$$

$$
P=2.478 \quad^{\prime} U=1.483
$$

PENUMBRAL 7 JUL 2085

PENUMBRAL 1 DEC 2085

PARTIAL 20 NOV 2086

TOTAL 10 NOV 2087
1371 12: 3 UT

PENUMBRAL 26 MAR 2089

TOTAL 15 MAR 2090

TOTAL 5 MAR 2091

PARTIAL 30 OCT 2088

TOTAL 8 SEP 2090
129 | 22:49 UT

$P=2.143^{\quad I} \quad U=1.043$

PENUMBRAL 19 JUL 2092
110 OT :39 UT

$$
P=0.087 \quad \mathcal{V} \quad U=-0.893
$$

PENUMBRAL 12 JAN 2093

PARTIAL 26 APR 2097

TOTAL 15 APR 2098
1331 13: 2 JT

$F=2.47 i \quad \|=1.442$

PENUMBRAL 24 FEB 2100

TOTAL 21 OCT 2097
$128 \mathrm{I} \quad 1: 28 \mathrm{JT}$

PENUMBRAL 19 RUG 2100

FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986-2035

SECTION 3 - ECLIPSE PATHS AND.WORLD MAPS: 1986-2035

PENUMBRA

$P 1=16: 19.5 U T$
$U 1=17: 29.0 U T$
$U 2=18: 40.4 U T$
$U 3=19: 55.0 U T$
$U 4=21: 6.6 U T$
$P 4=22: 16.3 U T$
$\underset{N}{N}$ $P 1=16: 19.5 U T$
$U 1=17: 29.0 U T$
$U 2=18: 40.4 U T$
$U 3=19: 55.0 U T$
$U 4=21: 6.6 U T$
$P U=22: 16.3 U T$

$$
\begin{aligned}
\text { RXIS } & =0.2967 \\
F_{1} & =1.222 ? \\
F_{2} & =0.6770
\end{aligned}
$$

MOON
$R A=1^{H} 28^{\mu} 46 .^{5} 9$
$D E C=9^{\circ} 37^{\prime 14.77}$
$S D=15^{\prime 1} 12$. " 6
$H P$ - $0^{\circ} 55^{\prime} 49 . .^{\prime} 1$

PARTIAL LUNAR ECLIPSE - 3 MAR 1988

MID = 16:12.7 UT
PMAG $=1.1172$
UMAG $=0.0030$
GAMMA $=0.9885$

$P_{1}=13: 43.8 \mathrm{UT}$
$\mathrm{U1}=16: 8.7 \mathrm{UT}$
$U 4=16: 17.5 \mathrm{UT}$
$P 4=18: 42.1 \mathrm{UT}$

PHRTIAL LUNAR ECLIPSE - 27 AUG 1988

TOTAL LUNAR ECLIPSE - 20 FEB 1989

$M I D=15: 35.3 \mathrm{UT}$
PMAG $=2.3917$
UMAG $=1.2794$
GAMMA $=0.2933$

CONTACTS
$P 1=12: 29.7 \mathrm{UT}$
UI = 12:43.4 UT
$U 2=14: 55.8 \mathrm{UT}$
$\mathrm{U3}=16: 15.2 \mathrm{UT}$
$U 4=17: 27.4 U T$
$P 4=18: 41.1 \mathrm{UT}$
(

$$
\begin{aligned}
\text { AXIS } & =0.2661 \\
F 1 & =1.2013 \\
F 2 & =0.6514
\end{aligned}
$$

TOTAL LUNAR ECLIPSE - 17 RUG 1989

PARTIAL LUNAR ECLIPSE - 6 AUG 1990

PENUMBRAL LUNAR ECLIPSE - 26 JUL 1991

PARTIAL LUNAR ECLIPSE - 21 DEC 1991

PARTIAL LUNAR ECLIPSE - 15 JUN 1992

MID $\quad 4: 57.0$ UT
PMAG $=1.7525$
UMFG $=0.6874$
GAMMA $=-0.6287$
$\stackrel{N}{N}$

PENUMBRA

CONTACTS
P1 $\quad 2: 8.9 \mathrm{UT}$
$\mathrm{U1}=3: 26.6 \mathrm{UT}$
$U 4=6: 27.4 \mathrm{UT}$
$\mathrm{PL}=7: 45.1 \mathrm{UT}$

MOEN

$$
\begin{aligned}
\text { FXIS } & =-0.5798 \\
F 1 & =1.2093 \\
F 2 & =0.6740
\end{aligned}
$$

SAROS $120 \quad(57 / 84)$

TOTAL LUNAR ECLIPSE - 4 JUN 1993

CONTACTS

$P 1=10: 10.6 \mathrm{UT}$
$\mathrm{U1}=11: 11.0 \mathrm{UT}$
U2 - 12:12.0 UT
$\mathrm{U3}=13: 48.8 \mathrm{UT}$
U4 $=14: 49.9 \mathrm{UT}$
$P 4=15: 50.4 \mathrm{UT}$

SAROS $130 \quad(33 / 72)$
$J D=2449143.043$

$$
\begin{aligned}
& \text { MOON } \\
& R A=16^{H} 50^{\mu} 13 .^{5} 2 \\
& \text { DEC }=-22^{\circ}-18^{\circ}-38 . " 3 \\
& S D=15.54 .0 \\
& H P=0^{0} 58^{\prime 2} 21.4
\end{aligned}
$$

AXIS	$=0.1594$
$F 1$	$=1.2609$
$F 2$	$=0.7249$

1
5

TOTAL LUNAR ECLIPSE - 29 NOV 1993

PARTIAL LUNAR ECLIPSE - 25 MAY 1994

CONTACTS
P1 a 1:17.9 UT U1 $=2: 37.5 \mathrm{UT}$ $U 4=4: 23.2 U T$ $P 4=5: 42.8 \mathrm{UT}$ -W

MID $=3: 30.4 \mathrm{UT}$
PMAG $=1.2188$
UMAG $=0.2489$
GAMMA $=0.8934$

P

PENUMBRA
MOON

$$
\begin{aligned}
\text { AXIS } & =0.9074 \\
F 1 & =1.3053 \\
F 2 & =0.7684
\end{aligned}
$$

$$
R A=16^{H} 7^{H} \quad 9^{5} 9
$$

$$
D E C=-19-59-22.0
$$

$$
S D=16^{\prime} 36 . " 4
$$

$$
H P=1^{\circ} 0.56 .9
$$

SAROS $140 \quad(24 / 80)$
$J D=2449497.647$
$\Delta T=60.5 \mathrm{~S}$

PARTIAL LUNAR ECLIPSE - 15 APR 1995

101
C. 2

PENUMBRAL LUNAR ECLIPSE - 8 OCT 1995

$$
\begin{aligned}
4 X I S & =1.0557 \\
F 1 & =1.2364 \\
F 2 & =0.6921
\end{aligned}
$$

TOTAL LUNAR ECLIPSE - 27 SEP 1996

PARTIAL LUNAR ECLIPSE - 24 MAR 1997

CONTACTS
$P 1=1: 40.5 \mathrm{UT}$
$\mathrm{Ul}=2: 57.6 \mathrm{UT}$
$U 4=6: 21.5 \mathrm{UT}$
$P 4=7: 38.4 \mathrm{UT}$

MOON

$$
\begin{aligned}
\text { FXIS } & =0.4452 \\
F 1 & =1.2005 \\
F 2 & =0.6551
\end{aligned}
$$

$R A=12^{H} 13^{H} 42 .{ }^{5} 0$
$D E C=-1^{\circ} 0^{\prime}-4 . .^{\prime 2}$
$S D=14 \times 51 .{ }^{\prime \prime} 3$
$H P=0^{0} 54.31 .3$

TOTAL LUNAR ECLIPSE - 16 SEP 1997

PENUMBRAL LUNAR ECLIPSE - 13 MAR 1998

PARTIAL LUNAR ECLIPSE - 28 JUL 1999

TOTAL LUNAR ECLIPSE - 21 JAN 2000

TOTAL LUNAR ECLIPSE - 16 JUL 2000

TOTAL LUNAR ECLIPSE - 9 JAN 2001

PARTIAL LUNAR ECLIPSE - 5 JUL 2001

$M I D=14: 55.3 \mathrm{UT}$
PMAG $=1.5733$
LMAG $=0.4995$
GAMMA $=-0.7288$

N
I

CONTACTS
$P 1=12: 10.7 \mathrm{UT}$
$U_{1}=13: 35.1$ UT
$U 4=16: 15.3 \mathrm{UT}$
$P 4=17: 39.9 U T$

MOON

$$
\begin{aligned}
\text { AXIS } & =-0.6660 \\
F 1 & =1.2006 \\
F 2 & =0.6658
\end{aligned}
$$

$\frac{1}{5}$

$\begin{aligned} R A & =18^{H} 59^{\mu} 16^{\circ} 6 \\ D E C & =-23^{\circ}-24^{\prime}-20 . .^{3} \\ S D & =14^{\prime} 56^{.6} 6 \\ H P & =0^{\circ} 54^{\prime} 50.4\end{aligned}$

PENUMBRAL LUNAR ECLIPSE - 30 DEC 2001

PENUMBRAL LUNAR ECLIPSE - 26 MAY 2002

PENUMBRAL LUNAR ECLIPSE - 24 JUN 2002

TOTAL LUNAR ECLIPSE - 16 MAY 2003

TOTAL LUNAR ECLIPSE - 9 NOV 2003

CONTACTS
$P 1=22: 15.0 \mathrm{UT}$
U1 = 23:32.4 UT
$U 2=1: 6.9 U T$
$U 3=1: 30.5 \mathrm{UT}$
$U 4=3: 4.7$ UT
$P 4=4: 22.1 \mathrm{UT}$

MOON

$$
\begin{aligned}
\mathrm{A} \times 15 & =-0.3892 \\
F 1 & =1.01945 \\
F 2 & =0.6455
\end{aligned}
$$

$R A=2^{H} 55^{\mu} 37 .{ }^{5} 0$
$D E C=16^{\circ} 19^{\circ} 48.4$
$S D=14^{\prime} 43 . " 8$
$H P$ a $0^{\circ} 54^{\prime} 3 . " 6$
SAROS $126 \quad(45 / 72)$
$J 0=2452952.555$
$\Delta T=67.8 \mathrm{~S}$

TOTAL LUNAR ECLIPSE - 4 MAY 2004

TUTAL LUNAR ECLIPSE - 28 OCT 2004

PENUMBRAL LUNAR ECLIPSE - 24 APR 2005

PARTIAL LUNAR ECLIPSE - 17 OCT 2005

PENUMBRAL LUNAR ECLIPSE - 14 MAR 2006

CONTACTS
P1 = 21:21.6 UT
$P 4=2: 13.7 \mathrm{UT}$
MOON

$$
\begin{aligned}
\text { AXIS } & =0.9211 \\
F 1 & =1.1948 \\
F 2 & =0.6479
\end{aligned}
$$

1
5

$$
\begin{aligned}
\mathrm{RA} & =11^{H} 40^{H} 41^{5} 3 \\
\mathrm{DEC} & =3^{0} 5 \cdot 18.0 \\
S D & =14.45 .1 \\
H P & =0^{\circ} 54.8 .3
\end{aligned}
$$

PARTIAL LUNAR ECLIPSE - 7 SEP 2006

CONTACTS
$P 1=16: 42.4 \mathrm{UT}$
$\mathrm{U} 1=18: 5.3 \mathrm{UT}$
$U 4=19: 37.7 \mathrm{UT}$
$P 4=21: 0.4 \mathrm{UT}$
-W

$$
\begin{aligned}
\text { HXIS } & =-0.9472 \\
F_{1} & =1.3139 \\
F 2 & =0.7742
\end{aligned}
$$

SAROS $118 \quad 152 / 75)$
$J D=2453986.286$
$\Delta T=70.1 \mathrm{~s}$

TOTAL LUNAR ECLIPSE - 3 MAR 2007

TOTAL LUNAR ECLIPSE - 28 RUG 2007

CONTACTS
P1 $\quad 7: 52.0$ UT
$\mathrm{Ul}=8: 50.8 \mathrm{UT}$
$\mathrm{U} 2=9: 51.9 \mathrm{UT}$
$U 3=11: 22.8 \mathrm{UT}$
U4 $=12: 23.9$ UT
$P 4=13: 22.5 \mathrm{UT}$

$$
-W
$$

MOON

$$
\begin{aligned}
\mathrm{AX1S} & =-0.2126 \\
\mathrm{~F} 1 & =1.2812 \\
\mathrm{~F} 2 & =0.7429
\end{aligned}
$$

SAROS $128 \quad(40 / 71)$

TOTAL LUNAR ECLIPSE - 21 FEB 2008

CONTACTS
$\mathrm{Pl}=0: 34.7 \mathrm{UT}$
$U 1=1: 42.6$ UT
$\mathrm{U} 2=3: 0.3 \mathrm{UT}$
U3 $=3: 51.0 \mathrm{UT}$
$\mathrm{U4}=5: 8.9 \mathrm{UT}$
$P 4=6: 17.2$ UT

MOON

PARTIAL LUNAR ECLIPSE - 16 AUG 2008

N
I

CONTACTS
P1 $=18: 22.8 \mathrm{UT}$
$U 1=19: 35.4 U T$
$U 4=22: 44.4 \mathrm{UT}$
$P 4=23: 57.0 \mathrm{UT}$
MOON
SAROS $138 \quad(29 / 83)$
$J D=2454695.383$
$\Delta T=71.8 \mathrm{~S}$

PENUMBRAL LUNAR ECLIPSE - 7 JUL 2009

PENUMBRAL LUNAR ECLIPSE - 6 AUG 2009

$$
\begin{aligned}
A \times I S & =1.2259 \\
F 1 & =1.1902 \\
F 2 & =0.6541
\end{aligned}
$$

SAROS 148 (3/71)
$J D=2455049.528$
$\begin{aligned} R A & =21^{H} 2^{H} 46.0^{5} 2 \\ D E C & =-15^{9}-34-32 . " 4 \\ S D & =14^{\prime} 45 . " 9 \\ H P & =0^{\circ} 54^{\prime} 11.4\end{aligned}$

PARTIAL LUNAR ECLIPSE - 31 DEC 2009

$M I D=19: 22.5 \mathrm{UT}$
PMAG $=1.0808$
UMAG $=0.0820$

PARTIAL LUNAR ECLIPSE - 26 JUN 2010

MID = 11:38.3 UT
PMAG $=1.6033$
UMAG $=0.542 \mathrm{U}$
GAMMA $=-0.7090$

CONTACTS
P1 $=8: 55.3 \mathrm{UT}$
$\mathrm{Ul}=10: 16.4 \mathrm{UT}$
$U 4=13: 0.3 \mathrm{UT}$
$P 4=14: 21.5$ UT

TOTAL LUNAR ECLIPSE - 21 DEC 2010

MIU $=8: 16.8 U T$
PMAG $=2.3054$
UMAS $=1.2614$
GAIMMA $=0.3213$

MOON

$A \times 15$	$=0.3118$
$F 1$	$=1.2573$
$F 2$	$=0.7145$

$R A=5^{\mu} 57^{\mu} 17 . .^{\circ} 2$
DEC $=23^{0} 44^{\prime} 47 .{ }^{\prime \prime} 5$
$S D=15^{\prime} 52 .{ }^{\prime \prime} 1$
$H P=0^{\circ} 58^{\prime} 14.3$

TOTAL LUNAR ECLIPSE - 15 JUN 2011

CONTACTS
$P 1=17: 22.8 \mathrm{UT}$
U1 曰 18:22.3 UT
U2 $=19: 21.9$ UT
U3 = 21: 3.1 UT
$U 4=22: 2.6 U T$
$P 4=23: 2.3 U T$

$$
\begin{aligned}
A \times 1 S & =0.0877 \\
F 1 & =1.2638 \\
F 2 & =0.7285
\end{aligned}
$$

SAROS $130(34 / 72)$

TOTAL LUNAR ECLIPSE - 10 DEC 2011

PARTIAL LUNAR ECLIPSE - 4 JUN 2012

PARTIAL LUNAR ECLIPSE - 25 APR 2013

PENUMBRAL LUNAR ECLIPSE - 18 OCT 2013

TOTAL LUNAR ECLIPSE - 15 APR 2014

CONTACTS
$P 1=4: 51.7 \mathrm{UT}$
$U_{1}=5: 57.6 U T$
$U 2=7: 6.0 U T$
U3 ■ 8:24.8 UT
U4 - 9:33.3 UT
$\mathrm{P4}=10: 39.2 \mathrm{UT}$
MOON

AX1S	$=-0.2862$
F1	$=1.2399$
F2	$=0.6979$

$R A=13^{H} 33^{m} 21^{5} .1$
$D E C=-10^{\circ}-2 \div 59.4$
$S D=15^{\prime} 30 . " 9$
$H P=0^{\circ} 56^{\prime} 56 .{ }^{\prime \prime} 5$

TOTAL LUNAR ECLIPSE - 8 OCT 2014

TOTAL LUNAR ECLIPSE - 4 APR 2015

MID $=12: 0.1 \mathrm{UT}$
PMAG $: 2.1052$
UMAG $=1.0053$
GAMMA $=0.4461$

N CONTACTS
$P 1=8: 59.4 \mathrm{UT}$ $U 1=10: 15.3 \mathrm{uT}$ $U 2=11: 56.0 \mathrm{UT}$ $U 3=12: 4.6 U T$ U4 $=13: 45.2 \mathrm{UT}$
$P 4=15: 0.8 U T$

$$
\begin{aligned}
A \times 1 S & =0.4046 \\
F_{1} & =1.1982 \\
F_{2} & =0.6544
\end{aligned}
$$

SAROS 132 (30/71)
$J D=2457117.001$
$R A=12^{H} 53^{4} 29 . .^{5} 7$
DEC $=-5^{0}-17-19.8$
SD $=14 \times 49.9$
$H P=0^{\circ} 54^{\prime} 25.9$

TOTAL LUNAR ECLIPSE - 28 SEP 2015

PENJMERAL LUNAR ECLIPSE - 23 MAR 2016

PENUMBRAL LUNAR ECLIPSE - 18 AUG 2016

PENUMBRAL LUNAR ECLIPSE - 16 SEP 2016

PARTIAL LUNAR ECLIPSE - 7 AUG 2017

TOTAL LUNAR ECLIPSE - 31 JAN 2018

TOTAL LUNAR ECLIPSE - 27 JUL 2018

CONTACTS
P1 ョ 17:12.7 UT
U1 a 18:23.8 UT
U2 $=19: 29.6 \mathrm{UT}$
U3 $=21: 13.5$ UT
$\mathrm{U4}=22: 19.3 \mathrm{UT}$
$P 4=23: 30.4 \mathrm{UT}$

PENUMBRA
MOON

$$
\begin{aligned}
\mathrm{AXIS} & =0.1049 \\
\mathrm{~F}_{1} & =1.1866 \\
\mathrm{~F} 2 & =0.6511
\end{aligned}
$$

SAROS $129 \quad(38 / 71)$
$J D=2458327.349$
$\Delta T=80.4 \mathrm{~s}$

TOTAL LUNAR ECLIPSE - 21 JAN 2019

PARTIAL LUNAR ECLIPSE - 16 JUL 2019

PENJMBRAL LUNAR ECLIPSE - 10 JAN 2020

$M!D=19: 9.8 \mathrm{UT}$
PMAG $=0.9208$
UMAG $=-0.1109$

N
1
CONTACTS
P1 = 17: 5.4 UT
$P 4=21: 14.3$ UT

PENUMBRA
MOON

$$
\begin{aligned}
\mathrm{AXIS} & =1.0550 \\
\mathrm{~F} 1 & =1.2806 \\
\mathrm{~F} 2 & =0.7276
\end{aligned}
$$

I
S

RA	$=7^{H} 26^{\mu} 45^{.} 7$
DEC	$=23^{\circ} 00^{\circ} 3 . .^{\circ} 5$
SD	$=16^{\circ} 4 .^{\prime \prime} 8$
HP	$=0^{\circ} 59^{\circ} 0.8$

PENUMBRAL LUNAR ECLIPSE - 5 JUN 2020

PENUMBRAL LUNAR ECLIPSE - 30 NOV 2020

MID $=9: 42.6 \mathrm{UT}$
PMAG $=0.8548$
LUMAG $=-0.2575$

N CONTACTS
$P_{1}=7: 29.8$ UT
P4 a 11:55.7 UT

$$
\text { GAMMA }=-1.1309
$$

PENUMBRA
-W

MOON
$R A=4^{4} 28^{n} 46.5$
DEC - $20^{\circ} 44^{\prime \prime} 46 . \mathbf{n}^{\prime}$
SD = 14.52."4
$H P=0^{\circ} 54^{\prime} 35.11$
SAROS $116 \quad(58 / 73)$
$J=2459183.906$
$\Delta T=$
82.65

TOTAL LUNAR ECLIPSE - 26 MAY 2021

PARTIAL LUNAR ECLIPSE - 19 NOV 2021

$$
\begin{aligned}
\text { MID } & =9: 2.7 \mathrm{UT} \\
\text { PMAG } & =2.0984 \\
\text { UMAG } & =0.9786 \\
\text { GAMMA } & =-0.4552
\end{aligned}
$$

$\stackrel{N}{N}$

PENUMSRA

CONTACTS
$P 1=6: 0.0 \mathrm{UT}$
$\mathrm{U1}=7: 18.1 \mathrm{UT}$
$U 4=10: 47.4 \mathrm{UT}$
P4 a 12: 5.5 UT

TOTAL LUNAR ECLIPSE - 16 MAY 2022

TOTAL LUNAR ECLIPSE - 8 NOV 2022

CONTACTS
$P 1=8: 0.2 \mathrm{LT}$
U1 $=9: 8.4 \mathrm{UT}$
U2 $=10: 15.8 \mathrm{UT}$
U3 a 11:41.7 UT
$U 4=12: 49.2 U T$
$P 4=13: 57.7$ UT

$$
\begin{aligned}
A \times T S & =0.2405 \\
F 1 & =1.2296 \\
F 2 & =0.6807
\end{aligned}
$$

SARIOS $136 \quad(20 / 72)$
JD $=2459891.959$

> | | $M O 0 N$ |
| ---: | :--- |
| $R R$ | $=2^{H} 53^{M} 48.0$ |
| $D E C$ | $=16^{\circ} 51.6 .4$ |
| $S D$ | $=15^{\prime} 17.7$ |
| $H P$ | $=0^{\circ} 55^{\prime} 7.78$ |
| ΔT | $=84.45$ |

PENUMBRAL LUNAR ECLIPSE - 5 MAY 2023

PARTIAL LUNAR ECLIPSE - 28 OCT 2023

PARTIAL LUNAR ECLIPSE - 18 SEP 2024

TOTAL LUNAR ECLIPSE - 14 MAR 2025

$$
\begin{aligned}
\text { MID } & =6: 58.5 U T \\
\text { PMAG } & =2.2858 \\
\text { UMAG } & =1.1831 \\
\text { GAMMA } & =0.3484
\end{aligned}
$$

$$
\underset{\sim}{N}
$$

$$
P 1=3: 55.4 U T
$$

$$
U_{1}=5: 9.0 \mathrm{UT}
$$

$$
\text { UL }=6: 25.6 \text { UT }
$$

$$
\begin{aligned}
A \times 1 S & =0.3171 \\
F 1 & =1.2029 \\
F 2 & =0.6559
\end{aligned}
$$

CONTACTS
P1 a 15:26.5 UT
U1 = 16:26.4 UT
U2 $=17: 30.2 \mathrm{UT}$
$\mathrm{U3}=18: 53.2 \mathrm{UT}$
U4 - 19:56.7 UT
$P 4=20: 56.5 \mathrm{UT}$
MOON

$$
\begin{aligned}
\mathrm{AXIS} & =-0.2719 \\
\mathrm{~F} 1 & =1.2791 \\
\mathrm{~F} 2 & =0.7394
\end{aligned}
$$

SAROS 128 (41/71) $J D=2460926.259$

$\Delta T=87.15$

TOTAL LUNAR ECLIPSE - 3 MAR 2026

PARTIAL LUNAR ECLIPSE - 28 AUG 2026

PENUMBRAL LUNAR ECLIPSE - 18 JUL 2027

$$
\text { PMAG }=0.0279
$$

$$
\begin{array}{ll}
\mathbf{N} \\
\mathbf{l} & P 1=\frac{\text { CONTACTS }}{} \\
P 4=15: 37.6 \mathrm{UT} \\
& =16: 28.0 \mathrm{UT}
\end{array}
$$

$$
\text { UMAG }=-1.0629
$$

	MOON
	$=19^{H} 52^{\mu} 57.5$
DEC	$=-22^{\circ} 20^{-24.08}$
	14* 43.0
	$=0^{\circ} 54^{\circ} 0.6$

$\Delta T=88.9 \mathrm{~s}$

PARTIAL LUNAR ECLIPSE - 12 JAN 2028
CONTACTS
MID $=4: 12.7$ UT
PMAG $=1.0722$
UMAG $=0.0720$
GAMMA $=0.9816$

PARTIAL LUNAR ECLIPSE - 6 JUL 2028

$$
\begin{aligned}
\text { MID } & =18: 19.4 \text { UT } \\
\text { FMAG } & =1.4526 \\
\text { UMAG } & =0.3945 \\
\text { GAMMA } & =-0.7902
\end{aligned}
$$

$\underset{N}{N}$
CONTACTS
P1 = 15:42.2 UT
U1 = 17: 8.2 UT
U4 в 19:30.8 UT
$P 4=20: 56.9 \mathrm{UT}$

MOON
AXIS $=-0.7329$
$F 1=1.2145$

$$
F 2=0.6796
$$

SAROS $120 \quad(59 / 84)$
$J D=2461959.265$
$\Delta T=$
89.9 S

TOTAL LUNAR ECLIPSE - 31 DEC 2028

TOTAL LUNAR ECLIPSE - 26 JUN 2029

TOTAL LUNAR ECLIPSE - 20 DEC 2029

CONTACTS
$P_{1}=19: 40.6 \mathrm{UT}$
$\mathrm{U1}=20: 54.5 \mathrm{UT}$
$U 2=22: 14.3 U T$
U3 = 23: 8.8 UT
U4 - 0:28.7 UT
$P 4=1: 42.5$ UT

$$
\begin{aligned}
R X J S & =-0.3499 \\
F 1 & =1: 2137 \\
F 2 & =0.6609
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{RA} & =5^{H} 56^{M} 58^{\circ} 8 \\
D E C & =23^{\circ} 5^{\prime} 6.4 \\
S D & =15^{\circ} 0.4 \\
H P & =0^{\circ} 55^{\circ} 4.46
\end{aligned}
$$

PARTIAL LUNAR ECLIPSE - 15 JUN 2030

PENUMBRAL LUNAR ECLIPSE - 7 MAY 2031

$$
\text { MID }=3: 50.5 \mathrm{UT}
$$

CONTACTS
P1 $\quad 1: 49.7$ UT
$P 4=5: 51.2$ UT

$$
\begin{aligned}
\text { PMAG } & =0.9067 \\
\text { UMAG } & =-0.0847 \\
\text { GAMMA } & =-1.0694
\end{aligned}
$$

MOON

$$
\begin{aligned}
\text { AXIS } & =-1.0669 \\
F 1 & =1.2880 \\
F 2 & =0.7490
\end{aligned}
$$

N

TOTAL LUNAR ECLIPSE - 25 APR 2032

TOTAL LUNAR ECLIPSE - 18 OCT 2032

TOTAL LUNAR ECLIPSE - 14 APR 2033

$M I D=19: 12.3 \mathrm{UT}$
N

$$
\begin{aligned}
& \text { PMAG }=2.1971 \\
& \text { UMAG }=1.0988
\end{aligned}
$$

$$
\text { GAMMA }=0.3955
$$

$-W$

MOON

$$
\begin{aligned}
\text { AXIS } & =0.3582 \\
F 1 & =1.1959 \\
F 2 & =0.6538
\end{aligned}
$$

SAROS 132 (31/71)
$J D=2463702.301$
PENUMBRA
$R A=13^{H} 33^{H} 37^{5}$.2
DEC $=-9^{0}-23^{\circ}-8 . .^{\prime 2}$
$S D=14.48 .{ }^{2} 5$
$H P=0^{\circ} 54^{\prime} 20.0^{\prime} 9$
$\Delta T=94.7 \mathrm{~s}$

CONTACTS
$P 1=16: 9.8 \mathrm{UT}$
U1 a 17:24.4 UT
U2 a 18:47.4 UT
U3 $=19: 37.5$ UT
U4 = 21: 0.3 UT
P4 - 22:14.8 UT

TOTAL LUNAR ECLIPSE - 8 OCT 2033

PENJMBRAL LUNAR ECLIPSE - 3 APR 2034

PARTIAL LUNAR ECLIPSE - 28 SEP 2034

PENUMBRAL LUNAR ECLIPSE - 22 FEB 2035

PARTIAL LUNAR ECLIPSE - 19 AUG 2035

FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986-2035

APPENDIX A - LUNAR ECLIPS $三 S$

GEOMETRY OF LUNAR ECLIPSES

The fundamental basis of the lunar eclipse is the alignment of the Sun, Earth and Moon such that some region of the Moon passes through Earth's shadow. This shadow is composed of two parts: the outer or penumbral shadow and the inner or umbral shadow. From within the penumbra, only part of the Sun is obscured by Earth. In contrast, the dark, central umbra is the shadow of complete or total eclipse. The Moon's path through Earth's shadow varies considerably from one eclipse to another with the specific geometry directly determining the nature of the eclipse. Lunar eclipses can be characterized as either penumbral or umbral. During a penumbral eclipse, the Moon passes through part of the penumbral shadow but misses the umbral shadow. Such events are relatively unimportant and, in fact, are rarely observable unless at least half of the Moon's diameter is immersed in the shadow. Nevertheless, penumbral eclipses have been included in Fifty Year Canon of Lunar Eclipses for completeness. However, the principle emphasis in this appendix will be on umbral eclipses which are readily observable, even with the unaided eye. They can be classified as either partial or total. If the Moon's path takes some part of it through the central axis of the shadow, then the eclipse is also known as a central eclipse. Since the radius of the umbral shadow always exceeds the Moon's apparent diameter, a central eclipse must also be a total eclipse.

As a consequence of its elliptical orbit around Earth, the Moon's distance and semi-diameter vary over the course of a month. From maximum apogee to minimum perigee, the Moon's distance from Earth's center ranges from $406,700 \mathrm{~km}$ to $356,400 \mathrm{~km}$. This 12% range in distance corresponds to a variation in the Moon's apparent semi-diameter of 882 to 1006 arc-seconds.

Eclipse geometry is further complicated by the fact that Earth's orbit around the Sun is also elliptical. Thus, the Sun's apparent semidiameter varies from 944 arc-seconds at aphelion to 976 arc-seconds at perihelion. This 3% range in apparent size is, of course, quite indistinguishable to the naked eye. However, it's a critical factor in determining the diameter of Earth's shadow at the point where it crosses the Moon's orbit. The umbra actually extends far beyond the Moon. Its length varies from $1,406,000 \mathrm{~km}$ at aphelion to $1,360,000 \mathrm{~km}$ at perihelion. The semi-diameter of the umbra at lunar perigee is 2772 (aphelion) to 2805 (perihelion) arc-seconds; at lunar apogee, the semidiameter ranges from 2307 (aphelion) to 2340 (perihelion) arc-seconds.

ECLIPSE FREQUENCY. AND RECURRENCE

Having established the preliminary geometry for umbral lunar eclipses, a question immediately arises. Why doesn't a lunar eclipse occur at every Full Moon? Since the Moon cycles through its phases every $291 / 2$ days or one synodic month, one would expect an eclipse to occur during each opposition with the Sun. If the Moon's orbit around Earth were in the same plane as Earth's around the Sun, this is precisely what would happen. However, the Moon's orbit is inclined to Earth's at a mean angle of $5^{\circ} 8^{\prime}$. Our planet's natural satellite passes through the ecliptic only twice a month at a pair of points called the nodes (Figure A-1). The rest of the time, the Moon is either above or below the plane of Earth's orbit (i.e. - the ecliptic). Since an eclipse can only occur when the Sun, Earth and Moon lie in the same plane, these conditions are met when Full Moon takes place at one of the nodes.

An examination of the geometry of the nodes yields further clues on the subject of eclipse recurrence. Since Earth's shadow and the Moon both subtend significant angles, neither one has to be exactly at the nodes in order to produce an eclipse. If Full Moon occurs while the shadow axis is within 10.9° of a node then an umbral eclipse is possible. However, a total eclipse can only occur if the shadow axis is within 5.2° of a node. The Sun (and Earth's shadow) travels along the ecliptic at about 1° per day and requires 22 days to cross the eclipse zone centered on each node. Full Moon occurs every $291 / 2$ days, so it's quite possible that the Sun may pass through the eclipse zone before Full Moon occurs. Naturally, no umbral eclipse takes place under these circumstances.

The period during which the Sun is near a node is called an eclipse season and there are two eclipse seasons each year. If the line of nodes were fixed in space, then eclipse seasons would occur six months apart and at the same time each year. Actually, the line of nodes slowly drifts westward at the rate of 19° per year. As a result, eclipse seasons occur every 173.3 days. Two eclipse seasons constitute an eclipse year of 346.6 days. This is 18.6 days short of a lunar year and is equal to the time required by the Sun (and Earth's shadow) to cross the same node twice.

Although umbral lunar eclipses are not uncommon, they are actually somewhat rarer than solar eclipses. A detailed examination of eclipse geometry will substantiate this statement. An umbral eclipse is possible only when the Moon is within that section of its orbit inscribed by the exterior tangents of the Sun-Earth rays (Figure A-1). However, the sunward arc of the Moon's orbit is clearly longer than the anti-sunward
arc which passes through the umbra. The number of solar and lunar eclipses that occur are proportional to the lengths of these two arcs which is almost 5 to 3 . Thus, an average of about 5 out of every 8 eclipses are solar eclipses. This contradicts common experience which tells us that lunar eclipses are seen more frequently than solar eclipses. A selection effect is in operation here because a lunar eclipse can be seen from the entire nighttime hemisphere of Earth, while a solar eclipse is only visible from a small fraction of the daytime hemisphere.

In any one calendar year, there are at least two and as many as five solar eclipses. On the other hand, there can be no more than three umbral lunar eclipses per year and it's quite possible to have none at all. Combining both solar and lunar eclipses, it's possible for one calendar year to contain a maximum of seven eclipses. However, they can only occur in the combinations of five solar and two lunar or four solar and three lunar. In either case, the solar eclipses must all be partial. As a point of interest, 1982 happened to be one of the rare years containing seven eclipses. What made it even more remarkable was the fact that all three lunar eclipses were total. This will not happen again until the year 2485 AD.

In order to find a periodicity in the mechanics of lunar eclipses, we must search for a commensurability between the synodic month and the eclipse year. Fortunately, 19 eclipse years are almost exactly equal to 223 synodic months; they differ by only 11 hours. The coincidence is all the more remarkable when compared to a period known as the anomalistic month. This is the time required for the Moon to pass from perigee to perigee and is approximately $271 / 2$ days. As unlikely as it may seem, 239 anomalistic months are also equal to 223 synodic months to within 6 hours.

This fortuitous commensurability results in the famous Saros cycle of $65851 / 3$ days or 18 years, 11 days and 8 hours. Any two eclipses separated by one Saros cycle share very similar mechanical characteristics. They occur at nearly the same node with the Moon at the same distance from Earth and at nearly the same time of year. Because the Saros does not contain an integral number of days, its biggest drawback is that subsequent eclipses are visible from different parts of the globe. Although the $1 / 3$ day displacement shifts the hemisphere facing the Moon 120° westward with each cycle, the series returns to approximately the same hemisphere every 3 Saroses or 56 years and 34 days. Note that because the Saros is slightly longer than 18 years, the eclipses in a series shift forward with respect to the seasons by about two months per century.

A Saros series doesn't last indefinitely because the various periods are not perfectly commensurate with one another. In particular, 19
eclipse years are $1 / 2$ day longer than the Saros. As a result, the node shifts eastward by about 0.5° with each Saros cycle.

A typical Saros series begins when Full Moon occurs about 16.5° east of a node. If the Moon is near its descending node, the Saros number is odd [van den Berg, 1955] and the Moon is south of the ecliptic. Similarly, if the Moon is near its ascending node, the Saros number is even and the Moon is north of the ecliptic. With each succeeding eclipse in a series, the Moon shifts westward with respect to the node and northward (odd Saros) or southward (even Saros) in ecliptic latitude. The first seven to fifteen eclipses in a Saros series are penumbral events as each subsequent Full Moon occurs closer to the node. The penumbral eclipses are followed by ten to twenty partial umbral events of progressively increasing magnitude as the lunar path swings deeper into Earth's shadow. The change in magnitude between successive eclipses varies and is greatest when Earth is near aphelion (early July). Finally, the entire Moon passes through the umbra as we approach the middle of the Saros series. The next twelve to twenty-five eclipses are total, including three or four central eclipses midway through the sequence. The series now wanes as each eclipse retreats further west of the node. The total eclipses in the series are followed by another ten to twenty partial umbral eclipses of decreasing magnitude. Ultimately, the Saros series terminates about 16.5° west of the node after seven to fifteen penumbral eclipses. A typical series lasts thirteen to fourteen centuries and may be comprised of seventy to eighty eclipses of which some forty to fifty-five are umbral.

At any one time, there are a number of Saros series in progress. For instance, during the two hundred year period covered in Sections 1 and 2, there are 46 individual series in progress. A complete breakdown of these series including the dates of their first and last members, series duration and number of eclipses by type are included in Table A-1. As can be seen, the actual number of eclipses in each eclipse varies considerably. For comparison, a similar breakdown of all solar eclipse series in progress over the same period is presented in Table A-2. As old series terminate, new ones are always beginning and take their places. Although not as well known as the Saros, the Tritos, the Inex and Meton's Cycle are also useful relationships in eclipse recurrence (Table A-3).

SAROS SERIES SUMMARY FOR LUNAR ECLIPSES

Table A-3

Saros Series Relationships

If an eclipse of Saros series ' X ' is followed by another eclipse after a period of:

1 Lunation (~ 1 month)
5 Lunations (~ 5 months)
6 Lunations (~ 6 months)
Lunations ($\quad x+5$
135 Lunations (~ 11 years -1 month) $X+1$
223 Lunations (~ 18 years +11 days)
235 Lunations (~ 19 years)
358 Lunations (~ 29 years - 20 days)
$X+38$
$X-33$
Then the second eclipse belongs to Saros series:
$x+1$ (Tritos)
X (Saros)
$X+10$ (Meton's Cycle)
$X+1 \quad$ (Inex)
(based on a table from Meeus and Mucke [1979])

ENLARGEMENT OF EARTH'S SHADOW

In 1707, Lahire made a curious observation about Earth's umbra. In order to accurately predict the duration of a lunar eclipse, he found it necessary to increase the radius of the shadow about $1 / 41$ larger than warranted by geometric considerations. Although the effect is known to be related to layer of dust suspended in Earth's atmosphere, it is not completely understood since the shadow enlargement seems to vary from one eclipse to the next.

For many years, astronomers have accounted for this phenomenon in eclipse predictions by increasing the apparent radius of Earth's shadow by $1 / 50$. Following this tradition, the Astronomical Almanac defines the geocentric angular radii of Earth's shadows at the distance of the Moon as:

$$
\begin{array}{ll}
& \begin{array}{l}
\pi_{1}=0.99833 \pi_{\mathrm{m}} \\
\text { penumbral radius: } \\
\text { umbral radius: }
\end{array} \\
& f_{1}=1.02\left(\pi_{1}+s_{s}+\pi_{s}\right) \\
\text { where: } & \boldsymbol{f}_{\mathbf{2}}=1.02\left(\pi_{1}-s_{s}+\pi_{s}\right)
\end{array}
$$

Danjon [1951] takes issue with this tradition and points out that the only reasonable way of taking into account the existence of a layer of opaque air surrounding Earth is to increase the planet's radius by the altitude of the layer. This can be accomplished by proportionally increasing the parallax of the Moon. Furthermore, Danjon argues that the radii of the umbral and penumbral shadows are subject to the same absolute correction and not the same relative correction employed in the traditional definition. Finally, he estimates the thickness of the occulting layer to be 75 km and this would result in an enlargement of Earth's radius and the Moon's parallax of about $1 / 85$.

Since 1951, the French almanac Connaissance des Temps has adopted Danjon's definitions of the radii of Earth's shadows as:

$$
\text { penumbral radius: } \quad f_{1}=1.01 \pi_{1}+s_{s}+\pi_{s}
$$ umbral radius: $\quad f_{2}=1.01 \pi_{1}-s_{s}+\pi_{s}$

Danjon's geometric arguments are sound and his definitions have also been used by Meeus and Mucke [1979] in their ambitious work. Unfortunately, the C.d.T. value of $1 / 100$ for the enlargement of Earth's radius (and the Moon's parallax) yields a mean umbral enlargement of 0.8% and this does not fit the observations nearly as well as the old $1 / 50$ rule.

In an analysis of 57 eclipses covering a period of 150 years, Link [1969] finds a mean shadow enlargement of 2.3%. Furthermore, timings of crater entrances and exits through the umbra during four recent eclipses (Table A-4) closely support the traditional value of 2%. From a physical point of view, there is no abrupt boundary between the umbra and penumbra. The shadow density actually varies continuously as a function of radial distance from the central axis out to the extreme edge of the penumbra. However, the density variation is most rapid near the theoretical edge of the umbra. Kuhl's [1928] contrast theory demonstrates that the edge of the umbra is perceived at the point of inflexion in the shadow density. This point appears to be connected with a layer of meteoric dust in Earth's atmosphere at an altitude of about $120-150 \mathrm{~km}$. This net enlargement of Earth's radius of 1.9% to 2.4% corresponds to an umbral shadow enlargement of 1.5% to 1.9%, in reasonably good agreement with the conventional value.

Table A-4
Umbral Shadow Enlargement From Craters Timings

Date of Eclipse	$\begin{gathered} \text { Crater } \\ \\ \text { Entrances } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Crater } \\ \\ \text { Exits } \\ \text { \% } \\ \hline \end{gathered}$	Sky \& Telescope Reference
30 Jan 1972	1.69 (420)	1.68 (295)	Oct 1972, p. 264
24 May 1975	1.79 (332)	1.61 (232)	Oct 1975, p. 219
5 Jul 1982	2.02 (538)	2.24 (159)	Dec 1982, p. 618
30 Dec 1982	1.74 (298)	1.74 (90)	Apr 1983, p. 387

Note: Figures in '()' are the number of observations included in each shadow enlargement measurement.

Ideally, the author would like to define the shadow radii using Danjon's geometry but substituting the 1.01 enlargement factor with a larger value closer to the traditional factor of 1.02 . However, this would introduce a third pair of shadow definitions in the current literature
which would prohibit comparisons with other eclipse predictions.
Furthermore, the accuracy to which the umbral shadow's enlargement can be measured does not warrant the confusion that would be introduced by yet another set of definitions. Although the geometry of Danjon's definitions is correct and far more appealing, the author has chosen to use the traditional definitions of the Astronomical Almanac because they appear to yield more accurate predictions.

As a consequence of the different shadow radii definitions, comparisons between Fifty Year Canon of Lunar Eclipses and C.d.T or Canon of Lunar Eclipses: -2002 to +2526 will reveal that eclipse magnitudes in the latter two references are smaller by 0.005 for umbral eclipses and 0.026 for penumbral eclipses. Furthermore, it should be noted that in cases of very small penumbral magnitude, the European references will predict no eclipse at all. Whether an eclipse of this type occurs or not is basically of academic interest since such an event is wholely unobservable. Likewise, in cases where this work predicts a total or partial umbral eclipse of small magnitude, the previous references may predict either a partial or penumbral eclipse, respectively. Again the distinction is not critical since the umbra's edge is not sharp and the exact shadow enlargement is unknown. For example, this work predicts a partial eclipse on 3 March 1988 and a penumbral eclipse on 18 August 2016; in contrast, Canon of Lunar Eclipses: -2002 to +2526 predicts a penumbral eclipse on 3 March 1988 and no eclipse on 18 August 2016. Predictions in the Astronomical Almanac should be in close agreement with Fifty Year Canon of Lunar Eclipses. Any discrepencies between the two should reflect real differences in the solar and lunar ephemerides used.

Crater Timings During Lunar Eclipses

The enlargement of Earth's umbra can be measured through careful timings of lunar craters as they enter and exit the shadow. Such observations are best made using a low-power telescope and a clock or watch synchronized with radio time signals. Timings should be made to a precision of 0.1 minute. The basic idea is to record the instant when the most abrupt gradient at the umbra's edge crosses the apparent centre of the crater. In the case of large craters like Tycho and Copernicus, it is recommended that you record the times when the shadow touches the two opposite edges of the crater. The average of these times is equal to the instant of crater bisection. As a planning guide, Table A-5 lists twenty well-defined craters which are recommended for making umbral immersion and emersion timings during lunar eclipses.

It's important to be thoroughly familiar with these features before an eclipse in order to prevent confusion and misidentifications. The four umbral contacts with the Moon's limb can also be used in determining the shadow's enlargement. However, these events are less distinct and difficult to time accurately. Observers are encouraged to make crater timings and to send their results to Sky and Telescope for analysis.

Table A-5

Lunar Craters for Eclipse Timings		
Crater	Latitude	Longitude
Aristarchus	23.7 N	47.4W
Aristoteles	50.2N	17.4E
Billy	13.8S	50.1W
Campanus	28.0S	27.8W
Copernicus	9.7 N	20.0W
Dionysius	2.8N	17.3E
Eudoxus	44.3 N	16.3E
Goclenius	10.0S	45.0E
Grimaldi	5.2 S	68.6W
Kepler	8.1 N	38.0 W
Langrenus	8.95	60.9 E
Manilius	14.5 N	9.1E
Menelaus	16.3 N	16.0E
Plato	51.6 N	9.3W
Plinius	15.4 N	23.7E
Proclus	16.1 N	46.8E
Pytheas	20.5N	20.6W
Taruntius	5.6 N	46.5E
Timocharis	26.7N	13.1W
Tycho	43.3S	11.2W

Danjon Scale of Lunar Eclipse Brightness

The Moon's appearance during a total lunar eclipse can vary enormously from one eclipse to the next. Obviously, the geometry of the Moon's path through the umbra plays an important role. Not as apparent is the effect that Earth's atmosphere has on total eclipses. Although the physical mass of Earth blocks off all direct sunlight from the umbra, the planet's atmosphere refracts some of the Sun's rays into
the shadow. Earth's atmosphere contains varying amounts of water (clouds, mist, precipitation) and solid particles (meteoric dust, organic debris, volcanic ash). This material significantly filters and attenuates the sunlight before it's refracted into the umbra. For instance, large or frequent volcanic eruptions dumping huge quantities of ash into the atmosphere are often followed by very dark, red eclipses for several years. Extensive cloud cover along Earth's limb also tends to darken the eclipse by blocking sunlight. The French astronomer A. Danjon proposed a useful five point scale for evaluating the visual appearance and brightness of the Moon during total lunar eclipses. 'L' values for various luminosities are as follows:

$\mathrm{L}=0$	Very dark eclipse. Moon almost invisible, especially at mid-totality.
$\mathrm{L}=1$	Dark Eclipse, gray or brownish in coloration. Details distinguishable only with difficulty.
$\mathrm{L}=\mathbf{2}$	Dark red or rust-colored eclipse. Very dark in central shadow, while outer edge of umbra is relatively bright.
$\mathrm{L}=4$	Brick-red eclipse. Umbral shadow often bordered with bright or yellow rim.
Very bright orange or copper-red eclipse. Umbral shadow has a bluish, very bright rim.	

The assignment of an 'L' value to lunar eclipses is best done with the naked eye, binoculars or a small telescope near the time of midtotality. It's also useful to examine the Moon's appearance just after the beginning and before the end of totality. The Moon is then near the edge of the shadow and provides an opportunity to assign an ' L ' value to the outer umbra. In making any evaluations, one should record both the instrumentation and the time. Also note any variations in color and brightness in different parts of the umbra, as well as the apparent sharpness of the shadow's edge. Pay attention to the visibility of lunar features within the umbra. Notes and sketches made during the eclipse are often invaluable in recalling important details, events and impressions. Meaningful Danjon brightness estimates are not possible during partial lunar eclipses.

TIME DETERMINATION

The measurement of time is of fundamental importance to all branches of science, but to none more so than astronomy. In fact, astronomy was born through man's first attempts to measure the passage of time by observing the motions of the Sun and the Moon. It should come as no surprise then, that time reckoning remains intricately entwined with astronomy even today. However, the Sun's apparent motion no longer plays the pivotal role as the ultimate temporal yardstick. It's been known for thousands of years that the length of the solar day is not constant but varies with an annual cycle. What was not known before Kepler's time was that Earth's elliptical orbit about the Sun, coupled with the inclination in the planet's axis were responsible for the periodic variations.

Mean Solar Time can be conceptualized as time kept by a fictitious or mean Sun which moves eastward along the celestial equator at the average rate of the true Sun. Greenwich Mean Time (GMT) or Universal Time (UT) is simply Mean Solar Time as measured from Greenwich, England and was used in navigation and surveying for hundreds of years. Unfortunately, this too has fallen by the wayside because Earth does not turn on its axis at a uniform and constant rate. As Earth spins, a tidal friction is imposed on it through the gravitational interaction with the Moon and, to a lesser extent, the Sun. This secular acceleration gradually transfers angular momentum from Earth to the Moon. As Earth loses energy and slows down, the Moon gains this energy and its distance from Earth increases. Although still in its infancy, the technique of lunar laser ranging has shown that the Moon's average distance from Earth is increasing by about four centimeters per year.

It should be pointed out that the secular acceleration of the Moon is very poorly known and may not be constant. Careful records for its derivation only go back as far as 100 years or so. Before then, spurious and often incomplete solar eclipse and lunar occultation observations from medieval and ancient manuscripts comprise the data base. In any case, the current value implies an increase in the length of the day by about 0.001 seconds per century. Such a trivially small amount may seem insignificant, but it has very measurable cumulative effects. In one century, Earth loses 45 seconds, while in one millennium, the planet is one and a quarter hours "behind schedule."

Earth's rotation on its axis is also subject to short term fluctuations for periods of up to several decades. It is believed that these fluctuations may be due to fluid motions in Earth's core which interact
with and disturb the rotation of the mantle. However, climatological changes and variations in sea-level may also play a significant role since they should alter Earth's moment of inertia. Whatever the mechanism is, it is clear that its effects cannot be predicted with the current state of knowledge. A better standard than diurnal rotation for the absolute measurement of time is the use of solar system dynamics. The orbital motions of the planets and of the Moon are predictable to very high accuracy and are directly verifiable through observations. The resulting time is referred to as Ephemeris Time (ET).

In 1957, the International Astronomical Union adopted Ephemeris Time as the standard and defined the ephemeris second as $1 / 31,556,925.9747$ of the tropical year 1900 at January 0 at 12 hours Universal Time. The difference between Ephemeris Time and Universal Time ($=\Delta T$) is obtained through observations of the Moon. The Moon's position is predicted in terms of Ephemeris Time but it is observed with respect to Universal Time. Between 1900 and 1980, the slowing of Earth's rotation on its axis had caused Universal Time to lag 50.54 seconds ($=\Delta \mathrm{T}$) behind Ephemeris Time.

Ephemeris Time remained the basis of all time measurements until 1984. With the technological development of the atomic clock, a method of time measurement became available which has a permanence and stability unmatched by even celestial mechanics. The atomic or SI (for Systeme International) second is defined as $9,192,631,770$ periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the Cesium 133 atom. The SI second was carefully chosen to agree as closely as possible to the ephemeris second. In 1984, the SI second was adopted as the newest time standard and Terrestrial Dynamical Time (TDT) replaced Ephemeris Time. For consistency, the time scale for Terrestrial Dynamical Time was chosen to agree with 1984 Ephemeris Time.

Eclipse predictions are now based on Terrestrial Dynamical Time but actual observations are made in Universal Time. Unfortunately, it's impossible to predict how ΔT (where: $\Delta T=T D T-U T$) will vary in the future. At best, the current trends can be extrapolated but the resulting values of ΔT will inevitably diverge from actual observations. As such observations become available, corrections to the eclipse contact times can be calculated as follows:

$$
\begin{aligned}
& \text { UT (corrected) }=\mathrm{UT} \text { (predicted) }+(\Delta T 1-\Delta T 2) \\
& \text { where: } \begin{array}{l}
\Delta T 1=\text { table value of } \Delta T \text { (in seconds) } \\
\\
\Delta T 2=\text { true or observed } \Delta T \text { (in seconds) }
\end{array}
\end{aligned}
$$

During the period covered by Fifty Year Canon of Lunar Eclipses, corrections to the Moon's altitude and to the maps of eclipse visibility should be negligible.

FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986-2035

APPENDIX B - Program MONECL

APPENDIX B : Program MONECL

1	2	3	4	5	6
123456789012345678901234567890123456789012345678901234567890123456789012					

C****PROGRAM : MONECL
C****PROGRAM MONECL SEARCHES FOR ALL LUNAR ECLIPSES
C****OCCURRING WITHIN A GIVEN DATE INTERVAL.
C****THE GENERAL CHARACTERISTICS AND TIMES FOR EACH ECLIPSE ARE
C****THEN CALCULATED.
C****THE PREDICTED ECLIPSE CHARACTERISTICS ARE STORED IN
C****COMMON/ZERO/ WHERE :
C**** MONTH, IDAY, IYEAR - CALENDAR DATE OF ECLIPSE.
C**** ITYPE - TYPE OF ECLIPSE WHERE :
C**** $=0$ - NO ECLIPSE OCCURS .
C**** $=1$ - TOTAL LUNAR ECLIPSE.
C**** $=2$ - PARTIAL LUNAR ECLIPSE.
C**** $=3$ - PENUMBRAL LUNAR ECLIPSE.
C**** FJD - JULIAN DATE OF INSTANT OF MIDDLE ECLIPSE.
C**** FTIME - TIME (TDT) OF MIDDLE ECLIPSE.
C**** GAMMA - DISTANCE OF MOON'S CENTER FROM AXIS OF
C**** EARTH'S SHADOW (UNITS OF EARTH RADII).
C**** UMAG - UMBRAL MAGNITUDE OF ECLIPSE
C****
C**** PMAG - PENUMBRAL MAGNITUDE OF ECLIPSE.
C****
C****
C****
C****
C****
C****
C***
C***
C***
C***
(FRACTION OF MOON'S DIAMETER OBSCURED BY PENUM
NSAR - SAROS SERIES NUMBER.
IRP - RELATIVE POSITION FROM MIDDLE OF SAROS SERIES.
LN - LUNATION NUMBER (FROM $1 / 1 / 1900$).

CT(3),CT(4) = BEGIN, END TOTAL ECLIPSE.
C****WRITTEN BY F. ESPENAK - 26 MAY 1988.
C****LAST MODIFIED - 18 JUL 1988.
IMPLICIT REAL*8 (A-H, O-Z)
CHARACTER*4 MTH (12)
CHARACTER*10 KIND (3)
COMMON/ZERO/MONTH, IDAY, IYEAR, ITYPE, FJD, FTIME, DELTA , GAMMA,
1
UMAG , PMAG , NSAR , IRP , LN , T1 , T2, T3, CT (6)
DATA SYNOD/29.530589DO/,K/O/
DATA KIND/' TOTAL ',' PARTIAL ',' PENUMBRAL'/
DATA MTH/' JAN',' FEB',' MAR',' APR',' MAY',' JUN',' JUL',
123456789012345678901234567890123456789012345678901234567890123456789012 $\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

```
    1 ' AUG',' SEP',' OCT',' NOV',' DEC'/
C****READ DATE INTERVALS OF ECLIPSE SEARCH.
C**** IM1,ID1,IY1 - MONTH, DAY AND YEAR OF START OF SEARCH INTERVAL.
C**** IM2,ID2,IY2 - MONTH, DAY AND YEAR OF END OF SEARCH INTERVAL.
        READ (20,100) IM1,ID1,IY1,IM2,ID2,IY2
    100 FORMAT(2I3,I5,2I3,I5)
        IF(IY1.EQ.O.OR.IY2.EQ.0) GO TO 99
C****CONVERT GREGORIAN (CALENDAR) DATES TO JULIAN DATES.
    CALL JULDAT(DJ1,IW1,ID1,IM1,IY1,0,0,0.0)
    CALL JULDAT(DJ2,IW2,ID2,IM2,IY2,0,0,0.0)
    IDAY=ID1
    MONTH=IM1
    IYEAR=IY1
    FJD=DJ1-SYNOD
    WRITE(6,200) IM1,ID1,IY1,IM2,ID2,IY2
    200 FORMAT(/1X,'***** LUNAR ECLIPSE SEARCH FROM ',
    1 I3,'/',I2,'/',I5,' TO ',I2,'/',I2,'/',I5/)
C****CALCULATE THE INSTANT OF FULL MOON SYZYGY AND DETERMINE WHETHER
C****AN ECLIPSE IS POSSIBLE.
    1 ~ X J D = F J D + S Y N O D ~
        IF(XJD.GT.DJ2) GO TO 99
        CALL PRELEC (XJD)
        IF(ITYPE.EQ.O.AND.DABS(GAMMA).GT.1.25) GO TO 1
C****PRINT HEADER FOR LUNAR ECLIPSE TABLE.
        K=K+1
        IF(MOD (K,50).EQ.1) WRITE (15,210)
    210 FORMAT(1H1//////55X, 'TABLE OF LUNAR ECLIPSES'///
        1 70X,'PENUMBRAL',3X,'UMBRAL',5X,'MIDDLE',
        2 3X,'PARTIAL',2X,'TOTAL'/
        3 19X,'DATE',6X,'JULIAN DATE',5X,'TYPE',5X, 'SAROS',
        4 3X,'GAMMA',3X,'MAGNITUDE',1X,'MAGNITUDE',3X,'ECLIPSE',
        5 4X,'S.DUR.',2X,'S.DUR.'/
        6 93X,'(h:m)',6X,'(m)',5X,'(m)')
        IF(MOD (K,10) .EQ.1) WRITE (15,215)
    215 FORMAT (1X)
C****CONVERT TIMES TO OUTPUT FORMAT AND PRINT
C****MIDDLE ECLIPSE CIRCUMSTANCES.
        IHR=IDINT(FTIME+0.5/60.)
        MIN=IDINT (60* (FTIME+0.5/60.-IHR))
        ISDT=IDINT (60.0*T1+0.5)
```

123456789012345678901234567890123456789012345678901234567890123456789012					
1	2	3	4	5	6

```
                            1 2 <rrrrl
123456789012345678901234567890123456789012345678901234567890123456789012
            ISDP=IDINT (60.0*T2+0.5)
            WRITE (15,220) IDAY,MTH(MONTH),IYEAR,FJD,KIND (ITYPE),NSAR,GAMMA,
            1 PMAG,UMAG,IHR,MIN,ISDP,ISDT
    220 FORMAT (16X,I2,A4,I5,2X,F11.2,2X,A10,I6,3(F9.3,1X),
        1 I7,':',I2,1X,2I8)
        GO TO 1
C****EXIT PROGRAM MONECL.
    99 WRITE (6,299) K
    299 FORMAT(/5X,'***** A TOTAL OF',I4,' ECLIPSES WERE PREDICTED FOR ',
        1 'THIS DATE INTERVAL.'/)
        STOP
        END
123456789012345678901234567890123456789012345678901234567890123456789012
\(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\)
```

001

SUBROUTINE PRELEC(EJD)
C****SUBROUTINE PRELEC PREDICTS THE INSTANT OF FULL MOON SYZYGY C****NEAREST TO THE INPUT JULIAN DATE 'EJD'.
C****SUBROUTINE PRELEC THEN DETERMINE WHETHER A LUNAR ECLIPSE
C****WILL OCCUR AND CALCULATES ITS CHARACTERISTICS.
C****BASED ON ALGORITHMS FROM
C****"ASTRONOMICAL FORMULAE FOR CALCULATORS", MEEUS, CH. 32,33.
C****THE PREDICTED ECLIPSE CHARACTERISTICS ARE STORED IN
C****COMMON/ZERO/ WHERE :
C**** MONTH,IDAY,IYEAR - CALENDAR DATE OF ECLIPSE.
C**** ITYPE - TYPE OF ECLIPSE WHERE :
C**** $=0$ - NO ECLIPSE OCCURS.
=1 - TOTAL LUNAR ECLIPSE.
=2 - PARTIAL LUNAR ECLIPSE.
=3 - PENUMBRAL LUNAR ECLIPSE.
FJD - JULIAN DATE OF INSTANT OF MIDDLE ECLIPSE.
FTIME - TIME (TDT) OF MIDDLE ECLIPSE.
GAMMA - DISTANCE OF MOON'S CENTER FROM AXIS OF EARTH'S SHADOW (UNITS OF EARTH RADII).
UMAG - UMBRAL MAGNITUDE OF ECLIPSE.
(FRACTION OF MOON'S DIAMETER OBSCURED BY UMBRA
PMAG - PENUMBRAL MAGNITUDE OF ECLIPSE.
(FRACTION OF MOON'S DIAMETER OBSCURED BY PENUM
NSAR - SAROS SERIES NUMBER.
IRP - RELATIVE POSITION FROM MIDDLE OF SAROS SERIES.
LN - LUNATION NUMBER (FROM $1 / 1 / 1900$).
C**** T1,T2,T3 - SEMI-DURATION OF TOTAL, PARTIAL AND PENUMBRAL PHASES (HOURS).
CT - CONTACT TIMES (TERRESTRIAL DYNAMICAL TIME). $\mathrm{CT}(1), \mathrm{CT}(6)=$ BEGIN, END PENUMBRAL ECLIPSE.
$\mathrm{CT}(2), \mathrm{CT}(5)=$ BEGIN, END PARTIAL ECLIPSE.
$\mathrm{CT}(3), \mathrm{CT}(4)=$ BEGIN, END TOTAL ECLIPSE.
C****WRITTEN BY F. ESPENAK - 26 MAY 1988.
C****LAST MODIFIED - 18 JUL 1988.
IMPLICIT REAL*8 (A-H, O-Z)
COMMON/ZERO/MONTH, IDAY, IYEAR, ITYPE, FJD , FTIME, DELTA , GAMMA,
1 UMAG, PMAG, NSAR , IRP, LN , T1 , T2 , T3, CT (7)
DATA SYNOD/29.530588688D/,DJO/2415021.065DO/
DATA ZK/0.2725076/,F/O.5/
DATA DTR,RTD/0.017453292519943DO,57.2957795131DO/
123456789012345678901234567890123456789012345678901234567890123456789012

1	2	3	4	5	6	7

```
12
23
\(3 \quad 4\)
4
5
6
7
123456789012345678901234567890123456789012345678901234567890123456789012
DATA KSAR,KLUN/129,1243/,KBRN/284/,INEX/358/
C****CALCULATE TIME ELLAPSED IN LUNAR MONTHS SINCE FIRST NEW MOON
C****OF 1900. (I.E. - 1/1/1900 13:34:05ET)
DO \(600 \mathrm{I}=1,4\)
\(\mathrm{S}=+1.0\)
IF (EJD.LT.DJO) \(S=-1.0\)
Z=(DABS (EJD-DJO) \(-S * F * S Y N O D) / S Y N O D\)
LN=IDINT ( \(\mathrm{S} *(\mathrm{Z}+0.5)\) )
\(\mathrm{P}=\mathrm{DFL}\) OAT (LN) +F
Q=SYNOD*P/36525.DO
C****CALCULATE JULIAN DATE OF MEAN PHASE.
PJD \(=2415020.75933 D 0+29.53058868 D 0 * P+1.178 D-04 * Q * Q-1.55 D-07 * Q * Q * Q\)
1 +3.3D-04*DSIN(DTR*(166.56+132.87*Q-9.173D-03*Q*Q))
C****CALCULATE THE MEAN ANOMALIES OF THE SUN AND MOON.
\(Z M=359.2242 \mathrm{DO}+29.10535608 \mathrm{D} * \mathrm{P}-3.33 \mathrm{D}-05 * \mathrm{Q} * \mathrm{Q}-3.47 \mathrm{D}-06 * \mathrm{Q} * \mathrm{Q} * \mathrm{Q}\)
\(\mathrm{XM}=306.0253 \mathrm{DO}+385.81691806 \mathrm{D} * * \mathrm{P}+1.07306 \mathrm{D}-02 * \mathrm{Q} * \mathrm{Q}+1.236 \mathrm{D}-05 * \mathrm{Q} * \mathrm{Q} * \mathrm{Q}\)
ZM=DMOD (ZM, 360.DO)
XM=DMOD (XM, 360.DO)
C****CALCULATE THE MOON'S ARGUEMENT OF LATITUDE.
\(\mathrm{XF}=21.2964 \mathrm{DO}+390.67050646 * \mathrm{P}-1.6528 \mathrm{D}-03 * \mathrm{Q} * \mathrm{Q}-2.39 \mathrm{D}-06 * \mathrm{Q} * \mathrm{Q} * \mathrm{Q}\)
XF=DMOD (XF, 360.DO)
C****CALCULATE DATE CORRECTION FOR ECLIPSE TEST.
EPC=+(0.1734-3.93D-04*Q) *DSIN(DTR*ZM) \(+0.0021 * \operatorname{DSIN}(D T R *(Z M+Z M))\)
\(1-0.4068 * \operatorname{DSIN}(\) DTR*XM \()+0.0161 * \operatorname{DSIN}\) (DTR* (XM+XM))
\(2-0.0051 * \operatorname{DSIN}(D T R *(Z M+X M))-0.0074 * \operatorname{DSIN}(D T R *(Z M-X M))\)
\(3-0.0104 *\) DSIN (DTR* (XF+XF))
IF (I.EQ.1) EPC=0.0
C****CALCULATE INSTANT OF MAXIMUM ECLIPSE.
EJD=PJD+EPC
600 CONTINUE
C****CALCULATE GREGORIAN DATE.
FJD=EJD
CALL CALDAT (FJD,IW, NDAY, IDAY, MONTH, IYEAR,
1 IHR,MIN,ISEC,FTIME, FMIN,SEC)
C****CALCULATE SHADOW AXIS DISTANCE OF MOON AT MAXIMUM ECLIPSE.
\(\mathrm{S}=+5.19595-0.0048 * \mathrm{DCDS}(\mathrm{DTR} * \mathrm{ZM})+0.0020 *\) DCOS (DTR*2.*ZM)
1 -0.3283*DCOS (DTR*XM) -0.0060*DCOS (DTR* (ZM+XM))
2 +0.0041*DCDS(DTR*(ZM-XM))
C \(=+0.2070 * \operatorname{DSIN}(D T R * Z M)+0.0024 * \operatorname{DSIN}(D T R * 2 . * Z M)-0.0390 * \operatorname{DSIN}(D T R * X M)\)
1 +0.0115*DSIN(DTR*2.*XM) \(-0.0073 * \operatorname{DSIN}(D T R *(Z M+X M))\)
```

123456789012345678901234567890123456789012345678901234567890123456789012

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

```
                1 2 3 3 4 4 0
    2 -0.0067*DSIN(DTR*(ZM-XM))+0.0117*DSIN(DTR*2.*XF)
    GAMMA=S*DSIN(DTR*XF)+C*DCOS(DTR*XF)
C****CALCULATE THE RADII OF THE UMBRAL AND PENUMBRAL SHADOWS.
        U=+0.0059+0.0046*DCOS (DTR*ZM) -0.0182*DCOS (DTR*XM)
    1 +0.0004*DCOS (DTR*2.*XM) -0.0005*DCOS (DTR* (ZM+XM))
        SIG=0.7404-U
        RHO=1.2847+U
C****CALCULATE UMBRAL AND PENUMBRAL ECLIPSE MAGNITUDES.
    UMAG=0.5*(SIG+ZK-DABS (GAMMA))/ZK
    PMAG=0.5* (RHO+ZK-DABS (GAMMA))/ZK
C****DETERMINE TYPE OF LUNAR ECLIPSE.
C**** ITYPE=0 - NO ECLIPSE OCCURS.
C**** ITYPE=1 - TOTAL LUNAR ECLIPSE.
C**** ITYPE=2 - PARTIAL LUNAR ECLIPSE.
C**** ITYPE=3 - PENUMBRAL LUNAR ECLIPSE.
        ITYPE=0
        IF(PMAG.LE.0.0) GO TO 999
        IF(UMAG.GE.1.00) ITYPE=1
        IF(UMAG.GT.O.0.AND.UMAG.LT.1.0) ITYPE=2
        IF(UMAG.LT.O.O.AND.PMAG.GT.0.0) ITYPE=3
C****CALCULATE THE LUNAR ECLIPSE SEMIDURATIONS.
        S1=SIG-ZK
        S2=SIG+ZK
        S3=RH0+ZK
        ZN=0.5458+0.0400*DCOS (DTR*XM)
        T1=0.0D0
        T2=0.0D0
        T3=0.0D0
        IF(DABS(S1).GT.DABS (GAMMA)) T1=DSQRT(S1*S1-GAMMA*GAMMA)/ZN
        IF (DABS(S2).GT.DABS (GAMMA)) T2=DSQRT(S2*S2-GAMMA*GAMMA)/ZN
        IF (DABS(S3).GT.DABS (GAMMA)) T3=DSQRT(S3*S3-GAMMA*GAMMA)/ZN
C****CALCULATE ECLIPSE CONTACT TIMES (TDT).
        DO 610 I=1,6
        CT(I)=0.0
        IF(ITYPE.EQ.3.AND.I.GT.1.AND.I.LT.6) GO TO 610
        IF(ITYPE.EQ.2.AND.I.GT.2.AND.I.LT.5) GO TO 610
        DT=T3
        IF(I.GT.1.AND.I.LT.6) DT=T2
        IF(I.GT.2.AND.I.LT.5) DT=T1
        CTX=FTIME+24.0-DT
```

$\begin{array}{cccccc}123456789012345678901234567890123456789012345678901234567890123456789012 ~ \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}$

```
1 2 2 < 3 4
123456789012345678901234567890123456789012345678901234567890123456789012
IF (I.GT.3) \(\quad C T X=F T I M E+24.0+D T\)
CT (I) =DMOD (CTX, 24.DO)
610 CONTINUE
C****CALCULATE SAROS NUMBER (KEYED TO LUNAR ECLIPSE OF 16 JUL 2000).
L=LN-KLUN
\(I=\operatorname{JISIGN}(1, L)\)
IN \(=\) INT (FLOAT ( \(61 * L\) ) /INEX \(+0.5 * I-F L O A T(L) /(12 * I N E X * I N E X))\)
NSAR \(=\) KSAR \(+38 * L-223 *\) IN
C****CALCULATE RELATIVE POSITION IN SAROS SERIES.
\(X=-61 * L+I N E X * I N\)
IRP \(=I N T(X-F L O A T(N S A R-K S A R) / 12+0.5)\)
C****EXIT SUBROUTINE PRELEC.
999 RETURN
END
123456789012345678901234567890123456789012345678901234567890123456789012
\(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\)
```

121

```
        2
SUBROUTINE JULDAT(DJ,IW,ID,IM,IY,IHOUR,IMIN, SEC)
C****SUBROUTINE JULDAT COMPUTES THE JULIAN DECIMAL DATE (DJ) FROM
C****THE GREGORIAN (OR JULIAN) CALENDAR DATE.
C****THE GREGORIAN CALENDAR REFORM OCCURRED ON 1582 OCT 15.
C****THIS IS 1582 OCT 5 BY THE JULIAN CALENDAR.
C****INPUT : ID,IM,IY - DAY, MONTH, YEAR.
C**** IHR,IMIN,SEC - HOUR,MINUTE,SECOND.
C****OUTPUT : DJ - JULIAN DECIMAL DATE
( \(=0\) FOR B.C. 4713 JAN 1, 12 GMT).
IW - DAY OF WEEK ( \(1=\) SUNDAY).
C****REFERENCE : "ASTRONOMICAL FORMULAE FOR CALCULATORS", MEEUS, P. 23.
C****WRITTEN BY F. ESPENAK - APRIL 1982.
C****LAST MODIFIED - APRIL 1982.
REAL*8 DJ,SEC, FRAC, GYR
C****CALCULATE DECIMAL DAY FRACTION.
FRAC=DFLOAT (IHDUR)/24.+DFLOAT (IMIN)/1440.+SEC/86400.
C****CONVERT DATE TO FORMAT YYYY.MMDDdd GYR=DFLOAT (IY) \(+0.01 *\) DFLOAT (IM) \(+0.0001 * \operatorname{DFLOAT}\) (ID) \(+0.0001 *\) FRAC +1.00-09
C****CALCULATE CONVERSION FACTORS.
IYO=IY
IMO \(=1 \mathrm{M}\)
IF(IM.LE.2) IYO=IY-1
IF(IM.LE.2) \(\operatorname{IMO}=I M+12\)
IA \(=\) IYO/ 100
\(I B=2-I A+I A / 4\)
C****CALCULATE JULIAN DATE. JD \(=\) IDINT (365.25DO*IYO) +IDINT (30.6001D0* (IMO +1) ) +ID+1720994 \(\operatorname{IF}(\mathrm{IY} . \operatorname{LT} .0) \mathrm{JD}=\mathrm{IDINT}(365.25 \mathrm{DO} * \mathrm{IYO}-0.75)+\operatorname{IDINT}(30.6001 \mathrm{DO}(\mathrm{IMO}+1))\)
\(1 \quad+\) ID +1720994
IF (GYR.GE.1582.1015DO) JD=JD+IB
DJ=DFLOAT (JD) +FRAC+0.5DO
C****CALCULATE DAY OF WEEK.
JD \(=\) IDINT ( \(D J+0.5\) )
\(I W=J M O D((J D+1), 7)+1\)
RETURN
END
123456789012345678901234567890123456789012345678901234567890123456789012
1

```

123456789012345678901234567890123456789012345678901234567890123456789012
SUBROUTINE CALDAT (DJ, IW, ND, ID, IM, IY, IHR, IMIN, ISEC, AHR , AMIN, ASEC)
C****SUBROUTINE CALDAT CALCULATES THE DAY OF THE WEEK, THE DAY OF
C****THE YEAR, THE GREGORIAN (OR JULIAN) CALENDAR DATE AND
C****THE UNIVERSAL TIME FROM THE JULIAN DECIMAL DATE.
C****THE GREGORIAN CALENDAR REFORM OCCURRED ON 1582 OCT 15 .
C****THIS IS 1582 OCT 5 BY THE JULIAN CALENDAR.
C****INPUT : DJ - JULIAN DECIMAL DATE
C****
C****OUTPUT :
(= O FOR B.C. 4713 JAN 1, 12 GMT).
C****
IW - DAY OF THE WEEK ($1=$ SUNDAY).
ND - DAY OF THE YEAR ($1 \mathrm{JAN}=1$).
C**** ID,IM,IY - CALENDAR DAY, MONTH, YEAR.
C**** IHR,IMIN,ISEC - INTEGER HOUR,MINUTE,SECOND.
C**** AHR, AMIN, ASEC - DECIMAL HOUR,MINUTE, SECOND.
C****REFERENCE : "ASTRONOMICAL FORMULAE FOR CALCULATORS", MEEUS, P. 23.
C****WRITTEN BY F. ESPENAK - APRIL 1982.
C****LAST MODIFIED - 22 JULY 1986.
REAL*8 DJ, FRAC, AHR, AMIN, ASEC
C****CALCULATE INTERGER JULIAN DATE.
JD $=$ IDINT (DJ+0.5)
C****CALCULATE DAY FRACTION.
FRAC=DJ+0.5-DFLOAT (JD) +1.OD-10
C****CALCULATE CONVERSION FACTORS.
$K A=J D$
IF(JD.LT.2299161) GO TO 10
IALP=IDINT((JD-1867216.25DO)/36524.25DO)
$K A=J D+1+I A L P-I A L P / 4$
$10 \mathrm{~KB}=\mathrm{KA}+1524$
KC=IDINT ($(\mathrm{KB}-122.1) / 365.25 D 0)$
KD=IDINT (365.25DO*KC)
KE=IDINT ((KB-KD) /30.6001D0)
C****CALCULATE THE CALENDAR DAY, MONTH AND YEAR.
ID=KB-KD-IDINT (30.6001D0*KE)
$I M=K E-1$
IF (KE.GT.13) IM=KE-13
IF(IM.EQ.2.AND.ID.GT.28) ID=29
$I Y=K C-4715$
IF (IM.GT.2) IY=KC-4716
IF(IM.EQ.2.AND.ID.EQ.29.AND.KE.EQ.3) $I Y=K C-4716$
C****CALCULATE THE UNIVERSAL TIME FROM THE FRACTIONAL DAY.
$A H R=F R A C * 24$.
123456789012345678901234567890123456789012345678901234567890123456789012 $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

```
```

```
                            1 2 <rrrrl
```

```
                            1 2 <rrrrl
123456789012345678901234567890123456789012345678901234567890123456789012
```

123456789012345678901234567890123456789012345678901234567890123456789012

```
```

 IHR=AHR
    ```
    IHR=AHR
    AMIN=(AHR-IHR)*60.
    AMIN=(AHR-IHR)*60.
    IMIN=AMIN
    IMIN=AMIN
    ASEC=(AMIN-IMIN)*60.
    ASEC=(AMIN-IMIN)*60.
    ISEC=ASEC
    ISEC=ASEC
C****CALCULATE THE DAY OF THE WEEK.
C****CALCULATE THE DAY OF THE WEEK.
    IW=JMOD ((JD+1) ,7) +1
    IW=JMOD ((JD+1) ,7) +1
C****CALCULATE THE DAY OF THE YEAR.
C****CALCULATE THE DAY OF THE YEAR.
    LYR=4* (IY/4)
    LYR=4* (IY/4)
    ND=(275*IM)/9-2*((IM+9)/12)+ID-30
    ND=(275*IM)/9-2*((IM+9)/12)+ID-30
    IF (IY.EQ.LYR) ND=(275*IM)/9-((IM+9)/12)+ID-30
    IF (IY.EQ.LYR) ND=(275*IM)/9-((IM+9)/12)+ID-30
C WRITE (6, 200) IM,ID, IY, JD, IALP , KA , KB , KC , KD , KE
C WRITE (6, 200) IM,ID, IY, JD, IALP , KA , KB , KC , KD , KE
    200 FORMAT(I4,'/',I2,'/',I5,2X,I8,I4,
    200 FORMAT(I4,'/',I2,'/',I5,2X,I8,I4,
    1 2X,'KA-E =',5I8)
    1 2X,'KA-E =',5I8)
        RETURN
        RETURN
    END
    END
123456789012345678901234567890123456789012345678901234567890123456789012 1 2
 HMA
MIDDLE



00 OHONOONOQO










NNNNNNNONサO










\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \[
\begin{aligned}
& \text { 1. Report No. } \\
& \text { NASA RP-1216 }
\end{aligned}
\] & 2. Government Accession No. & 3. Recipient's Catalog No. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
4. Title and Subtitle \\
Fifty Year Canon of. Lunar Eclipses: 1986-2035
\end{tabular}} & \begin{tabular}{l}
5. Report Date \\
March 1989 \\
6. Performing Organization Code
\[
693
\]
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
7. Author(s) \\
Fred Espenak
\end{tabular}} & 8. Performing Organization Report No.
89B00056 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
9. Performing Organization Name and Address \\
NASA/Goddard Space Flight Center Greenbelt, MD 20771
\end{tabular}} & 11. Contract or Grant No. \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
12. Sponsoring Agency Name and Address \\
National Aeronautics and Space Administration Washington, D.C. 20546
\end{tabular}} & \begin{tabular}{l}
13. Type of Report and Period Covered \\
Reference Publication
\end{tabular} \\
\hline \multicolumn{3}{|l|}{15. Supplementary Notes} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
16. Abstract \\
complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cylindrical projection maps of: Earth show regions of hemispheric visibility for all phases. \\
The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of:lunar eclipses. \\
This work is a companion volume to NASA Reference Publication 1178: Fifty Year Canon of: Solar Eclipses: 1986-2035.
\end{tabular}} \\
\hline 17. Key Words (Suggested by Authoris)) Lunar Eclipse, Celestial Me Ephemeris, Sun, Moon & echanics, \(\quad\)\begin{tabular}{r} 
18. Dis \\
Un \\
Subj
\end{tabular} & \begin{tabular}{l}
ed-Unlimited \\
tegory 89
\end{tabular} \\
\hline \begin{tabular}{l}
19. Security Classif. (of this report) \\
Unclassified
\end{tabular} & \begin{tabular}{l} 
20. Security Classif. Iof this page \\
Unclassified \\
\hline
\end{tabular} & \begin{tabular}{|c|c} 
21. No. of pages & 22. Price \\
228 & All
\end{tabular} \\
\hline
\end{tabular}```


[^0]:    
    
    
    

[^1]:    $\infty, \infty 10$ $111 \underset{\sim}{c}+\infty$

[^2]:    HMTNNmmすサレ
    
    
    

[^3]:     NGGBOSOQOB
    zZuZuZンaトゥ
    

[^4]:    $F=2.601^{\prime} \quad y=1.624$

