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Past a Circular Cone at Incidence
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Mechanical Engineering

Chairman, Thesis Committee

Abstract

A numerical study of the laminar and compressible boundary layer, about a circular

cone in a supersonic free stream, is presented. It is thought that if accurate and efficient

numerical schemes can be produced to solve the boundary layer equations, they can be

joined to numerical codes that solve the inviscid outer flow. The combination of these

numerical codes is competitive with the accurate, but computationally expensive, Navier-

Stokes schemes.

The primary goal of this study is to develop a finite element method for the calcula-

tion of three dimensional compressible laminar boundary layer about a yawed cone. The

proposed method can, in principle, be extended to apply to the three dimensional boun-

dary layer of pointed bodies of arbitrary cross section.

In the present thesis the three dimensional boundary layer equations governing super-

sonic free stream flow about a cone are examined. The three dimensional partial differen-

tial equations are reduced to two dimensional integral equations by applying the Howarth,

Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of



similarity variable.This is equivalent to a Dorodnitsyn-type formulation. The reduced

equations are independent of density and curvature effects, and resemble the weak form of

the two dimensional incompressible boundary layer equations in Cartesian coordinates. In

addition the coordinate normal to the wall has been stretched, which reduces the gradients

across the layer and provides high resolution near the surface.

Utilizing the parabolic nature of the boundary layer equations, a finite element

method is applied to the Dorodnitsyn formulation. The formulation is presented in a

Petrov-Galerkin finite element form and discretized across the layer using linear interpola-

tion functions. Linear functions were chosen for ease of programming while also providing

adequate accuracy. The finite element discretization yields a system of ordinary differential

equations in the circumferential direction. The circumferential derivatives are solved by an

implicit and noniterative finite difference marching scheme.

Solutions are presented for a 15° half angle cone at angles of attack of 5° and 10°.

The numerical solutions assume a laminar boundary layer with free stream Mach number

of 7. Results include circumferential distribution of skin friction and surface heat transfer,

and cross flow velocity distributions across the layer.
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variable defined in equation (3.14)
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conditions obtained from the cone at zero incidence

conditions obtained at the cone half angle

conditions at the boundary layer edge
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dummy indices
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conditions at the cone wall
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1. INTRODUCTION

The supersonic flow over sharp conical bodies at angles of attack has been a topic of

considerable interest, both theoretically and experimentally, for the past three decades. This

interest stems from the following properties.

(i) The geometry of conical bodies possess a high lift to drag ratio at hypersonic speeds

and excellen! trajectory accuracy. This makes conical bodies prime re-entry vehicles.

(ii) There is a requirement in future aircraft and missiles, which possess conical forebo-

dies, for greater control at high angle of attack flight. The characteristics of high angle

of attack flight are strong viscous-inviscid interaction and three-dimensional flow

separation.

(iii) The theoretical assumption of supersonic conical flow allows for simplification in

analysis while it also reveals detailed flow behavior that is typical of more complex

geometries.

The theoretical investigations of the flowfield can be divided into two main classes,

corresponding to the inviscid and viscous models. The viscous models require the solution

of an approximation of the Navier-Stokes equations for the simulation of the flowfield. Hel-

liwell and Lubard [1] solved the approximation of the full equations (ignoring streamwise

viscous diffusion) for laminar flow about a cone, at small to moderate angles of attack.

McRae and Hussaini [2] also used the same Navier-Stokes approximations to solve for both

laminar and turbulent flow, at moderate incidence. Degani [3] has solved a similar set of

equations for the cone at high angles of attack for turbulent flows. All of the solutions men-

tioned model most of the physical mechanisms and should give a more accurate prediction

of the flow field than the inviscid models. However, the greatest drawback these viscous

models possess, are their requirements for large amounts of computer time and storage. It

is found that the inviscid models, because of their relative speed and simplicity, are still in

wide use in theoretical investigations.



For inviscidanalysisthe flow field is considered conical. While the flow is in a real

,,,:n,,,:. !hr,_e-dimensional, all flow variables depend on only two coordinates 0 and ¢ (Fig.

l a and b). Since the partial differential equations are nonlinear, with unknown boundary

conditions al the outer shock, a numerical method must be used in order to obtain solutions.

Historically the first attempt to obtain a numerical solution for the flow was made by Stone

[4],[5]. Many of the inviscid models used for conical bodies make use of vortex filaments

[6], point vortices [7], or the popular Euler equations. As a less expensive alternative to the

Navier-Stokes equations, the Euler equations offer many attractive features. In contrast to

potential methods, the Euler equations provide the correct Rankine-Hugoniot shock jump

conditions, and correctly describe the transport of vorticity. The solution of the Euler equa-

tions about the cone have been made by a variety of methods. Reference [8] contains a

comprehensive bibliography of the early solution schemes. The more recent methods

include the popular shock-capturing [9] and finite volume schemes [10].

Ail of the inviscid models considered assume that viscous effects can be approximated

by experiments or theoretical means. The yawed cone in supersonic flow has been studied

experimentally by Holt and Blackie [11], Tracy [12], Rainbird [13], and Yahalom [14],

among others. Yahalom contains an excellent bibliography of experimental studies prior to

1971. Some of the later studies include references [15],[16], and [17]. Unfortunately,

experimental data are usually expensive and difficult to obtain for the conditions of interest.

Moderate to high angles of attack result in flow separation from the cone, and require an

interaction process between the inviscid and the significant viscous flow regions. Experi-

mental data are not sufficient. The most straightforward and accurate means of accomplish-

ing the interaction, requires an iterative procedure between the external flow and a theoreti-

cal viscous model.

The most familiar theoretical means of accounting for the viscous effects, is the solu-

tion of the classical boundary layer equations. The purpose of this text is to develop an

accurale, computationally efficient, and general numerical scheme for the solution of the



boundarylayer equationson a cone.Ultimately,it is hopedthat by linking this numerical

methodto anefficientEulerequationsolver,theresultinginviscidmodelcanbemadecom-

petitivewith theexistingviscousmodels.

An earlymajorpaperon conicalboundarylayers,thatcontainsmanyof the ideasused

in this text, is thatby Moore[18]. Mooreestablishedtheequationsof compressible,three-

dimensionalboundarylayerflow over a yawedcircularcone.Solutionsby later investiga-

tors [19]-[23],utilizing theequationsof Moore,mostlyusedfinitedifferenceschemes,with

the exceptionof FletcherandHolt [24]. The latter appliedanadaptionof the methodof

integralrelations(specificallythespectralmethod)to thegoverningpartialdifferentialequa-

tions, and reducedthem to ordinarydifferential form. The method of integral relations

(MIR), of reference [24], is equivalent to the method of weighted residuals (MWR)

[251,[26] found in finite element literature [27],[28]. MIR permits considerably more accu-

rate solutions to be obtained than were previously possible. However, an increase in the

number of coefficients did not necessarily mean an increase in accuracy. Also, their method

gives solutions up to, but not beyond, separation.

The numerical scheme presented in this text uses a combination of a Dorodnitsyn for-

mulation of the boundary layer equations, and a finite difference/finite element procedure

(semidiscrete Galerkin method) in solving the boundary layer on a yawed cone in super-

sonic flow.

The application of MWR, and the various transformations presented in this text,

results in a Dorodnitsyn formulation of the boundary layer equations for the cone [29],[30].

This formulation is known to obtain relatively accurate solutions with only a few

coefficients defining the dependent variables across the boundary layer. The high accuracy

in this formulation comes, in part, from the use of the streamwise velocity component u.

This transformation, in effect, acts as a stretched surface normal coordinate. The new

independent variable, u, minimizes the normal gradients and provides high resolution near

the wall. In addition the boundary layer equations are reduced to a set of ordinary



differentialequations.

The finite element method uses piecewise continous polynomials to model dependent

variables and averages out the approximation errors across the elements. This averaging

allows considerable accuracy for a small number of elements. Greater accuracy can be

obtained by simply increasing the number of elements. Since the boundary layer equations

for the cone are parabolic, the circumferential dependence of the variables can be modelled

by an implicit finite difference marching scheme. The surface normal dependence of the

variables is modelled by one-dimensional elements. This arrangement is much more compu-

tationally efficient than that using two dimensional elements, and easier to program. In the

past, two-dimensional boundary layer flows have been computed effectively with finite ele-

ment formulations [31],[32]. However, the previous formulations have never been applied to

the cone problem, nor taken full advantage of the various transformations to be found in

this text.

The semidiscrete Galerkin method can be applied to cones with more general cross

sections without modification. The influence of the cross section appear only through the

external flow parameters that are found in equation (3.13). The method also possesses the

potential capability of calculating solutions beyond flow separation.

The present studies are restricted to attached, inviscid supersonic external flow at

moderate angles of attack. The boundary layer is assumed laminar and the fluid is assumed

ideal with a specific heat ratio of 1.4 (air). The only geometry considered is that for a circu-

lax cone.

In chapter 2 the semidiscrete Galerkin method is explained and demonstrated, using a

one-dimensional parabolic equation. Chapter 3 describes the equations of motion used in

the inviscid and viscous regions, and boundary and initial conditions used for the cone. In

chapter 4 the method of weighted residuals, and the semidiscrete Galerkin method in partic-

ular, is applied to the boundary layer equations. Chapter 5 presents the details of the

numerical methods used to solve the equations given in chapter 4. Chapter 6 gives the



numerical results and includes the convergence curves, circumferential distribution of skin

friction and surface heat transfer, and cross flow velocity distributions. Chapter 7 presents

the summary of the text and the work in progress.



2. THE GALERKIN FINITE ELEMENT METHOD

The finite element method is an approximate method of solving a wide range of boun-

dary and initial value problems. Since there are, of course, various comprehensive refer-

ences on the subject of finite elements [33]-[41] this chapter will only supply sufficient

background and touch on the points needed to illustrate the method, as it will be applied to

the cone problem.

2.1 The Method of Weighted Residuals

Among the more popular methods in the numerical solution of fluid dynamics prob-

lems are finite difference, variational methods and the methods of weighted residuals [26].

This large class of methods can be described in the following manner. Using linear opera-

tors, it is assumed that an approximate solution to a differential equation

L(u) =0 (2.1)

is to be found subject to the boundary conditions

B(u)=0

and the initial conditions

(2.2)

I(u) = 0 (2.3)

An approximate solution to u is introduced.

N

ua(x,t) = u°(x,t) + y Nj(x)aj(t),
j=l

(2.4)

where aj(t) are unknowns, Nj(x) are known analytic functions (trial functions), and u°(x,l) is

chosen to satisfy all global boundary conditions (2.2) and initial conditions (2.3). Substitu-

tion of the approximate solution into (2.1) gives an error (residual), R. To determine the

values of aj, an inner product of the residual R and a set of linearly independent weighting



functionswk(k = 1..... N) is constructedandsetequalto zero.

'wt Rdx= 0 (2.5)
D

where D is the domain of interest.

This resembles the weak form of (2.1). As equation (2.5) is written equation (2.1)

becomes a system of N ordinary differential equations in t. If the residual R is considered

continuous, then as N--->,_, R should converge to zero in the mean. This implies that if the

approximale solution ua satisfies the boundary conditions exactly then ua should converge to

the exact solution u in the mean. In short, by setting the inner product to zero, the errors

introduced by ua are averaged out over the domain of interest.

The choice of the weighting function determines the various subclasses to be

employed. The more popular subclasses are the least squares method, the method of

moments, the collocation method, the subdomain method, and the Galerkin method.

2.2 The Petrov-Galerkin Method

Basically for the subclass of Petrov-Galerkin methods [42] the weighting function is

written as

wk = Pk(x) (2.6)

where Pk(x) is similar to the trial function Nj(x) used in u_, but with some modifications

used to satisfy requirements on the solution. The classical Galerkin method [43] uses only

the trial functions for weighting. Classical Galerkin methods can be thought of as a

simplified form of the Petrov-Galerkin method. To simplify matters the Petrov-Galerkin

method will be referred to as the Galerkin method in this text.

To ensure that linearly independent equations exist for the solution of the values aj,



thetrial functionsNj(x) andthusthe weight functions must be linearly independent.

The choice of the trial functions to be used forms the two main branches known as the

spectral method and the Galerkin finite element method.

2.3 The Semidiscrete Galerkin Method

The most popular branch of the Galerkin method is the Galerkin finite element

method. Its popularity comes from the ease in which it can be applied to nonstructural prob-

lems. Basically the method uses low order polynomials as interpolation and weighting func-

tions and then applies the Galerkin method within the subdomains (finite elements) formed

from the domain of interest.

The semidiscrete Galerkin method [28] uses finite element representation only for spa-

tial variation. The time derivative is replaced by some finite difference operator.

To illustrate the method and its properties, as it was applied to the cone problem, we

will consider the one-dimensional unsteady heat conduction problem in nondimensional

form.

for

_u _2u

_t _x 2
=0 (2.7)

0_x_l

where u(x,t) represents the nondimensional temperature.

tions are

u(x,0) = u°(x)

u(0,t) = 0

u(1,t) = 1

The initial and boundary condi-



Thedomainof interest(0-<x<_1) is divided into subdomains known as finite elements.

As seen in figure 2 the nodal points are the elemenl boundaries, using the variable xj to

mark the position of the nodes. The approximate solution for u is

N

Ua(X,t) = y Njuj
J

and for u °

(2.8a)

N

J
(2.8b)

where Nj is the interpolation function, and uj and u° are the values of u and u° respectively

at the nodes. Using the interpolation function as the weighting function , N k , and taking

the weak form of (2.7) we have

OU a I O2Ua

Nk dx -  ,/Nk dx =
P

0 (2.9)

t)2U a

As it stands the term /)xT cannot be represented properly. The finite element method

requires that the interpolation used should provide interelement continuity of derivatives of

degree one less than the maximum that appears in the weak form of the equation of interest.

Piecewise continuous polynomials provide continuity for only the value u, across the ele-

ments. Also, if at all possible, we would like to employ linear interpolation functions. If

these simple functions can be shown to be completely satisfactory, there are no compelling

reasons to use complicated, and numerically costly, higher order functions. Linear interpola-

tior, provides continuity within the element for only a first order derivative.

The order of the derivative can be reduced by applying the Green-Gauss theorem to

the second integral. In one dimension the Green-Gauss theorem manifests itself as integra-

tion by parts. Equation (2.9) becomes
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O3Ua I dNk 03Ua O_la

N k-_dx---! dx _xx dx+ N k-_x
(2.10)

The resulting boundary term is known as the natural boundary condition. If the exam-

ple were of Neumann type the boundary term would be replaced by the given boundary

condition. Since the example is of Dirichlet type the natural boundary condition has been

incorporated into the governing equation. Using the full representation of u_ (2.8a) in equa-

tion (2.10) results in

where

_. duj N ,_N dNj

clkj =- Yc2kjuj+LN - fuj
J J J

(2.11)

I

Cl j=IN N+d 
0

I dN k dNj
C2kj=I dx dx dx

0

The semidiscrete Galerkin method has reduced the partial differential equation (2.7), in

x and t, to a system of first order ordinary differential equtions in t. Using piecewise con-

tinuous polynomial interpolation functions, the resulting equations will be linearly indepen-

dent for all N. In addition, if low order polynomials are used the integrands of the equations

will also be low order polynomials, which can be solved exactly and efficiently by low

order Gaussian quadrature [44]. Notice that the integrals are independent of t. If a uniform

grid is used for x the values of Clkj and C2kj are constant.

For linear interpolation functions at xj (Fig. 3)

x - xj_ w
in element A, Nj-

xj - xj_ i
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in element B,

for x <xj_j Nj=0

for x > xj+ I Nj = 0

At a specific node xk, the only nonzero contributions in the integrals come from the

neighboring nodes, Xk_ 1 and Xk+1, and the node itself xk. Therefore Clkj and C2ki form tri-

diagonal matrices.

The boundary term becomes

Ul=0

UN= 1

(2.12)

Equation (2.11) becomes

N duj N
-- =-- _SC2kjU j k= I..... N (2.13)ZClkj dt

j J

where C2kj has been modified to absorb the natural boundary terms and renamed SC2kj.

The essential boundary conditions of equation (2.12) reduce the NxN arrays, Clkj and

SC2kv into (N-2)×(N-2) matrices.

The ordinary differential equation is solved by introducing a discretized time domain

consisting of n number of time increments, At. The time derivative is replaced by the finite

difference form

u_ +l -u]' Au_ +l

At At
(2.14)

where the superscript indicates the time level. The variable Au_ +l is solved using the theta
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method [45] for integration.

N N N

ClgjAu_ +l = -At(0 _ SC2kjU_'+' + (1 - O) _SC2kjU_)
J J J

(2.15)

where O controls the degree of implicitness. The value of 0 = 0 gives the explicit Euler for-

ward difference scheme, while 0 = 1 gives the fully implicit backward Euler difference

scheme. By setting 0 = 0.5 the second order accurate Crank-Nicholson [45] scheme can be

used.

Since the governing equation is linear, it can be simply rewritten as

N N

y (c + 0AtSC2k)au '÷' = -At SC2kju;'
J J

(2.16)

For a chosen At the right hand side term is known and forms a vector of length N-2.

The array Clkj+0AISC2kj is a (N-2)x(N-2) tridiagonal matrix that can be solved quite

efficiently by the Thomas algorithm [46]. The Thomas algorithm factorizes the tridiagonal

matrix in O(N) operations as opposed to the O(N 2) operations required by Gaussian elimi-

nation 147].

To integrate in t, Au_ +l is solved for and added to the known value u_ to give u_ +l

. ,+l is then used in the right side to solve for the next time level. Notice that by vary-The u3

ing the time step for required accuracy, iteration is not needed. This results in a computa-

tionally efficient integration algorithm.

To summarize, the application of the semidiscrete Galerkin method with the theta

method for temporal integration, and the Thomas algorithm for matrix solution, makes for a

very efficient computational solution of a parabolic problem.
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3. GOVERNING EQUATIONS

From a computational point of view it is more practical and convenient to classify the

flow about the cone into two regions, the inviscid and viscous. One may then exploit the

character of the respective regions and use et]icient numerical methods in their solution.

3.1. Inviscid Flow

3.1.1. Equations of Motion

In this present study the flow outside the boundary layer is assumed to be steady,

supersonic and attached. The resulting main shock is assumed attached to the apex of the

cone. The fluid is assumed to be inviscid and non-conducting. A spherical coordinate sys-

tem is used with "g measured from the cone apex, 0 measured from the cone axis. and ¢

measured from the windward line of symmetry (Fig. la, b). The dependent variables are

nondimensionalized in the following manner,

u = -- p - (3.1)
a P_

_p___
V __ --. p " -- .3

a pooa "

w=--, a = -z-,
a a

where _ is the local speed of sound and a* is the critical speed of sound. The nondimen-

sional form of the equations of motion for this flow are as follows.

Conservation of mass:
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bv 1 3w v _p
_0 + sinO3¢ + p-_-

w 3p +2u+vcotO = 0 (3.2a)
+ psinO 3¢

Conservation of "t"momentum:

3u w 3u (v 2+w 2)=0 (3.2b)
v_0-+ sin0 3¢

Conservation of 0 momentum:

_v w 3v 1
+ (3.2c)

V_o +sin03¢ p30 +uv-w2c°t0=0

Conservation of _ momentum:

3w w 3w + 1 3E +uw+vwcotO = 0 (3.2d)
v 30 + sin0 3¢ psinO 3¢

Conservation of energy:

3p w _P_a2[v3P w 3p] =0 (3.2e)v 30 + sin0 3¢ _ + sinO 3¢

Note that since the main shock is attached (Fig. la,b), the dependent variables are indepen-

dent of the _ coordinate.

3.1.2. Boundary Conditions

The external flow field is bounded by the body, the main shock, and the windward and

leeward planes of symmetry (¢ = 0° and 180 ° respectively), where the following boundary

conditions are satisfied.
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At each plane of symmetry:

`3LI
-- =0

Ov =0
8¢

w=O

,-)w

,30

¢30_
--=0

`3P =0

=o

(3.3)

At the cone surface 0 = Ob "

u = ue p = Pe

_____

w= w_ `3¢ -

by
v=0 --=0

`3¢

_P_

`3¢

(3.4)

At the main shock the conditions are given in terms of the free stream conditions and the

`30_

shock slope, _-, by the Rankine-Hugoniot relations [8].

3.2. Viscous Flow

3.2.1. Equations of Motion

The viscous flow region, prior to separation from the body, is assumed to extend over

a small distance normal to the cone body. The equations of motion for viscous, laminar,

compressible, and nonisentropic flow about an inclined, axisymmetric, three dimensional

body are nondimensionalized. The independent and dependent variables are written in terms
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of the orthogonal coordinate system shown in (Fig. la,b). The Prandtl boundary layer

assumptions are then applied to give the resulting equations of motion [18]. The Prandtl

number (Pr) is assumed constant as are the specific heats cv and Cp.

Conservation of mass:

_x pur + _yy pvr + r _- pwr = 0 (3.5a)

Conservation of x momentum:

a. o3u pwo3u w2Or O3P°O3( /
pu _x-x+ pv _y--y+ p - I- /ao3u (3.5b)

r O3¢ r dx o3x _-/ O3YJ

Conservation of ¢ momentum:

uwo
PU_x +pv-_y-y + +p - + [ -_y-yj (3.5c)r o3¢ r dx r o3¢ _ .u

Conservation of energy:

+ (3.5d)

The velocities are nondimensionalized in the same manner as that used in the inviscid equa-

tions of motion. Additional nondimensional variables are defined in the following manner.
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r-" --

L

X-=- m

L

y=L
L

n_

/d--

P_

p_,a "

U_

U_,-

a*

CpT+V2(u2+v¢ 2)

a"

(3.6)

where H is the total (stagnation) enthalpy.

Equations (3.5a-d) can be simplified further. These governing equations of motion are

three dimensional and include variable density, an explicit dependence on the local radius r,

and severe gradients normal to the wall. By various transformations these effects can be

eliminated or minimized in the equations [181,[48],[49].

It is assumed that the variation of viscosity across the boundary layer can be

represented by a linear relation. The viscosity p is replaced as follows.

'
/a,_ _ Too

(3.7)

where C is some constant value. A full explanation of the equation is given by Chapman

and Rubesin [50].

To remove the explicit dependence of the density we employ the Howarth transforma-

tion.
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P_
xI= x, Yl= pdy (3.8)

0

To reduce the effect of body curvature (r), the Mangler transformation is used.

x2= fr2dxj, Y2=ryj (3.9)
0

This transformation also relates axially symmetric flow to plane flow.

The transformed equations, at this point, resemble the equations of motion for

incompressible flow in three dimensional Cartesian coordinates.

We will further exploit the character of the equations in their simplified form. The

outer edge of the boundary layer grows in a parabolic manner in the x direction ( Y2= x2 '/2 ).

A similarity variable can therefore be constructed.

1"1= (3.10)
X2 V2

The Blasius-type of transformation reduces the number of independent variables from three

tO two.

The equations of motion are simplified further still. The dependent variables u, w, H,

and v are replaced by u2, w2, s, and v2, respectively. They are defined as follows.

U
u-,= -- (3.11)

Ue
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W

W 2 = --
Ue

s= I 2H(y- I)

I
V'_= --

He

2

(y+ I)

3Rerpo * v_I2posinOb pv +

w,
+ posin0b a_, ) '

Uoor

where Re r -

u dy + -- dy
0 r

The results of our various transformations and substitutions are equations (3.12a-d).

Conservation of mass:

_v 2

+ ff_- = 15w 2 - 1.5u 2
(3.12a)

Conservation of x momentum:

w2 3u, 3u, 3zu,

sin0b _; +v2-_:'_" =!23"-_-- -llWzU2+W';
(3.12b)

Conservation of ¢_ momentum:

w2 aw_ bw, _Zw,

sin0b 3¢ +v2-_=I"(1-s)+l_u_'+lsw2+12_ 2 -ltw_'-w2u_-
(3.12c)

Conservation of energy:



2O

14 _2
W2 OS OS _2 s 14 _2 (u_)+----(w_) (3.12d)

sinOb 3¢ +v2_-_-_ =13a---_+ 2- 3rl-----2- 2 Orl z

The simplification of the equations of motion is now complete. The four partial

differential equations describing three-dimensional, viscous, compressible boundary layer,

with explicit dependence on curvature, has been converted into a system of equations

resembling the boundary-layer equations for two-dimensional incompressible flow in Carte-

sian coordinates.

The coefficients 11..... 112 are functions of the freestream conditions and the circum-

ferential position ¢. The coefficients are defined below.

1 _Ue We

li - - (3.13)
u_sinOb _)¢ ue

12
13= --

Pr

114= 2ug (y+ 1)

15--_ we11 ape+__
2p_sinOb a_ u_

(y-l) 3pc
16----

?'p_sinOb 30
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17__ ( 12yp_sinOb +2%
Ue

(y- 1) ap_
18 -

2ypCsinOb aO

19--" --
(y+ I) _2pe

, . 0¢ 2
yu_p_SmOb

llo --
(y- 1) 32P_

2yp,sinOb /)_-'

(y+ 1) 16
llt-

2(r- 1)u 

I _We
112 =

u_sinOb _0

Using the results from the previous chapter on the method of weighted residuals we

will transform the equations 3.12a-d from their differential form to an integral form. The

Crocco transformation (3.14) will be applied to the integral equations to change the

independent variables from 0 and r/ to 0 and u2.

u2=]_dt 1 (3.14)
0

Since the variable v z has no immediate physical significance, we seek weighted combina-

tions of the equations to eliminate the explicit dependence on the variable.

We assume that the general weighting function, f(u2), vanishes at the outer edge of

boundary layer ( r/ =oo or u:= 1 ). By multiplying (3.12a) by f(ue) and adding to

df(u2)
--x(3.12b) and integrating the transformed equation from zero to one, with respect to

du 2
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u2, we obtain (3.15a).

_,,w, liw_ ,-- j f_'du2 = sin0b 15 f-c-" du,- 1.5 f f-U2-du,
_¢o r o r " o r "

i df w_ i w-_ /

N

I df _.rdu,_liS__u__:__du.,+i df du,+12_ du, 0u,, - du 2 " 1: " du_ "
0 - - 0 0 - )

(3.15a)

df(u2)

The integral of the sum of w2×(3.12a), wZ×_u-_-u ×(3.12b), and f(u2)×(3.12c) is equal to

(3.15b).

_: w_ I ! w_ , w,J f_" du2 = sin0b 17 f_- du,- 2.5 J fu,--r-" du,
3¢ 0 r r " o " _ "

t df w_ _ df w3 I

_,,j"_u2vdu:+ ! ----d.. +l,,j.f_l-s____)du"
0 - du2 _ " 0

+ 18! u'_ 1 df ___duz+l,,jf3"r 3w2f--_-du2+lzl du_-_w2 - 31.1, 31,1,
0 - 0 - -

du 2

1 _2w2

+ 1-,_ f_'--_--du-,
"o _-u2 "

(3.15b)

The
df(u-,)

integral of the sum of sx(3.12a), sx--x(3.12b), and f(u2)x(3.12d) is equal to
du2

(3.15c).

Ii i sf---Z-'du,=sinO b 15 f----_'du,-1.5 fu2_-du2
_¢ o * " o r - o

(3.15c)
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I df sw. I ._ 1f
- du,,+ 1-,j du-, _u-, "llldu_U'_du"+_"" du-,desw_.r " " des _Zdu"

0 0 - 0 - -

I

+13if_(_ OS lf_('cu2)du2 !f_-_u ('rw2 _w"OU. _ --_-U._ )du2o 3u2 _u2 )du2 + 14! + 14

It is assumed that there is no surface injection. Therefore v, and hence v 2, is zero at the

wall. Since v 2 and f(u2) are zero at the wall and the outer boundary layer edge, respectively,

v 2 no longer appears explicitly in the equations.

Recall from chapter 2 that if linear interpolation is to be used in the finite element

method, the derivatives within the integral must be less than second order. The application

of integration by parts to (3.15a-c), and dropping the numbered subscripts, results in

(3.16a-c); the Dorodnitsyn [29] boundary layer formulation for the inclined cone.

I w 0 0_ ! f-_-du = sinOb (1, i f_-du- 1.5 i ufldu

I de _.r ! df _ df WZdu t
+l')_ _-U _-du-ll _--U Veda -1-"o o du z jo du "t J

(3.16a)

_-0!f_-_du=sin0b( 17if_du-2"5ifu_-duo 0

1 I "_

+ l_.f _ _--_--(w'r)du- 21_ i _u_ur___u_uau-I,df 3w. f dudfuW--du'r
0 flu Ou 0 0

! df w 3 ! !
+I du --du+lllt _ fldu-lll'c J"fs-dut

0 0 0

(3.16b)
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+lsffU'du l_

o z - - fZ-_u
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hm3i fswdu=sin0bl: lslfSWdu-l'5j'fuSdu
v,. o o

t df _s . I df sw. ! df sw 2- o 0 du _"

! I I

-141afu du-14I df 0w-"rw _gu-du+l 2J df /)du du duu _u (sr)du
o 0 0

(3.16c)

The four partial differential equations describing three-dimensional, viscous, compres-

sible boundary layer, with explicit dependence on curvature, (3.5a-d) have been converted

into a system of three integral equations. The Dorodnitsyn formulation of the equations of

motion offers some significant advantages over even the simplifications in equations

(3.12a-d).

To start, the weak form of the equations are being solved. This should decrease the

errors in calculation since they are being averaged out across the boundary layer. By using

u as an independent variable across the boundary layer, the infinite domain of r/ has been

replaced by a finite domain. The high gradient of the variables in y have been decreased

signilicantly, which results in high resolution of the dependent variables near the wall. This

is of particular importantance in turbulent flow. The use of u as an independent variable

also allows a uniform grid to be employed that automatically follows the growth of the

boundary layer. The variable v2 does not appear explicitly in the equations and can be

recovered later. The shear stress, _, along the cone generator, is solved for directly and

should be particularly accurate.
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3.2.2. Initial Conditions

In order to solve the inlegral equation, initial values of the dependent variables must

be known. These values can be determined at the windward ray of symmetry.

At ¢=0 •

w=0

_t_e
--=0

3¢

3---U-U=o

(3.17)

Again neglecting the numbered subscripts, equations (3.16a) and (3.16c) reduce to the fol-

lowing algebraic relations.

Ill_ 3w [ _ If T "- 0 T 0o _-du sinOb _l.5fufldu+hf. -du-u3u-uuujdf3zj
(3.18a)

s c3w [ t ! df c3s .r_--_-du=sinOb -1.5 j"fuSdu-(12+13).[ _uu z_-au
0 T 0

, ]--14 f + 12f du -_-(sx)du - !3 fZ_uu od_f uzdu df 3 3s
0 0

(3.18c)

Since the cross flow velocily w is zero, (3.16b) must be differentiated with respect to ¢.

This reduces to (3.18b) at the windward ray.

II (If.1 3w " sinOb 1 1 3w I
f "c _- du - - 2.5 j uf_ -_-du + 1,. f _u-_-(--_,r)dudf_ Owo 2 0 0

(3.18b)
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df _ _w ! i

-212 _ du *_u (-_-)du + 19f fldu- 19f fSdu
0 0 T 0 _"

, _2 f,_ .3w)l /
+,0!,T0o IoJ

3.2.3. Boundary Conditions

For the equations of motion ( ¢ # 0 ) the following Dirichlet conditions hold.

At the cone wall:

w=0

u=0

Tw
s=sw= 1 - --

To

At the outer edge of the boundary layer:

_trl c

LIc

U=I

s=0

At ¢ =0 the same Dirichlet type boundary conditions of (3.16a-c) hold, with the following

additions.

At the cone wall:

3w
--=0
3¢

At the B.L. edge:

_w 1 Owe

2¢ u_ 3¢



4. APPLICATION OF FINITE ELEMENTS
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4.1. Equations of Motion

As was explained in chapter 2, to determine the nodal values in the finite element

method, the general weighting function, f(u), must be replaced by a set of linearly indepen-

dent functions fk(u) ( for k = 1..... N ).

For this problem the set fk(u) is written as:

fk(u) = (1 -- U)2 Nk(U), (4.1)

where Nk(u) is the linear interpolation function, at a particular node k. The term (1-u) is

introduced to satisfy the requirement that fk(u) equal zero at the outer edge of the boundary

layer. The squaring of (1 - u) prevents singularities from appearing in the integrals when the

dependent variables are given their finite element interpretation.

The trial solutions for the dependent variables w, r, and s are shown. The group finite

element formulation, described in reference [51], is used in making the trial solutions of the

various combinations of dependent variables.

w u

r - (1 -u) _+ Njblj (4.2)
J

w 2 U 2

r - (l-u) _. Njb2j
l

SW U

_" - (1 - U) _' Njb3j
J

W = U_ Njb4j
J
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_"= (1- u)_ Njb5j
J

s= _ Njb6j
J

1 1
- (1- u) _ Njb7j

J

w 3 u 3

- (1 _u) _Njb8j
J

s 1

- ( 1 - u) _ Njb9j
J

wr= u(1 - u)_" Njbl0j
J

sw 2 u 2

"r - (l_u) _-_ Nlblll
J

sl: = (1 - u) _ Njbl2j
J

The simultaneous imposition of the particular analytic variation of u within each element on

the variables prevents the exact interrelationships from being satisfied except at the nodes or

in the limit N---_. The use of u outside of the summation sign is to insure the correct

behavior of the dependent variables without invalidating the interrelationships at the nodes

on the boundaries.

Substituting the representations of (4.2) into equations (3.16a-c) gives

dblj (2Clkj d_-=sinOb l,_Clkjblj-l.5_Clkjb7j+
j J J

(4.3a)
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12Z C2kjb5j-I1ZC3kjblj + j_C3kjb2j/j J

for k= 1..... N

db2j (C4kjW = sin0b 17 ._C4kjb2 j- 2.5 ._C4kjbl j +
l l J

12Z C5_jb 10j- 1, Z C7kjb2i + Z C7kjb8j +
J J J

I,, Z C8kjb7j- I,, Z C8kjb9j + 18Z C4kjbVj-
J J J

212 (C10Akb5k-_b4k-I + C10Bkb5k-lb4k + C10Ckb5kb4k-j +

( CIODk + C10E k )b5kb4 k + C10Fkb5kb4k+ 1 +

C10Gkb5k. 3b4k + C10HkbSk+lb4k+l ) )

for k=2 ..... N

(4.3b)

= ( ..... -l_.b51b41/ fork=l

y. db3j ( y Clkjb3 j- 1.5YClkjb9)-I ,_'_C3kjb3j+ (4.3c)
Clkj _ = sin0 b 15

j u_ j j j

E C3kjbl lj- 14Z C9kjb5j + 12Y C2kjbl 2j -
J J J

(1_+ 13) ( C11Akb5k_lb6k_ I + C11Bkb5k_lb6k + C11Ckb5kb6k_ I +

( CI 1D k + CI IE k )b5kb6k + CI 1Fkb5kb6k+l + C11Gkb5k+lb6k +

( C12Dk + C12E k )bl0klM k + C12Fkbl0kb4k÷j + C12Gkbl0k+lb4k +

C12Hkbl0k+,b4k+, ) )

for k=2 ..... N
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whereClkj throughC12Hkare foundin appendixA. With theuseof finiteelements,the

integralequationsof (3.16a-c)havebeentransformedinto a systemof ordinarydifferential

equations.The solutionof blj , b2j, and b3j, can be solvedby a varietyof numerical

methods.

4.2Initial Conditions

The applicationof the finite elementmethodto the integralequationsgoverningthe

initial conditions(3.18a-c)is donein an identicalmanner.Thetrial solutionsfor thedepen-

dentvariablesaresimilar to thosein equation(4.2).

1 8w _ (4.4)
7 8--7 = (1 u) 2. NjQIj

J

..}

z - (1 - u) y_. NjQ2j
l

s 8w u_
- (1 u) y_NJQ3j.

J

r = (1 - u)y NjQ5j
J

s= _ NjQ6j
J

1 1

z- (l-u) y• NjQ7j
J

1 3w u3

-_- - (l--u) E. NjQ8j
J
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s 1

_"- (1 -u) _. NjQgj
l

_W

_- = u(l- u)Z NjQ10j
J

S

T

_w U"

- (l_u) y NjQllj
J

sr = (1 - u)_" NjQ12j
J

The Galerkin finite element formulation of equations (3.18a-c) is as follows:

- ZClkjQlj+sinObj l-

_rk=l ..... N

1.5 y C lkjQ7 j + 1: _ C2kjQ5j
J J

=0 (4.5a)

sinOb I
- ZC4kjQZj+ _ - 2.5 ZC4kjQlj+12ZC5kjQIOi-

j J J

It Y_CTkjbEj + _ C7kjbSj + 19Y_C8kjQ7j
i J J

- 19_ C8kjQ9j + It o _ C4kjQTj
J J

- 21, [C10AkQ5k_tQ4k_t + C10BkQ5k-IQ4k + C10CkQ5kQ4k-I +

( C 10D k+ C 10E k )Q5kQ4k + C 10FkQ5kQ4k+ t +

C10GkQ5k+tQ4k +C10HkQ5k+tQ4k+t) ) =0

_rk=2 ..... N

(4.5b)

..... -12Q51Q41) =0 for k=l



32

- _j ClkjQSj+sinOb(-- 1.5 y_jClkjQ9j- 14_j C9kjQ5j + 12Y.jC2kj Q 12j-

(12 + 13) (Cl 1AkQ5t_IQ6k_ I + C11BkQ5k_tQ6 k + CI 1CtQ5kQ6k_ u+

( C 11D t + C 11E k )Q5kQ6 k + C 11FkQ5kQ6k+ n+ C 11GkQ5k+ iQ6k +

C11HkQ5k+lQ6k+l ) ) =0

for k=2 ..... N

(4.5c)

... -I_Q5 a | =0fork=l

(Q62- Q61)

' ' " Au )

where Clkj through Cl IH k are the same used in the equations of motion (4.3a-c).

Nolice that (4.5a-c) are essentially nonlinear algebraic equations in QIj, Q2j, and Q3j.

The equations can be solved by an assortment of iterative methods.

4.3 Boundary Conditions

At the wall (u = 0):

w=0

S_-S w

For ¢ = 0 we have in addition:

_W
- m ___ 0

Which give the following nodal values:

b3 | = s,,,b I I
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Q31= swQ11

Noticethat sincer givesa Neumannandnot a Dirichlet type of boundary condition,

the value of w at the surface is not required by either equations (4.3a-c) or (4.5a-c).

At the outer edge of the boundary layer (u = 1):

We

W-- --

Ue

w=0

s=0

For 0 = O, we have in addition:

_)w _. 1 OWe

ue ue 3_'

which give the following nodal values:

W e

b2 N =--bl N
Ue

b3N = 0

1 _We
Q2N=----Q! N

Ue _

Q3N=0

Again, please note that the value of "r at the boundary layer edge need not have been

specified. However, if (1-u) where not used in the representation of w, the nodal value of

b5 N would have approached zero as the number of nodes increased ( N--.,oo ). This would
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mean that b2 N and bl N would have had to satisfy two conflicting relationships at u = 1 (

b2N we b2y
- and -- ---) 0 ).

blN u, biN"
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In this section the steps taken to solve the governing equations numerically, are

shown.

5.1 Initial Conditions

The set of ordinary differential equations of (4.3a-c) can be solved by a marching

algorithm. However, any marching scheme considered will require the values of the nodes (

blj, b2j, b3j ) at some initial circumferential position, e, to start. The first step in solving for

these nodal values, is to solve the equations of motion at ¢_= 0. The initial condition equa-

tions (4.5a-c), as mentioned earlier, are a system of 3N-3 nonlinear algebraic equations that

must be solved iteratively to give the initial nodal values. The nonlinear equations are

solved numerically by a quasi-Newton iterative scheme. This scheme requires a reasonable

guess of the 3N-3 initial values to begin the process. This becomes rather difficult if an

appreciable number of elements are to be considered.

An efficient method for the solution of the initial conditions is presented. Using a

similarity transformation, the partial differential equations (3.12a-d) are reduced to a system

of ordinary differential equations.

d3f 1 3 d2f----q-
dry3 - 12( f+l12g)dr _.

d_z - 1 d_ df dg_ _ 1,z d__g_ + 1,o df
drl 3 =-h-2 (f+l12g) drl 2 - d_- drl dr/ ll2sinOb _-_

19sw 19(1 - s_,)
A+

l12sin0b ll2sinOb

(B.4a)

+ (B .4b)

14 d2f fl_ d2f -(f+112g)d2A Pr _s.(3 f + ll2g)__A + _ ___._
dr/2 swl2 12 dr 1- _'dr/2 '

B.4c)

where



36

U_ - m

df

dr)

_w dg
-- = Ii_sinO b- (B.2)
_¢ " dr)

s=sw(1-A)
3

v =- (_-f+ 112g)

The boundary conditions are:

At r) = 0:

df
B_0)

dr)
f=0

g=O

A=O

At r) = oo:

df -I dg--1
dr) dr)

A=I

The details of the transformation, which is similar to that used by Moore [18],[48] and

Reshotko [49], are discussed in appendix B.

Equations (B.4a-c) represent a relatively straight forward two point boundary value

problem. The solution requires that the correct values for d2f d2g and dA be found at

dr) 2 ' dr) 2 dr)

the wall which will cause df dg and A to approach the value of 1 as r) approaches
dr)' dr)

infinity. The numerical scheme used in integration was a fourth order Runge-Kuna method

with a step size of 0.01. Integration up to an r) of 6, was found to be sufficient.
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_w

The dependent variables 3, _-, and s are found from (B.2) at the values of u required

by (4.5a-c). The nodal values of Q1j ,Q2j, and Q3j are then determined from the finite ele-

ment representations of the three variables (4.4). At the boundaries however, the nodes are

determined as follows:

Atu=O( i"/=0):

ll2sin0b d-_
or/-

Qll- [ d2f]2d02)

Q21 -

ll2Sin0b d---_-] 2

art')
3

(d2 )

Q3t =

d2f ] 2

dr/2 )

Atu= 1 ( rl =_):

Q1N = -12
ll2sin0b

( 3f+ llzg )

Q2 N = -! 2
lt2sinOb) 2



Q3N=0
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These values are then used as the initial guesses for the quasi-Newton iteration. Con-

vergence of the iteration method is quite rapid. As the number of nodes increases for the

finite element formulation, the values at the nodes approach those values determined from

the similarity equations. For an appreciable number of nodes ( N> 5 ) the iteration process

can be skipped all together and the values determined from the similarity equations alone.

The starting values for the equations of motion are determined as follows.

At some small angle e measured from the windward ray:

_w

w(e) = e-_- (0)

r(e) = r(0)

s(e) = s(0)

therefore

blj=eQlj (5.1)

b2j = (e)2Q2j

b3j = eQ3j

The value of e to be used, must be small enough so that the approximations made for

and s are valid. However e should be large enough that the values of b2j do not approach

the round off error of the machine. The value found to work well in this study was an

e of 1°.
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5.2 Equations of Motion

The marching algorithm to be used in the solution follows the theta method, outlined

m references [45] and [46], and discussed m chapter 2. The ordinary differential equations

of (4.3a-c) are replaced by an implicit finite difference appro×imation in _.

Equations (4.3a-c) are rewritten as:

N

E C 1kjAb 1jn+ !
J

(5.2a)

N

Y C4k_b21 "+1
J

=A¢ []3D2_ +1 +(1-O)D2_ 1 (5.2b)

y+ClkjAb3j n÷l =A_ flD3_ ÷l +(1-fl)D3_
J

(5.2c)

for k = 1..... N where

Abljn+l = bl_+l_blj

Ab2jn+ != b2_+ I_ b2_

Ab3j.+ ! = b3_+ I _ b3_

D1 k, D2 k, and D3k are the right hand sides of equation (4.3a), (4.3b) and (4.3c), respec-

tively. The superscript n denotes a particular circumferential position. Here, the parameter

/3 (0<fl<l) is introduced to control the degree of implicitness. The quanities DI_ +_, D2_ ÷1,

and D3_ +l are linearized by expansion about the known position ¢'1 [52].
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( _)Dlk 1 n (_)Dlk / n ( _)Dlk 1 _

DI_,+I=DI_,(@n+I)+ _ o_blj) Abljn+l+ __-_j ) Ab2jn+l+ t_ ) Ab3j n+l (5.3a)

(_D2kln (_oakln (_O2_)°
D2_+t=D2_(_"+')+ / ablj ) Abljn+'+ ( Ob2j ) Ab2j"+'+ / 3b3j ) Ab3j"+' (5.3b)

__-j ) Ablin+% 13b2j ) ,Sb2j"+'+ _j) Ab3y' (5.3C)

The linearization is substituted into (5.2a-c) and results in the following system.

J I_D"/n) (_D,_/° (5.4a)

NEr °ak/nIZj -flA@ [ 0blj ) Abljn+l + C4kJ

(_D_kt° ]A@[ ab3j ) Ab3jn+l =A@DD2 k

(c)D2k 1 n)--]3A@ __-_j )Ab2j n+l (5.4b)

i o,/n r o3k/nZj -]_a0 _-_-)) Ablj"+ -/3Aq_ _)b2j) Ab2j"+t
+ (5.4c)

DDI_, DD2_,, and DD3_ are DI_, D2_, and D3_ respectively using the modified coefficients

Ix 1..... lxl2.

For example
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Ix I =fll_ +l +(1 - fl)l'_

l c)Dlk/ n / t)Dlk ) n

The arrays _-_j) , _0-_-)) ..... are Jacobians. The integrals C lkj ..... C12H k are

functions only of u and therefore need only be evaluated once. The integrands reduce to

polynomials of various orders and can be solved to very high accuracy by Gaussian quadra-

ture [44]. The highest order polynomial encountered is six and therefore quadrature of an

order of no higher than three need be used to solve all of the integrals.

The equations (5.4a-c) can be lumped into a single matrix equation as shown.

3N

LHSImAbm n+l = RHS I 1= 1..... 3N (5,5)
m=l

where

Abm n+l = Ablj n+l, Ab2j n+l, Ab3j n+l

b m = b lrb2j,b3 i

j=l ..... N

The array LHSIm is a sparse 3Nx3N matrix and RHS I is a 3N vector containing the vectors

A¢DDI_, A_DD2_, and A_DD3_ respectively.

The boundary conditions are as follows:

,+lAk n+l ( _ltn) bN nAb2Nn+l = It _t., N + 11 n+l

Ab2N+I n+l = SwAbN n÷l

(5.6)

Ab3N n+l = 0
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By incorporating the boundary conditions into equation (5.5) through the use of Lagrange

multipliers [27], the length of the vector RHSI is increased by three. The array LHSIm is

now a (3N+3)x(3N+3) matrix.

Equation (5.5) is solved at each step using a general LU decomposition algorithm.

Rather than iterate at a particular ¢ position, the method varies the step size A¢ to achieve

the desired accuracy. Before computing the new solution bjn+l = Abj "÷t + bjn the step-size is

Abjn+ 1
determined in the following manner. As long as the maximum value of the ratio, --,

bjn

exceeds a preset constant the step-size is halved, if this step-size is greater than the preset

minimum. If the maximum value of the ratio is less than one tenth of the preset constant,

the step-size is increased by 50%, if this step-size is less than the preset maximum. Since

no iteration is required to calculate the solution at each _, and since only moderate effort is

required for the solution of the implicit difference equation, considerable computational

efficiency is achieved.
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6. RESULTS

6.1 Convergence Properties

The convergence rates for finite element approximations of w, 1:, and s are plotted in

figures 4, 5, and 6. The ordinate is the measure of the average discrete L2 norm of the rela-

tive error. The error used is calculated in the following manner.

r -w,,/2iv
error(w) = kj=2 w),,_ (6.1a)

(N-2)

_J - 1

error(r) = kj--I (6.1b)
(N- 1)

error(s)= kJ=2 J- (6.1c)
(N - 2)

Where wjex, zj,x, and sjex are the exact values at the respective node.

In order to eliminate errors due to the discretization of ¢, in the spatial convergence

results, the convergence study was taken at the windward ray. Recall from chapter 5 and

appendix B, that the windward equations can be represented by the three ordinary

differential equations

d3f 1 23f+1 __d2fdrl 3 - 12( 12g) dr] 2
(B.4a)
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dr/3 =-I_ (3f+)2g)dr/2

112sinOb l12sinOb J

l) I l:" Ito df
df dE dg + + (B.4b)
dr/ dr) -112 dr/ It2sinO b

d2A Pr _sw( 3 dA 14_ d2f_f 12_ _(2f+ll2g )dq2 - Swl2 2f+l12g)_-_ + 1z dr) 2 d_) 2 d_
(B.4c)

A solution to these equations, for a = 10°, were obtained using a fourth order Runge-

Kutta scheme with At] =0.01. This solution is used as the exact values in the convergence

results.

The theoretical global convergence rate for linear elements applied to a linear problem

is first order. It was expected that since the cone problem involved highly nonlinear equa-

tions and the solution involved the simultaneous prescription of w, 1:, and s at each node,

that the convergence rate would be less than first order. This is seen for the variables s and

z. However, the variable w achieves almost second order convergence. The errors of w, r,

and s for crude grids are quite good. For example with only two elements s has an error of

approximately 15%, w has 11% and z has only 5%. For four elements the errors for s, w,

and r are 11%, 2%, and 3% respectively and for eight elements s,w, and z are 6%, 1%, and

2% respectively. Therefore, even though the theoretically expected convergence rate is not

achieved for s and _, this is offset by the high accuracy on course grids. For the variable w

the benefits of both high convergence and accuracy on course grids, are enjoyed.

6.2 Numerical Results

The results presented are for a sharp cone with a half angle of 15° at angles of attack

of 5 ° and 10°. The fluid properties used are for air. The flow parameter are given below.
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0b = 15 ° (6.2)

Re_ = 5x 10-_

M,x_ -- 7

Pr=l

C = 0.922

p,,o = 0.282

U_=2.333

TW

- -- =0.5
To

Only two elements ( Au =0.5 ) were used in the calculations. Through numerical experi-

mentation the value of 10-2 was used to ensure stability during _ marching. The step size (

A_ ) varied from 10 -5 to 10 -3. This program was run in double precision and on a VAX

11/780 at the NASA Ames Research Center.

Figure 7 shows the distribution of the surface coefficient of friction ( Cfw ) with the

circumferential position _ for a = 5° and 10° respectively. The coefficient is defined below.

Cfw- __p._U-_2 = C-_--_- _Re,.pc ,) _ 3u J w
(6.3)

The influence of incidence on Cf,_ can be seen by comparing the curves of figure 7. For

both angles of attack the Cfw varies smoothly from ¢ = 0° reaching a maximum value at
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approximately¢_= 100° andfalling off again toward zero as the leeward ray is approached.

The values of Ct,_ for a = 10 ° are greater than that for a = 5° at all circumferential posi-

tions. The failure of Cf_, to equal zero at ¢P= 180 ° for both angles of attack is probably

caused by the buildup of interpolation errors, from the crude grid used (two elements), dur-

ing marching.

Figure 8 shows the variation of the surface coefficient of friction in the radial direction

( Cfu ) with ¢. The coefficient Cfu is defined as follows.

oc16p-1
Cfu - w

i/2_p.____ 2 = C_-_-Re@e ) ('r) (6.4)

As can be seen in the figure the maximum value of qu occurs at the windward ray ( _ = 0 °

) and falls smoothly to a nonzero value as ¢_ approaches the leeward ray. The distribution of

Cf_ is dependent on how the velocity ue and the thickness of the boundary layer varies cir-

cumferentially. For the test cases uc increases with _ which would increase Cfu. However,

the increase in boundary layer thickness, which decreases Cf,, overcomes the influence of

Ue. The angle a= 10° is seen to give greater values of Cf. than a=5 ° at _ =0 °. This

difference in values of Cfu decreases as _ advances. The decrease in difference seems to be

a result of the insensitivity of the external conditions to incidence except in the windward

region.

The relative heat transfer at the wall ( --
QW

Qwaxi

heat transfer is calculated in the following way.

) is plotted, versus ¢, in figure 9. The
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_T
K'--

Q_i OT

OY_i

o_S

_s

T_- axi j w

(6.5)

The relative heat transfer seems to follow the same trends as the coefficient Cf,. As was

Qw
seen for Cj u the maximum value of occurs at the windward ray and decreases

Qwaxi

smoothly as g} increases. Also, as was seen for Cf,, the effect of incidence is evident mostly

in the windward region. These similar trends between heat transfer and Cf,, were expected

since the Prandtl number (Pr) was set equal to 1. The flow variable Pr = 1 makes the

momentum and thermal boundary layers identical.

Figures 10 and 11 show the cross flow velocity profiles within the boundary layer at

g}= 45 °, 90 °, and 135 °, for tz = 5 ° and 10° respectively. The growth of the boundary layer

with increasing g} is apparent. The profile curves are typical of three dimensional boundary

layer flows, with a cross flow velocity maximum occuring within the layer [21]. Also, the

influence of incidence on the profiles is noticable. As tx increases from 5° to 10° the cross

flow velocity increases, the velocity maximum shown at ¢}= 135 ° becomes more exag-

gerated, and the boundary layer increases in thickness.

The effects of incidence given axe similar to the effects shown in references

[11,120],[211,153].
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7.1 Summary

A numerical method has been proposed to model the three-dimensional boundary

layer about a yawed circular cone in a supersonic stream. It can, in principal, be extended

to apply to the boundary layer of pointed bodies of arbitrary cross section.

The method reduces the three-dimensional boundary layer equations to two-

dimensional form, through a coordinate transformation, and eliminates the explicit appear-

ance of the normal velocity. The coordinate transformation also allows high resolution in

the viscous region near the cone surface. The reduced boundary layer formulation is then

presented in a Petrov-Galerkin finite element form and discretized across the layer using

linear intcrpolalion functions. Linear interpolation is the most computationally efficient to

use from the family of piecewise continuous polynomials. The finite elements yield a sys-

tem of ordinary differential equations in the circumferential coordinate. The system of

differential equations, when put in a matrix form, yield a sparse mass matrix. The circum-

ferential derivatives are then solved by a noniterative implicit marching scheme that gives

both speed and stability. The results shown are in keeping with those given in previous stu-

dies. The proposed method gives acceptable accuracy with a very crude grid.

7.2 Future Work

Future applications of the finite element [ finite difference method, by the author, will

probably proceed as follows.

(i) The semidiscrete Galerkin modelling of the boundary layer about the cone will be

linked with an interacting numerical model of the inviscid conical flow [24] for high

angle of attack studies.

(ii) In a manner similar to that given by Holt [54]-[57], the boundary layer modelling will
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alsobe carriedon beyond flow separation into the reversed flow region and its reat-

tachment.

(iii) The complete method will be applied to various cross sectional geometries.
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Fig. 1. Coordinate system and velocity components.
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element A
element B

Uj+l

Fig. 2. Finite element representation using linear interpolation functions.
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Fig. 7. Skin friction variation with incidence ( 0 component ).

(i) a =5 ° .(ii) a= 10 °.
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Fig. 8. Skin frictionvariationwith incidence ( x component ).

(i) a =5 ° .(i.i) a = 10 °.
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Fig. 9. Heat transfer variation with incidence.

(i) a = 5° .(ii) c_ = 10 °.
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Fig. 10. Boundary layer profiles of the circumferential velocity component for
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APPENDIX A

A Definition of Clkj Through C12H k

The components Clkj through C121- k first mentioned in chapter 3, are defined below.

1

Clkj = f U(1- u)NkNjdu
0

C2k)= f(1-u) (1-u)-_u -2N k (1-u)_-u -N J du
0

,I jC3kj-- fU 2 (1-u)---2N k Njdu
o du

I

C4kj = f u2( 1 - u)NkNjdu
o

I °NkI 1C5kj= f(1-u) (l-u)-_-u -2N k u(1-u)-_-U-u +(l-2u)N J du
0

C6kj= j'(1-u) 2 (l-u)-_--u -2N k Njdu
0

,i 1C7kj= fu 3 (I-u)_-2N k Njdu
0

I

C8kj = f (1 - u)NkNjdu
0

, I°Nklcgkj = fu(1-u) 2 (1-U)-_- u -2N k Njdu
0



ClOAk = f (1 u) 2 1 dNk
_-, - - u)_ - 2Nk

ClOak= _ (l ._2I(1 . aNka_., - - U) -_U - 2Nk

.__, _-u - 2Nk

C10Dk = f (l-u) 2 1 _2N k
u,._ -- U) -_--U

tl rink-! + Nk_l] -du Nk ida

dNk-I ]a_+Nk I Nkdladu

CIOE k = (l-u)2 l-u)-_u _2N u-_u -i-Nk Nkdu

C10Fk = (l-u) 2 l_u)__u _2 N
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C10Gk = f (l-u) 2 I _2N k
- u) --_-u

C10Hk = (l-u) 2 l_u)__u _2 N
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u_., du Nk-/du
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