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= ambient speed of sound

= root chord length

= nondimensional specific heat coefficient

= nondimensional time step in full-potential method

= nondimensional total enthalpy

= grid Jacobian

= Mach number upstream and downstream of a shock

= ambient pressure

= nondimensional pressure

= perfect gas constant

= entropy upstream and downstream of a shock

= nondimensional time in full-potential method

= nondimensional temperature

= nondimensional tangential velocity on body surface in full-potential method

= nondimensional velocities in x, y, z directions

= contravariant velocities

= transpiration velocity

= rotor blade coordinate system; x--parallel to blade chord, y--normal to blade surface, z--

parallel to blade radius

= Poo/(Pooa 2)

= ratio of specific heats

= displacement thickness
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P

Po

Pi

p_

_s

_d

n

= nondimensional viscosity, the sum of molecular and eddy viscosities

= transformed rotor blade coordinate system; _--parallel to blade chord, TI--normal to blade

surface, _--parallel to blade radius

- nondimensional density

= nondimensional density on body surface in full-potential method

= nondimensional isentropic density

= ambient density

= shear stress

= velocity potential

= relaxation parameter in boundary-layer method

= tip Mach number/aspect ratio

= entropy difference

= distance along body surface

= time step for full-potential method
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SUMMARY

A three-dimensional viscous-inviscid interaction analysis has been developed to predict the perfor-

mance of rotors in hover and in forward flight at subsonic and transonic tip speeds. The analysis solves

the full-potential and boundary-layer equations by finite-difference numerical procedures. Calculations

were made for several different model rotor configurations. The results were compared with predictions

from a two-dimensional integral method and with experimental data. The comparisons show good

agreement between predictions and test data.

INTRODUCTION

The ability to accurately predict performance is important in the design of rotorcraft. Advancements

in computational fluid dynamics now allow some complex rotor performance predictions to be per-

formed routinely to help guide engineers in the design process. There are several different levels of

complexity in the methods available for this purpose. Their use depends upon the flow field information

needed by the designer. The more complex methods provide more detailed information about the flow

field, but in general are more expensive computationally.

The prediction methods range in complexity from simple lifting-line theory, to lifting-surface theory,

to sophisticated finite difference methods (small-disturbance, full-potential, Euler, and Navier-Stokes).

Only the Navier-Stokes method can predict viscous drag directly. However, this method requires large

computer memory and long CPU times. The other methods rely on either (1) two-dimensional airfoil

tables or (2) approximate methods to predict the viscous drag. There are several problems with the first

approach. First, two-dimensional airfoil data does not model the highly three-dimensional flow behavior

at the tip region, because of complex tip shapes or transonic flow unsteadiness in forward flight. Second,

it does not take the variations in Reynolds number or the rotational effects of the blade into account.

Third, for airfoils yet to be tested, the results may be dubious.

Adopting the second approach, Bridgeman et al. [1] incorporated a two-dimensional integral

boundary-layer method, the Nash-MacDonald scheme [2], into a full-potential finite-difference method

to predict the viscous drag directly. The advantage of this approach is that it is fast-running, easy to

implement, and fairly robust for attached boundary-layer flows. The disadvantage is that it cannot handle

three-dimensional flow phenomena at the blade tip, and for flows with separation the results are less

certain. One possibility for solving these problems is the incorporation of three-dimensional boundary-

layer equations into the analysis.

In the present study, a three-dimensional boundary-layer finite-difference method is coupled with a

full-potential finite-difference method to form a viscous-inviscid interaction analysis (V-II). (The

boundary-layer method |3], BL3D, was originally developed by Van Dalsem and Steger for applications

in fixed-wing flows. The full-potential method was developed by Strawn et al. [4] for inviscid rotor

flows.) V-II was developed to make rotor performance predictions efficiently for general rotor

configurations without the above-mentioned problems.
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The accuracy of BL3D was first evaluated by simulating flows over a flat plate and two-dimensional

airfoils. A comparison of theoretical and experimental data shows good accuracy of the method. V-II

was then used to calculate nonlifting model rotor flows in hover and forward flight. The agreement

between predictions and test data demonstrates the capability of this method.

The computational efforts for rotor flows were concentrated on nonlifting flows for both hover and

forward flight, because (1) it is not possible to measure viscous drag direcdy in lifting flows and (2) the

influences due to rotor wake can be minimized. In lifting rotor flows, the wake shed by the blades plays

a very important role in the performance prediction. Viscous drag is only 20%-30% of the total drag. A

slightly different wake geometry could alter the pressure drag by 10%. Wake geometry prediction,

especially for advanced rotor configurations, is still in the development stage.

VISCOUS FORMULATIONnBOUNDARY-LAYER METHOD

In the boundary-layer method the unsteady, three-dimensional, compressible boundary-layer

equations are solved in a rotating reference frame. A general x, y, z to _(x, z),lq(x, y, z),_(x, z)

coordinate transformation is used to avoid a complex similarity transformation. The two sets of

coordinate systems are shown in Fig. 1.

Boundary-Layer Equations

Neglecting surface curvature, the nondimensional boundary-layer equations for a perfect gas can be

written in _(x, z),rl(x, y, z),_(x, z) coordinates as follows [3]:

x-momentum equation

pu t + p(Uu_ + Vu n + Wu_ - 2w_* - x(_*) 2) = -_(P_x + P_x) + (l'tUrlTly)Tl_y O)

z-momentum equation

* *2
pw t + o(Uw_ + VwTl + Ww_ + 2u_ - z(f2 ) ) = -I_(p_ _z + P_z) + (l_WT1Tly)_y (2)

perfect gas relation

p = pT (3)

energy equation (H = total enthalpy)

H ---CpT + l(u2 + v 2 + w 2) = CONSTANT (4)
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continuityequation

and

Pt+ (Pu)_x + (pu)rlrlx+ (Pu)_x + (pv)rlrly + (PW)_z + (PW)rirlz+ (Pw)_z = 0 (5)

wJ [;,+;xu+;,w
(6)

where U, V, and W are unscaled contravariant velocities, f2* = tip Mach number/aspect ratio,

13= P.o / (P,. a2), and a,,. is the ambient speed of sound.

Viscosity, pressure, temperature, and density are nondimensionalized by the ambient values. The

velocities u and w are nondimensionalized by the ambient speed of sound. The coordinates x and z are

nondimensionalized by a characteristic length, typically the chord len tg_t the blade root. The v and y
variables are nondimensionalized by the same quantities divided by _Re,,.. For turbulent flows, the

viscosity is the sum of the molecular and eddy viscosities. The eddy viscosity is evaluated by Cebeci's

two-layer algebraic turbulence model [5].

* *2 *Of note are the four terms 2wf2 ,x(fl ) ,2ufl , and z(D*) 2 in the x- and z-momentum equations.

They represent Coriolis and centrifugal forces in the boundary layer induced by the rotation of the blade.

Solution Algorithm

A relaxation algorithm [3] is used to solve the boundary-layer equations. The advantages of using

relaxation rather than space marching are that relaxation is easier to implement, and simpler boundary

conditions can be specified. For example, it would be very difficult to specify the flow quantities at the

tip of the blade, as required by a space marching algorithm. In a relaxation algorithm, a zero or first-

order boundary condition can be used with local grid mesh refinement to minimize the impact on the

final results [3].

The pressure terms in equations (1) and (2) are treated as known functions. The boundary-layer

equations are weakly coupled and can be solved sequentially at each time (or iteration) step. As a result,

a semi-implicit scheme is used at each time step. The time derivatives are approximated with a first-

order accurate, forward-difference operator. The space derivatives in the direction normal to the body

are approximated with a second-order accurate, central-difference operator; and second-order accurate,

backward-difference operators are used for the other two directions.

The FLARE approximation [6] is employed in the reversed flow regions in the streamwise direction.

That is, the streamwise convection term is dropped out if the streamwise velocity is negative. This is

justified by the fact that the streamwise velocity in the reversed flow regions is small, usually less than
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10%of the maximum velocity found in the viscous region [6]. In the continuity equation, the derivatives

in the _ and _ directions are approximated with second-order central-difference operators, and

trapezoidal-rule integration is used in the 11 direction to calculate the v velocity.

The typical grid mesh [7] used by BL3D for the calculations in this paper is 40 points in the chord-

wise direction, 16 in the spanwise direction, and 50 in the direction normal to the blade surface. The

upper and lower surfaces of the blade are calculated separately. The computation starts a small distance

away from the stagnation point at the leading edge. The flow velocities at the initial plane are assumed

to have known values, and are obtained by solving the Falkner-Skan similarity equations [8]. At each

time step the computation starts from the initial plane, sweeps through the grid mesh, and ends at the

trailing edge. A first-order boundary condition is used at the trailing edge. The wake was not included in
the calculations.

The solution algorithm for flows with a strong shock or a major separation is not very robust. Our

experience shows that the boundary-layer method is very sensitive to the large adverse pressure gradient

at the shock or the trailing edge. In calculating flows with a strong shock, typically when the tip Mach

number is greater than 0.92, the shock must be smoothed to prevent the computation from diverging.

However, since rotors are seldom operated with tip Mach numbers this large, this problem has little

practical significance. The trailing-edge stagnation point is another persistent problem. An O grid is used

in the full-potential method, and it seems that the adverse pressure gradient predicted is too large. Our

experience shows that pressure smoothing, along with a transpiration flux limiter, which prevents the

excessive boundary-layer growth from destabilizing the potential flow, must be applied at the trailing

edge to prevent the solutions from diverging, even in flows with low tip Mach number. In all

calculations, fully turbulent flow was assumed.

INVISCID FORMULATIONuFULL-POTENTIAL METHOD

The inviscid flow is assumed to be isentropic, inviscid, and irrotational. These assumptions are suit-

able for a wide range of transonic flows. For flows with a strong shock, a nonisentropic correction is

added to the formulation to account for the entropy produced at the shock.

Equations

The unsteady, three-dimensional, full-potential equation in strong conservation form is written in

generalized coordinates as [4]

(7)

with density given by

1

p = 11+ Z_ [-2¢ t - (U + _t)¢_ - (V + rlt)Orl - (W + _t)¢;]} ¥:i-1 (8)



where

and

U : _t + AI_ + A4On + AS_

V =/'It + A4_ + A2Orl + A6_

W = _t + AS_ + A6Orl + A3O_

(9)

2 2
A 2 = fix + fly + _qz2

A3=;2+;2+; 2

A 4 = _xrlx + _y_y + _zTlz (10)

A5= _x;x + _y;y +_z;z

A6 = rlx _x + Tly _y + Tiz _z

In the above equations, p is the fluid density, U, V, and W are contravariant velocities, and J is the

grid Jacobian. The velocity potential is given by _, and the generalized coordinates are 4, rl, _ and t. All

velocities are normalized by the ambient speed of sound, a.., distances by the root chord length, c, and

time by the combination (c/a_,). Density is normalized by the free-stream value p_.

Density Correction for Nonisentropie Flow

A nonisentropic Bernoulli relation is used for density [4]:

P = Pi e-_/R (11)

where Pi is the isentropic density given by equation (8).

The entropy correction to the density is made at the half-point just downstream of the shock. The

Rankine-Hugoniot equation is used to calculate the entropy change across the shock [9]:

-if" = --'-ff Tln (7 + I)MI_' + _¥-[J + _'l" mL_ 1 _/_

(12)
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where R is the perfect gas constant, and the subscripts 1 and 2 denote the upstream and downstream

conditions of a shock, respectively.

Solution Algorithm

Equation (7) is solved by using f'trst-order backward differencing in time and second-order central

differencing in space. The temporal density derivative is locally linearized about the old time levels in a

manner that preserves the conservative form [10]. The resulting equation is approximately factored into

_, 11, and _ operators:

where

and

L_LrlL_(0 n+l - On) "- RHS

I1 h A ii

= I + hU - 8_(pA1)L_

LVl = [I + hVn_n - _n2 5n(PA2)nSrl]

h-_8;(PA3)nS;
L_ =[I+hWnS;- _ ]

(13)

(14)

h 2 ^ n R]RHS = _--ff[8_(pU) + _rl(pV) n + 8_([_W) n- + C

which represents central difference operators in space. The term C is given by

(15)

+ _.ffff_(__n-I " n _ 2_n-I + _n-2) + _n ([_n- _n-I)

(16)

The bracketed term in equation (16) represents the temporal conservation in the algorithm. In the above

equations, h is the difference of two consecutive time steps, _ = p2-y / j and _ = p / J. The superscript n

represents the time step.



A steadystateADI relaxationalgorithmcanbeobtainedfrom equation(13)by omitting theunsteady
C term on the right-hand side of the equation, adding temporal dissipation in the _ direction, and

allowing for a time-stepping sequence for accelerated convergence.

The basic grid system is composed of a series of parallel chordwise O grids. Body motion is

incorporated by assigning an appropriate coordinate velocity (_x, rlx, _x) to each grid point. The coordi-

nate velocity is defined with respect to an inertial coordinate frame. The coordinate velocity can be

translational, rotational, or a combination of the two.

The angle-of-attack conditions on the blade surface (including inflow angles induced by the rotor

wake) are simulated by a transpiration velocity condition. At the outer radial boundary of the O grid, a

nonreflection boundary condition is used to prevent the accumulation of numerical disturbances. Typical

grid size for the inviscid calculations in this paper is 80 points in the chordwise direction, 25 in the

spanwise direction, and 25 in the direction normal to the rotor surface. The finite difference grid extends

approximately 2 chords outward from the rotor tip in the spanwise direction. The outer radial boundary

of the O grid is about 5 chords from the blade surface. Variable time steps are used for the steady

flows, such as hover, to accelerate convergence.

COUPLING OF VISCOUS AND INVISCID SOLUTIONS

To obtain a meaningful solution, the viscous-inviscid interaction must allow each flow to infuence

the other. The classical way of introducing viscous effects into an inviscid flow is to add displacement

thickness to the body surface. When this is done the geometry of the body and therefore the grids must

be recomputed after each iteration. This is computationally costly. A more efficient and robust alterna-

tive is to impose a transpiration velocity at the body surface, as first suggested by Lighthill [ 11].

Viscous-lnviscid Interaction

In this approach the original flow tangency condition in the inviscid flow is modified by enforcing a

normal velocity component on the body. A flowchart depicting the viscous-inviscid interaction process

is shown in Fig. 2. The normal velocity component (i.e., the transpiration velocity) deflects the inviscid

flow from the body surface, thus simulating the displacement of the inviscid flow due to the momentum

defect in the boundary layer. The transpiration velocity due to the boundary layer is given by

(17)

where Pe and Ue are the inviscid density and the tangential velocity on the body surface, _i* is the

displacement thickness, and d is the distance along the body surface.

Depending upon the application, it is sometimes not necessary to recompute viscous flow after each

inviscid iteration because the inviscid flow does not change much between iterations. In order to speed
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up theconvergence, the ratio of inviscid to viscous iterations was set to five for all hover calculations.

For forward flight calculations, however, the ratio was set to one because the computation was unsteady.

Viscous--Inviscid Interaction: Direct and Inverse Modes

Depending upon the flow conditions, the inviscid solution can be incorporated into the boundary-

layer equations in one of two ways. If the flow is fully attached, i.e., there is no separation, the

boundary-layer equations can be solved directly with pressures provided by the full-potential method.

This direct-mode solution process is straightforward. If the flow separates, however, the direct mode

cannot be used, because (1) there is a singularity at the separation point and (2) flow reversal prohibits

computing the solution in the direction of the external flow unless the convection terms in the momen-

tum equations are altered [6]. An inverse mode is needed in this case. In the inverse mode, wall shear

stress and wake centerline velocity are treated as the forcing functions in the momentum equations, and

pressure becomes part of the solution [7].

To solve the boundary-layer equations in the inverse mode, the algorithm must be modified so that

the inverse forcing functions can be specified. This is achieved by replacing the pressure terms in the

momentum equations with the inverse forcing functions. These relations are obtained by applying the

momentum equations to the body surface or the wake centerline. For example, applying the

x-momentum equation to the body surface yields

13(p[ _x + P;_x) = p(2w_ *+ x(_*)2) + [(i.tu_lrly)rlrlY]wal I (18)

After the boundary-layer equations are solved in the inverse mode at each iteration, the pressure is

calculated by assuming that the fluid is an isentropic perfect gas.

A shear stress distribution is first assumed for the proposed separated regions at the beginning of the

computation and is then updated by the following equation:

,_n+l = zn + 0_(Pviscou s _ Pinviscid) (19)

This update is continued until the pressure predicted by the viscous method matches that of the inviscid

method. The term co is a relaxation parameter; a value of 0.1 was used in most of the calculations.

Currently, the inverse mode can be applied only in one direction, usually streamwise. This restriction

is due to the fact that in the inverse mode the wall shear stress or the wake eenterline velocity is updated

by the inviscid and viscous pressure difference. If the inverse mode is applied in both streamwise and

spanwise directions then the pressure will have to be calculated in these two directions during the same

iteration. The pressure calculated in the spanwise direction will not be the same as that calculated in the

chordwise direction. The question then arises, which pressure, chordwise or spanwise, should be used to

update the inverse forcing function as described in Equation (19). Further study is needed to ensure that

this double-updating process would not cause convergence problems before implementation.



RESULTS AND DISCUSSION

Flat PlateFIows

Before the coupled V-II code was run, an attempt was made to validate the accuracy of BL3D by

itself. This was accomplished by computing both laminar and turbulent flows over a flat plate. The

Reynolds number for the laminar flow was 105 . The computed local friction coefficients are compared

with the analytical results derived from a Blasius solution [12] in Fig. 3. The agreement is excellent. For

the turbulent flow, the Reynolds number was 106 . The computed local friction coefficients are compared

with experimental data [12] in Fig. 4. The friction coefficient calculated by BL3D is consistently low by

about 10%. This error is believed to be a result of an inaccuracy in Cebeci's turbulence model which

was used for the calculation.

Two-Dimensional Airfoil Flows

V-II was then used to compute nonlifting, two-dimensional airfoil flows with a NACA 0012 airfoil.

Flows with two different Reynolds numbers, 106 and 107, and a Mach number range of 0.3 to 0.8 were

computed. In these computations the aspect ratio of the blade was set very large, at 10,000, such that a

few chords away from the tip the flows were essentially two-dimensional, and the flows were assumed

to be fully turbulent. The computed drag coefficients are compared with experimental data [13] for the

lower-Reynolds-number flow, 106 , in Fig. 5. The agreement is very good, with the computed drag coef-

ficients well within the test band. V-II predicts a drag rise Mach number of 0.77, which is confirmed by

the experimental data.

A similar comparison is made for the higher-Reynolds-number flow in Fig. 6. The predicted drag

coefficients were slightly lower than the experimental values. Again, the ttiscrepancy is believed to be a

result of inaccuracies in Cebeci's turbulence model. But since only one t_krbulence model is used in

V-II, no definite conclusion can be drawn here. V-II again predicts a drag rise Mach number of 0.77,

which is consistent with the experimental data [13]. Note that V-II predicts higher-magnitude drag

coefficients for lower-Reynolds-number flows, as anticipated.

The solutions of version 1 of the full-potential code [1] had a large pressure drag tare, about eighty

counts. Theoretically, an object should experience no drag if the flow is inviscid and subsonic. The

numerical algorithm was improved to reduce the tare value, as described in [4], but a small tare value

still exists. This tare value for subsonic flows is less than 5% of the value with the Euler method [4]. Its

value is less certain in the transonic region because it is mixed with wave drag. The results reported in

this paper include the tare value.

Nonlifting, Hovering Rotor Flows

V-II was used to compute the nonlifting, hovering flow for a two-bladed model rotor system. The

blade is untwisted and rectangular, with a NACA 0012 section and an aspect ratio of 13.71. Figure 7

shows the comparison of torques calculated by V-II with that of test data for a tip Mach number range

of 0.3 to 0.925. The agreement is excellent. Also plotted in this figure are torques calculated using the

two-dimensional integral boundary-layer method as described in [4]. This integral boundary-layer
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method predicts lower torque in the higher tip Math number region (greater than 0.7). Fully turbulent
flow was assumed in the calculations of both methods.

To validate V-II for advanced rotor configurations, it was used to calculate the flow of another

nonlifting, hovering rotor system. This system consisted of two swept, tapered-tip blades with variable

airfoil thickness. A detailed description of this rotor can be found in [4]. The torques calculated were

compared with those calculated by the integral boundary-layer method and with the test data, as shown

in Fig. 8. The comparison shows that torques predicted by V-II are consistently 10%-15% higher than

test values for the range of tip Mach numbers considered. The predictions made by the integral method

agree well with the test data in the low tip Mach number region (less than 0.7), but the values were lower

in the high tip Mach number region (greater than 0.7).

To investigate the differences in the torque predictions made by V-II and the integral method, the

spanwise variations in the viscous drag coefficients obtained by BL3D and by the integral method were

compared. Figure 9 shows the comparison for the nonlifting, hovering rotor with rectangular blades at a

tip Mach number of 0.9. In calculating the viscous drag coefficient, the surface shear component in the

outer flow direction was integrated to obtain the drag coefficient. The wave drag due to shock was not

included. As shown in Fig. 9, BL3D does predict a higher viscous drag coefficient. The difference is

very large in the inboard region and becomes significantly smaller near the tip.

The same comparison was made for the nonlifting, hovering rotor with swept, tapered-tip blades at

the same tip Mach number, as shown in Fig. 10. The viscous drag coefficient difference is not as large in

the inboard region, as was the case in the previous comparison, but it increases near the tip region. The

value of the viscous drag coefficient calculated by the integral method drops rapidly at the tip region.

This might be caused by the inability of the integral method, which was developed for two-dimensional

flows, to handle the highly three-dimensional flow at the tip region generated by the swept, tapered tip.

In comparing the viscous drag coefficients calculated by BL3D for the rectangular and the swept-tip

blades, it can be seen that the drag coefficient drops faster from root to tip on the rectangular blade than

on the swept-tip blade. This is caused by the shock strength being greater on the rectangular blade. The

reversed-flow region is larger, therefore the drag coefficient is reduced more.

In order to understand the effects of the viscous-inviscid interaction, pressure coefficient distri-

butions obtained from two different sets of calculations are compared. In the f'LrStset the pressure

coefficient was calculated by the isentropic full-potential analysis alone. In the second set the pressure

coefficient was calculated by the viscous-inviscid interaction. The comparison is made for the nonlifting

two-bladed model rotor with rectangular tips in hover, as used in the calculations for Fig. 7, over six

different spanwise locations, from nondimensional radius 0.820 (Fig. 1 la) to 0.998 (Fig. 1 If). The tip

Mach number was 0.925. In the inboard region the flow is subsonic, and the results predicted by the two

sets are quite close. Near the tip region the flow is transonic, the shock is much stronger, and the predic-

tions show some significant differences with regard to the shock. In general, V-II predicts a weaker

shock, and the location of the shock is moved slightly upstream. This does not affect the drag force very

much, because the streamwise component of pressure is small, but it will change the blade pitching

moment significantly, since the vertical component of pressure is large, and this is important in rotor

dynamics.
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Nonlifting Rotor Flows in Forward Flight

An important issue to be addressed is the applicability of V-II to the prediction of unsteady flows.

To demonstrate this applicability, flows about a nonlifting two-bladed model rotor in forward flight was

calculated. The blade has an untwisted, rectangular planform, a NACA 0012 section, and an aspect ratio

of 7.125. Figure 12 shows comparisons of measured surface pressures [14] with predictions for a tip

Mach number of MT = 0.763 and an advance ratio of I.t = 0.246, at a radius of r/R = 0.946. The unsteady

solution is shown for azimuthal intervals of 30 °. VII predicts a slightly weaker shock at 60 ° and 90 ° of

azimuthal angles. The predicted shock strength is slightly higher at 120 °. The predicted shock location is

slightly more upstream, at 150 °. In general, V-II demonstrates that it is able to predict the blade surface

pressure distribution of an advancing rotor very well.

CONCLUSIONS

V-II has been developed to predict the performance of rotors in hover and forward flight. The

viscous drag can be calculated directly to include the variations in Reynolds number and the rotational

effects of the blade. Flows over flat plate and two-dimensional airfoil flows were calculated, and the

results were compared with test data. The comparison showed good accuracy of the numerical proce-

dure. Three nonlifting model rotor flows, two in hover and one in forward flight, were calculated. The

comparison of predictions with test data demonstrates that V-II is able to make accurate performance

predictions efficiently for general rotor configurations.

There are two restrictions in applying V--II to rotor flows. First, it can only handle separation in one

direction, either radial or chordwise. If the flow separates in one direction, then flow in the other direc-

tion is assumed to be attached. Second, V-II is applicable only when the amount of separation is small.

If the separation is large, the solution will diverge. More study is needed to overcome these restrictions.

The pressure drag tare in the full-potential method described in the previous section is a result of the

numerical scheme and grid mesh used. Further research is being undertaken by the authors in this area.

The next step is to extend V-II, described here for nonlifting flow calculations, to the prediction of

lifting flows.
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Figure 8.- Comparison of computed torques with test data for the hovering rotor with swept tip blades.

16



0.012

0.010

0.008

0.006

0.004 .... INTEGRAL METHOD
BL3D

l l i, l I l, I I I

0.1 0.3 0.5 0.7 0.9

r/R

1

Figure 9.- Comparison of spanwise viscous drag coefficients for the nonlifting hovering rotor with

rectangular blades, MT = 0.9.
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