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Summarv 

Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly- 

swept delta wings are described. The modifications involve the addition of the rolling 

rigid-body equation of motion for its simultaneous time-integration with the governing 

flow equations. The flow solver utilized in the Euler code includes a multistage Runge- 

Kutta time-stepping scheme which uses a finite-volume spatial discretization on an 

unstructured mesh made up of triangles. Steady and unsteady results are presented for a 

75,p swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 307. r, 
The unsteady results consist of forced harmonic and free-to-roll calculations. The 

free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics 

consistent with the aerodynamics of the forced harmonic results. Similarities are shown 

with a wing-rock time history from a low-speed wind tunnel test. 

j n t roduct ton 

In recent years, the understanding and prediction of the complex flows about modern 

aircraft at high angles of attack have been research topics that have generated much 

interest within the fluid dynamics community.’ ,* These aircraft typically have thin 

highly-swept lifting surfaces such as delta wings which produce a vortical flow over the 

leeward-side of the vehicle at high angles of attack. This vortical flow can have 

beneficial effects on performance, such as lift augmentation at high-a, but may also 

have adverse effec!s S U C ~  2s s!rcc!ura! !a!igue due !c !ai! buffet and also stability aiid 

control problems such as wing rock, wing drop, nose slice, and pitch-up.3 Considerable 

research has been conducted into the wing-rock phenomenon which is a self-induced, 

limit-cycle rolling oscillation with, in some cases, a coupled yaw oscillation. Both 



experimental and computational methods have been used in these efforts to better 

understand the basic flow physics involved in this type of unsteady, vortical flow. 

Experimental investigations into wing rock have been reported by Nguyen et al.4 for 

forced harmonic and free-to-roll motions of an 80" swept delta wing in low speed flow. 

In Ref. 4, the model was found to undergo wing rock for angles of attack greater than 25". 

Levin and Katz5 tested both 76" and 80" swept delta wings and found that only the 80" 

model would exhibit wing rock at high-a. Further studies have been performed by 

Nelson6,7 and co-workers at Notre Dame University. These studies have shown, for 

example, the time histories of the vortex core position during a cycle of wing rock6 and 

the static and dynamic effects due to vortex b reakd~wn.~  Also Ng et a1.8 have recently 

reported experimental results obtained in a water tunnel which show wing rock for 

several different delta wing planforms along with detailed flow visualization diagrams. 

These have contributed significantly to the understanding of wing rock 

although much work remains to be done. 

Computational methods have also been applied to the prediction of wing rock. Hsu and 

Lang  presented a nonlinear mathematical model for calculating wing-rock 

characteristics based on aerodynamic derivatives evaluated using steady-flow 

aerodynamics at average dynamic conditions. Researchers at Virginia Polytechnic 

Institute and State University1 0 - l  have simulated wing rock using an unsteady 

vortex-lattice method to predict the aerodynamic loads and have integrated the equation 

of rolling motion using a predictor-corrector method. The methods of both Ref. 9 and 

Refs. 10-1 2 predicted with reasonable accuracy the low-speed wing-rock 

characteristics of the delta wings studied in Refs. 4 and 5. Use of the more modern 

computational fluid dynamics techniques for the prediction of vortex-dominated flows1 3 

has primarily focused on steady applications,l 4-21 although there are notable 

exceptions where applications have been made to rolling delta wings undergoing forced 

harmonic m ~ t i o n . ~ ~ - ~ ~  These unsteady methods, although applicable to general time- 
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dependent vortical flow phenomena, have yet to be applied to problems such as wing 

rock. The objective of the current research is to study unsteady vortex-dominated 

flowfields by using the conical Euler equations as an efficient first step to investigating 

the full three-dimensional problem. The purpose of this paper is to report the recent 

calculation of a conical Euler solution for a delta wing undergoing wing-rock motion. 

The flow solver used for this calculation is that of Ref. 24, which involves a Runge- 

Kutta time-stepping scheme and a finite-volume spatial discretization suited for an 

unstructured grid. The code was modified to allow for the additional analysis of the free- 

to-roll case by the inclusion of the rigid-body equation of motion for simultaneous 

time-integration with the governing flow equations. Results are presented for a highly- 

swept delta wing which demonstrate the computational simulation of wing rock similar 

to the experimental investgation of Ref. 7. Of course, the conical Euler assumption is 

limited to supersonic freestream applications, whereas the test of Ref. 7 was for low- 

speed flow. The paper presents a brief description of the conical Euler flow solver and 

free-to-roll analysis, along with results which demonstrate the capability. 

freestream speed of sound 

rolling moment coefficient 

root chord of wing 

mass moment of inertia about longitudinal axis 

reduced frequency based on one half of the root chord 

rolling moment 

freestream Mach number 

treestream dynamic pressure 

planform area 

angle of attack 

. 
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Ai nondimensional global time step 

p, structural damping 

pm freestream density 

Q, instantaneous roll angle 

(Po harmonic roll angle amplitude 

F.uler Solution Alaorithrq 

The unsteady conical Euler equations are solved using the multi-stage Runge-Kutta 

time-stepping scheme of Ref. 24. This algorithm uses a finite-volume spatial 

discretization for solution on an unstructured grid made up of triangles. The original 

algorithm of Ref. 24 was a node-based scheme whereby the flow variables are stored at 

the vertices of the triangles. A second algorithm, a cell-centered scheme, was employed 

in the present study. This second scheme is based on unpublished work of the second 

author. In the cell-centered scheme, the flow variables are stored at the centroids of the 

triangles. In both algorithms, artificial dissipation is added explicitly to prevent 

oscillations near shock waves and to damp high-frequency uncoupled error modes. 

Specifically, an adaptive blend of harmonic and biharmonic operators is used, 

corresponding to second and fourth difference dissipation, respectively. The biharmonic 

operator provides a background dissipation to damp high frequency errors and the 

harmonic operator prevents oscillations near shock waves. The algorithms also employ 

enthalpy damping, local time stepping, and implicit residual smoothing to accelerate 

convergence to steady state. The local time stepping uses the maximum allowable step 

size at each grid point for the node-based scheme and for each triangle in the cell- 

centered scheme, as determined by a local stability analysis. The implicit residual 

smoothing permits the use of local time steps that are larger than those imposed by the 

Courant-Fredricks-Lewy stability condition. This is achieved by averaging the 
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residuals implicitly with neighboring values. A time-accurate version of the residual 

smoothing is also used for global time-stepping during unsteady applications of the code. 

With respect to boundary conditions, freestream conditions are applied along the farfield 

boundary, and a reasonably large computational grid is used so that the bow shock is 

captured as a part of the solution. A flow tangency (or slip) condition is applied to the 

inner boundary which represents the wing. Also, for unsteady calculations, the grid is 

moved as a rigid body to conform to the instantaneous position of the wing. In this 

application, grid speeds are computed at the nodes and are included in the governing 

equations to account for the relative motion between the grid and the fluid. 

Free-to-Roll Analvsis 

In this section, the roll equation of motion and the time-marching solution procedure are 

described. 

Roll Fquaion of Mot ion 

The equation of motion for a rolling delta wing can be expressed as 

I,, $=L-p, d, ( 1 )  

where + is the roll angle which is positive clockwise when viewed from aft, I,, is the 

mass moment of inertia about the longitudinal axis, t is the aerodynamic rolling moment 

also positive clockwise, and Jl is a structural damping term (dot superscripts indicate 

differentiation with respect to time). In order to nondimensionalize Eq. (i), the angular 

rates are multiplied by the root chord of the delta wing, c, and divided by the freestream 

speed af sou!?d, 8,  . The rc!!i!?s memen! ccefficient Is defined 83 

e c, = - 
4.. s c 
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where q- is the freestream dynamic pressure and S is the planform area. The 

nondimensional rolling equation of motion can then be written as 

where 

0'' = c, c, - c, cp' 

Note that the prime superscripts indicate differentiation with respect to nondimensional 

time. The structural damping term is added to simulate a sting bearing mount. This type 

of bearing mount was used in the low-speed wind tunnel investigations of wing rock 

reported in Refs. 4-7. 

Time-Marchina So lution 

The solution procedure for the time integration of Eq. (3) is based on a finite difference 

representation of the time derivatives. The time derivatives are expressed in terms of 

second-order-accurate finite-difference approximations. After substituting these 

expressions into Eq. (3). the roll angle at time level n+l  can be expressed in terms of 

the roll angle at previous time levels as 

@"+ '  = [ C, C;' ' A i 2  + (5  + 2 C2 A t )  $" 

- ( 4 + 3 C2 A i )  + 4"- 1 / [  f C, AT + 21 

The rolling moment at time level n+l , Cq+', is estimated from a linear extrapolation of 

C, at the previous two time levels. This predicted value of C,  is used to determine the 

roll angle at time level n+l ,  $"+'. The flowfield is then calculated about the wing at this 

roll angle, and the actual value of the rolling moment coefficient is determined. The 
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rolling moment coefficient is then updated for use in the next time step. Due to the 

explicit time-marching of the Euler code used in this study, the time steps required for 

stability were small, and thus, it was not necessary to iterate between the roll angle 

calculation and the flowfield calculation at each time step. Previous studies of time- 

marching aeroelastic analyses using a similar explicit scheme have shown this to be the 

case(R. D. Rausch: Personal Communication, October 31, 1989). For a free-to-roll 

calculation, steady-state initial conditions are specified for 0- ', Q0,  C i l ,  and C:. An 

initial angular velocity is imposed to provide an initial perturbation to the wing. 

Pesults a nd Discuss ion 

Calculations were performed for a 75" delta wing at a freestream Mach number of 1.2 

and an angle of attack of 30". The wing has thickness and sharp leading edges as indicated 

in the partial view of the grid shown in Fig. 1. The thickness-to-span ratio at this cross 

section is .025 and the bevel angle is 10". The grid, which was generated using an 

advancing front method,25 has a total of 4226 nodes and 8299 elements. The grid was 

designed to be fine on the leeward side of the wing where the dominant flow features are 

expected to occur and to be coarse on the windward side of the wing where the flow 

gradients are expected to be small. All results presented were calculated using the cell- 

centered scheme. 

Steady-state results were obtained to determine the basic character of the vortical flow. 

The total pressure loss contour lines from this calculation are shown in Fig. 2. These 

contours indicate that the flow separates from each of the leading edges of the wing 

producing two large, circular vortices. Note that as the flow accelerates beneath the 

vortices, verticallv oriented shock waves are formed on the outboard portions of the 

wing. Weaker shock waves are also formed on the top of each vortex. These vertically 

oriented shocks are located above the core of the vortex. The crossflow velocity vectors 

for this case, shown in Fig. 3, also indicate the presence of a weak horizontal shock wave 
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between the vortices. Furthermore, the small lack of symmetry in the results of Figs. 2 

and 3 are due to the fact that the grid is not symmetric. 

The wing was then forced to oscillate harmonically in roll at a reduced frequency of 

k = 0.3 (based on one half of the root chord) using 4000 steps per cycle of motion. 

Several values of reduced frequency were investigated, and these results are 

representative of the lower frequency responses. Three amplitudes of motion were 

considered including @, = 5', 15". and 35". The plots of rolling moment coefficient 

versus roll angle for each of these cases are shown in Fig. 4. For the smaller amplitude 

of 5", the results show a clockwise-oriented loop which would produce a divergent 

(unstable) response if the wing were free to roll. Similar results are seen for the 15" 

case although some nonlinear effects are indicated by the "pinching" of the curve at the 

extreme values of roll angle. At @, = 35", counter-clockwise-oriented loops have 

formed at the extreme roll angles which, consequently, would have a stabilizing effect on 

the free-to-roll response. 

To demonstrate the free response capability, results were obtained for the structural 

parameter values and flow conditions listed in Table 1. The initial angular velocity 

imposed on the wing was 0' = 0.003. The resulting roll angle response is shown in 

Fig. 5. This response indicates that initially the oscillatory response diverges for small 

values of roll angle which is consistent with the small amplitude harmonic results of 

Fig. 4. As the angle increases to around 35", the rate of divergence decreases due to the 

stabilizing aerodynamics shown in Fig. 4 for = 35", and finally, the response reaches 

a maximum amplitude of motion at 0 = 38" corresponding to a limit cycle. The reduced 

frequency of the limit cycle is k = 0.103. These results are similar in nature to those 

obtained by Arena and Nelson' in a low-speed experimental investigation of wing rock. 

The wing-rock time history from Ref. 7, shown in Fig. 6, was obtained for an 80" swept 

delta wing at 30" angle of attack. Although the case considered in the present study is 
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different from that of Ref. 7 (the data from Refs. 4-8 are all for low speed flows 

whereas the conical Euler code is limited to supersonic freestream applications), the 

similarity between the two sets of results in Figs. 5 and 6 is noteworthy and gives 

credibility to the present calculations. 

Conchdim Remarks 

Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly- 

swept delta wings were described. The modifications involved the addition of the rolling 

rigid-body equation of motion for its simultaneous time integration with the governing 

flow equations. The flow solver utilized in the Euler code included a multistage Runge- 

Kutta time-stepping scheme which used a finite-volume spatial discretization on an 

unstructured mesh made up of triangles. Steady and unsteady results were presented 

for a 75" swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 

30". The unsteady results consisted of forced harmonic and free-to-roll calculations. 

The free-to-roll case exhibited a wing-rock response produced by unsteady 

aerodynamics consistent with the aerodynamics of the forced harmonic results. 

Similarities were shown with a wing-rock time history from a low-speed wind tunnel 

test. 
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Table 1 Summary of structural parameter values and flow conditions 
for the free-to-roll calculation. 

0.0 Kg m2/s 

0.526 Kg/m3 

31 2 m/s 

Fig. 1 Partial view of unstructured grid about a 75" swept delta wing. 

1 3  



Fig.2 Steady-state total pressure loss contours for a 75" swept delta wing 
at M, = 1.2 and a = 30". 

Fig. 3 Steady-state crossflow velocity vectors for a 750 swept delta wing 
at M, = 1.2 and a = 30". 
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Fig. 4 Rolling moment coefficient versus instantaneous roll angle for a 
75" swept delta wing at M, = 1.2, a = 30°, and k = 0.3. 
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Fig. 5 Free-to-roll time history for a 75" swept delta wing 
at M, = 1.2 and a = 30". 
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Fig. 6 Wing-rock time history for an 80" swept delta wing 
at 30" angle of attack (Ref. 7,reprinted with permission 
from Professor Robert C. Nelson, Notre Dame University). 
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