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Cleveland State University, Cleveland, OH 44115

SUMMARY

it is well documented that Mars is totally engulfed in huge dust storms nearly each

Martian year. Dust elevated in these global dust storms, or in any of the numerous local

dust storms could settle on photovoltaic surfaces and seriously hamper photovoltaic power

system performance. Using a recently developed technique to uniformly dust simulated

photovoltaic surfaces, samples were subjected to Martian-like winds in an attempt to

determine whether natural aeolian processes on Mars would sweep off the settled dust. The

effects of wind velocity, angle of attack, height off of the Martian surface, and surface

coating material were investigated. Principles which can help to guide the design of

photovoltaic arrays bound for the Martian surface were uncovered. Most importantly, arrays

mounted witfi an angle of attack approaching 45* show the most efficient clearing.

Although the angular dependence is not sharp, horizontally mounted arrays required

significantly higher wind velocities to clear off the dust. From the perspective of dust

clearing it appears that the arrays may be erected quite near the ground, but previous

studies have suggested that saltation effects can be expected to cause such arrays to be

covered by sand if they are set up less than about a meter from the ground. Providing that

the surface chemistry of Martian dusts is comparable to our test dust, the materials used

for protective coating may be optimized for other considerations such as transparency, and

chemical or abrasion resistance. The static threshold velocity is low enough that there are



regionson Mars which experiencewinds strong enoughto clear off a photovoltaic array if

it isproperly oriented. Turbulence fencesproved to be an ineffective strategyto keep dust

cleared from the photovoltaic surfaces.

INTRODUCTION

In the past few yearsthere hasbeena growing consensusthat the United Stateswill,

perhaps in the next twenty years,send a mannedmission to land on the surfaceof Mars.

Becauseof the length of the journey, even initially astronautswill probably stay on the

surfacefor an extendedperiod of time, perhapsseveralweeks. During their staythere will

be power requirements which will exceedthose of present spacecraft1,and an important

componentof that power will no doubt be supplied by photovoltaic arrays.

Photovoltaic arrayswill be subjectedto an environment unlike those in which they

haveheretofore beenused. The atmosphereof Mars consistsof CO2(95.3percent),N2(2.7

percent), Ar (1.6 percent), O z (0.13 percent), CO (0.07 percent), H20 (0.03 percent), and

ppm or less of 03, Ne, Kr, and Xe 2. Natural environmental conditions on Mars such as

high velocity winds, dust, ultraviolet radiation, rapid temperature changes, soil composition,

and atmospheric condensates (H20 and CO2) may pose a threat to photovoltaic arrays.

Results from the soil analysis experiments on board the Viking landers suggest the presence

of highly oxidizing species in the soil 3. Although 99.9 percent of the wind measurements

from the Viking landers showed velocities of 20 m/s or less 4, dust storms were observed

to move at higher velocities (up to 32 m/s) 5, and aeolian features (sand dunes, etc.) suggest

that on occasion there are very high winds 6, albeit at low pressure (5 - 8 torr). The surface

temperatures range from 135 to 300 K 7, and daily temperature swings ranging from 20 to

50 K are not uncommon 8.

One of the possible threats comes from local and/or global dust storms which engulf

the planet nearly annually. Infrared spectra from the Mariner 9 spacecraft suggested that
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the dust is a mixture of many minerals (granite, basalt, basaltic glass, obsidian, quartz,

andesite or montmorillonite), and that the average particle size in the atmosphere is about

2 _ m. 9 A significant amount of dust may be deposited on the array surface during a dust

storm 1°which could occlude the light and significantly degrade the performance of the array.

It is not known at thi_ point how serious a problem dust accumulation might be. Will the

tenuous but high velocity winds blow the dust off of the array? Perhaps the photovoltaic

array can be designed so as to maximize the ability of the array to be self-clearing.

The purpose of this study is to determine how likely it is that the dust will be

removed from photovoltaic arrays by natural aeolian processes, and how the shape and

orientation of the array can affect this process.

METHODS AND MATERIALS

There are a variety of variables which could effect dust removal from a photovoltaic

surface on Mars. In these tests we evaluated the effects of surface coating on the array,

angle of attack, wind "velocity, height from the planetary surface, and turbulence.

One inch (2.54 cm) square, 5 mil (.13 mm) thick glass coverslips were used for the

sample substrates. These were left bare or ion beam sputter deposited with a coating of

SiO2, polytetrafluoroethane (PTFE), 50 percent mixture of SiO 2 and PTFE, indium tin oxide

(ITO), or diamond-like carbon (DLC). Table I summarizes the coatings. These coatings

were chosen because they are candidate materials for protective coatings for photovoltaic

arrays. The substrates were thin, both to present low aerodynamic drag, and for low mass,

which was important for accurate weight determinations of the dusted substrates.

The samples were mounted in specially designed sample holders by means of foil tabs

which stretched across two corners, and held down by a foil tab attached to a removable pin

(see Figure 1). Samples were held at a tilt angle of 0, 22.5, 45, 67.5, or 90 degrees from the



floor. The sample holders could also be held horizontally for optical transmittance

measurements.

The sample holders were tilted so that the samples were held horizontally, and

subjected to a dusting which simulates dust accumulation in the aftermath of a dust storm.

The method of dusting and the resulting dust distribution are discussed in detail elsewhere 11.

The dust used in these experiments was 1800 grit optical grinding powder from

American Optical Company. It was principally an aluminum oxide powder (89 percent) with

significant amounts of silicon dioxide and titanium dioxide (6.6 and 3.0 percent respectively).

It also contained a small amount of iron (III) oxide (0.6 percent) and chromium (III) oxide

(0.6 percent). The particle size ranged from .1 to 25/_m. It is recognized that the chemistry

of the Martian soil, while not known, is probably substantially different from this powder,

but the particles which become elevated to altitudes greater than about a meter are

probably in this size range. Although the values for dust clearing wind velocities on Mars

may differ from those in these simulation experiments, the order of magnitude and the

trends in angle and height from the surface are expected to be similar.

Because of size limitations imposed by the dusting apparatus, no more than four

sample holders could be dusted at once. The amount of dust which accumulated on the

samples was difficult to control, being critically dependent upon the amount of dust in the

chamber, the elevation pressure, and the time allowed for larger particles to settle out. For

this study 13 dusting runs were required, and the resulting samples had ratios of

transmittance of the dusted samples (Td) to transmittance of the pristine samples (To) which

were as low as 0.18 and others as high as 0.82. The spatial uniformity of each dusting

operation was much lower. The Td/T o for each sample is shown in Figure 2.

The winds on Mars was simulated using the Martian Surface Wind Tunnel

(MARSWlT) at NASA Ames Research Center. The MARSWlT is a low pressure (down

to a few torr) wind tunnel 14 m in length with a 1 by i.1 by 1.1 m test section located 5 m



from the tunnel entrance. This flow-through wind tunnel is located within a 144,000ft3

vacuumchamberwhich wasback-filled with CO2. Its characteristicsare describedin detail

elsewhere12. The sampleswere placed in the MARSWlT and tested under the wind

conditions listed in Table II.

The samples were weighed before dusting, after dusting, and after MARSWlT

exposure. However, the weight of the dust added to the optical surfaceswasbelow the

sensitivity of the balance used (0.1 mg).

Optical transmittance measurementswere made by sliding the transmittance

measurementdevice(TMD) over the sample. In the TMD awhite light sourceis suspended

abovethe sample, and the sensingheadof a Coherent Model 212 Power Meter is beneath

the sample. Absolute transmittance measurements were converted into percent

transmittance measurements. Measurements were made before and after the samples were

dusted (T Oand T d respectively), and after the dusted samples were subjected to winds in the

MARSWIT (T,).

The amount of dust which was cleared from the samples was evaluated using a dust

clearing parameter, which was defined as the ratio of the transmittance change on wind

exposure of the dusted samples ('If - Td) to that of the transmittance change upon dusting

(T O - Ta). This function is constrained to vary from zero to one. There is, unfortunately,

a dependence of the value of T d used in different sample dustings on this parameter.

The final transmittance ('If) is a function of wind velocity, angle to the wind, surface

chemistry, particle size, and time. It may also be a function of the amount of dust deposited

initially. Assume that the degradation of Tf from T Oarises solely from particles remaining

on the surface. For the most part these particles are sufficiently small that surface adhesion

is stronger than the forces that can be exerted by the dynamic pressure of the wind. The

number of these particles will increase as the total number of particles dusted on the sample

increases (that is, as T O decreases) up until a monolayer is built up. Beyond that there is
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only particle-particle cohesion. Thus, Tf will be a function of Td until the monolayer is

established, and beyond that it will not. If T_ is a function of T d then, for dusting runs of

low T d, the dust clearing parameter would take a higher value for the same dust clearance

effectiveness. For dusting runs of high T d, the dust clearing parameter should be

independent of T d.

Winds at two different heights from the floor of the wind tunnel were tested.

Samples were placed at about 2.5 cm, which should be within the floor's boundary layer, and

at about 50 cm, which should be well above it.

A turbulence fence was constructed to increase the wind turbulence at the sample.

It was thought that the turbulent flow might be effective at clearing the dust at wind speeds

lower than those in the free stream. It was made up of an vertical array of eight. 125 in (3.2

mm) diameter horizontal rods spaced every .375 in (9.5 mm).

RESULTS AND DISCUSSION

The two most important variables to dust clearing efficiency, were found to be the

angle of attack, and the velocity of the wind. Accordingly, they will be discussed first, and

turbulence and coating material will be discussed as small perturbations on the effects.

Higher wind velocities are expected to clear photovoltaic surfaces more efficiently.

It might also be suspected that there will be a threshold value for the wind velocity below

which there will be no clearing, and above which, given sufficient time there will be

significant, perhaps even total clearing. The static threshold velocity is that velocity at

which dust particles leave the surface without impact from upwind particles. There are

several factors which will effect the static threshold velocity including particle size, particle

shape, and surface chemistry. In these experiments the particle size was chosen to match

that which it is believed to become suspended during a global dust storm, but which would

settle out under calmer conditions. Particles less than about 1 _m in size will stay
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suspendedfor very long periods of time, and those larger than about 50 _ m will never be

transported far from the site where they first become airborne. The particles used in this

experiment mimic the Martian dust size and shape, u the surface chemistry of the particles,

however, is likely to be quite different from that found on Mars.

According to current thought, the soils on Mars are likely to be basaltic, and are

known to be rich in iron oxides 9. Further, the Viking results infer the possibility of peroxide

and superoxides which may be generated by the ultra-violet radiation that constantly

bombards the surface s . With the present state of knowledge we cannot hope to duplicate

whatever exotic surface chemistry might exist in the Martian soil. In addition, the presence

of much more water vapor in the Earth environment would change the surface chemistry

even if we did know how to simulate Martian soil. The optical polishing powder has been

shown to dust the samples evenly with little particle aggregation 11. Thus, this material is a

reasonable starting point for these studies, and that trends in angle, height, turbulence, etc.

should still be valid, but the experiments should be repeated with dust of different surface

chemistries to evaluate its effect.

Figure 3 shows the dust clearing as a function of angle for various velocities of

simulated Martian wind. The amount that some of the data points lie below zero give

some indication of the experimental error. There is a clear indication from Figure 3 that

the optimum value was near 45*. Samples with an attack angle of zero showed virtually no

dust clearing at velocities below about 100 m/s, while those at 45 ° cleared to about 92

percent of their original transmittance value at wind velocities as low at 35 m/s. Samples

held at angles of 22.5° and 67.5° cleared slightly less efficiently than those'at 45°. Samples

held at 90* showed still less clearing, but more than those held at 0 ° . This trend was found

with velocities varying from 30 to 85 m/s. In the test with a higher velocity (124 m/s) all

of the samples were cleared comparably. In the test with a lower velocity (10 m/s) none

of the samples cleared appreciably. Note that the time exposed to the wind was not the
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samein all cases (see Table I), but the angular dependence of the efficiency of dust clearing

is not expected to be time dependent.

In one series of samples in 85 m/s wind test, vertical (90*) sample holders were

angled at 0 ° , 30 ° , 60 ° , and 90* from the wind around a vertical axis. This should be an

equivalent configuration to having samples on 0 ° , 30 ° , 60 ° , and 90 ° tilts. The angular

dependence was indeed consistent with the other experiments (see Fig. 3).

The threshold clearing velocity predicted by Iverson and White is considerably below

the measured values 13. Using the 0 ° data we find a threshold velocity of somewhat less than

85 m/s, about an order of magnitude higher than predicted. The experimental conditions,

however, were not the same as the theoretical assumptions. Iverson and White assumed a

layer of spherical particles laying on a bed of similar particles. In the experiment, there was

less than a monolayer of non-spherical particles on various substrates. Intuitively, however,

one might expect the threshold velocity to be smaller in the experiment because of the

smooth substrate.

Given the angular dependence of the dust clearing, one might suspect that the

mechanism of detachment would involve the rolling or sliding of dust particles. For the

most part, however, this did not appear to be the case. Photomicrographs of the dust layer

remaining on dusted glass surfaces subjected to 35 m/s winds at different attack angles

showed no directionality to the dust removal. Only on the samples with an attack angle of

22.5° could it be discerned from the photographs the direction of the wind arrival. This was

further confirmed by the photograph of a half-round sample subjected to the same

conditions. Only as the attack angle became very low was there appreciable streaking.

Thus, turbulence at the surface must act to aerodynamically lift the particles out in a

direction which is approximately normal to the surface. This view is supported by classical

models of Bagnold 14in which aerodynamic lift plays a key role in particle motion from a

surface at the threshold velocity.
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Given the cautions above, the static threshold velocity to remove dust particles from

the surface was determined. The data taken at 45" is of most interest, because that will give

us the minimum static threshold value. In Figure 4 it can be seen that the minimum

threshold value was between 30 and 35 m/s. Although this is higher than the average daily

maximum wind speed at the Viking landing sites of about 9 m/s 15, it is not uncommon on

some parts of the Martian surface s .

How important is turbulence in the clearing of dust from surfaces? Turbulence was

studied from two different sources, boundary-layer turbulence, and artificially induced

turbulence. Turbulence will result in a lower mean velocity (and so a lower mean dynamic

pressure to move the particles) but it may result in higher local velocities.

Identical samples were run at about 3 cm and about 50 cm from the floor of the

MARSWIT. Figure 5 shows the approximate height of the boundary layer (where the

velocity becomes the flee-stream velocity) at several different velocities and the height of

the samples. It can be seen that the lower samples were within the boundary layer, and the

upper ones were not. As can be noted from Figure 6, however, there was no appreciable

differences between these two heights. In one experiment, in a 55 m/s wind, a sample

holder was placed on end so as to fix the samples nearer to the floor. The holder was

placed at a 45* angle to maximize the dust clearing. Figure 7 shows that in this extreme

case there may have been small boundary layer effects observed, with the lower samples

showing slightly less clearing.

Turbulence was also induced by placing a "fence" of cylindrical rods in front of the

samples at a wind speed near the threshold. The hope was that the turbulence fence would

lower the threshold wind speed, but the fence was found to actually hinder the clearing

slightly (see Figure 8).

A wide variety of photovoltaic cell coatings was tested to determine which coatings

would be most effective in shedding the dust. Because of the probable differences in surface
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chemistrybetween the test material and actual Martian soils this is risky, but perhapssome

general surfaceprinciples can be determined. Even though there was a wide variety of

materials both conducting and insulating, hard and soft, and high and low coefficients of

friction, therewere only slight differencesamongthe ability of the coatingsto shedthe dust.

For a eachangleof attack (0°, 22.5°, 45° , 67.5°, and 90*) andfor the wind velocities

of 55, 85, and 124m/s, each coating was ranked on the basis of dust clearing parameter

from highest (1) to lowest (3 or 6, depending on the number of samples). The average

ranking over all of the anglesat a given wind speed for each of the coatings is shown in

Table III. The last column in Table HI showsthe averageranking for eachcoating over all

of the anglesand all of the wind speeds. Although the error is probably large, there may

be somevalidity to the rankings. Glassand SiO2havenearly equal scores,asdoPTFE and

PTFE/SiO 2. ITO wasthe easiestto clear, and DLC the hardest. Surfaceadhesiontestsare

planned to test the validity of the ranking.

CONCLUSIONS

Even in this first preliminary study principles have been found which can help to

guide the designof photovoltaic arraysbound for the Martian surface. Most importantly,

if an array is to be self-cleaningit shouldbe tilted at an angleapproaching 45*. Although

there iswide latitude with this requirement, it seemsmost important that the arraysare not

erectedhorizontally. Most importantly, arraysmountedwith anangleof attack approaching

45° show the most efficient clearing. Although the angular dependence is not sharp,

horizontally mounted arrays required significantly higher wind velocities to clear off the

dust. From the perspectiveof dust clearingit appearsthat the arraysmay be erected quite

near the ground, but saltation can be expectedto cover the arrays if they are set up less

than about a meter from the ground16.Providing that the surfacechemistryof Martian dusts

is comparable to our test dust, the materials used for protective coating maybe optimized
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for other considerations such as transparency, and chemical or abrasion resistance. Given

the same assumption, there are regions on Mars which experience winds strong enough to

clear off a photovoltaic array which is properly oriented, though there are other regions

where some other clearing technique will have to be employed. Turbulence fences proved

to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.
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Table I -- Photovoltaic Array Coatings Tested

Coating Thickness Deposition Substrate

none .............. glass

SiO 2 650 A ion beam glass

PTFE = 1000 A ion beam glass

50% PTFE/SiO 2 ._ 1000 A ion beam glass

ITO -_1000 A ion beam glass

DLC _ 1000 A ion beam glass
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Table II -- Wind Conditions Within the MARSWIT

Velocity Press0.re Dynamic Pressure Tcmpera.ture Time

10 m/s 7.6 torr 1.8 Pa 290 K 10.0 rain

23 7.6 9.8 290 10.0

30 7.6 16.6 290 10.0

31 7.6 17.7 290 15.0

35 7.6 22.6 290 5.0

55 7.6 55.8 290 2.0

85 7.6 134. 290 .50

124 7.6 283. 290 .75

Table III -- Relative Ease of Dust Clearence From Photovotaic Coatings

Coating 55 m/s 85 m/s 124 m/s Overall

ITO 1.0 1.6 2.5 1.9

PTFE/SiO 2 1.0 1.8 3.0 2.2

PTFE 2.0 2.3 2.3 2.3

SiO 2 3.0 1.9 3.6 2.8

Glass 2.0 2.4 3.8 2.9

DLC 3.0 2.1 4.3 3.2
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if they are set up less than about a meter from the ground. Providing that the surface chemistry of Martian dusts

is comparable to our test dust, the materials used for protective coating may be optimized for other considerations

such as transparency, and chemical or abrasion resistance. The static threshold velocity is low enough that there

are regions on Mars which experience winds strong enough to clear off a photovoltaic array if it is properly

oriented. Turbulence fences proved to be an ineffective strategy to keep dust cleared from the photovoltaic surfaces.
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Figure 6. - Dust clearing at different heights trom wind tunnel floor.
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