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> ) Abstract

A new method for the computation of electromagnetic scattering from arbitrary two-
dimensional bodies is presented. The method combines the finite element and boundary
element methods leading to a system for solution via the Conjugate Gradient FFT._al-
gorithm. Two forms of boundaries aimed at reducing the storage requirement of the
boundary integral are investigated. It is shown that the boundary integral becomes con-
volutional when a circular enclosure is chosen, resulting in reduced storage requirement
when the system is solved via the Conjugate Gradient FFT method. The same holds for
the ogival enclosure, except that some of the boundary integrals are not convolutional
and must be carefully treated to maintain the O(/N) memory requirement. Results for
several circular and ogival structures are presented and shown to be in excellent agree-
ment with those obtained by traditional methods.
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Chapter 1

Introduction

Many methods exist for the numerical solution of two-dimensional (2-D) scattering
problems. Moment methods have traditionally dominated the frequency domain solu-
tion approaches though more recently, hybrid finite element methods have gained much
popularity. The relative simplicity in treating complex arbitrary composite structures
is a major reason for this. Also, the resulting system of equations in a finite element
implementation is sparse and banded leading to a low (O(V)) storage required for large
scale applications.

To formulate the hybrid finite element method for scattering computations, the struc-
ture is enclosed in a ficticious boundary. Within the boundary, the finite element method
is used to solve a weak representation of the Helmholtz equation and further, to satisfy
the radiation condition, an approximate absorbing boundary condition (ABC) {1} may
be placed on the ficticious boundary. The ABC’s are popular because they result in
a banded sub-matrix structure. However, they require additional unknowns since the
enclosure must be placed at a distance apbroximating the far field region. An alternative

to the ABCs is to match the fields within the enclosure to an eigenfunction expansion



(unimoment method) [2] or to employ the boundary integral equation [3, 4, 6]. The
unimoment method produces a dense square sub-matrix with dimension proportional to
the number of modes. It also requires the truncation of an infinite series which may be
slowly convergent for irregular structures thus resulting in a large storage requirement.

Previously, the authors introduced a method [6] which resulted in an O(N) storage
requirement. By choosing a rectangular ficticious boundary, some of the integrals in
the boundary integral equation become convolutions amenable to evaluation via the fast
Fourier transform (FFT). Provided the conjugate gradient (CG) algorithm is used for
the solution of the system, the discretization and evaluation of the convolution integrals
requires only O(N) storage (while the remaining “cross-terms” must be stored in an
efficient manner). Another important feature is that the order of the FFT need only
be applied on the ficticious boundary making it preferable to the traditional CGFFT
method, which requires the evaluation of FFTs that have the same dimensionality as
that of the structure.

It is possible to choose other boundaries that result in convolutional integrals, and in
this report we consider circular and ogival enclosures. Clearly, a circular enclosure would
be attractive for circular scatterers whereas an ogival boundary will be more attractive
for those structures conforming to this boundary. In the case of the circular boundary
the entire integral is convolutional ensuring the O(N) memory demand of the system
provided an iterative solution is used. When an ogival enclosure is used the integral
becomes convolutional only if the observation and source points are on the same arc, but

an efficient storage scheme is again required for the remaining “cross-terms” !.

Y4cross terms” refer to integrals for which the source and observation points are not on the same arc



The hybrid finite element methods presented herein will be referred to as the com-
bined finite element-boundary element methods (BE/FE-CGFFT), because the source
and observation points associated with the boundary integral share a common contour
as is the case with the traditional boundary element method [8]. In contrast, for the
combined finite element - boundary integral formulation (FE-CGFFT) discussed in [6]
the source and observation points are on adjacent contours. This choice of a single or
double contour is, of course, arbitrary and only for convenience since in either case, the
same number of unknowns are required for either case.

In the following sections, the pertinent BE/FE-CGFFT formulations are developed
for the circular and ogival boundaries. Results for several circular and ogival structures
are presented and shown to be in excellent agreement with that obtained by traditional

methods.



Chapter 2

Analysis

Consider the plane wave !

F7(P) = 2¢°(p) = zeToreon(t=to) (2.1)
illuminating a composite cylinder as shown in Fig. 2.1 and we are interested in computing
the scattered field. For the application of the Finite Element - Boundary Element Method
the target is enclosed in a ficticious circular or ogival boundary as shown in Figs. 2.2 and
2.3. Within the boundary T, the finite element method is used to solve the Helmholtz

equation

V- [v(P)Ve(P)] + k3v(P)8(P) = 0 (22)

where

1

#p)= E(),  wP)= = u(F) = lP) (2.3)
for E-polarization and
o(7) = H.(3), u(p) = % o(P) = () (2.4)

'An ¢’“* time convention is assumed and suppressed.



Figure 2.1: Geometry of the scatterer



for H-polarization. The free-space wave number is k, = w,/li,€, and g, and ¢, are the
relative permeablility and permittivity, respectively. On the boundary I'; the Helmholtz

integral equation
80 = 0) - § {607 [500.)] - 600 [5-GE R Jat.  @3)
Ta on, Ong
provides the required boundary constraint, implicitly satisfing the radiation condition.
In (2.5)

G(p.7.) = g HO (kolp - ) (2.6)

is the 2-D free space Green’s function where Hgg)(') denotes the zeroth order Hankel
function of the second kind. Also, %ﬂ denotes differentiation with respect to the outward

normal, whereas p and 7, are the usual source and observation points, respectively, and

B=Pal = (2= 2a)? + (v~ va)? 2.7)



Figure 2.2: Partially discretized body in a circular enclosure

2.1 Case 1: Circular Enclosure

2.1.1 Discretization of the Scatterer and Field Quantities

The region enclosed by I';, denoted as R,, is discretized into N, finite elements as
illustrated in Fig. 2.2. In the figure, p, is the radius of the circle and a, is the integration
angle along this boundary (Further definitions for the finite element mesh are indicated
in Table 2.1, while the definitions of the field vectors are indicated in Table 2.2.). We

note that nodes along I, are equispaced with angular displacement A.

2.1.2 Derivation of the Finite Element Matrix

The weighted residual expression over each element may be written [9]

/ RaeNSdQE =0 i=1,2,3 (2.8)
QC



Definitions for Finite Element Mesh

N, = total number of nodes in the finite element mesh
Ny = total number of unknowns
N, = total number of eler-.ents in the finite element mesh

N, = number of nodes or elements on T,

N4 = number of nodes or elements on T'y

Table 2.1: Definitions for the finite element mesh

Definitions of Field Vectors (in terms of field unknowns at nodal points)

¢, = fields at the nodes on [,
¥, = normal field derivatives at the nodes on I’
¢; = fields corresponding to region I enclosed by I'; and 'y

¢, = fields at the nodes on I'y, the conductor boundary

Table 2.2: Definitions of the field vectors




where
Roe =~ [z0)528@0)] - 3 [ )gpden)] - Bren)F @) (29
and
pp=) ¢ (2.10)

where ¢¢ is zero outside element e. In (2.9) #¢ is an approximation to ¢ in the eth
element, and N? is the ith shape function associated with the eth element. Substituting

(2.9) into (2.8) and invoking the divergence theorem yields

_[aé ong  B¢° aNg 2 zere | soe
({/{ “[az 3z " By ay]+k°”¢N'}dQ

+/F NEgedle = 0 (2.11)

where I'® denotes the contour enclosing the eth element. Additionally,

P = u‘% (2.12)

is zero outside element e. Summing over N, elements we obtain

. : ,
. 93 oNt 08 ONE] 3 xe ) e
;S{e/{“"[ax 9 T By ay]+k°”¢N‘}dQ

Na Nd
+ X;/F N*dT? + Z,/r N*dTy = 0 (2.13)
= a &= d

where the summations over s refer to the elements with sides adjacent to the ficticious
(T'2) and conducting (I'y) boundaries. The integral over the conducting boundary van-
ishes and if no conductor is present, then 'y is not present. When ¢ = H,, the normal

derivative of the field is zero on the conductor and the field unknowns on the boundary



are allowed to “float” (i.e., the boundary condition is “naturally” satisfied). Finally,

when ¢ = F,, imposing the Dirichlet condition during assembly of the finite element

system results in the elimination of those equations associated with the integral over I',.

Proceeding with the discretization, the field and its derivative within each element

may be expanded into a linear combination of shape functions

e

qge

~

b=

3
PBRE
7
Z N33

Substituting (2.14) and (2.15) into (2.11) we obtain

where

— aNte aN; aNie IN? 2 E nTE e

and
2 = / N{N$dT?

For linear triangular elements, Nf are given by

Nf = 2Q¢(a. +biz + ciy)
with
1 zf %
QO = 1det: e 4 |l==
D) 1 25 43|~
1 25 43

(bc — b5

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)



ai = Tyk — IiY; (2.21)
o= - (2.22)

¢ = zp—z5 (2.23)

and (zf, yf) being the coordinates of the ith node of the eth element. From (2.19)

N b
a9z 2Q° (2.24)
AN c?
i — L 2 .
o T (2.25)

Using (2.24), (2.25) and the identity

/ / (NEYP(NS) dzdy = mem (2.26)
a;; in (2.17) reduces to
@t = 2o _(bbS + ) — k2o® °(1 +6;5) (2.27)
where
o) LiTis (2.28)

0 otherwise

We note that in deriving (2.27) we have assumed that u and v (the reciprocal of the
material constitutive parameters) are constant within each element and are given by u¢
and v¢, respectively.

To find an algebraic expression for b}, we may reparametize the integral in (2.18) as

o +4
5 = / P Pirada (2.29)
a1

11



where Py and P; are given by

a-—aof
Pi(a) = 1- = — dI{ (2.30)
a— of
Bile) = o a‘{ (2.31)
Integrating, we have
WA
= 5 (bix + 1) (2.32)

Substituting the previous equations into (2.13) a sparse matrix is obtained for the

nodal fields that has the form

r 1T 1 7
Aaa AaI 0 —Baa ¢a 0
A Ainr A 0 o1 0
= (2.33)
0 Ag Ay 0 dd 0
0 0 0 0 Ya 0

In this, the values of the elements in the submatrix A,, are the contributions associated
with the nodes in group (region or boundary) p which are connected directly to the nodes
in group q. Also,

N,
= raA
[Baalit = D _ 0% = g (Oi=tk + 40ik + big1 k) (2.34)

s=1

The last row in (2.33) has been intentionally left blank to imply a need for another set
of equations relating the fields and its derivatives on I';. This additional set of equations

is produced by discretizing the boundary integral equation.

12



The last row in (2.33) has been intentionally left blank to imply a need for another set

of equations relating the fields and its derivatives on I';. This additional set of equations

is produced by discretizing the boundary integral equation.

2.1.3 Evaluation of the Boundary Integral

The boundary integral in (2.5) may be rewritten in cylindrical coordinates via the

transformations

P-Pal = l|&(pcosa —p, cosas) - §lpsina — pasin )|

VP + 52 = 2pp, cos(a = ac)

(2.35)

where (p,a) and (p,,@,) are the usual source and observation points in cylindrical co-

ordinates. For |p| = |pal,

17— Bal = 2psin (252))

and the Green’s function and its normal derivative may be written as

G(P,P.) = -THD (2kopasin(25))
d . LA . .
G G2 = TP H (Zkopasin(apa))sin (25p)

We may now write (2.5) as [8]

39(0,0) = $"(p,0) — folp,a) + fi(p,)

where as a result of (2.37) and (2.38)

: 2
$o(p.@) = =2pu f (b, 20) HP) (2kopasin (25p2) doe

13

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



1 27
fi(p.@) = 2pa f " 0(per o) HP (2hopasin (a5 sin (o5 )dag  (241)
with
W(par32) = 5 (para) (242)
PasQq _6Pa Pa,Qq .

The factor of 7 in (2.39) accounts for the singularity associated with Hlm(-) and the
in (2.40) and (2.41) denotes principle value.

We may now discretize (2.40) by expanding the field using pulse basis functions as
N, X
Y(pa,aa) = D Palag — a;); (2.43)
Jj=1

where

1 Jag - a5 < '%
Pa(aq - aj) = (2.44)
0 otherwise

and A is the angular width of the integration cell as indicated in Fig. 2.2. Thus, the

discrete version of (2.40) may be written as

folp, ) = ”"’Z%f " H<2>(2kopas,n(m))daa (2.45)

o= 2

Performing point collocation and letting v’ = & — a,4, we have

(al 0‘)
fo<p,a‘>-—""‘2 5y 47T B0 ypusin () (2.46)

(a.—a,)—

which may be written in compact form as

. Na
folprai) = =223 dyho(ai - ay) . (2.47)
=1
where
(oy—a,)+ 2 ) .
ho(ai = a;) = ][ H® (2K, sin (2)) du (2.48)
(0'-—0‘1)_%

14



It is clear that (2.47) is in the form of a discrete convolution and can thus be written as
fo(p,a) = DFT~' { DFT($) « DFT(ho)} (2.49)

where the elements of hg are given by

a{1-52mn(22a) _ 1]} p=o

fgff)): HP (2kopa sin (“7')) d/ p=1,.,N, -1

ho(pA) = (2.50)

and v ~ 1.781 [10]. Through a similar analysis, the field may be approximated by the

expansion

Na )
d(pa,q) Z Pa(ag = a;)d; (2.51)
ij=1

and by substutiting this into (2.41), we obtain

Kopa <2 i
hilpyai) =7 0: Z¢jh1(ai - aj) (2.52)
i=1
where
(@=a)+8 NN e pN g
hi(a; — aj) = ][( JH (2k,pasin (&) sin (%) du (2.53)
oi—orj)— 4

Clearly, (2.52) may again be written in operator form as

fi(p,@) = DFT'{DFT(¢) s DFT(h:)} (2.54)
where
kopa (§ —sin$) + o5 p=0
hi(pA) = (p#()A o ) " (2.55)
f(p_;)é Lh (Qkopa sin (“7)) sin (“7) di' p=1,.,N; -1

Point matching (2.39) at each node results in the system

39 = 87 = folp, 1) + filp, ) (2:56)

15



which may be written in operator form as
Maa‘ﬁa - Laa a — ¢;nc

where

[Laal; = *2%hoei - o)
1 ipak
{Maa]ij = 55:'1' - p4 Ohl(ai - ;)

A final system is obtained by combining (2.57) with (2.33) to yield

F Asa Aar 0 —Bg, N Pa [ 0 -
Ara An A 0 1| | O
0 Adr Ada O éq 0

| Maa 0 0 —Laa || %a| |5

(2.57)

(2.58)

(2.59)

(2.60)

which can be solved via the conjugate gradient algorithm to obtain the nodal fields.

16



Definitions for Finite Element Mesh

N, = total number of nodes in the finite element mesh

total number of unknowns

=
[

N. = total number of elements in the finite element mesh
Ny = N, + Ny, = number of nodes on T,

[o =T, + T,

LS

Table 2.3: Definitions for the finite element mesh

2.2 Case 2: Ogival Enclosure

2.2.1 Discretization of the Scatterer and Field Quantities

The region within T';, denoted R,, is discretized into N, finite elements and a partial

discretization is shown in Fig. 2.3 for the circular case. In Fig. 2.3,

Ap = angular displacement between nodes on Iy,
Pa, = radii of T,

a,, = angular integration variable along T',,

P

= distance between centers of curvature of T,

Ye, = y-coordinate of the center of curvature of Ty,

Further definitions for the finite element mesh are indicated in Table 2.3, and the field

vector definitions are indicated in Table 2.4.

17



Figure 2.3: Partially discretized body with an ogival enclosure

Definitions of Field Vectors (in terms of field unknowns at nodal points)

¢q, = fields corresponding to the nodeson I'y,, p = 1,2

¥, = fields corresponding to the midpoints of the nodes on I,
¢a, = fields at the nodal midpoints on T,

¢7 = fields corresponding to region I enclosed by I'; and I'y

¢4 = fields corresponding to the nodes on the I'y

Table 2.4: Definitions of the field vectors

18




2.2.2 Derivation of the Finite Element Matrix

The derivation of the finite element matrix follows that described in section 2.1.1
with the exception of the matrix B,,. Consider the ogival boundary as indicated in fig.
2.3. The boundary contour I'; is comprised of two arcs labeled T';; and T'y,, which form
the vertices of the ogive where they meet. At the vertices the unknown normal field is
discontinuous and will therefore be evaluated at the midpoint. Also, in evaluating the
contour integral, the field derivative will be expanded in terms of pulse basis functions,
rather than linear functions. This results in a different B,, matrix and involves the

replacement of P§ in (2.29) by the pulse basis function expansion

1 f0<|a—aj|<4
PA(a - aj) = (2.61)

0 otherwise

By integrating in cylindrical coordinates we then obtain
e : :
b5 = 5 (8 +8ije1), F=1, i=1,2 (2.62)

where {¢ is the length of the eth boundary element along I'; and is equal to p,, A, for

T, p = 1,2. Performing a summation over all boundary elements then yields
N. i
[Baa);; = Zl bij = 5 (8ij + bijs1) (2.63)
e=
where ¥ is the length of the jth element since the jth “node” (associated with the
unknown ;) is at the center of the jth boundary element.
The remainder of finite element analysis for this case proceeds exactly as in section

2.1.2.

19



2.2.3 Evaluation of the Boundary Integral

The evaluation of the boundary integral along an ogival contour is similar to that
described for the circular boundary. For integration and observation points on the same
arc, the integrals become convolutions. On the other hand, when the integration and
observation points reside on different contours, the integrals have no special form and
must be discretized and stored in memory as efficiently as possible.

The distance between the source and observation points in terms of cylindrical coor-

dinates for points on the same arc is given by

P = Ba,| = /07 + 2, — 2pa, cos(a — ag,) p=1,2 (2.64)

When the source and observation points are along different arcs, (2.64) becomes

Py = Pa,| = \/(p COS g — Pq COS A, )? + (psina, — pasinag, + Yo, — Yo, )2

pg=12 (2.65)

in which the subscript a, refers to the integration coordinates along contour p and the
subscript ¢ refers to the observation coordinates. Also, y., is the y-coordinate of the

center of curvature for contour p for p = 1,2. For further reference we note that (2.65)

may be also rewritten as

[ﬁ; —ﬁa?lz )

\/(pz +p2, - Qp; p"? cos(a; = @y Y+ 2 F 2t(p; sin a1 = pay sin %ay ) (2.66)
1

where t = yo, — ¥gy -

20



To discretize (2.5), the fields are expanded as

Na,
¢(pa,0a) =~ E Pa(aq — aj)p; + Z Pa(a — @;)¢;
§=Na, +1
Na,
Y(pa, @) Z Pa(ag ~- a;)'/)g + Z Pa(aq - O‘J)'/JJ
i= Nu1 +1
where as before
1 if|lag—a;| <2
PA(aa - aj) = ¢ ’ 2

0 otherwise

and

(B + dis1)

I\le—a

Substutiting (2.67), (2.68) and (2.69) into (2.5) then yields

N,

inc aj+81 :
—¢(p1’al)— ¢ (pl’al)— {Z,‘IJJ% Go(Pl;Pamal _aax)pagdaal
J-l oy
- 01+A2
+ Z 1/)]' f Go(plvpazyalaaaz )paz daag
i=Ne+1 7
Na, a;+4, 9

-j;@j][

Na aJ+A2 a
- Z @5 ][ 3 P Paz A1, Qqy )paz daag}
i=Ng+1 Y OPam

mGo(Phpal , 01 — Qg )Pq, dog,

ay

when the observation point is on T'y, and

Na,

1 inc o +a
'2'¢(p2,02) = ¢ P2,012 Z 0(p2apax , 02, Qq, )paldaax

a n 23] +A2
+ Z t/).7 ][ GO(P% Payy 2 — Qgy )pa: daa;
j=Na, +1 %

21

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)



Na; a+a1 §
Z f 3 Go(p27 Pa;» A2, Qq, )Pa; daa;
j=1 Pay

23] +A2 a

_ Z 95]'][“] Dpe,

j=Nay +1

Pay» 02 — Oay )Pay daaz} (2.72)

for observation on I'y,. Performing point collocation at the nodal midpoints, (2.71) and

(2.72) further reduce to

1 Nﬂl a'_aJ+ -
2¢(P1, '+1) - ¢"‘C(p1’ ‘+l) - { Z w-’ f G o(P1; Pay » U)Pa; du
i=1 a—a;+4
Na - a;+4A2
+ E ¥; ][ Go(pl »Paz s a,‘_{_al s Og, )p,,, dag,
J=Na, +1 it

2 ¢ ][a‘—aﬁ% e d
- i ’ , U u
Jj= I “""j"'% aptn o(P1 Pay )pﬂx

GO(Plapﬂz’a;}%’ Qay )pazdaaz} (2.73)

for observation on I'y, and

Na

inc aJ+A1
-¢(pz, a;p1) = ¢7(p2, ,+L)—{E ][ Go(P2: Par» Xy g Xay )Pay dta,

a.‘-aj-%-%

+ Z IB] f AGO(p21 pag!u)pagdu
j=Neg+1 7 @ty

Na,

_[utar
- Z (IOJ f a o Pay s a;‘+l y Qg )pa1 daa;
=1 a; Pay 2

G yPaz s U)Pa du} 2.74
J-I%H(PJ fa.-a,.{.é. 0pa, o(P25 Paz» 1) Pa; (2.74)

where the ‘1’ in the subscript refers to the ficticious “node” midway between the actual
nodes. A system of equations can now be obtained by testing (2.73) and (2.74) at a

sequence of points on the contours. This yields
1 4 inc 1 1
ch%l uy = Luta, + Prata, — '2-MuC1¢a, - 5@1202%2
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1 . 1 1
ZC'zdbn = @’ — {P21¢a1 + Loy, — 5@2101%1 - §M22C'2¢a2} (2.75)

which can be alternatively written as

Pay
M11C1 Q120 Ly P2 Pa, pline
D = (2.76)
Q21Cy MaC, Py Lo . Va, Pag’
I Va,

In this C is a matrix with 1's down the main and super diagonals, and <pf,’;c are the value

of the incident field evaluated at the nodal midpoints. The matrix D accounts for the

double use of the nodes at the endpoints and the remaining elements are given by

1.1
Mpp = §(§I’Mpp) (2.77)
1
Qg = “EQM (2.78)
(2.79)
for p = 1,2 in which
cxg—a,+%z
(M), = ][m_w%aco(pp,pa,,u)pa,du (2.80)
(L] et 0 d 2.81
{5 a. Yo ’ y U JPap GU .
ppli; fa.—a,-}-%g apap (pP Pap )p P ( )
a;+4q
@l = GolPp:Pagr @iyt ag)Pagdeta, (2.82)
a
and
oj+Ag ]
[qu]‘.j = /;J Bou, Go(pp,paq,ai+%,aaq)paqdaaq (2.83)
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More explicitly, upon evaluation of the integrals

.ko a A . A A A X
(M) J 5 [hopeg (G —in ) + 7] T (s
pplij = Ko oo +B2 00 ' . o .
]_Za f:_a;.;e:z H£ )(Qkopap sin¥)sin $du i # j
kopa . kopap, & . .
[ st o) )
[LPP];'J' = pay jaimoy 432 (3) (2.85)
il a;é H5" (2kopa, sin§)du i # 5
\ 1T 2

kopa o +A H(2) k A/ -
[@p], =j—t [*TH A (kov/ F )
LY 4 aj (kOW:F t')

21
[paz — p1cos(@1 — ag, ) £ tsin aa,] do,, (2.86)
1 2 2 1 1 1

Pa o;+A
[Pu]_j = -j—f— / ’ ?H(S?)(ka\/_-;t-)daa? (2.87)

2144 ay

where the upper sign corresponds to the upper set of subscripts on P or Q, while the

lower sign corresponts to the lower set of subscripts. Introducing the definitions

,
M1 Cr Q120
K1 = D (2.88)
_QZICI MGy
_
Ly P
Ko = (2.89)
| P L2

the system (2.76) may be combined with that derived via the finite element method to

obtain
Aaa Aal 0 - Baa ¢a 0
A, A Apg 0 o1 0
= (2.90)
0 Ay Aw O b4 0
i, 0 0 K, Yo pine
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We note that (2.90) can be solved via the CG algorithm to take advantage of the con-
volution operators M and L in reducing the memory requirements. This algorithm is

given next.
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2.3 A CGFFT Algorithm
The CG algorithm to be employed for solving a system of the form
Ap=1b

as in (2.60) and (2.90) is as follows:

Initialize the residual and search vectors

w o= llgm 0 0 ol I3=lvl3
s = Ap®
P = pos
s = A%
Yo = sl
g9 = 471
p) = pOg
Iterate for k = 1,..., N,
s = Ap®
ve = sl
o = 47

gD = o) (k) p(k)
P o R (00

o= e
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(2.91)

(2.92)

(2.93)

(2.94)
(2.95)
(2.96)

(2.97)

(2.98)
(2.99)
(2.100)
(2.101)
(2.102)

(2.103)



Vs

ﬁ(k)

p(k+l)

Terminate when k = Ny or ,/?Yf < tolerance.

Aep(k+1)

I's 113

7!

NCEWORG

{s} = {sB1} + {sFE}.

where
0
0
{ss1} =
0
K,
and
Aaa
Ala
{srE} =
0
0
For the adjoint operations, we have
0
0
{sB1} =
0
0
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g
K3

21

22

23

21

22

Z3

24

2

22

<3

24

(2.104)
(2.105)
(2.106)

(2.107)

(2.108)

(2.109)

(2.110)

(2.111)



and

{sFrE} =

46

“tag

a
Ia

0

Baa

a

al

a
A}

AQ
Agr

0

0
Afa
Al

0

E

21

22

23

24

(2.112)

In each case, the operation is performed such that only the resulting vector {s} needs

to be stored.
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Chapter 3

Scattered Field Computation

In this section the expressions for the scattered field and radar cross-section are
developed for both the circular and ogival boundaries. The scattered fields may be

computed from the identity
@) = - . {605 [590)] - 60.) [ 677 } ar. (3.1)

and the echowidth is then found from

- lim 2 Gl 3.2
o= Nm 2rpr e (32)
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3.1 Circular Boundary
The scattered field expression (3.1) may be written as
¢*(p, @) = —fo(p, @) + fi(p, @) (3.3)

where

folpra) = ~2pu [ o @) i) (kot/# 4 2 — 2opacos(a a2) daw (34

and

fl(P,a) =

H{? (ko/p? + pZ = 20pa cos(a - @a))

4 27

J

Zpok Y RN Sk AL —

3Peko | #(pas@a) Y TR CETA) (Pa

To evaluate the integrals in (3.4) and (3.5) we invoke the field expansions (2.43) and

— pcos(a — ag)) day(3.5)

(2.51). We have

+4 A
L H® (ko p* + p? — 2pp, cos(a — aa)) dag  (3.6)
and

Nilp,a)
i‘kopa; /

where the remaining integrals over the subsections must be evaluated numerically for ar-

ay+4 H( ) ko\/p + pZ — 2pp, cos(a — aa))
Vp? + pt = 2ppa cos(a — a,)

(pa — pcos(a — ay))dad3.7)

bitrary observation. However, for far-field computations (p — o0), the Hankel functions

[2j . _
H® (kp) ~ w—sz"e ko (3.8)
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may be approximated as



and since

p for amplitude
\/p2 + p? — 2pp, cos(a — a,) ~ (3.9)
P — pacos(a — a,) for phase terms

(3.6) and (3.7) become

fo(P,a) A 2-7 -Jkoﬁz:¢ ko pa cos(a—ay) (3_10)

4 1rk i

and

27 Na .
filp,a) = paZoA ;rT 'jk°pz¢j cos(a — aj)e”"“’““’("""i) (3.11)

J=1

Substutiting (3.10) and (3.11) into (3.3) we obtain

¢y (p,a) = E—Z‘é wi] ~skor [] Zw jeikopacosla—cy) | kOZ¢J cos(a — a;)ekoracos(a=a; (}3 12)
Jj=1 j=1

and from (3.2) the echowidth is given by yields the echowidth
2

— |5 z ¢ gikopacos(a—o,) 4 ko E¢, cos(a — a; )eJ"°"“ cos(a—a,)| (3. 13)

j=1
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3.2 Ogival Boundary

Following the same discretization scheme used in Section 2.2.3, (3.1) may be written

(3.14)

(3.15)

(3.16)

(3.17)

as
N“l . Ng .
Sea)=-{ T dupaa)t 3 bulaa)
j=1 j=Nay +1
N“l . Na .
S bmlpma) - S dfulpaa)]
i=1 j=Na1 +1

where

a;+48p

flp(paaaaj) = /a- Go(PaPap,a, aap)papdaap
3
a;+8p
fQP(pvavaj) = / a_Go(P,Pa,,aa aap)papdaa,,

ay Pap

in which
Go(p7 Papyayaa,)
J - -
= _ZHf(’z) (ko\/p2 + P2, — 2ppa, cos(a = ag,) + Y2 — 2yc,(psin @ — pg, sin a%))(3.18)
and
d
EGo(pa Pa,,,a, aap)

2 p - -
ko Hl( ) (k"\/pz + P2, — 2pps, cos(a — ag,) + Y2, — 2y, (psina — pg, sin aap))

4 \/p2 + pgp = 2ppa, cos(a — ag, ) + y?p =2y, (psina — pg, sina,,)

[Pa, — pcos(a — ag,) + ye, sin ag,)(3.19)
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and y., are the corresponding y-coordinates of the arc I';,. Using the large argument

approximation for the Hankel functions

[2j .. _.
3 (2) ~ 2L n—ikp
pl_x_,rgo H\¥ (kp) 7rkp'7 e (3.20)

\/p + P2, — 2ppa, cos(a — aa,) + Y2, + 2y, (psina — p,, sinag, )

and the approximation

P for amplitude terms
= (3.21)
P = Pay COS(@ — @,) + Ye, sina  for phase terms

for p — o0, the Hankel function simplifies to

B 4,0) ~ ,rif,pe-fkwe-fko[—pa» cos(ar~tap)~3ey sinc] (3.22)

Similarly,

H(/ve,)) ] i | 2L
vV Yep ) Yo ’ Tl’kop

Substutiting these into (3.15) and (3.16) and performing midpoint integration yields

e—ikop g=iko[=pay cos(a—cap )~y sinal cos(a — ag, X(3.23)
» (3.

AN 27 _. —jko | —pa (a— —82)_y s
fin(pyay05) = ‘JL:‘zz ch_pe ikorg™ [ Pep OROTH T ypsma] (3.24)
(-]

A p 2j _ —Jjko |~ pa, COS(a—a _ﬂz)_yc sina
f2P(P)a, a]) = ko—p4—a£ me JkoPe [ P P A P ]

A
cos(a; + —23 - a,,) (3.25)

Thus, from (3.14)

N,
1 [ 25 . o e
¢sﬁ'(/’»0) = _Z 7rk-] e—Jkoo{ — jA1pa, Z'W Jko[ Pay cos(a—a; —Ft) -y, sma]
Y =
Na ' A '
—JA2pq, Z '(/:ve_fk°["’ﬂ2 cos{a—a, — =& )y, sin a]
7=Ng; +1
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N,

al - .
"koAlpal Z ée"]ko{‘Pax cos(a—aj—%"‘)*ycl sma] cos(a_,- ¥ 92_1 _ aal)
Jj=1
AL -Vl i A
—koA2pa, Z de™ o[—Pa2 cos(a—a; —=F) -y, Sm"] cos(a; + 5~ g, )} (3.26)
j=Nal +1

and by substituting this into (3.2) yields the echowidth

Na, . R -
% =00\ = %.jAlpﬂl Z ’d)e_"k"[_p“l cos{a—a,;— ) -y, sma]
i=1
Na ] A .
+7A2p4, Z ,‘;e—Jko[—paz cos(a—a;— %) ~yc, sin a]
. j=Na1 +1
Na, o o ‘ A
+koA1pa1 Z ¢e_Jko[—pa1 cos{a—a;—3 )=¥ey Slna] COS(C!J' + Tl _ aal)
i=1
Na - ik A i A, 2
+koA2Pa2 Z d)e_-’ o[_l’oz cos(o—ar;~ ] }=Ye, sin cx] COS(a]‘ + T _ aa2) (327)
j=Na, +1
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Chapter 4

Results

The scattering patterns of several circular and ogival cylinders for both E- and H-
polarization are shown in the figures to follow. Figs. 4.1-4.3 contain circular geome-
tries both coated and uncoated, while Figs. 4.4-4.6 contain coated and uncoated ogival
structures. The echowidth is computed for each structure and compared to the results
of the series solution for the circular bodies and moment method [5, 4] for the ogival
structures. As seen in all cases, the generated patterns via the hybrid BE/FE-CGFFT
formulation are in excellent agreement with the corresponding data based on the Mei

Series and Moment Method Solutions.
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Perfectly Conducting Cylinder R=.5 A (E-pol)
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Perfectly Conducting Cylinder R=.5 A (H-pol)
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Figure 4.1: E, and H, bistatic echowidth from a perfectly conducting circular cylinder

of radius 0.5A.
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Coated Conducting Cylinder R=.5 A (E-pol)
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Coated Conducting Cylinder R=.5 A (H-pol)
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Figure 4.2: E,; and H, bistatic echowidth from a perfectly conducting circular cylin-

der with a conductor radius of .5\ and a coating thickness of .05\ containing material

properties €, = 5 — 35, u, = 1.5 - j0.5.
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Pigure 4.3: E; and H, bistatic echowidth from a coated circular cylinder with a conductor

radius of 3A and coating thickness of 0.05A with material properties ¢, = 5 — 75, p, =

1.5 - j0.5.
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.5 x 1.A PEC Ogive (E-pol)
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Figure 4.4: E, and H, backscatter echowidth from a 0.5 x 1A perfectly conducting ogive.
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.5 x 1A Coated Conducting Ogive (E-pol)
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Figure 4.5: E; and H, backscatter echowidth from a .5 x 1A perfectly conducting ogive

with a 0.05A thick material coating containing the properties ¢, = 3—j5,, = 1.5-;0.5.
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1 x 4) Coated Conducting Ogive (E-pol)
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Figure 4.6: E; and H, backscatter echowidth from a 1 x 4\ perfectly conducting ogive

with a .05A thick material coating containing the properties ¢, = 3 — j5, 4, = 1.5 — j0.5.
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Chapter 5

Conclusions and Future Work

The scattering from targets surrounded by ogival and circular boundaries has been
presented. The finite element method produces the usual sparse sub-matrix, while a
discrete version of the boundary integral results in a dense sub-matrix. The mathematical
boundary enclosing the scattering structure may be judiciously chosen such that the
boundary integrals are convolutional. As a result, they become amenable to evaluation
via the FFT and leads to an O(N) storage requirement. Among the circular and ogival
boundaries considered, the circular boundary satisfies the above requirements. The
ogival boundary results in convolutions only when the source and observation points are
along the same arc, while the non-convolutional cross-terms must be stored efficiently
to guarantee the required storage requirement. When considering circular and ogival
structures, the associated circular and ogival boundaries are usually conformal to the
structure, thus providing an additional reduction in the number of unknowns.

To validate the method and associated computer code, scattering patterns of several
circular and ogival structures were given and compared with data generated by proven

methods.
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Figure 5.1: Three-dimensional finite-cylinder enclosure.

The fundamental purpose of this work was to explore formulations that lead to O(N)
storage requirements when employed for three-dimensional simulations. The presented
hybrid technique may prove useful when the surrounding boundary is chosen such that
most of the terms of the boundary integral are convolutional. The remaining “cross-
terms” however, must be stored efficiently and some sort of interpolation should be used
for their evaluation. Based on this study, a suitable three-dimensional enclosure is a

truncated circular cylinder as illustrated in Fig. 5.1.
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