NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM
 MARSHALL SPACE FLIGHT CENTER THE UNIVERSITY OF ALABAMA

A COMPUTER CONTROL SYSTEM FOR THE ALTERNATING GRADIENT MAGNETOMETER
Prepared by:
Academic Rank:
University and Department:

NASA/MSFC:
Laboratory:
Division:
Branch:
MSFC Colleague:
Date:
Contract No.:

Michael M. Garland
Professor
Memphis State University Department of Physics

Space Science Astrophysics
Cryogenic Physics
Eugene W. Urban
July 28, 1989
The University of Alabama in Huntsville NGT-01-008-021

A COMPUTER CONTROL SYSTEM FOR THE ALTERNATING GRADIENT MAGNETOMETER

by
Michael M. Garland
Professor of Physics
Memphis State University Memphis, Tennessee

Abstract

An alternating gradient magnetometer has been interfaced to a computer for the automation of data taking. Using a fast Fourier transform analysis system data can be acquired and processed in real time. Data is stored on disk and can be recalled for plotting and further analysis. With the addition of a simple liquid nitrogen cryostat, magnetization measurements can be carried out in the range from 300 K to 77 K . Results are reported on three different types of piezoelectric transducers.

Acknowledgements

I would like to thank Dr. Palmer Peters for his assistance and encouragement and Dr. Eugene Urban for giving me this opportunity. I would especially like to thank Mr . Charles Sisk for his help in writing the programs and for sharing his equipment.

I also wish to thank the ASEE and NASA for providing the opportunity for me to work at MSFC this Summer.

LIST OF FIGURES

1. Magnetometer 5
2. Program Flow Chart 7
3. Frequency Response of PZT Reed 9
4. Frequency Response of Kynar Reed 10
5. Magnetization Curve for Superconducting Er123 11
6. Magnetization Curve for Normal Erl23 12
7. Susceptibility Curves for Er123 13
8. Magnetization Curve for Field Cooled Y123 14
9. Magnetization Curve for Field Cooled Y123+Ag 16
10. Hysteresis Loop for Eul23+Ag 17
11. Hysteresis Loop for Field-Cooled Eu123+Ag 18

The discovery of the ceramic superconductor $Y-B a-C u-O \quad i \quad$ and its related compounds has led to a renewed interest in the general field of superconductivity. The ceramic superconductors, which have transition temperatures ranging from 90 K to 120 K and perhaps higher $2-4$ have given rise to expectations of great technological utility. Unfortunately, most of these materials have low critical currents, which limits their current carrying abilities. This is a serious drawback for applications involving superconducting magnets and power transmission and storage.

In order to understand the limitations to the critical current it is important to be able to characterize the magnerin properties sof a superconductor, as the two are intimately related 5. Measurements of magnetization and megnetic hysteresis allow one to determine the extent of magnetic flux pinning, which is related to the microscopic critical current.

In the current research an alternating gradient magnetometer, which was constructed in the Summer of 1988, was interfaced with a computer in order to automate the taking of megnetization data.

Objectives

The objectives of this experiment were to interface the alternating gradient magnetometer to a computer and to write the program which would automate data taking. The program must be capable of reading the magnetization, temperature, and applied magnetic field, in real time, and storing them on a disk for later analysis.

The internal magnetic field in a non-ferromagnetic material is described by the equation

$$
B=H+4 \pi M
$$

(cgs units)
where B is the magnetic induction, H is the external applied field and M is the magnetization. For homogeneous paramagnetic and diamagnetic materials M is a linear Ennctior oi H . Thus, in a homogeneous material $\mathrm{M}=\mathrm{XH}$, where X is the magnetic susceptibility. In a paramagnetic material X is posirive and in a diamagnetic material it is negative. Superconductors are diamagnetic when in the superconducting state and (usually) paramagnetic or non-magnetic ($X=0$) in the normal state. So a graph of M as a function of H should $y+5$ a straight line of slope X. In a superconductor, this whl: be true as long as the applied field does not approach the low reritical field HC_{1}. Once HC_{1} is exceeded, magnetic flux becins to penetrate the sample, in the form of quantized flux lines. These flux lines become pinned in the sample, reducing the diamagnetic magnetization. The presence of pinned flux, therefore, produces a hysteresis in the nagnetization vs field curve. The extent of the hysteresis is an indication of the extent of flux pinning. If an electric current is introduced in the sample, once it exceeds some critical value the flux lines will begin to move, giving rise to an electrical resistance. So, the extent of the hysteresis is also related to the critical current, at which electrical resistance begins to appear.

If a paramagnetic or diamagnetic material is placed in an external, non-uniform, magnetic field, it experiences a force in the direction of the field gradient $\mathrm{dH} / \mathrm{dx}$. This force is directly proportional to the field gradient, and to M, the magnetization. if one can measure this force then, knowing the field gradient, the magnetization can be computed.
The theory and construction of an alternating gradient magnetometer has been described by Flanders and by the author. Ir the original design, the gradient field was swept sinusoidally and the force on the sample was measured using a piezoelectric transducer connected to a lock-in amplifier. In its present form the piezoelectric output is detected by a fast Fourier transform analyzer.

Apparatus

Magnetometer
A block diagram of the magnetometer and associated circuitry is shown in figure 1. The major components will be discussed separately in the following paragraphs. A complete description of the field coils and vane can be found in reference 7.

Wave Analyzer
The output of the piezoelectric transducer is processes by an Ono Sokki Mini FFT Analysis System. The FFT system is a small dedicated computer which performs a fast Fourier transform on the input signal and displays the wave spectrum in near real time. The amplitude of the peak corresponding to the driving frequency can be selected thereby eliminating other peaks caused by noise and overtones. The amplitude of the selected peak is read by the computer and stored in an array.

Function Generator

The driving current for the sweep coils is obtained from a Wavetek model 270 Function Generator. The drive voltage and frequency are input at the start of the program and written to the Wavetek by the computer. The frequency is set at the resonant frequency of the reed, or one of its overtones. The drive voltage is set to produce an rms current of 100 mA through the sweep coils.

Current Source

The current for the D.C. magnet is obtained from a HewlettPackard model 228A Current Source. The magnet current is ramped in steps of 0.10 Amp preceding each measurement of the signal amplitude. It was necessary to add a time delay of 2 to 4 seconds in order to allow the system to settle down between measurements. A further provision was added to allow the sample to be cooled initially in a preset magnetic field, in order to analyze the extent of flux pinning.

Figure 1. Magnetometer Block Diagram.
XII-5

Computer

The HP 9133 computer was programmed in Basic to control the magnetometer and collect data on the magnetization, magnetic field, and temperature, through the GPIB bus. Data could be saved to disk and printed out or plotted. An HP 631 printer and an HP 7470A plotter were connected to the computer for these purposes.

Temperature Measurements
The temperature sensor is a Copper-Constantan thermocouple which is glued to the end of the vane, next to the sample, with GE 7031 varnish. The thermocouple output goes to an HP Model 3451A programmable multimeter. The thermocouple voltage is read by the computer and recorded as part of the data each time a measurement is made.

Programs

Four different variations of the Basic program were developed. (1) Magnitude, which measures the magnitude of the peak, at the sweep coil frequency, as a function of magnet current, from 0 to 1 A. (2) Cross Spectrum, which measures the real part of AxB, where A is the sweep coil drive signal and B is the transducer output signal. The field current is swept from 1 A to -1 A. (3) Quick, which measures the magnitude at five values of magnet current, from 0 to 0.5 A and calculates the average slope and (4) TC, which records the magnetization and temperature as a sample is warmed through the superconducting transition. The flow chart in figure 2 applies to all three programs. The programs are menu driven. The first section initializes the four instruments and sets the operating parameters. The operator selects the frequency and voltage for the sweep coils, the input voltage range for the analyzer, and the gain for the display Y-axis. In program 1 the option of field cooling is provided as well. Following the initialization the subroutine "Acquire" is called which manages the actual acquisition of data. Once the data is taken, the subroutine "Store" is called and the data is stored on disk. The operator is prompted for a filename and may elect to not store the data at this point by doing a reset, in which case the data is lost. Once the data is stored on disk the menu provides options of plotting on the screen, printing on the screen, plotting on the plotter, or printing on the printer. Program listings are given in the Appendix.

E)gure 2. Erogram Fiow Chart.
XII-7

Results

Of the three types of piezoelectric transducers used, the PZT ceramic was found to give the most stable and reproducible results. This was largely due to the failure of the silver paint to properly bond the Kynar films to their copper supports. The response of the PZT reed to a white noise signal applied to the sweep coils is shown in Figure 3. This particular reed has a resonant frequency of 111 Hz . The peak at 10 Hz is due to vibrations of the isolation table on which the magnetometer was mounted. Figure 4 shows the response curve for an unsupported Kynar film. No resonance is seen, the 10 Hz noise peak is particularly large, followed by peaks at 60 and 180 Hz due to line noise. The response of this reed was nearly independent of frequency but was not nearly as good as that of the PZT reed near resonance. All of the following data were taken with the PZT reed.

Initially, two types of curves were generated. The curves of magnetization vs magnetic field, and curves of susceptibility vs temperature, which were generated by taking average slopes of the magnetization curves, fitted to straight lines. Figures 5 and 6 show a set of magnetization curves for $\mathrm{Er}_{1} \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{\mathrm{x}}$, the material which is refered to as Er123. The value of x is between 6.5 and 7 in the superconducting phase of this compound. In figure 5 the material is superconducting and diamagnetic while in figure 6 it is normal and paramagnetic, due to the Er ion in the lattice. The average slope of each curve was taken to determine the change in magnetic susceptibility with temperature, the result is shown in figure 7 .

The degree of magnetic flux pinning can be determined by comparing magnetization curves for samples which have been field-cooled (Meissner effect) and zero-field cooled (shielding). If a sample is cooled below its superconducting critical temperature while in an applied magnetic field, the internal field is expelled, this is the Meissner effect. For type II materials, however, some magnetic flux can be pinned in the material and, for small fields, will not be expelled. This results in a positive contribution to the magnetization. Thus a difference in slope between fieldcooled and zero-field cooled data on the same sample will give an indication of the extent of the flux pinning.

Figure 8 shows the magnetization vs magnetic field curves for a sample of Y123. The curves represent field-cooled ($\mathrm{H}=27$ Oe) and zero-field cooled ($\mathrm{H}=0$) conditions. The difference in slope between the two curves indicates the

Figure 3. Frequency Response of the PZT Reed.

Figure 4. Frequency Response of Kynar Reed.
XII-10

Figure 5. Magnetization Curve for Superconducting Erl23. XII-11

Figure 6. Magnetization Curve for Normal Erl23.
XII-12

ORIGINAL pAce is
 OF POOR QUALITY

Figure 7. Susceptibility Curve for Erl23.

Figure 8. Magnetization Curve for Field-Cooled Y123. XII-14
extent of the flux pinning. Figure 9 shows the same experiment for Y123 which has been doped with Ag. Here the slopes of the two curves are practically identical, indicating little flux pinning in the doped material.
The program "Cross Spectrum" has the capability of distinguishing between positive and negative magnetization and can be used to generate hysteresis curves for magnetic materials. Figure 10 shows a hysteresis curve for a sample of Eul23+Ag which was zero-field cooled. The increase in (negative) magnetization on going once around the loop is a measure of the amount of trapped flux. The same sample is shown in figure 11 after field-cooling in a 66.4 Oe magnetic field. The curve is now closed, indicating that flux was trapped upon cooling.

Figure 9. Magnetization Curve for Field-Cooled Y123+Ag. XII-16
)

Figure 10. Hysteresis Loop for Eul23+AG.

Figure 11. Hysteresis Loop for Field-Cooled Eul23+Ag. XII-18

Conclusions and Recommendations
The alternating gradient magnetometer can be a valuable tool for the characterization of the magnetic properties of materials. It should be particularly usefull in superconductivity research because of its sensitivity and ease of use. With the current data acquisition system, data may be taken more quickly than before and the data analysis is greatly simplified. The data which is acquired will become even more useful if the instrument is calibrated to measure magnetization in absolute units. This should not be difficult to do using a standard material, such as one of the rare-earth salts.

The chief difficulty in using this instrument is the lack of precise temperature control. The temperature of the sample changes with the liquid nitrogen level in the dewar. As the liquid evaporates the sample slowly warms. It would be convenient to be able to take a series of magnetization measurements at a fixed temperature. This is not possible with the current instrument although the rate of temperature change can be kept quite low, so that the temperature does not change more than about 0.1 K during the course of a measurement.

The computer program can be improved in several places. The program called Magnitude could be rewritten so that it would take a series of measurements, say one magnetization curve each degree of temperature change, and save them to disk automatically. The program called Cross Spectrum needs to have the temperature measuring routine added to it as well. Finally, some way needs to be devised to keep track of any variation in the resonant frequency of the reed and adjust the function generator accordingly.

References

1. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev.Lett., 58, 908 (1987).
2. M. M. Garland, Appl.Phys.Lett., 52, 1913 (1988).
3. Z. Z. Sheng, A. M. Hermann, A. Elali, J. Estraclu, T. Datta, and R. J. Matson, Phys.Rev.Lett., 60, 937 (1988).
4. S. R. Ovshinsky, R. J. Young, D. D. Allred, G. Demaggio and G. A. Vander Leeden, Phys.Rev.Lett., 58, 2578 (1987).
5. C. P. Bean, Rev.Mod. Phys., 36, 31 (1964).
6. P. J. Flanders, J.Appl.Phys., 63, 3940 (1988).
7. M. M. Garland, MSFC NASA Summer Faculty Research Report

Appendix


```
2380 SUM=0
2400 Sum=Sum+Mag(K)
2410
2420 Slope=Sum/.5 I Average slope of first 5 points
2430 PRINT
2440 PRINT "Initial Slope = ";Slope
2460 PAUSE
    Contraller=0
    RETURN I.FROM SCREENPRINT
Printerprint: ! Send data to the printer
    PRINTER IS 701
    GOSUB Screenprint
    PRINTER IS 1
    RETURN : FrOM PRINTERPRINT
    !
Screenplot: | Plot the full graph on the screen
    PRINT CHR$(12) ! Clear sereen
    GCLEAR i Clear graphic screen
    GRAPHICS OFF
    ALPHA ON
    COSUB Sort I Find min and max values
    GRAPHICS ON
    ALPHA OFF
    Yinta=Yint-(Maxy-Miny)/75
    Xinta=Xint-(Maxx-Minx)/75
    UIEWPORT 20,100,12,92
    FRAME
    WINDOW Minx,Maxx,Miny,Maxy
    AXES Xtic,Ytic,Minx,Miny,1,1,2
    PEN 1
    LORG 6 ! Label origin above character
    GRID Xtic,Ytic ! Draw a grid
    CLIP OFF
    CSIZE 3,.5 ! Character size/aspect ratio
    FOR I=Minx TO Maxx+Xtic/100 STEP Xtic
        MOVE I,Miny: X-axis numbers
        IF ABS(I)<1,E-IS THEN
            J=0
            LABEL J
            GOTO 2830
        END IF
        LAFEL I
        NEXT I
        LORG 7 L Label origin lower right
        FOR I=Hiny TO Maxy+Xtic/100 STEP Yiic
        MDVE Minx,I I Y-axis numbers
        IF ABS(I)(1.E-15 THEN
            J=0
            LABEL J
            COTO 2930
        END IF
        LAEEL I
    NEXT I
    LORG5 ! Label origin to center
    PEN 2 ! Pen for data points
    FOR I=1 TO N
        MOVE Fieldcurrent(I),Magnitude(I)
```



```
3570 IF U\-5.069 AND U(-4.865 THEN
3580 Temp=103+50.596*(V+5.069)
3590 END IF
3600 IF U\rangle-4.865 AND U(-4.468 THEN
3610
3610
3620
3630
3630
3640
3650
3652
3660
3670
Temp=113+47.587*(U+4.865)
END IF 
Temp=V
END IF
PRINT TEMP
RETURN
END
I Just report the voltage```

