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Abstract

MONTE CARLO MODELS AND ANALYSIS OF
GALACTIC DISK GAMMA-RAY BURST DISTRIBUTIONS

Jon Hakkila
Assistant Professor of Astronomy
Department of Mathematics, Astronomy, and Statistics
Mankato State University
Mankato, MN

Gamma-ray bursts are transient astronomical phenomena which have no
quiescent counterparts in any region of the electromagnetic spectrum.
Although temporal and spectral properties indicate that these events
are likely energetic, their unknown spatial distribution complicates
astrophysical interpretation.

Monte carlo samples of gamma-ray burst sources are created which
belong to Galactic disk populations. Spatial analysis techniques are
used to compare these samples to the observed distribution. From
this, both quantitative and qualitative conclusions are drawn
concerning allowed luminosity and spatial distributions of the actual
sample.

Although the BATSE experiment on GRO will significantly improve
knowledge of the gamma-ray burst source spatial characteristics within
only a few months of launch, the analysis techniques described herein
will not be superceded. Rather, they may be used with BATSE results
to obtain detailed information about both the luminosity and spatial
distributions of the souzces.
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Introduction

A. General Properties of Gamma-Ray Burst Sources

Since their discovery via examination of Vela satellite data records
(Klebesadel, Strong, and Olson 1973), gamma-ray burst sources have
remained one of the most enigmatic classes of objects in modern
astronomy. The strong bursts of observed gamma-radiation that these
objects emit have no quiescent counterparts at any other wavelength of
the electromagnetic spectrum, and are at present of unknown origin.
Multi-wavelength observations of the transient events are also
unverified, although sporadic visible flashes have been reported (e.g.
Schaefer 1981).

The burst durations range from T < 0.1 sec to T > 100 sec, although the
majority apparently lie between 3 and 20 seconds (Hurley,

unpublished). The events span a wide range of relative rise and decay
times (Barat et al. 1984), although their general rapidity, as well as
variations on timescales as short as milliseconds, suggest that at
least some of the events must be associated with compact objects

(r < 103 km). Since the events are time-integrated, the registered
output is generally measured in fluence (erg cm™2) instead of more
conventional flux units (erg em™2 sec™ly.

Although the peak burst power output lies between 150 and 500 keV for
most bursts, the distribution (as observed from the KONUS catalogue)
is sharply peaked around 200 keV (Higdon and Lingenfelter 1986). SMM
observed hard high-energy tails, showing that burst power decreases at
high energies {(Nolan et al. 1984a). Burst power is also observed to
turn over at low energies (e.g. Katoh et al. 1984). There are
indications of cyclotron absorption features in the spectra from KONUS
(Mazets et al. 1981), HEAO-A4 (Hueter et al. 1984), and GINGA
(Murakami et al. 1988, Fenimcre et al. 1989). Additionally,
controversial observations of features thought to be positron-electron
annihilation lines in emission have been made by KONUS (Mazets et al.
1981) and by SMM {Nolan et ail 1984b).
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B. Spatial Analyses of Burst Sources

The location of the burst sources in space is difficult to determine.
Without prior knowledge of their luminosities, their observed fluxes
cannot accurately be converted into spatial positions. Astrophysical
models for the bursts must therefore remain vague until this
controversy is resolved, as the burst sources might be local,
disk-population Galactic, halo-population Galactic, or extragalactic
in origin. There are two approaches by which this spatial
distribution can be studied; (1) by examining the angular distribution
of sources, (2) by examining the radial distribution of sources (such
as is attempted using the log(N)-log(S) method or the V/Vpax test).

1. The Angular Distribution of Sources

Angular spatial methods attempt to determine if the observed
distribution prefers a position in space (such as the Galactic Center)
or a symmetry plane (such as the ecliptic plane, the Galactic plane, or
the plane containing the Local Supercluster of galaxies). Down to a
minimum fluence of roughly 3 X 106 erg/cmz, the spatial distribution
of burst sources appears to be extremely isotropic (Mazets et al. 1981,
Atteia et al. 1987). It also shows a negligible dipole moment, minimal
quadrupole moments, and no propensity for clustering (Hartmann and
Blumenthal 1988, Hartmann and Epstein 1989), in agreement with a random
spatial distribution.

2. The Radlal Distribution of Sources

a. Log(N)-Log(S) Curves

The number of sources N brighter than some fluence S provides one
method by which the radial (distance) distribution of the sample can
be measured. The luminosity distribution of a sample of sources with
spatial density n in the luminosity interval (L,L+dL) is described by
the luminosity function ®(L) dL. Functionally, N(28) - nv o
dL, and, since the fluence of a source decreases as r2 (where r is the
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distance to the source), S = L/(4nr2). For a uniform spatial
distribution of sources (where the volume V = [4r/ 3] r3), integration
yields N e S'3/2, or log(N) e« -3/2 log(S). Similarly, a distance-
limited sample will start off as log(N) o -3/2 log(S), but will turn
over at faint fluence such that log(N) e 0. A sample confined to the
volume of a disk initially yields log(N) < -3/2 log(S); tilts over to
become log(N) « - log(S) at fainter fluence, and finally reaches
log(N) o« 0 at faint fluence (when the disk has been completely
sampled). A general description of log(N)-log(S) plots for disk
models may be found in Fishman (1979).

Analysis of the log(N)-log(S) distribution of burst sources from early
satellite catalogs (e.g. from KONUS, Mazets et al. 1981) indicates
that the sample is in some way radially bounded, although this
interpretation is quite controversial.

Higdon and Lingenfelter (1986) have noted that KONUS looks for bursts
on low-energy (soft) channels, whereas some bursts apparently have
stronger high-energy (hard) emissions. They suggest that the observed
sample is biased to brighter (nearer) sources (as both hard and soft
sources are detected at high fluence, whereas hard sources are more
difficult for the equipment to trigger on if they are farther away),
and argue that the corrected KONUS data is consistent with a
log(N)-log(S) slope of -3/2. However, since the exact peak energy
distribution (the relative number of soft to hard sources) is unknown,
the amount of correction applied to obtain these results is quite
model-dependent .

Since the detectors used trigger on minimum flux rather than on
minimum fluence, they are more likely to sense short bursts than long
ones. Although many observers suggest that the raw peak photon rate C
should be used instead of fluence to bypass detector response, the
overall problem of interpretation still remains unresolved.

Paczynskii and Long (1986) infer that the faint-end log(N)-log(C)
slope is -1.07 (indicating a radial limit in agreement with a Galactic
disk model), while Jennings (1982,1984) corrects the data to a slope
of -3/2.

Meegan et al. (1985) have placed an upper limit on the log(N)-log(S)
curve from balloon data. Their analysis incorporates (1) calculation
of a detector count-rate triggering threshold, (2) conversion of this
rate threshold to a fluence threshold, (3) simulations of the fraction
of incident photons that will trigger each detector, (4) corrections
for temporal triggering effects, and (95) analysis of the distribution
based upon assumed spectral shapes of bursts. Their results indicate
an upper limit of 2300 bursts/year at a fluence of 6 x 1077 erg cm™2
In order to fall below this limit, the log(N)-log(S) curve must turn
over below 10~4 erg em™2
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b. The Radial/Angular Distribution of Sources

Schmidt (1968) developed another statistical test which analyzes the
radial distributions of an astronomical sample, known as the V/Vaax

test. This test is based upon the instrumental parameters Crim (the
limiting count rate for a detector) and Cg (the source's observed
count rate). For a uniformly-distributed sample, the count rate of a
source depends upon its distance Rg. Since the limiting count rate
corresponds the the distance Rmax that the source would have with
count rate Crim, Rmax = R (Cs/Crim)1/2, and V/Vpay = (Cs/Cpim) ~3/2.
For a sample of sources, the average value <V/Vmax> = f1“ (CS/CLim)'3/2
d(Cg/Cyim) = 1/2. Thus, a sample with V/Vpax> < 1/2 is distributed
preferentially nearby, whereas one with <V/Vpax> > 1/2 is located
preferentially far away. Schmidt, Higdon, and Hueter (1988) have used
the V/Vpay test on 13 HEAO-A4 gamma-ray bursts (with varying values of
CLim) to indicate that <V/Vp,,> = 0.40 t 0.08, which they point out is

consistent with uniformity. However, this value is also consistent
with the beginnings of a log(N)-log(C) turnover.

C. Astrophysical Models of Burst Sources

Many astrophysical models exist for gamma-ray burst production, and
are summarized in reviews by Liang (1989) and Hurley (1989). Possible
models include compact sources in the cores of active galactic nuclei,
massive galaxies, and globular clusters. However, the short timescale
variability, cyclotron absorption features, and possible redshifted
positron-electron annihilation lines in burst spectra lead to a
favored model; that of a neutron star emitting by (1) accreting
material and flashing, (2) vibration, (3) undergoing a crustquake, (4)
being resurrected as a pulsar, or (5) via a magnetic flare. The
limited power outputs of neutron star models suggest that a turnover
in the log(N)-log(S) curve should be visible at some point.
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Objectives

Accurate models of the gamma-ray burst distribution are not obtained
simply. Direct integrations of log(N)-log(S) and angular functions
describing the distribution are generally quite difficult to perform.
Also, the functional forms of these distributions are quite
model-dependent, so direct integration of a great number of possible
distributions is needed. This makes the problem even more unwieldy.

Monte carloc techniques eliminate the difficulties of direct
integration while simultaneously allowing great freedom in examining
model parameters. By creating a variety of discrete sources randomly,
radial and angular distributions may be examined and compared to those
of the actual data set. New models are easily created by merely
adjusting model parameters. Models which are obviously incompatible
with the observed data can be eliminated, while statistical tests
performed on compatible models place restrictions on allowed parameter
values.

For this project, a Galactic disk spatial distribution is chosen for
the sources (halo models can be easily incorporated in the future,
although the log(N)-log(S) distributions of these models do not
apparently turn over fast enough at low fluence). A variety of source
luminosity functions are tested within this framework, so that models
with unreasonable luminosity functions might be eliminated.
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A Monte Carlo Model of Galactic Disk Sources

The procedure used to test the validity of a model is to (1) choose
model parameters from which a monte carlo data set 1is generated, (2)
select only those generated sources which have fluences bright enocugh
to be measured, and (3) statistically compare the radial and angular
properties of the artificial data set with the real one. A number of
these models can be eliminated from consideration. Finally, general
luminosity and spatial properties of the real data may be inferred
from the monte carlo models. Creation of the monte carlo data set is
carried out via program GAMMA.FOR (figure 1), and the data analysis is
performed by program GAMMA.PRO.

A. General Model Paramaters

The general model parameters are allowed to be changed within the
program, and it is in fact not difficult to change the functional
forms of any parameters. The gamma ray bursts are assumed to
originate on Galactic neutron stars, so the spatial distribution is
that of the Galactic disk. Model parameters describing the Galactic
disk are taken from the book Galactic Astronomy, by Mihalas and Binney
(1981), and are meant to mimic general properties of the Milky Way (as
presently understood). These values may, however, be varied easily
within the program. A variety of luminosity functions are also
allowed in the model, and parameters describing these functions may be
easily changed.

1. The Three-Dimensional Galactic Disk

This disk model is intended to represent a variety of stellar ages and
populations, but the youngest disk (spiral arm) population has been
purposefully overlooked because the spatial distribution of bursts is
apparently too isotropic to be associated with (1) spiral arms, and
(2) a tendency to cluster as is observed for the youngest objects.

The Galactic disk is therefore characterized
(1) in the ©-direction by an isotropic distribution (i.e. there are
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(2)

(3)

no angular structures such as spiral arms) .

in the z-direction (perpendicular to the Galactic plane) by a
Gaussian distribution. There are physical reasons for choosing
this model over either a linearly- or an
exponentially-decreasing one (although both of these are often
used in Galactic astronomy): Primarily, these models exhibit
discontinuities at z = 0, whereas a Gaussian model does not.
Furthermore, these models are not as easy to explain in terms
of maintenance via a Galactic gravitational potential. The
width of the Gaussian distribution is represented by the
variance 622, where 0, differs from the exponential scale

height by V2. Choosing a value for G, is difficult. Scale

heights of stellar populations are estimated from Mihalas and
Binney (1981) p. 278, to be as follows: Spiral Arm population
(age < 108 years) = 120 parsecs, Young disk population (age =
107 years) = 200 parsecs, Intermediate disk population (age = 5
x 109 years) = 400 parsecs, and Old Disk population (age < 1010
years) = 700 parsecs. A disk sample with a constant birthrate
function would have an average age of around 5 X 109 years (if
the disk is 1010 years old), and a scale height of roughly 400
parsecs. This might be an underestimate, as the suspected
scale height of white dwarf stars is 500 parsecs. A best guess
value for O, is therefore 350 parsecs, corresponding to a scale

height of 500 parsecs. .

in the r-direction {(radially outward from the Galactic center)
by an exponentially-decreasing density function. This is both
observed locally and from brightness distributions of other
spiral galaxies of similar Hubble types. This exponential
decrease is convolved with the infinitesimal radial increase (r
x dr) needed to keep a constant disk density for cylindrical
geometry. The exponential scaling factor Rg of the

distribution exp(-r/Rg) is obtained from scaling the size of

the Milky Way Galaxy to that of the Andromeda Galaxy (M31), and
is therefore Rg = 3.9 kpc.

The sun is assumed to lie at a distance of 8.5 kpc from the Galactic

center,

in the Galactic plane.

2. The Luminosity Function of Burst Sources

Several "standard" luminosity functions of burst sources are allowed:

(1)
(2)

All sources have the same luminosity, <L>.
The sources are chosen from a Gaussian luminosity function
characterized by <L> and ©y,.
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(3) The sources are chosen from a topheavy luminosity function
linearly increasing in number between Lpyin and Lpax-

(4) The sources are chosen from a bottomheavy luminosity function
linearly decreasing in number between Lpin and Lpy,y-

(5) The sources are selected from a bottomheavy power law
luminosity function where N{(L) o (L/Lgyin) <.

A sample of the modeled disk distribution ¢for sources of a single
luminosity <L>) is shown in figure 3.

B. 8elaection of Data for Analysis

Once each "burst" has been given a Galactic position and a luminosity,
fluences and observed positions for it (in Galactic coordinates 1 and
b) are calculated. Only those sources with fluences greater than Spyp

are selected (Spjp is chosen to be 2 X 10-7 erg cm™2, as this

represents a minimum value of log(S) for which reliable log(N) data
exists). From these data, a log(N)-log(S) array is built and angular
characteristics are examined. An estimate must be made of the total
number of sources, since this in part determines the "goodness of f£it"
of the log(N)-log(S) plot. At present this fit is estimated by
inspection; future work may introduce a subroutine which optimizes the
number of sources used.

It should be noted that Galactic disk samples of low-luminosity
sources take much more CPU time to create than those of
high-luminosity sources. This is due to the sample's (disk
height/limiting distance) ratio, which is larger for low-luminosity
sources than it is for high-luminosity ones. In other words, the
luminous sources are confined to an almost two-dimensional flat disk
{which the computer rapidly fills), whereas the low-luminosity ones
are confined within a three-dimensional sphere (which fills in more
CPU time).

Samples with a range of luminosities (such as the power law luminosity
distribution described above) also use larger amounts of CPU time,
which sometimes can be prohibitively large on a small computer such as
a VAX.
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C. Mathod of Data Analysis

The log(N)-log(S) curve is produced from the data, and is chosen to
(1) match the log(N)-log(S) plot observed from satellite data at high
fluence, and (2) stay below the balloon limit (Meegan et al. 19853) of
2300 bursts/year at a fluence of 6 X 107 erg cm™2. The slope
d[log(N) /log(S)1/d[log(S)] is also compared to that of the actual data
set.

The spatial distribution can be plotted for any minimum fluence in
Galactic coordinates 1 and b. A quick-and-dirty analysis checks the
distribution of events brighter than this minimum fluence as a
function of Galactic latitude region by considering three latitude
regions of equal area. The Galactic latitude regions 0° £ |b| € 19.5°
(low-latitude), 19.5° < |b| <€ 41.8° (mid-latitude), and 41.8° < |b| £
90° (high-latitude), should contain equal numbers of stars n, with
errors n/V(n—l). A more accurate method of analysis is also presented,
as the system's dipole and quadrupole moments are calculated. A large
dipole moment indicates that the distribution is biased towards one
direction. The quadrupole moments yield two useful parameters: T (the
difference between the two closest eigenvalues of the quadrupole
tensor) and { (the most different eigenvalue). When 1 = { = 0, the
distribution is isotropic. An oblate (disk) distribution is indicated
by { 2 0, whereas a prolate distribution (one which is strongly
bipolar) is indicated by § < 0.

D. Results of Preliminary Data Analysis

Samples cf program output and data analysis are shown in figures 4, 5,
and 6. Once a number of models have been run, a comparison can be
made between them and the actual data.

The constraints imposed by both an isotropic angular distribution for
high minimum fluence (Spjn 2 3 X 10-6 erg cm™2) and an apparent

turnover in the log(N)-log(8) curve turn out to be quite strict. For
0, = 400 parsecs and a single luminosity function L = <L>, a lower

luminosity limit of <L> = 4 X 105 solar luminosities or 1.5 x 1039 erg
is necessary to turn the log(N)-log($) curve over by § = 2 X 1073 erg
cm™2 {the "elbow", or the lowest fluence where the log(N)-lcg(S) curve
can turn over in order to stay below the balloon data limit with a
physically meaningful slope). Models with lower average luminosities
do_not stay below the ballcon data log(N) upper limit. Those with
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higher average luminosities effectively stay below the balloon limit,

but do not match the log(N)-log(S) curve at high fluence, do not show

spatial isotropy for minimum fluences below that of the "elbow", and

predict a Galactic radius exceeding 15 kpc (compared to the apparent N—
radius of 13.5 kpc). Thus only a small range of average luminosities

between these extremes satisfies the observations, and the model is

strongly constrained.

Many implications arise from these limits:

(1) The spatial density of sources is somewhere around 3 X 10~8
pc'3 yr'l. If there are roughly 3 X 107 neutron stars in the
Galaxy (Hartmann, Epstein, and Woosley 1989), then the bursts
sources must repeat on an average of around 10° years to
explain the burst rate.

(2) The range of acceptable luminosities is too high for existing
astrophysical models of neutron star crustquakes or resurrected
pulsars (see Liang 1989), suggesting that these models are

' unlikely.

(3) The effects of other luminosity functions on the results are
not very pronounced. A Gaussian function broadens the "elbow"
from a well-defined point to a curve and strengthens any
spatial anisotropiles that are present, due to an oversampling
of the luminous sources (see also Hakkila 1989). The topheavy
and bottomheavy functions, being linear, exhibit slight effects
that are very similar to the Gaussian distribution, although
the bottomheavy function tends to show more spatial isotropy at
high fluence. The power law function is the most promising
luminosity function, but at present consumes an inordinate
amount of CPU time,
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Conclusions and Recommendations
A. Conclusions

This approach appears to provide a useful method for analyzing the
properties of gamma-ray burst sources, as well as for analyzing
properties of other astronomical objects. Detailed analysis which
include interstellar absorption could lead to a better understanding
of Galactic structure, stellar populations, and stellar evolution.

Observations of gamma-ray bursts (angular isotropy at high fluence
coupled with a log(N)-log{S) turnover) strongly constrain the number
and types of allowed monte carlo simulations. The allowed models
suggest that, for a distribution characterized by a single source
luminositg <L>, only a small range of luminosities (103 erg < <L>
< 6 x 1039 erg) result in acceptable fits to the actual data. Other
luminosity functions do not significantly alter these general
conclusions, although the effects of bottomheavy power law functions
are still unknown (due to prohibitive use of CPU time).

The implications of these results are worrisome, as they indicate that
(1) some of the observational data is in error, (2) selection effects
are still present in the existing data, (3) the Galactic disk model
used in this monte carlo analysis is significantly in error, (4) a
Galactic disk model is not the proper representation for the
distribution of gamma-ray burst sources, or (5) the bursts really all
have only a small luminosity range.

B. Racommendations

This approach is still only in the preliminary stages. More work
still needs to be done in order to
(1) quantify the comparison between models and observations,
(2) vary disk parameters in order to see what effects different
stellar populations have upon the resultant distributions,
(3) examine the effects of a Galactic halo component,
(4) integrate models over larger data samples to get better
statistics,
(5) include a method for optimizing the number of generated

XIII- 11



{6)
(7

(8)

(9)

sources,
study the effects of a bottomheavy power-law luminosity

function,

refine the Galactic model to incorporate new understanding ~
about Galactic structure,

prepare for the possibility the BATSE will identify burst
subpopulations, as these will then have to be examined

separately,

etc.

Of course, the new data obtained from the BATSE experiment on GRO
should resolve the bulk of the burst distribution problem within only
a few months of launch, and the data set that it generates can help
isolate the locations of and mechanisms responsible for the gamma-ray
burst sources. With the BATSE data, methods such as this will prove
useful in isolating {1) the luminosity function of the burst sources,
and (2) the stellar population of the burst sources (should they prove
to have Galactic origins).
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Figure 2. The computer program GAMMA.PRO used to analyze the monte
carlo data sets.
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