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A VECTORIZED ALGORITHM FOR 3D DYNAMICS

OF A TETHERED SATELLITE

by
Howard Wilson

Professor of Engineering Mechanics

The University of Alabama

Tuscaloosa, Alabama

ABSTRACT

l'_quations of motion characterizing the three dimensional motion of a tethered

satellite during the retrieval phase are studied. The mathematical model involves

an arbitrary number of point masses connected by weightless cords. Motion occurs

in a gravity gradient field. The formulation presented accounts for general functions

describing support point motion, rate of tether retrieval, and arbitrary forces applied

to tile point masses. The matrix oriented program language MATLAB is used to

prod uce an efficient vectorized formulation for a) computing natural frequencies and

mode shapes for small oscillations about the static equilibrium configuration; b) for

integrating the nonlinear differential equations governing large amplitude motions.

An example of time response pertaining to the skip rope effect is investigated.
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INTRODUCTION AND OBJECTIVES

Tethered satellites employed in space vehicles have many important practical

applications. The time response occurring during the retrieval phase is of special

interest since this motion can sometimes become unstable as the tether length is re-

duced to zero. One type of motion currently being studied is known as the skiprope

mode. In this configuration a satellite is initially positioned on the line from the

orbiter to the earth center (z-axis) and the tether is spinning about this axis in

a sinusoidal curve resembling the deflection pattern of a skyrope. Some disagree-

ment currently exists among analysts regarding the dynamics which occurs during

retrieval. The author's efforts were directed toward developing a concise comFuter

formulation to facilitate a response analysis in this problem.
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NONLINEAR EQUATIONS FOR LARGE AMPLITUDE MOTIONS

Consider a tether model described as a series of point masses connected by

weightless cords assumed to remain in tension throughout the motion. The geometry

is shown in Figure 1. The vector from mass mj+ 1 to mj is denoted by rj. Thus

rj=lF (oj,vj) (1)

where lj denotes the vector length and (Oj,qaj) are spherical coordinate angles for

unit vectors gj which specify the member directions. We will assume that lj are

known functions of time. This allows for treatment of the tether retrieval problem

during an interval over which l,_ is reduced to zero at a specified rate. Once a

particular link has been completely retrieved, the problem dimensionality car be

reduced by one and the retrieval process can be continued.

The equations of motion can be integrated numerically when 0 and 9? values are

known for each link. The numerical procedure e below is as follows.

1. For known 0, qo,0 and _b values, link tensions are computed and these are used

to compute global accelerations

2 The global accelerations are used to compute i: for each link.

3. The i: values are used to compute 0"and _ values.

For convenient reference let us call the tether section between rni+l and mi as

link i. The tension force in link i is representable as

Ti = _i ri (2)

wh,?re c_i is a scalar multiplier. A free body diagram of mi is shown in Figure 2. The

force F_ describes the effects of external loMs such as gravity, aerodynamic drag,

and electromagnetic phenomena. The position of mass i in a rotating reference

frame tangent to the circular orbit is

n

Ri= _rj + Rn+l , i<n (3)
j=i

The length of link i can be computed from

l_ = ri " ri = (Ri+I - Ri)" (R/+I - Ri) (4)
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Figure 1: General Tether Configuration

Differentiation of this constraint gives

ii[i = (Ri+I - Ri)-(/_i+l -/_i) (5)

and

i_ + t_i_= (R_+I- Rd. (_+1 -/_) + (k;+l - R;). (k,+l - k_) (6)

which is equivalent to

i_ + tdi = -r_. (k,+l -/_) + ÷_.÷_ (7)

When a link has constant length then the constraint simplifies to

ri" (/_i-I-1 -- Ri) = _i" ÷i

We write

so

(s)

rl = li _i(0i,c2i) (9)

÷,= i, _, + ,(-_, o_+ _ (p_)= i, _ + t_(_oO,+ _, i_) (lo)

For the coordinate system of interest ei,gi_ and ei0 form an orthogonal (but not

orthonormal triad). Then
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i._. i._= 14 _i + ti(_o Oi+ _, ¢_)1_ (II)

So

= i7+ t_(l_01_b_+ I_i_l__) (12)

liil : 12 (1_i012 /_/2+ 1_i_12 _b_) -- ri" (/_i+1 -- J_i) (13)

- ,.,. (hi+, - hi) = tii_- t?(I_i01_07+ le,_,l__) = pi (i4)

The Newtonian equation of motion for a typical mass implies

hi -_ k [Fi q- oti-i ri-, -_ otiri] (15)

mi

so the constraintequation leadsto the followingrelationamong linktensions

ri" ( .... 1 [Fi+l + Cq ri ai+,ri+l] 1 [Fi -t- oti_l ri-1 - ctiri]) = -Pi

mi+l mi

(i6)

_1(_,_,. _,),,_, + (! + _)&_ I_L-(_. _,+,),_+, = pi
m; ,_i m_+_ m_+,

+ ri" [Fi/mi - Fi+i/mi+a] (17)

Solution of this tridiagonal system determines the member tensions which ca._ be

used to compute global accelerations Ri. These global accelerations allow compu-

tation of

_i= -(hi+, - ki) (]8)

Since ri = li_i, we have

(19)

V

+ &(_o//_ + _ ¢; + _oo o_+ _, _ + 2_i0_ _ 0,) (20)

The last equation can be rearranged as

i:; = li _i + li _ioOi+ li _iv _bi + qi (21)

Sinc,_ the coordinato system of interest satisfies the orthogonality condition
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thell

implies

Sitn ilarly

implies

g_ • _ie = _i • _i_ = _ie "gi_o= 0

(i:i - qi)" _ie = Oitil_iel2

(i=i - qi ) "gi_ = _i lileie[ =

(22)

(23)

(24)

(25)

(26)

These relations form the basis for assembling the equations of motion. The

coordinate reference frame used in the present study assumes a coordinate transfor-
marion of the form

,- = (., y, .) = z (si.(0) cos(_,), sin(O) sin(_,), cos(O))

which leads to [_iel = 1 and [ei_l = sin2(O) • A set of (li,Oi,qoi) values defines the

configuration of link i. The values of li are constant except for i = n, in which
case, the time dependence of ln, in and [n are specified by the chosen retrieval rate

equation.
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FORCE EFFECTS IN THE GRAVITY GRADIENT FIELD

We are interested in the dynamics of a tether attached to an orbiter moving about

the earth with constant angular speed ",0 in a circular orbit of radius Po. A balance

of gravitational and centrifugal force requires an orbital speed ",o = Cgp2E/p3o where

PE denotes the radius of the earth. The motion of objects moving relative to the

satellite are appropriately referred to a frame which rotates with constant angular

velocity about the earth center. The coordinate frame is positioned such that i is

pointed tangent to the orbit in the direction of motion, k is directed toward the

center of the earth, and j is defined as ]¢x _ to give a right-handed system. Then the

angular velocity of the satellite frame is -I_",0 and the position of a generic point

on the tether is

r = _ Xo+) yo+[Z zo

Th+, total acceleration of a point referred to the rotating axes is

(27)

a = J6to+da x r+", X (", X r)+2", X ÷+ _ (28)

where R0 is a vector from the earth center to the origin of the rotating frame, and

÷ and _ are velocity and acceleration vectors measured in the rotating frame. The

total acceleration of point (xo, Yo,Z) is therefore

= (__0+ ) #0+ _"_o)+ _(",o+xo- 2.,0_o)+ k(",o+(po- z0)+ 2",0+0) (29)

The gravitational force on a particle of mass m is Fg = mg P_E R/IR[ 3 where

R = -5 x0 - ) yo +/¢ (p0 - z0). It is helpful to express Fg in a power series and

neglect terms of order po _. The binomial theorem gives

Fg= m.¢,.+,o2 [-+ zo-._Yo+ +(Po-zo)] [(I+ 3z°)+ 0 (po:_)] (30)
Po

When 0(po 2) is neglected in the last equation, it is found that a particle subjec+ed

to gravity loading and an additional force _ Fz + ) F u + k F, satisfies

,+,+[_+_,+ .)+o+ k +o]= +r+ +) F,,+ ,+:r++ _ _(2",o+o)

+ m)(-w_yo) + mk(3",_ Zo - 2w0+0) (31)

This +:quation provides useful information regarding feasible two-dimensional states

of motion in either the orbit plane (2, k) or the plane transverse to the orbit plane

(), k). It is possible to have Y0 = 0, Fy = 0, and all other quantities dependent only

on the Xo and z0 coordinates. However, if we is assume that F_ = 0 and x0 = 0,
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then the gyroscopic term _¢,.'ok,o produces an acceleration in the x0 direction. Con-

sequently, pure motion in the y, z plane is not possible unless z0 is negligible. This

circumstance can occur when a tether, initially in static equilibrium along the z axis,

is given a small perturbation in the yz plane. Then the motion component for the

axial direction is of second order magnitude in comparison to the transverse con-po-

nears. The linearized problem for small transverse motions from static equilibrium
is worth further discussion.
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TETHER MOTION FOR SMALL PERTURBATION ABOUT THE Z-AXIS

The problem for motion of a tether experiencing small oscillations about the

z-direction in the orbital plane were previously investigated by M. Rheinfurth and

Z. Galaboff [2]. This paper showed that the static tension for extension along the
z-axis is

T=3 Mrwo 21(a+l-()2) (32)

where MT is the mass of a tether having length _ and a mass Ms attached at the

free end. The parameter c_ equals 2Ms/MT. For small transverse oscillations, the

static tension will not change substantially and motion in the z-direction wiq be

negligible. It is useful to employ dimensionless coordinates according to _ = z/£

and r = w0t. Following the analysis of Rheinfurth and Galaboff, the linearized

equations of motion accounting for both in-plane and out-of-plane motion are

2-cox] 02z
1.5 _[(a+l-_ )_'1=

o r _ Oy] O2y

1.5 _ [(_+ 1-_ )_j - y-

(33)

(34)

The boundary conditions at _ = 0 are x = y = 0. Force balance conditions on the

end mass Ms gives

02 CO2X

3 0_ - Or 2 (35)

cOy cO2x (36)

Assuming modal forms Z = X(_)sin(wr) and y = Y(_)sin(wr) leads to

d [ 2 dX]1..5_ (_+ i-_ )_-j +Jx=o

d [ 2. dY]1.5 _-_ (a+l-_)--_-] +(_2-1)Y=0

with corresponding boundaxy conditions of

(37)

(38)

X(O) = O, 3X'(1) + w2X(1) = 0 (39)

Y(0) = 0, 3Y'(1) + (w2 _ 1)Y(1) = 0 (40)
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It shows from the above equations that the modal functions for in-plane and out-

of-plane motion are identical and a frequency w_ for the in-plane motion also cc :re-

sponds to an out-of-plane frequency

wy = vf_2 + 1 (41)

Reference [2] treated the problem of in-plane motion in considerable detail and gave

an exact solution for the case where Ms = 0, (a = 0). In that case, the exact

dirn,v, si(mless frequencies and modal functions are

,_k_: = _/6k(k - .5), k = 1,2, 3,... (42)

Xk(_) = P2k-l(_), 0 _< _ _< 1 (43)

where _ means the k'th in-plane frequency and P2k-1 is the Legendre polynomial

of (h'gree 2k - 1. Rheinfurth and Galaboff showed that the first frequency equals x/_

and this modal function is a straight line even for the case of a variable mass distri-

bution. The general Rayleigh quotient formula from [2] expressed in dimensionless
form is

when M_/Mr > 1 and n >_ 3, the mode shapes are closely appro,,dmated by

(44)

X,_(_) _ sin [Tr(n- 1)_] (45)

so the RayMgh quotient gives

"_k_ _ _r(n - 1) V/1" + 3M_/MT (46)

This formula is accurate within about 4% for n _>3 and M_/MT > 1.

A concise algorithm to compute frequencies and mode shapes for the general

case can be obtained by employing PC-MATLAB [3] and finite differences as a

form,[ation equivalent to that used in [1]. We want to solve

-'( - : -Ax(¢)

The boundary conditions are

X(0) = 0 and 2X'(1) = AX(1)

This corresponds to a modal solution of the form

fora=2M,/MT andO _< _ _< 1 (47)

(48)
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X(_,t)=X(_) sin (wo_ t)

To express this problem in difference form we take

D=I/N , zj=jD , O<j<N

The boundary conditions axe specified as

Xo = O, (XN-2 -- 4XN-1 + 3XN)D -1 = ),XN

and the differential equation becomes

(49)

(50)

(51)

v/

[j2_(l+o)D -2][Xj_I-2Xj+Xj÷I]+j[Xj+I-Xj]=AXj, 2 < j<_ N-1.

(52)
This gives an eigenvalue problem AX = _X which is solvable using linear algebra

operators in MATLAB. Figure 2 shows a function tetfrg which determines frequen-

cies and mode shapes. The figure also lists dimensionless in-plane frequencies for

several combinations of mass ratio. Computations were made using npts = 50. The

first four modal vectors for Ms/MT = 0.5 are also shown in Figure 3.

L_ w,
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MATLAB FUNCTION TO COMPUTE TETHER INPLANE FREQUENCIES

function [frqs,modevecs] = tetfrq(npts,msatovmtet)

% [frqs,modevecs] = tetfrq(npts,msatovmtet)

% Frequencies and modal vectors for a tether with an

% end mass attached in a gravity gradient field.

% npts
%

%

% msatomtet

%

% frqs
%

%

number of segments into which the tether

length is divided for finite difference

approximation

sub-satellite mass divided by the

tether mass

frequencies for transverse planar motion

divided by the circular orbit frequency

% Technical reference: Mario H. Rheinfurth and Zachary

% J. Galaboff "Modal Analysis of a Nonuniform String

% With End Mass and Variable Tension", NASA Technical

% Paper 2198, August 1983
%

% written by Howard Wilson, July 1989

%

a = zeros(npts,npts); d = i/npts; b = (2*msatovmtet+l)/d^2;

a(l,l) = 2*(b-i); a(l,2) = -b; a(npts,npts-2) = l/d;

a(npts,npts-l) = -4/d; a(npts,npts) = 3/d;

for j = 2:npts-l, a(j,j-l) = j*(j-l)-b;

a(j,9) = 2*(5-9*9); a(9,9+i) = 9*(j+l)-b;
end

[modevecs,frqs] = eig(a);

[frqs,id] = sort(sqrt(l.5*diag(frqs)));

modevecs = modevecs(:,id);

modevecs = [zeros(l,npts);modevecs];

TETHER INPLANE CIRCULAR FREQUENCY DIVIDED BY

ORBIT ANGULAR SPEED

Ratio of (Subsatellite Mass)/(Tether Mass)

freq 0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000
nmbr

] 1.7320 1.7320 1.7320 1.7320 1.7320 1.7320 1.7320

2 4.2425 5.5159 6.7081 7.7274 8.6294 9.4466 10.1990

3 6.7066 10.1300 12.7360 14.8847 16.7576 18.4400 19.9807

4 9.1551 14.9072 18.8904 22.1464 24.9748 27.5111 29.8311

5 11.5785 19.7213 25.0646 29.4180 33.1951 36.5799 39.6749

6 13.9503 24.5373 31.2296 36.6735 41.3939 45.6228 49.4888

7 16.2319 29.3394 37.3715 43.8992 49.5574 54.6256 59.2585

8 18.4152 34.1181 43.4807 51.0851 57.6751 63.5773 68.9722

9 20.5863 38.8659 49.5493 58.2226 65.7377 72.4680 78.6194

i0 22.8428 43.5767 55.5703 65.3038 73.7366 81.2882 88.1900

Figure 2: Natural Frequency Analysis
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ORIGINAL F:_.GE ,r3

OF POOR QUALITY

COMPUTER IMPLEMENTATION

The 3D tether dynamics algorithm developed above was implemented in a MAT-

LAB program having the following modules.

module function

tetrun Create data, call the

integrator and print results

tetdat Generate data for a tether

moving in skip rope mode

tetthn Compute time when various

lumped masses have been retrieved
to the orbiter

tetlen Compute the time dependent

tether length and

corresponding derivatives

tetforce Compute gravity and Coriolis
forces on the tether

tettop Compute position, velocity and

acceleration of the point to
which the tether is retrieved

tetdef Form the nonlinear equations
of motion of the tether

odeven Routine to compute solutions
at even time increments

ode7S Seventh and eighth order

Runge Kutta integrator

based on Fehlberg formulas

At pres_,nt, the program has not been checked fully although initial tension values

computed for the skip rope are reasonable, angular values obtained are large. This is

apparently caused by the necessity of dividing linear acceleration quantities by ,osin 0

to get angular accelerations. Figures [4] and [5] show the angular displacements

_-" XXXlli-12



obtained for _ and _. The motion rapidly becomes confined to the orbital plane and

amplitudes of 8 angles become laxge. The validity of these results seem questionable.
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Program for 3D Dynamic Simulation of a Tether in a
Gravity Gradient Field.

by
Howard B. Wilson, Summer1989

%The chosen data corresponds to a system which was analyzed by

% David B. Weaver in "Analysis of Transverse Wire Oscillations

% During The Tethered Satellite System Electromagnetic Mission",

% November 24,1987

% global variables for the tether analysis program

global nlink0_ ivec0 isum0 cofexp_

global omegac masvec0 tretrv0_

global nlknow_ ivecnow Z masvcnow

gravity_

omegac_=l.1847e-3; % orbit angular speed in rad/sec

% The orbit period is 1.473 hours

gravity =32.2;

omegaskip=.01134;

nlink0 =5;

mtet=l[.43;

msat=37.7;

zi=65617;

xl=10;

xsin=286.315;

omeg=l;

ph0=0;

phd0=omegaskip;

thdl=0;

thdn=0;

tfrac=7000;

frac=.9;

% gravity constant in ft/sec^2

% skip rope spin rate (rad/sec). This value

% is 11.31 times the orbit angular speed.

% number of links used in the model

% total tether mass in slugs

% satellite mass

% satellite initial z coordinate in feet.

% This equals 20 kilometers

% Satellite is initially on the z axis

% Amplitude of initial deflection curve
% which is half of a sine curve

% Parameter defining the spatial period

% length of the initial defelction curve

% Start initial motion in the x-z plane

% Initial spin about z axis
% Initial time derivatives of theta are zero.

% Time at which frac*(total_tether_length)
% has been retrieved

% The solution is generated until

% frac*(total_tether_length) has been
% been retrieved

% Generate starting da_a

mt=mtet/nlink0_; masvec0_=[mt+msat;mt*ones(nlink0_-l,l)];

[ivec0 ,thvec0,phvec0,thdvec0,phdvec0,z0,x0]=...

tetdat_nlink0_,thdl,thdn,phO,phd0,zl,xl,xsin,omeg);

% Compute times when successive tether masses reach the
% orbiter

[tretrvO ,Isum0 ,cofexp_]=tettim(frac,lvec0_,tfrac);

yinit=[thvecO(:);phvec0(:);thdvec0(:);phdvecO(:)];

for k=l:nlink0_,

nlknow_=nlink0_-k+l;
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% tmin=tretrv0_(k); tmax=.98*tretrv0_(k+l); h=(tmax-tmin)/50;
tmin=tretrv0_(k); tmax=tretrv0_(k+l)-10; h=(tmax-tmin)/50;
tol=l.e-12; trace=l;
[tout,yout]=odeven('tetdif',tmin,tmax,h,yinit,tol,tra&e);

ntp=2; nt=length(tout);
yinit=lagtrp(tretrv0_(k+l),tout(nt-ntp+l:nt),yout(nt-ntp+l:nt,:))';
tim=[tim;tout;tretrv0_(k+l)]; yout=[yout;yinit'];
ytep=[];
for j=4:-l:l,

yinit(j*nlknow_)=[];
yyyy=[yout(:,(j-l)*nlknow_+l:j*nlknow_),zeros(nt+l,k-l)];
ytep=[yyyy,ytep];

end
zout=[zout;ytep];

end
save tet2

function [ing,th,ph,thd,phd,z,x]=tetdat(n,thdl,thdn,ph0,phd0,zn,...
x0,xsin,omeg)

% [Ing,th,ph,thd,phd,z,x]=tetdat(n,thdl,thdn,ph0,phd0,zn,...
% x0,xsin,omeg)

%Compute data to define an initial planar tether configuration

%n
%thdl,thdn
%
%
% ph0,phd0
%
%
% zn
% xsin
%
%
%
% x0
%

Number of links
Initial values of the time derivative of theta.
Theta dot varies linearly from thdl at the first
link to thdn at the last link.
Inital values of phi and the time derivative of
phi. All links have the same inital values for
these variable.
The projection of the tether length on the z axis
Amplitude of a sine wave which is added to a

linear taper to create the initial radial deflect-
ion in the x direction. This deflection has the

form x = x0*(1 - z/zn) + xsin*sin(pi*omeg*z/zn).
Transverse deflection value at the free end of the

tether.

% ing
%

%

% th,ph

% thd,phd

% z,x

%

Vector of lengths of the individual tether links.

These lengths are defined by cords on the chosen

deflection curve.

Initial theta and phi values.

Initial time derivatives of theta and phi.

Initial z and x coordinates viewed normal to the

plane of the system.

nn=(0:n)'/n;

z=zn*nn;

x=x0*(l-nn)+xsin*sin(pi*omeg*nn);

zdif=z(2:n+l)-z(l:n);

xdif=x(2:n+l)-x(!:n);

ph=ph0*ones(n,l);

phd=phd0*ones(n,l);

th=-atan2(xdif,zdif);

thd=thdl+(thdn-thdl)*nn(2:n+l);

ing=sqrt(xdif.*xdif+zdif.*zdif);
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function [tvtrv,ltotl,cof]=tettim(frac,leng,tfinl)
% [tvtrv,ltotl,cof]=tettim(frac,leng,tfinl)

%This function computes the vector of times at which
% successive links in the tether reach the orbiter during
% retrieval according to an exponential length reduction rate.
% leng The vector of link lengths. The links are
% indexed with the bottom link as the first
% and the base link as the last.
% frac The fraction of the total length to be
% retrieved by time tfinl.
%tfinl The time at which frac*(total tether length)
% has been taken into the orbiter according to
% the exponential rate law.
% tvtrv The vector of times at which link(n),...,
% link(l) reach the orbiter.
% itotl The total tether length leng(1)+...+leng(1)
% cof The exponent in the tether equation

% Tether_length = itotl*exp(cof*t)

n=length(leng); ingsum=flipx(cumsum( flipx(leng(:))));

itotl=sum(leng); cof=log(l-frac)/tfinl;

ingsum=[Ingsum;(l-frac)*itotl];

tvtrv=log(ingsum/itotl)/cof;

function [ivec,lvecd,lvecdd]=tetlen(t)

% [len,lend,lendd]=tetlen(t)

% Compute the vector of lengths and their time derivatives.

% Only the last link changes during the current time interval.

% global variables for the tether analysis program

% global nlink0_ ivec0_ isum0 cofexp_

% global omegac_ masvec0_ tretrv0_

% global nlknow_ ivecnow_ masvcnow_

%ivec=ivec0 ; ivecd=zeros(ivec); ivecdd=zeros(ivec);
%break

% remaining statements are presently inactive, the tether

% has constant length

len=IsumO *exp(cofexp *t);

lend=cofexp_*len;

lendd=cofexp_*lend;

len=len-sum(ivec0 (l:nlknow_-l));
ivec=len; Ivecd=lend; ivecdd=lendd;

if nlknow > 1

ivec=[ivecO_(l:nlknow -l);ivec];

ivecd=[zeros(nlknow -Y,l);ivecd];

Ivecdd=[zeros(nlknow_-l,l);Ivecdd];
end

function forc=tetforce(t,r,v)
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% Force effects due to gavitational attraction and
% rotation in a gravity gradient field

% global variables for the tether analysis program

%global nlink0 ivec0 Isum0 cofexp_ gravity_
%global omegac masvecO tretrv0
%global nlknow ivecnow- masvcnow

wsq=omegac_*omegac_; w2=2*omegac_;
fx=w2*v(:,3).*masvecO (l:nlknow_);
fy=-wsq*r(:,2).*masvec0_(l:nlknow_);
fz=( {3*wsq)*r(:,3)-w2*v(:,l) ).*masvec0_(l:nlknow_);
forc=[fx,fy,fz];
% 'in tetforce, (omegac_,masvec_,forc)'
% omegac_,masvec_,forc
%pause
%forc=[zeros(nlknow_,2),(gravity_*masvec0_(l:nlknow_)).*ones(nlknow_,l)];

function [rtop,rtopd,rtopdd]=tettop(t)
% [rtop,rtopd,rtopdd]=tettop(t)
% Coordinates of the tether top and related derivatives.

% The top is fixed at present.

rtop =[0; O; 0];

rtopd =[0; O; 0];

rtopdd=[O; O; 0];

function yt=lagtrp(t,tdat,ydat)

% yt=lagtrp(t,tdat,ydat)

% Lagrange interpolation of a vector function yt which

% is a function of scalar time. Interpolation is

% performed such that at tdat(i) the value of yt is

% ydat(i,:). Thus, yt is a polynomial of degree n-i

% where n is the number of components in tdat

[mrow,mcol]=size(ydat);

yt=zeros(l,mcol);

for k=l:mrow

yt=yt+ydat(k,:)*plag{k,tdat,t);
end

function y=plag(j,tdat,t)

% y=plag(j,tdat,t)

% generates a Lagrange interpolating polynomial

td=tdat(:)'; td(j)=[];

y=prod(t-td)./prod(tdat(j)-td);

function zp = tetdif(t,z)

% zp = tetdif(t,z)

% Dynamical equations for a lumped mass 3D tether model

% written by Howard B. Wilson, Summer 1989
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% global variables for the tether analysis program

% global nlink0_ lvec0 isum0 cofexp_

% global omegac masvec0 tretrv0

% global nlknow ivecnow-- masvcnow

% t, z

% nlnow =5;

n4 = length(z); n = round(n4/4); w3 = ones(l,3);

nl = n+l; n2 = nl+n; n3 = n2+n; zn = zeros(n,l);

% Obtain local angular coordinates and their derivatives

th = z(l:n); ph = z(nl:n2-1); thd = z(n2:n3-1); phd = z(n3:n4);

ct = cos(th); st = sin(th); cp = cos(ph); sp = sin(ph);

zp = zeros(z); zp(l:n2-1) = z(n2:n4);

% Lengths of tether links and corresponding derivatives defined

% by an external function

[len,lend,lendd] = tetlen(t);

% Reciprocals of mass elements needed later

masinv = 1 ./masvec0_; miv3 = masinv*w3;

% Compute unit base vectors in spherical coordinates

% along with spatial derivatives of those vectors

ur = [st.*cp,st.*sp,ct];

ut = [ct.*cp,ct.*sp,-st];

% size(ur)

% size(zn)

up = [-ur(:,2),ur(:,l),zn];
utt = -ur;

utp = [-ut(:,2),ut(:,l),zn];

upp = [-ur(:,l:2),zn];

fen3 = len*w3;

thd3 = thd*w3;

phd3 = phd*w3;

% Local Cartesian components of position vectors and

% velocity components

r = len3.*ur;

% [size(len3);size(ut);size(thd3);size(up);size(phd3)]

v = len3.*(ut.*thd3+up.*phd3)+lend*w3.*ur;

% Compute base point motion defined by an external function

[RT,RTD,RTDD] = tettop(t);

RT = RT(:)'; RTD = RTD(:)'; RTDD = RTDD(:)';

% g_obal coordinates and velocity vectors

R = ones(n,l)*RT+flipx(cumsum(flipx(r)));

= ones(n,l)*RTD+flipx(cumsum(flipx(v)));

XXXIII-20



% Nodal forces defined by an external function depending on
% time, position and velocity

FRC= tetforce(t,R,V);

% Form the tridiagonal equations to solve for member tensions

if nlknow > i,

isq = len.*len;
b = isq.*([masinv(2:n);0]+masinv(l:n));
c = r(l:n-l,:).*r(2:n,:);
c = -masinv(2:n).*sum(c')';
fovm = [FRC.*miv3(I:n,:);RTDD];

e = sum( (r.*( fovm(l:n, :)-fovm(2:n+l, :) ) )' )' ;
e = e+sum((v.*v)')'-lend.*lend-len.*lendd;

%Solve for tension multipliers

alp = trisol([0;c],b,c,e);

% Compute member forces

tenfrc = [[0 0 0];(alp*w3).*r];

% Compute global accelerations of point masses

RDD = (FRC+tenfrc(l:n,:)-tenfrc(2:n+l,:)).*miv3(l:n,:);

RDD = [RDD;RTDD];

% Second derivatives of link radii

rdd = RDD(I:n,:)-RDD(2:n+I,:);

else

isq = len.*len;

b=isq*masinv(1);

fovm=FRC.*miv3(l,:)-RTDD;

e=sum((r.*fovm)') ;

e=e+sum( (v.*v)' )-lend.*lend-len.*lendd;

alp=e/b;

tenfrc=(alp*w3).*r;

RDD=(FRC-tenfrc).*miv3(l,:);

rdd=RDD-RTDD;

end

% Compute local velocity dependent acceleration terms

a = (utt.*thd3+utp.*phd3).*thd3+(upp.*phd3+utp.*thd3).*phd3;

a = a.*len3;

% Compute the second derivatives of the spherical coordinate

% angles to complete formation of the equations of motion.

rdda = rdd-a;

thdd = sum((rdda.*ut)')'-2*lend.*thd;
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thdd = thdd./len;
phdd = sum((rdda.*up)')'./(st.*st)-2*lend.*phd;
phdd = phdd./len;
zp(n2:n4) = [thdd;phdd];

% End

function [tout, yout] = odeven(F, tO, tfinal, h, y0, tol, trace)
%
% INPUT:
% F - String containing nameof user-supplied problem description.
% Call: yprime = fun(t,y) where F = 'fun'.
% t - Time (scalar).
% y - Solution column-vector.
% yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt
%tO - Initial value of t.
% tfinal- Final value of t.
% y0 - Initial value column-vector.
% h - Time increment between which solution values are output
% tol - The desired accuracy. (Default: tol = l.e-3).

% trace - If nonzero, each step is printed. (Default: trace = 0).
%

% OUTPUT:

% tout - Returned integration time points in increments of h

% (kolumn-vector).

% yout - Returned solution, one solution column-vector per tout-value.
%

tout=(t0:h:tfinal)'; ntims=length(tout); ncols=length(y0);

yout=zeros(ntims,ncols); yout(l,:)=y0(:)';

for j=l:ntims-i

[ttemp,ytemp]=ode78(F, tout(j), tout(j+l), yout(j,:)', tol, trace);

[nr,nc]=size(ytemp);

yout(j+l,:)=ytemp(nr,:);
end

function [tout, yout] = ode78(F, tO, tfinal, yO, tol, trace)

% ODE78 Integrates a system of ordinary differential equations using
% 7th order formulas.

%

% [tout, yout] = ode7S(F, tO, tfinal, yO, tol, trace)
%

% INPUT:

% F - String containing name of user-supplied problem description.

% Call: yprime = fun(t,y) where F = 'fun'

% t - Time (scalar).

% y - Solution column-vector.

% yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt
% tO - Initial value of t.

% tfinal- Final value of t.

% y0 - Initial value column-vector.

% tol - The desired accuracy. (Default: tol = l.e-6).

% trace - If nonzero, each step is printed. (Default: trace = 0).
%

% OUTPUT:
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%tout - Returned integration time points (row-vector).
%yout - Returned solution, one solution column-vector per tout-value.
%
%The result can be displayed by: plot(tout, yout).

Daljeet Singh
Dept. Of Electrical Engg., The University of Alabama.

11-24-1988.

% The Fehlberg coefficients:

alpha = [ 2./27. 1/9 1/6 5/12 .5 5/6 1/6 2/3 1/3 1 0 1 ]';

beta = [ [ 2/27 0 0 0 0 0 0 0 0 0 0 0 0 ]

[ 1/36 1/12 0 0 0 0

[ 1/24 0 1/8 0 0 0
[ 5/12 0 -25/16 25/16

[ .05 0 0 .25 .2 0

[ -25/108 0 0 125/108

[ 31/300 0 0 0 61/225

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-65/27 125/54

-2/9 13/900

o o ]
o o ]
0 0 0 0

o o ]
0 0 0 0 0

0 0 0 0 0

0 0

0 ]
0 ]
-i/12

[ 2 0 0 -53/6 704/45 -107/9 67/90 3 0 0 0 0

[ -91/108 0 0 23/108 -976/135 311/54 -19/60 17/6 0 0 0 0

[2383/4100 0 0 -341/164 4496/1025 -301/82 2133/4100 45/82 45/164 18/41 0 0

[ 3/205 0 0 0 0 -6/41 -3/205 -3/41 3/41 6/41 0 0 0

[-1777/4100 0 0 -341/164 4496/1025 -289/82 2193/4100 51/82 33/164 12/41 0

chi = [ 0 0 0 0 0 34/105 9/35 9/35 9/280 9/280 0 41/840 41/840]';

psi = [i 0 0 0 0 0 0 0 0 0 1 -i -i ]';

pow = 1/8;

if nargin < 6, trace = 0; end

if nargin < 5, tol = l.e-6; end

% Initialization

t = tO;

% the following step parameters are used in ODE45

% hmax = (tfinal - t)/5;

% hmin = (tfinal - t)/20000;

% h = (tfinal - t)/100;
% The following parameters were taken because the integrator has

% higher order than ODE45. This choice is somewhat subjective.

hmax = (tfinal - t)/2.5;

hmin = (tfinal - t)/10000;

h = (tfinal - t)/50;

y = y0(:);
f = y-zeros(l,13);

tout = t;

yout = y.';
tau = tol * max(norm(y, 'inf'), i);

if trace

% clc, t, h, y

clc, t, h

end

% The main loop

while (t < tfinal) & (h >= hmin)

if t + h > tfinal, h = tfinal - t; end

% Compute the slopes

f(:,l) = feval(F,t,y);

for j = i: 12

f(:,j+l) = feval(F, t+alpha(j)*h, y+h*f*beta(:,j));

end
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%Truncation error term
gammal = h*41/840*f*psi;

%Estimate the error and the acceptable error
delta = norm(gammal,'inf');
tau = tol*max(norm(y,'inf'),l.0);

% Update the solution only if the error is acceptable

if delta <= tau

t = t + h;

y = y + h*f*chi;

tout = [tout; t];

yout = [yout; y.'];

end

if trace

home, t, h, y

home, t, h

end

% Update the step size

if delta -= 0.0

h = min(hmax, 0.8*h*(tau/delta)_pow);

end

end;

if (t < tfinal)

disp('SINGULARITY LIKELY.')

t

end
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CONCLUSIONS AND RECOMMENDATIONS

The computer implementation of the 3D version tether dynamics program should

be studied further to resolve numerical difficulties encountered when one or more of

the g-angles are small. An alternative formulation which may be appropriate for this

case is to develop the equations of motion based on a different set of Euler angles

thaT_ those presently used in the program. This work will be performed during the
coming months.
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