
TDA ProgressReport42-99

N90-19444 -/7
f

November 15, 1989

Some Easily Analyzable Convolutional Codes
R. McEliece, S. Dolinar, and F. Pollara

Communications SystemsResearch Section

H. Van Tilborg

Eindhoven University, Mathematics Department, The Netherlands

Convolutional codes have played and will play a key role in the downlink teleme-

try systems on many NASA deep-space probes, including Voyager, Magellan, and
Galileo. One of the chief difficulties associated with the use of convolutional codes,

however, is the notorious difficulty of analyzing them. Given a convolutional code

as specified, say, by its generator polynomials, it is no easy matter to say how well
that code will perform on a given noisy channel. The usual first step in such an

analysis is to compute the code's free distance; this can be done with an algorithm
whose complexity is exponential in the code's constraint length. The second step
is often to calculate the transfer function in one, two, or three variables, or at least

a few terms in its power series expansion. This step is quite hard, and for many

codes of relatively short constraint length, it can be intractable. However, we have

discovered a large class of convolutionaI codes for which the free distance can be

computed by inspection, and for which there is a closed-form expression for the
three-variable transfer function. Although for large constraint lengths, these codes

have relatively low rates, they are nevertheless interesting and potentially useful.

Furthermore, the ideas developed here to analyze these specialized codes may well

extend to a much larger class.

!. Introduction

In this article a class of binary (n, 1), constraint length

K, convolutional codes, called zero-run length (ZRL) con-
volutional codes, is defined and studied. These codes are

interesting because they are easy to analyze. ZRL codes

include as special cases orthogonal convolutional codes, the

recent "superorthogonal codes" of Viterbi, and many oth-
ers. None of the convolutional codes currently used in

NASA missions belong to the ZRL class. For any ZRL

code, it is possible to compute the free distance by inspec-

tion, and to write down the complete transfer function

105

https://ntrs.nasa.gov/search.jsp?R=19900010128 2020-03-19T23:03:04+00:00Z

T(D, I, L), explicitly (see Theorem 7, below). Important
variations of the transfer function, viz.

Tnum(D) = T(D, 1, 1)

0T

Tbit(D) -- _-(D, 1, 1)

_en(D) = OT
-'(D, 1, 1)

are commonly used to overbound the probability of de-

coder error for these codes ([3], Section 9.3, or [4], Sec-

tion 4.4). For arbitrary convolutional codes, these func-
tions can be very complicated indeed (see [7]), but for any

ZRL code these functions have simple, closed-form expres-

sions (see Corollary 8).

il. Zero-Run Length Convolutional
Codes

Any (n, 1), constraint length K convolutional code is
characterized by a list of n generator polynomials (g1(x),

+.., gn(x)), where gi(x) = gi,o+gi,lx+'" "+gi,K-1 xK-1 is

a polynomial of degree K - 1 or less. The encoder for such
a code consists of a shift register of length K - 1, with one

input and n outputs; the Slate of the encoder is defined

to be the contents of the shift register. If (sl,... ,sg-1)

is the current state, and so is the current input, the next

state is (so,... ,sN-2) and the output, which we will call

a code segment, is the n-tuple (Yx,.-.,Y,), where Yi =

E___ 1 sjgi,j.

1. Definition. An encoder state s = (sis2"'" sg-1)
is said to have zero-run length _, written "ZRL(s) = +"

for short, if s contains exactly i leading zeros. For exam-

ple, with g = 5, ZRL(0010) = 2, ZRL(0000) = 4, and

ZRL(1001) - 0. In general, for an (n, 1), constraint length
K, convolutional code, there will be 2K-1 states, but only

K possible values for ZRL (0, 1, ..., K - 1).

Note that if the encoder is in a state of zero-run length

i, and the input is 0, the next state will have ZRL =

min(i + 1,K - 1), whereas if the input is 1, the next state
will have ZRL = 0. Thus the ZRL of the encoder's next

state depends only on the current value of ZRL and the

input. This fact is illustrated in Fig. 1, which shows the

topology of states, organized according to the values of

ZRL. In Fig. 1, the arrows marked with a's represent state
transitions caused by 0 inputs, and the arrows marked with

fl's represent state transitions caused by i inputs. We will

return to this state diagram in the proof of our main result,
Theorem 7, below.

2. Definition. An (n, 1) convolutional code of con-
straint length K is said to be a ZRL code if the output

weight depends only on the input and the ZRL of the state.

The symbol ui is used to denote the output weight if the

encoder has ZRL = i and the input is 0, and the symbol

wi is used if ZRL = i and the input is 1. The ui's and the

wi's are conveniently displayed in a 2 x K matrix, called

the weight matrix of the code:

W_-

0 1 ... K-1

1 WO Wl " " " WK- 1

3. Example. Let K = 3. Then the (4,1) con-
volutional code with generator polynomial list (1, x, 1 +

x 2,1+ x+ x 2) isaZRL code. Since with K= 3 there
is only one state with ZRL = I, viz. 01, and only one

state with ZRL = 2, viz. 00, in order to verify that this

code is ZRL, one need only investigate the two states with

ZRL = 0, i.e., 10 and 11. If the state is 10 and the input

is 0, the output is (0101), whereas if the input is 1 the

output is (1110). On the other hand, if the state is II and
the input is 0, the output is (0110), and if the input is 1,

the output is (1101). Thus, if the state has ZRL = 0, and

the input is 0, the output weight is 2; and if the input is 1,
the output weight is 3. ttence, the output weight indeed

depends only on the state's ZRL, as required. The weight
table for this code is as follows:

0 1 2

+ 1
4. Definition. The profile of an (n, 1), constraint

length K ZRL convolutional code is the vector (dx, d_,...,

dK), where di is the Hamming weight of the output of the
encoder, beginning in a state with ZRL = 0, with length i

input sequence 0+- 11.

5. Lemma. In terms of the entries in the weight

table, the profile of a ZRL convolutional code is

di = uo + u_ + ... + ul-2 + wi-_

for i= 1,2,...,K

Proof: If one starts in a state with ZRL = 0, and

uses the input sequence 0+-l, one passes through states

106

with ZRL = 1, 2,..., i - 2, causing outputs of weight

u0, ut,...,ui-2, and arrives at a state with ZRL = i- 1.

The last input of 1 causes the encoder to move to a state

with ZRL - 0 and to produce an output of weight w/-1.

6. Example. Combining the weight table in Exam-

ple 3 with Lemma 5, one finds that the profile of the code

in Example 3 is (3,3,7): dl = w0 = 3; d2 = u0+wt =

2+ 1 = 3; and d3 : u0 +Ul +w2 -- 2+2+3= 7.

IlL Transfer Function for ZRL Codes

The following theorem is our main result. It gives the

promised closed-form expression for the transfer function
of a ZRL code in terms of its profile.

7. Theorem. For a ZR.L convolutional code with

profile (dl,... ,dK), the three-variable transfer function is

given by

T(D, I, L) = K-1
DdK IL K

1- E Da_ ILi
i=1

Proof: One begins by reviewing the definition ofT(D,

I, L) for an arbitrary (n, 1), constraint length K, convolu-

tional code. (See [3] or [4] for more details.)

Starting with the state diagram for the given code,
which is the 2g-1 vertex deBruijn graph, each of the 2g

edges is labelled with a monomial in the three indetermi-
nates D, I, and L, i.e., a term of the form D_I_L. The

power w of D in the monomial represents the Hamming

weight of the encoder output corresponding to the given
state transition, and e is either 0 or 1, according to whether

the corresponding encoder input is zero or one. The re-

sulting labelled, directed graph is called the "DIL state

diagram" for the code.

In Fig. 2 is the DIL state diagram for a K = 3 ZRL

code. For example, in Fig. 2 the edge from state 10 to 11
is labelled DW°IL. This is because the transition 10 _ 11

is caused by an encoder input of 1, so that the exponent

of I in the edge label is 1. State 10 has ZRL = 0, and by
definition of a ZRL code, when the state has ZRL = 0 and

the input is 1, the output weight is w0; thus the exponent
on D in the label is w0. The other seven edge labels can

be explained similarly.

A path of length m in the DIL state diagram is defined

as a sequence of m + 1 vertices such that each adjacent

pair of vertices in the sequence is connected by a directed

edge. For example, in Fig. 2, the vertex sequence 00 ---*
10 ---* 01 ---* 00 is a path of length 3. A path is completely

specified by its initial vertex and the string of input bits

corresponding to the vertex transitions, which we call the

input string of the path. For example, the path 00 --_ 10 --_
01 ---* 00 has initial vertex 00 and input string 100. The

weight of a path is defined to be the product of the labels

on its edges. For example, the path 00 ---* 10 ---* 01 ---* 00

in Fig. 2 has weight DW_+u°+UlIL 3.

The three-variable transfer function T(D, I, L) is now

defined to be the sum of the weights of all paths from vertex
0 K-1 back to vertex 0g-1 which have no intermediate re-

turns to vertex 0_:-1. Alternatively, T(D, I, L) is the sum

of the weights of all paths with initial vertex 0K-1 whose

input string ends with 0K-1 but has no other substring

equal to 0 h'-i. (In [3, Section 9.3] these paths are called

"fundamental paths.")

In principle, one can compute T(D, I, L) for any con-
volutional code using the standard "transfer matrix

method" described, for example, in [5, Sec. 4.7]. How-

ever, this method is essentially equivalent to inverting a
2 g-1 x 2g-1 matrix with three-variable monomial entries,

and is not in general practical except for codes with ex-

tremely small constraint lengths [7]. However, for a ZRL

code, one can simplify this calculation considerably, by

first "collapsing" the state diagram by combining states
with the same value of ZRL. In the collapsed state di-

agram, there will be K vertices, labelled 0,1,... ,K- 1;
vertex i will be connected by a directed edge to vertex j if

there is any edge in the original (noncollapsed) DIL state

diagram connecting a vertex with ZRL = i to one with

ZRL = j. The label on an edge in the reduced state di-

agram will be the same as the label on the corresponding

edge in the original graph; the ZRL property implies that
this rule is well defined.

The collapsing process is illustrated in Fig. 3, which

shows the collapsed version of the graph in Fig. 2. Note, for

example, that in Fig. 3 the edge from vertex 0 to vertex 1
is labelled DU°L. This is because in Fig. 2, both edges
from a vertex with ZRL = 0 to a vertex with ZRL = 1,

viz. 10 ---*01 and 11 _ 01, have the same label DU°L.

When the DIL state diagram for a constraint length
K ZRL code is collapsed, the resulting state diagram will

be identical to the state diagram in Fig. 1, where the labels

o_i and _3i are given by

ai = D" L

fli = D w'I L

107

One can think of the collapsed state diagram of Fig. 1

as the state diagram of a finite-state machine, with input

alphabet (0, 1} and output alphabet the set of monomials

DWUL. If this machine is in state i and its input is 0, its

next state is min(i + 1,K + 1), and its output is D'_'L;
if it is in state i and its input is 1, its next state is 0

and its output is DW_IL. Note that, as for the original
state diagram, any path in the collapsed state diagram

is specified by its initial vertex and its input string. For

example, the path 2 -+ 0 ---* 1 ---, 2 in the collapsed state

diagram of Fig. 3 has initial vertex 2 and input string 100.
Its weight is D _2+=°+u_L3I.

The important point is that the collapsed state dia-

gram is equivalent to the original state diagram for pur-

poses of computing the T(D, I, L) transfer function for the
ZRL code. This is because a path in the original DIL

state diagram with an initial vertex with ZRL = i and in-

put string _r will have the same weight as a path in the

collapsed state diagram with initial vertex i and the same

input string m For example, the path in the state dia-

gram of Fig. 2 with initial vertex 00 and input string 100

has weight D _2+u°+ua LzI, which is the same as the weight

of the path in the collapsed state diagram of Fig. 3 with

initial state 2 and input string 100.

It follows then that the T(D, I, L) transfer function

for a ZRL code is the sum of the weights of all paths in

the collapsed state diagram of Fig. 1 from state K - 1

back to state K - 1, with no intermediate returns to state

K - 1. This transfer function is denoted by T_._I,K_ 1.
One way to compute T_:_I,K_ 1 is to remove the vertices
1,2,... ,K- 2 from the state diagram, but to preserve

the path label information by relabelling the remaining

edges appropriately, as shown in Fig. 4. For example, in

Fig. 4, the edge from vertex 0 to vertex K - 1 is labelled

(_0_1" _g-2; this is because in Fig. 1 there is exactly
one path from vertex 0 to vertex K - 1 that uses only the

deleted vertices {1,2,... ,g- 1}, viz. 012... (g- 1), and

its weight is a0al " • ag-2. Similarly, the loop at vertex 0

is relabelled to reflect the fact that there are K - 1 paths

from vertex 0 back to vertex 0 which use only the deleted

vertices: 00,010,0120,...,012...(K - 2)0, and the sum
of the weights of these K - 1 paths is fl0 + a0fll + -.. +

s0- • •C_K-aflK-2, which is the label on the loop at vertex 0

in Fig. 4.

path (K - 1)0(K- 1) divided by 1 minus the weight of the
loop at vertex 0, i.e.,

Tk_I,K_ 1 =

O_0Ol 1 - . . OLK_2I_K_ 1

1 -- _0 -- O(0f_l -- O'0_lf_2 OlO''" OLK-3_K-2

If one substitutes the above values for (_i and Hi into this

expression, and uses the definition of the profile, the ex-

pression for T(D, I, L) in the statement of the theorem is
obtained.

8. Corollary. For a ZRL convolutional code with

profile (dl,... ,rig), the free distance is d_ and

DdK

Tnum(D)- P(D)

DdK

Tbit(D) = p(D) ff

DaKQ(D)

_en(D)- p(D) 2

where the polynomials P(D) and Q(D) are defined by

K-I

P(D) = 1- E Dd'
i=1

K-1

Q(D)=K-_(K-i)D d'
i=1

Proofi This follows directly from Theorem 7 and the

definitions of Tnum(D), Tbit(D), and Tlen(D) given at the
beginning of the article.

9. Example. Continuing Examples 3 and 6, the

profile is (3, 3, 7), and so P(n) = 1-2D a, Q(D) = 3-3D 3.
Thus, by Corollary 8, dr_ = 7, and

Once the state diagram has been reduced to only two

states, the computation of the transfer function T_-_ 1,g-1
is straightforward. Any path from vertex K- 1 back to
vertex K - 1 with no intermediate return to vertex K - 1

in Fig. 4 must be of the form (K - 1)0.. • 0(K - 1), and so
the desired transfer function is equal to the weight of the

0 7

Tnum(D) -- 1 "2D 3

= D z + 2D 1° +4D la

+ 8D 16 + 16D 19 + 32D :2 + ...

108

0 7

Tbit(D) = (1 - 2D3) 2

= D 7 + 4D 1° + 12D la

+ 32D 16 +80D 19 + 192D 22 +...

D7(3 - 3D 3)

Tlen(m) - (I- 2D3) 2

----3D 7 4- 9D I° + 24D la + 60D 16

+ 144D _9 + 336D 22 + ...

IV. Superorthogonal and Ultraorthogonal
Codes

Next, two important general classes of ZRL convo-

lutional codes, the superorthogonal codes introduced by

Viterbi [1] and the ultraorthogonal codes introduced here,
are defined.

10. Definition. The superorthogonal code of con-

straint length K, denoted by SK, is defined as follows:

Sx = (1), and for K >_ 2, then SK is a (2 K-2,1) code

whose generator polynomials are all 2g-_ possible poly-
nomials of the form 1 + glx + "" + gK-2X K-2 + x K-1.

11. Definition. The ultraorthogonal code of con-

straint length K, denoted by UK, is defined as follows:

U1 = (0), and for K > 2, then UK is a (2 g-2, 1) code
whose generator polynomials are all 2g-2 possible poly-
nomials of the form glx + ' " + gg-2 zK-2 "1-X K-I •

12. Example. For K = 3 the code $3 has generator

polynomial list (1 + x 2, 1 + x + x2), and U3 has generator

polynomial list (x 2, x + x_).

13. Theorem. For all K >_ 1, the codes SK and UK

are ZRL codes. The weight tables for the superorthogonal
codes are as follows:

0

°(:/W(S1) = 1

0 1

o(:o)W(S2) = 1 1

w(&)=

0 1 2

0(120)1 1 0 2

and, for K >__3

w(sK) =

0 1 ... K-3 K-2 K-I

0 _2 K-3 2 K-3 .-. 2 K-3 2 K-2 0 '_

)1 2 K-3 2 K-3 ,,. 2 K-3 0 2 K-2

Similarly, the weight tables for the ultraorthogonal codes
are as follows:

0

0(:/W(U1) = 1

0 1

°(::/W(U2) = 1

0 1 2

W(_)= 1 2

and, for K _> 3

w(u,o =

0 1 ... K-3 K-2 K-1

0 (2 K-3 2 K-3 ... 2 K-3 2 K-2 0)
I \ 2 K-3 2 K-3 • .. 2 K-3 2 K-2 0

Proof." The key to the proof is the close relation-

ship between the eonvolutional codes SK and UK and the

first-order Reed-Muller (1RM) block codes, which are now

described. The (2 m, m+ 1) 1RM code can be defined by an

(m+ 1)x 2 'n generator matrix Gm which has as columns all

possible binary (m+ 1)-tuples ending with 1. For example,

with m = 2 the (4, 3) 1KM code has generator matrix

62 --_ (011)1 0 1

1 1 1

It is known that all weights in the (2 m, m + 1) 1RM

code are equal to 2m-l, except for the all-zero word and

the all-one word ([8], Chapter 13). If G ° is defined to be

the matrix obtained by adding a row of zeros at the top

of Gin, and Glm to be the matrix obtained by adding a
row of ones at the top of Gin, then the columns of G__ 2

give the coefficients of the generator polynomials of UK

109

and the columns of G_¢_ s give the generator polynomials
of SK. For example, again with m = 2,

00 /111Go= 0 1 0 1 1
1 0 1 0 1

1 1 1 1 1

It therefore follows that every (2K-S)-bit code segment in

either of the codes SK or UK is a word in the (2 K-2, K- 1)

1RM code. In almost every case, this segment will have

weight 2K-3; the only other possibilities are weight 0 (the

all-zero codeword) and weight 2 g-2 (the all-one codeword).

To analyze these exceptional cases, note that every lin-

ear combination of rows of either G ° or G_ is a word in
the 1RM code. All such linear combinations will therefore

have weight 2 "_-1, with the following exceptions. In G °,

the empty linear combination, or the top row, give the all-

zero codeword; and the bottom row, or the top row plus
the bottom row, give all ones. In G_, the empty linear

combination or the top row plus the bottom row gives the

all-zero codeword; and the top row or the bottom row gives
all ones.

Therefore, in the ultraorthogonal code UI¢, the code
segment will be all zeros if and only if the state is OK- 1

and the input is 0, or the state is 0K-1 and the input is

1. Similarly, the code segment will be all ones if and only
if the state is 0K-Sl and the input is zero, or the state is

Theorem 13 provides many ZRL codes. The following
definition and the discussion that follows will show how

to use the superorthogonal and ultraorthogonal codes to

build many other ZRL codes.

14. Definition. Given two convolutional codes, their

sum is defined to be the convolutional code whose genera-

tor polynomial (g.p.) list is obtained by merging the g.p.

lists for the original codes. Thus for example, the sum of

the (3, 1) code with g.p. list (1, 1 + z, 1 + z + z s) and the
(2, 1) code with g.p. list (l+z s, l+z+z 2) is the (5, 1) code

with g.p. list (1,1+z, l+z s, l+z+x2,1+x+z2). In gen-

eral, the sum of an (nl, 1) convolutional code of constraint

length K1 and an (n_, 1) convolutional code of constraint

length K2 is an (nl + n2, 1) convolutional code of constraint

length max(K1, K2).

15. Lemma. If C1 and C_ are ZRL convolutional

codes, with constraint lengths Ka and K2, respectively,

with K1 </(2, then Ca + C2 is also ZRL, and the weight
table for C1 + C2 is obtained from the weight tables WI

and Ws by first extending W1 by repeating its last column

Ks - K1 times, and then adding the two weight tables

together.

Proof: If the two codes have the same constraint

length, this is immediate. If, however, the two constraint
lengths are different, and KI < Ks, C1 can nevertheless

be regarded as a convolutional code with constraint length

Ks in which the last Ks - K1 bits in the shift register are

never used. States with ZRL values K1, KI + 1,..., Ks- 1,

will plainly behave just like the all-zeros state (with ZKL =

K1 - 1), and the extra Ks - K1 columns that appear in
0K-21 and the input is 1. Thus, the output weight will be the weight matrix will be identical to the last column of

2g-2 unless the state has ZRL = K - 1 and the input is 0 the unextended weight matrix. The result now follows.
or 1, in which case the output weight is 0, or if the state

has ZRL = K-2 and the input is 0 or 1, in which case the 16. Example. The code of Example 3 is $1+U2+$3,
output weight is 2K-1. This is what the theorem states as may easily be verified. The corresponding weight tables
about the ultraorthogonal codes, are, by Theorem 13,

Similarly, in the superorthogonal code Sx, the code

segment will be all zeros if and only if the state is 0K-1

and the input is 0, or the state is 0K-21 and the input is 1.

Similarly, the code segment will be all ones if and only if

the state is 0g-1 and the input is 1, or the state is 0x-21

and the input is 0. Thus, the output weight will be 2N-s
unless the state has ZRL = K - 1 and the input is 0, or

if the state has ZRL = K - 2 and the input is !, in which

case the output weight is 0; or if the state has ZRL = K- 1

and the input is 1, or if the state has ZRL = K - 2, and

the input is 0, in which case the output weight is 2K-1.
This is what the theorem states about the superorthogonal

codes,

W(U2) = (1

(11
To obtain the weight matrix for $I + U2 + $3, first extend

W(SI) and W(U2) to dimensions 2 × 3 by repeating the

110

respective last rows, and then adding the resulting matri-
ces:

which is the same as was seen in Example 3.

K
17. Example. For any K, the code __.i=l(Si + Ui)

is by Lemma 15 a ZRL code. In fact, this code has as
generator polynomials all 2 K polynomials of degree < K-

1; it is the orthogonal code of constraint length K.

18. Theorem. The profiles of the codes SK are:

prome(SA = (1)

profile(S_)= (0,2)

pronle(Ss) = O, _,5)

profile(S4) = (2, 4, 4, 12)

profile(Ss) = (4, 8, 12, 12, 28)

profile(Sg) = (2 K-a, 2.2K-3,...,

(K - 2)2 K-3, (g - 2)2 K-3,

(K + 2)2_-3)

The profiles of the codes UK are

profile(U1) = (0)

profile(U2) = (1, 1)

profile(U3) = (1,3, 3)

profile(U,) = (2,4,s, 8)

profile(Us)= (4,s, 12,20,20)

profile(U/<) = (2 K-3, 2.2K-3,...,

(K -- 2)2 K-3 , K2 K-s, K2 g-3)

Proofi This follows by combining Theorem 13 and
Lemma 5.

19. Example. By combining Theorems 7 and 18, one

can obtain the transfer function for the superorthogonal

codes. Indeed, if z = D 2_'-_ , it follows from these theorems

that for the superorthogonal code of constraint length K,

T(D,I,L)

zK+2IL K

1 - zlL(1 + zL + ..- + zK-3L K-3) -- z.K-2IL K-1

zK+2ILK(1 -- zL)

1 - z(L + IL) - zK-2IL K-I + zK-I(IL K-I + IL K)

an expression first found by Viterbi [1]. It follows then
from Corollary 8 that dfree = (K + 2)2 K-3 and

zn+2(1 - z)
Tnum(D) -- 1 - 2z - z K-2 + 2z K-I

zK+2(1 -- Z)

(1 - 2z)(1 - z K-2)

z K+2 f 2K-3

L(2K-_ =i3(I - _)

(2 K-3 - 1) - z - 2z 2 2K-4z K-3

In the last expression, a two-term partial-fraction decom-

position is seen (in brazes) for the generating function
Tnum(D)/z K+2. The coefficient of z k in the expansion of
the first term is

The coefficients of the expansion of the second term are

periodic of period K - 2, and each term is less than 1/2
in absolute value. Since it is known that the coefficient of

z k in the combined expansion is an integer, it follows that

this coefficient must be the integer closest to

2K-3
• 2 tc

2 K-2 -- 1

Therefore, it has been proved that the coefficient

of D a"''+t*2K-s in Tnum(D) for the superorthogonal code

of constraint length K is

Nd,,o,+k2rc-_ = integer closest to
2K-3

2//-2 -- 1
• 2_

111

As a special case, it is found that the (8, 1), K = 5 su-
perorthogonal code has dfree = 28, and the number of fun-

damental paths of weight 28 + 4k is the integer closest to
4

• 2k, i.e.,

Tnum(D) = D 2s + D 32 + 2D 32 + 5D 36

+ 9D 4° + 18D 44 + 37D 4s + O(D 52)

V. A Representation Theorem

If Theorem 13 is combined with Lemma 15, many ZRL

codes can be constructed. It is surprising (and perhaps

disappointing) that all such codes are constructed this way.

20. Theorem. An (n, 1) convolutional code C of

constraint length K is ZRL if and only if it is the sum of

copies of superorthogonal and ultraorthogonal codes:

K

c = + .,u,)
i= 1

where mi and ni are integers denoting the multiplicities of
Si and Ui in the code C.

Proof." The proof of this theorem is lengthy and will
be omitted.

The next lemma, when combined with Theorems 20
and 18, enables one to write down the transfer functions

for any ZRL convolutional code.

21. Lemma. If C1 and C2 are ZRL convolutional

codes, with constraint lengths KI and I£2 respectively,

with K1 < Ks, then the profile for the sum C1 + Cs is

obtained from the profiles for C1 and C2 by first extending
profile(C1) to length Ks by repeating its last entry Ks-K1

times, and then adding the two profiles together.

l='roof: This follows by combining Lemma 15 with
Lemma 5.

22. Example. The ZRL code in Example 3 is C =

S1 +U2+$3, as was seen in Example 16. The corresponding
profiles are, by Theorem I91

profile(S1)= (1)

profile(Uz) = (1, 1)

profile(S3) = (1, 1, 5)

To obtain C's profile, use Lemma 21. First extend the

profiles of $1 and U2 to length 3 by repeating the last
entries, and then add the resulting lists:

profile(C) = (1, 1, 1) + (1, 1, 1) + (1, 1,5) = (3, 3, 7)

as was seen in Example 6. However, for the same values

of n and K, one can get a larger dfree by considering the

code 2S3 instead, since its profile is 2(1, 1,5) = (2,2, 10),
so that (/free : 10. And in fact, for n = 4 and K = 3
this is the largest possible free distance, since the Plotkin

bound for these parameters gives dfree < 10. In general,
for (n, 1), K = 3 ZRL codes, the largest possible dfre_

is [-_J, achieved by L JSa + (n mod 2)Ss, whereas the
best possible drr_ among all codes, ZRL or not, is s,,l J,
achieved by /n--_/(1 + x s) + /2"-9.-+-L/(1+ x + x_). TheL 3 J L 3 J

ratio of these two values approaches 16/15 as n _ oo,
and the smallest value of n for which these two values

differ by as much as two is n = 9, where the best ZRL

code 45'3 + $2 has drr_e = 22, but the code with g.p. list
(3(1 + x2), 6(1 + x + x2)) has dfr¢_ = 24. However, even in

this case the ZRL code may be competitive, since its T_u_
is

022

t -- D 4 - D 6
_ D _2 + D 26 + D 2s + D 30 + O(D 32)

whereas the unrestricted code has

D:H(2-D 6) =2D _4+5D 3°+O(D 3s)
Tnum= 1-3D 6+D 1_

And indeed, an asymptotic analysis shows the rate

of growth of the coefficients of T,_m(D) for the ZRL code
to be _ (1.1577) n, whereas for the unrestricted code it

is _ (1.1740)". Thus, as discussed in [2], the ZRL code
may pcrform better at low signal-to-noise ratios than the
non-ZRL code.

VI. Summary

A class of convolutional codes, termed zero-run length
(ZRL) convolutional codes, has been discovered for which

the free distance can be computed by inspection, and for

which there is a closed-form expression for the three-vari-
able transfer function. This class of codes includes the su-

perorthogonal codes introduced by Viterbi [1] and analo-
gous "ultraorthogonal" codes introduced here. It has been

found that, while ZRL codes are much more general than

superorthogonal or ultraorthogonal codes, any ZRL code

may be constructed as a combination ("sum") of super-
orthogonal and ultraorthogonal codes.

112

Although ZRL codes have very low rates for large con-

straint lengths, they are nevertheless interesting and po-
tentially useful. Furthermore, many of the ideas developed

here to analyze this class of specialized codes, such as the

use of reduced state diagrams, might extend to other in-

teresting code classes as well.

References

[1] A. J. Viterbi, "A New Class of Very Low Rate Conv01utional Codes with Ap-

plication to Spread Spectrum Multiple Access," preprint (April 1989).

[2] C.-C. Chao and R. J. McEliece, "On the Path Weight Enumerators of Con-
volutional Codes," Proc. 26th Ann. Allerton Conference, Univ. Illinois, pp.

1049-1058, October 1988.

[3] R. J. McEliece, The Theory of Information and Coding, Reading, Massachus-
setts: Addison Wesley, 1977.

[4] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Cod-
ing, New York: McGraw-Hill, 1979.

[5] R. P. Stanley, Enumerative Combinatorics, Vol. I, Monterey, California: Wads-
worth & Brooks Cole, 1986.

[6] R. J. McEliece, R. B. Ash, and C. Ash, Introduction to Discrete Mathematics,

Boston: Random House, 1989.

[7] I. Onyszchuk, "Efficient methods for computing transfer functions for convolu-
tional codes," in preparation.

[8] F. J. MacWilliams and and N. J. A. Sloane, The Theory of Error-Correcting
Codes, Amsterdam: North-Holland, 1977.

113

Fig. 1. Reduced state diagram for analyzing ZRL codes.

_ DU2L

DUlL

_ 10
oWl LI _ ___

,11 DUOL

 J 0Li

Fig. 2. The DIL state diagram for s K = 3

ZRL code.

D_ 1LI

 .22 =

Fig. 3, The collapsed DIL state diagram for a K = 3 ZRL

code (compare to Rg. 2).

_0_1...¢_2

Fig. 4. The state diagram of Fig. 1, sitar the loop at stale

K-1 and the states 1, 2,..., K--2 have been aliminatad.

114

