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Analytic methods for evaluating pointing errors caused by external disturbance

torques are developed and applied to determine the effects of representative values
of wind and friction torques. The expressions relating pointing errors to disturbance

torques are shown to be strongly dependent upon the state estimator paraineters,
as well as upon the state feedback gain and the flow-versus-pressure characteristics

of the hydraulic system. Under certain conditions, when control is derived from an

un corrected estimate of integral position error, the desired Type H servo properties

are not realized and finite steady-state position errors result. Methods for reducing

these errors to negligible proportions through the proper selection of control gain
and estimator correction parameters are demonstrated. The steady-state error pro-

duced by a disturbance torque is found to be directly proportional to the hydraulic

internal leakage. This property can be exploited to provide a convenient method of
determining system leakage from field measurements of estimator error, axis rate,

and hydraulic differential pressure.

I. Introduction

Recent studies of mechanisms contributing to limit-

cycle behavior have led to a need for more accurate mod-

eling of the disturbance torque response characteristics of
the 70-m antenna axis servos. Of particular interest in

the limit-cycle studies is the transient behavior of the var-

ious plant and estimator states that occur during friction-

induced limit cycling. The traditional assumption that the

estimator states accurately track those of the plant be-

comes inaccurate when the plant is subjected to external

disturbance torques. This shortcoming necessitated the

development of the present multivariable axis servo model

where the plant and estimator states are distinct.

Precise pointing of the 70-m antenna is accomplished

through the use of a two-axis, azimuth-elevation, bullgear-

driven servo system. Control torques are produced by

fixed-displacement, axial-piston hydraulic motors, which
are coupled to the axis bullgears through spur-gear reduc-

ers. Four such motor/gear reducers are employed for each

axis. Backlash is eliminated by separate countertorque mo-

tors which apply a constant torque bias to the output pin-
ion of each control motor. The hydraulic connections to

the countertorque motors are arranged as shown in Fig. 1

so as to preload all four gear reducers and apply zero net

torque to the bullgear. Torque modulation is accomplished

by four port-hydraulic servo valves. Servo control con-
sists of a hardware rate loop with tachometer feedback and

a computer-based position servo employing state-variable
feedback.

The servo model is based on the nonlinear orifice-flow

equation of the valve, along with the motor-flow equation
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as described in [1]. A piecewise linear representation of

the valve is obtained by partial differentiation of the valve

equation (Eq. 5 of [1]) to yield the flow Q_ as a linear

function of the valve input current I_ and load pressure

PL:

Q_ = Kp Iv - DH PL (1)

with

and

Kp = [(vPlv/2

QI)

DH = --
P_

P. = Ps- PL-- PR

where Ps and P.a are the regulated system supply pres-

sure and return pressure, respectively. As shown later, the
load pressure is sufficiently small relative to the supply

pressure such that the range of the valve pressure remains

within a 2 to 1 ratio. This justifies the use of a constant

value approximation for the flow gain Kp for control dy-

namic analysis. In contrast, the equivalent damping DH

is linearly proportional to the flow, which varies in pro-

portion to antenna rate. Therefore, DH varies between a
minimum value corresponding to leakage flow at the zero

antenna rate, and a maximum corresponding to the maxi-

mum tracking rate of the antenna.

The hydromechanical system model incorporates the

linearized valve of Eq. (1) along with a motor coupled to a

rigid-body inertia load representation of the antenna struc-
ture, as shown in block diagram form in Fig. 2, where CH,

JM, and VM represent the hydraulic compressibility, motor

inertia, and motor displacement, respectively.

The block diagram of the equivalent plant (servo-loop

hardware) in Fig. 3 incorporates the model of Fig. 2, the

tachometer feedback and control amplifier with associated

compensation networks, and two additional integrations

which produce the angular position and position integral

states. The two inputs represent the electrical rate com-

mand input to the plant and an equivalent external dis-

turbance torque; I£R represents a constant with value pro-

portional to the rate loop gain, and/'2 and Z2 are the pole

and zero frequencies of the rate loop compensation net-

work. Figure 3 also includes a simplified equivalent of the

tachometer feedback network obtained by neglecting the

network pole, which is at a relatively high frequency. This

approximation introduces the acceleration feedback branch

shown in Fig. 3 where the parameter Zx corresponds to the

negative real frequency of the network zero.

To provide additional insight into the effects of rate
and position loop parameters on system compliance, com-

pliance equations are developed separately for the open-

position loop case, for the hardware position proportional,

integral, and derivative (PID) feedback, and for the closed-
loop state variable controller. It is shown that the combi-

nation of plant-state and estimator-state feedback in the

precision mode leads to compliance characteristics different

from those of the computer mode, even when both modes

have identical plant and estimator dynamics.

II. Compliance Equations for the Open
Position Loop Case

The open position loop compliance can be derived

from the angular position response to a unit-step torque
input. By application of the Mason transmittance rule to

the block diagram of Fig. 3, the compliance transfer func-
tion becomes:

OM (llJMs2)(1 + DH/CHs)(1 + P21s)
m

Tx (1 + P2/s)(1 + Dg/Cus + KR/CItJMZls + (V_t + Kn)/JMCH s2) + (Z2 - P_)(KR/CHJMS2)(1/s + l/Z1)

which leads to

O.___M_M= (1/s)(s + DH/Ctf)(s + P2)

Tx JM(S + P2)(s 2 + (DH/CtI)s + V_I/JMCII) + (KR/CHZ1)(s + Z1)(s + Z2)
(2)
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Application of the final value theorem to Eq. (2) in-

dicates a constant steady-state rate in response to a step

function torque disturbance. The steady-state compliance

is given by

0 M DH

Tx s(V2M + KRZ2/P2)

III. Compliance Equations for Hardware PID
Feedback

The compliance of the closed-loop PID feedback sys-
tem can be calculated by the same method used earlier for

the open-loop case. The addition of position, integral, and

rate feedback branches produces three additional denomi-

nator terms in the compliance expressions. Thus,

OM

Tx

(1/JMS2)(1 + DH/CHs)(1 + P2/s)

(l+ P2/s)(l+ DH/CHs + KR/CHJMZIs + (V_ + KR)/JMCHS 2)

+ (Z2 - P2)(KR/CHJMS2)(1/s + 1/Z1 + Kx/s 3 + K2/s _ + K3/s)

+ (1 + P2/s)(gR/c.JMs)(K1/s 3 + K2/: + K3/s)

which leads to

OM

Tx

s(s + DM/C.)(s + P2)

JMS2(S + P2)(s _ + (DH/CH)s + V_t/JMCH )

"}-(KR/CH)(S "4- Z2)(s 2 -4- s3/Z1 Jr K1 -}" K2s "4" K3s 2)

(3)

and the steady-state compliance becomes

OM DHS

Tx K1KR(ZdP2)

The compliance transfer functions of Eqs. (2) and (3) in-

clude numerator zeros corresponding to the network pole
P2 and to the effective hydraulic damping DH/CH. The

denominators are seen to contain the poles of the respec-

tive open/closed-loop system. From the dependence of DH

on hydraulic flow, the steady-state compliance properties
are seen to be antenna-rate dependent. For typical closed-

position loop parameter values, the damping DH has rel-

atively little effect on the closed-loop poles. Therefore,

since the shape of the compliance transient is determined

by the locations of the transfer function zeros relative to

the poles, the closed-loop transient properties are also seen

to vary as a function of DH.

IV. Compliance Equations for the State Vari-
able Controller

Earlier methods of disturbance torque effects analy-

sis [2] were based on the assumption of negligible errors
in the estimator states in relation to the corresponding

plant states. This permitted a simplification of the sys-

tem model by substituting plant-state feedback in place of
the estimator-state feedback, thereby reducing the nmnber

of states required in the model. This assmuption, widely

used in evaluating command input transient responses, was

found to produce finite errors in the determination of dis-
turbance transient responses of the axis servos. It was

subsequently replaced by a superior method employing full

modeling of the estimator states as well as the plant states.
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The model for disturbance torque response of the
state-variable axis servo controller is based on a linearized

multi-input state-variable representation of the system of

Fig. 3, with the addition of the state-estimator and control-

feedback gain. The plant state is represented by the gen-

eralized state equations, where J: and Y are the state and

output by

_=Ax+BU

Y = Cx + DU

respectively.

The corresponding A, B, C, D matrices from Fig. 3

are:

h =

"0 1 0

0 0 1

0 0 0

o o -v_f/cn - KR/Cn

0 0 -1

0 0

0 0

1JM 0

--DH/CH -- KR/CtfJMZ1 KR(Z2 - P2)/CH

-1/JMZ1 -P2

n =

0 0

0 0

0 1/JM

KR / CH -- KR/CH JM Z1

1 - 1/ JM Z1

C=[0 1 0 0 0]

0 0

0 0

D= 0 0

0 0

0 0

Representing the estimator state by _, and estimator out-
put by Y, the estimator equations become:

= A_ -t- BIU1 4- L(Y - f')

= Cie + D1U1

where B1, B2, D1, D2, U1, and [72 represent the first and
second columns of B and D and the first and second ele-

ments of U, respectively. This distinction is essential be-
cause both inputs couple directly into the plant, while only

the rate command input U1 couples directly into the esti-

mator.

V. Computer Control Mode

Because the rate command U1 is formed differently for

the precision mode, the two control modes are addressed

separately. Incorporating the control-feedback gain K into
the expression for the rate command input U1 for computer

mode, and substituting into the plant and estimator equa-
tions leads to

U1 = -K_

= Ax- B1K_ + B2U2 (4)

= LCx + (A - BIK- LC- LD1K)2 + LD2U2
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With the estimator error,

x = (A - LC)_ + LDIK3: + (B2 - LD2)U2

Since for the present case both D1 and D2 are zero, the

estimator and estimator-error equations simplify to

"_= LCx + (A - B1 K - LC)_

and

N

= (A - LC)_ + B2U2

prising the plant and estimator states leads to the matrix

differential equation form

][:]+[:]LC A- B1K- LC
u_ (7)

which is compatible with existing linear system analysis
and simulation software tools. The steady-state distur-

bance torque compliance properties of the combined plant
(5) and estimator system can be determined from the steady-

state solution of Eq. (7). The general expressions for the

steady-state values of the individual plant and estimator

states can be determined by a symbolic expansion of the

(6) determinants resulting from application of Simpson's Rule
to Eq. (7).

The equations for the plant and estimator are illus-

trated in the state-space block diagram ill Fig. 4. Com-

bining Eqs. (4) and (5) to form a single state vector coin-

Since, in the steady state, the derivatives represented

by the left-hand side of Eq. (7) equal zero, steady-state

position estimate _2 becomes

_2
m

U2

A

- det

LC

-Blkl

I I
I I
I I

I B2 [ Bl[k3k4k_]
I I
I I

I o I
I o I
I o I

I o I
I o I

A_,_- B1[k3k4ks]

det[A -B1K ]LC A- B1K - LC

(s)

where the numerator matrix is obtained from the 10 x 10

denominator matrix by replacing the column correspond-

ing to x2 (column 7) with the right-hand-side vector, in
accordance with Simpson's Rule. The subscripts applied

to capital-letter symbols designate the respective columns
of the associated matrix, and A3,5 denotes a matrix com-

prised of the third through fifth columns of A.

A row by row examination of the numerator matrix re-
veals that the sixth row is comprised of the five elements of

the first row of LC, a single element (all-bllkl-llcl), and

the last three elements of the first row of [A - B1K - LC].

It will be seen that, since the first element of L is zero in the

current parameter set, and because of the sparseness of A
and B, the elements of the sixth row are all zeros and the
numerator determinant vanishes. This indicates that, in

the presence of a constant disturbance torque, the steady-

state position estimate _72 is identically equal to zero. This
in turn indicates that the final values of the position x2 and

the position estimation error _2 are identical, and x2 can
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thus be evaluated using Eq. (6). This approach avoids the

complexity of evMuating the determinant of the 10 × 10

matrices of Eq. (8).

Thus, in the steady state, using Eq. (6),

:_ = (A - LC)_. + B2U2 = 0

and

-det[A1"2 "3 "4 Asia.
dot[A-LC]

Note that L and C are absent from the numerator because

all elements of C, except for the second, are zero. Note also
that the first row of A and the first element of C are zero,

causing both determinants to vanish, tIowever, since the

plant integral state is uncoupled from both the plant and

the estimator, the corresponding first rows and columns
can be deleted from both the numerator and denominator

with no loss in generality. It should be noted that if the

first element of C is assigned a nonzero value, the denom-

inator determinant remains finite as long as L is nonzero.

The implications of this integral position feedback will be
discussed later.

Substituting the values of A, B._, and C into the ex-

pression for 2,.,

det

0 1 0 0

--1/JM 0 1/JM 0

I(R/CHJMZI -V_4/CH - KR/CH -DH/CII - KR/CHJMZi KR(Z2 -- P2)/CH

1/JM Z1 - 1 - 1/JM Zl -P2

u_

det

-12 10 0

--13 0 1/JM 0

--l 4 -V2I/CH - KR/C H --DH/CH -- KR/CHJMZ1 KR(Z2 - P2)/CIt

-Is -1 --1/JMZ1 -P2

Expanding the determinants leads to the nonzero steady-state position estimate error 2,2, and since the steady-state

plant position x2 equals 2,2,

232

U2

DH

12(V_! -t- KRZ2/P2) -b 13(DHJM + KRZ2/Z1P2) + 14CH + ls(Z2/P2 - 1)

which, using current 70-m antenna servo parameter values,

can be approximated by

x2 ,._ DHP2/Z2

U2 KRl2

This result invalidates the original premise that control

feedback of estimated integral error is equivalent to feed-

back of plant integral error in imparting Type II servo

performance. That premise is valid only for inputs, such

as the position command, which are coupled equally to the

estimator and the plant. From Eqs. (3) and (4) and the

block diagram of Fig. 4, it is seen that the plant is influ-

enced by the control input U1 and a disturbance input U2,
while the estimator is influenced by the same control input

and by the estimator feedback error LC2,. In equilibrium,

the plant disturbance U2 is compensated by the control in-

put U1; thus, the identical U1 input to the estimator must
be counteracted by the error LC2, in order to obtain es-

timator equilibrium. This implies that a finite estimator

error 2, will always result from a plant disturbance input,

while the individual components of 2, will be determined

by the product of L and C. This line of reasoning explains

the absence of the control gain K from the steady-state

compliance expression.

175



In the present case, where there is no feedback of

xl, the integral estimate error _1 is allowed to grow un-

bounded. The addition of a small amount of plant integral

feedback to the estimator by assigning a small value to cl

would bound the error ih, thereby forcing x2, x2, and i:2

to zero. The required nonzero _ would then result from

nonzero values of the components other than $2 and _3.
This additional feedback imparts the desired disturbance

accommodating control [3] properties to the system.

VI. Precision-Control Mode

In the precision (autocollimator feedback) mode, the
control input U2 is derived from the autocollimator, an

electro-optical device that senses plant position error di-

rectly. This error signal is filtered to remove noise and

then integrated. The resulting plant integral and position

errors are then combined with additional damping terms

provided by the position estimate to form the plant input

according to

Vl = -klXl - k2x2 - k3_3 - k3_ 4 - k5_5

The resulting system equations therefore take a slightly

different form from that of Eq. (7) due to the mixed plant
and estimator feedback. Thus, for precision mode,

[LC - B1Kp A - B1KE - LC

(9)

where Kp and KE are the gain vectors associated with the

plant and estimator states respectively. For the precision

mode,

the steady-state estimator error _ is therefore identical in

both the computer mode and precision mode. However,

the altered form of the control gains Kp and KE in the

precision mode change the coupling of the integral position
xx and its estimate _1. Accordingly, when solving Eq. (9)

for final values, the row and column corresponding to the

integral estimate xl are deleted, and those corresponding

to the integral xl are retained. As a result, the final value

solution of Eq. (9) yields the expected zero value for the

position x2 and a nonzero position estimate k2. This result

implies a nonzero estimator error _' consistent with Eq. (6).

These observations demonstrate an interesting duality

between the two control modes, whereby the substitution

of plant states for their corresponding estimator states in
the control gain law results in the interchange of the fi-

nal values of plant and estimated position variables. This

tends to confirm the validity of the general expressions of

Eqs. (7) and (9), and indicates that in the precision-control

mode, a zero steady-state error always results from a dis-

turbance torque input.

VII. Compliance Transient Properties

The shape of the transient response to disturbance

torques can be inferred from the relative locations of the

poles and zeros of the compliance transfer functions for
the various system configurations. For the open-loop and

hardware PID feedback systems, the poles and zeros are

defined by Eqs. (2) and (3), respectively, where it is seen

that the poles are the same as those associated with the

respective command input-output transfer functions.

For the state variable controller configurations, the

poles are the respective eigenvalues of the square system

matrices in Eqs. (7) and (9). The correspond_g zeros are
the complex frequencies of zero response of _, _:, and Y for

any disturbance input Us and initial condition. Thus, for
the computer-mode configuration of Eq. (7), the response
zeros are the roots of

  000]KE 0 k3 k4 k5

The B1KpD_ term is included in Eq. (9) to maintain gen-

erality, even though the KpD2 product is always zero in
the absence of plant acceleration feedback.

From Eq. (9), it is seen that Eq. (6) for the estimator
error is also applicable to the precision mode case, and

LC (sf - A + BaN + LC)

C 0 _.

To avoid the longhand expansion of the above determinant,
the zeros were determined by a numerical evaluation of

the transfer function zeros of the system of Eq. (7) with

coefficient values representative of the 70-m azimuth servo.
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The results coincide precisely with the two nonzero real
roots of the determinant

at --DH/CH and -P2 (the root at zero is absent), and with

the five eigenvalues of [A - BIK - LC]. A numerical com-

putation of the eigenvalues of the square matrix of Eq. (7)
shows that the accompanying poles are the five eigenvalues

of [A - B1K] and the five eigenvalues of [A - LC].

For the precision-mode configuration of Eq. (9), the

response zeros are the zeros of

[sI - A + B11(p] - B1KE -- B2

LC - B1Kp [sI - A -F BII'(E -t- LC] 0

C 0 0

X

2

Numerical evaluation of the transfer function zeros indi-

cates two real zeros at --DH/CH and -P2, two zeros

at the origin (one of which is canceled by a pole), and
four additional real and complex zeros which are near,

but noncoincident with, four of the poles of the square

matrix of Eq. (9). This result indicates that unlike the

computer-mode case of Eq. (7), the precision mode ex-
hibits zero steady-state disturbance torque compliance. In

addition, the low-frequency zero from the eigenvalues of

[A - B1K - LC] arising from Eq. (7) is absent in this
case, resulting in a faster disturbance recovery transient

in the precision mode. The system poles computed from

Eq. (9) are identical with those from Eq. (7) for the com-

puter mode.

From the foregoing and from Eqs. (2) and (3), it is

seen that the real zeros at --DH/CH and -/92 appear in

the cornpliance expressions for the open-loop and PID feed-

back systems, as well as for the computer and precision-
mode state variable controllers. The differing steady-state

compliance properties of these four configurations arise
from the presence of poles or zeros at the origin. This

commonality implies that all four configurations exhibit
identical disturbance transient characteristics for a short

time interval following the transient. This in turn implies

that the initial transient characteristics of the state vari-

able controllers are governed solely by the plant parame-

ters, and the departure from this initial characteristic is

governed by the controller.

VIII. Numerical Results

Numerical evaluations of the differential equations in-

corporated the physical parameter values of Table 1, the
control coefficients of Table 2, and the disturbance torque

parameters of Table 3. Physical parameter values of Ta-
ble 1 were derived from component specifications accord-

ing to [1] with the rate loop gain and network parameters

based on [4]. The KR value of 5.107 corresponds to a rate
loop dc gain product of 40. The values shown for damp-

ing DH are calculated using Eq. (1) and correspond to the

axis rate range of 1 to 40 times the sidereal rate with added

leakage QHL. Aerodynamic parameters used in determin-

ing wind torques were extrapolated by McGinness 1 from

earlier wind-tunnel tests performed on scale models of the
64-m antenna.

The position feedback control gain K and estimator

gain L shown in Table 2 were calculated according to the

optimal control criteria of Alvarez and Nickerson [5]. The

baseline values L1 and I(4 in the table were calculated to

duplicate the dominant closed-loop poles of [5] when ap-

plied to the model of Fig. 3. Alternate parameter sets
were calculated in a similar manner with weighting ad-

justed to shift the dominant poles inward or outward from

the origin. Those estimator gains that include integral

terms were calculated using an alternate output vector

H = [1 1 0 0 0], which included equal weighting of

integral and position.

The wind torque moments in Table 3 were calculated

according to McGinness z using the torque relationship

CTqrDaA (10a)
torque = 4

where CT is the aerodynamic lift coefficient, the dynamic

wind pressure is

PV2 (lOb)
q= 2

with air density, p = 0.00238 lb/ft 3, and wind velocity, v.

1 II. McGinness, "Effects of Wind Loading on 64- And 72-
Meter Diameter Antenna" (JPL internal report), Reorder

No. 84-2, May 1984.

McGinness, ibid.
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From Eqs. (10a) and (10b), the disturbance torque is
seen to be a quadratic function of the wind velocity, so the

disturbance imparted by a step change in velocity depends
on the initial and final velocities rather than the step am-

plitude. Thus, if v,n is the mean of the initial and final

velocities and Vd is their difference, the torque disturbance

is proportional to the product VmVd. The worst-case dis-
turbance then results when a large step-velocity change is

superposed on a large mean velocity such that their prod-

uct is a maximum. Assuming 30 mph as the maxinmm

average wind and 12 mph as the maximum gust, the worst-
case disturbance corresponds to a step change between 24

and 36 mph.

Breakaway friction torque levels were extracted from

acceptance-test data recorded when the overseas antennas
were built in 1972. The range of values shown is consistent

with more recent informal reports of observations at the
Goldstone site.

The differential hydraulic pressures corresponding to

the disturbance torques are included in Table 3. Because

of its linear relationship to torque and its ease of direct

measurement, the differential pressure has become a fa-

miliar unit of torque measurement to those working with
the antenna.

Tile disturbance torque transient responses of the

open-loop, computer-mode, and precision-mode configu-

rations obtained from the time solutions of Eqs. (7) and

(9) with K = K4 and L = L1 are shown in Fig. 5. The

disturbance input corresponds to a 12-mph wind step com-
bined with a 30-mph mean wind. The open-loop case was

obtained from Eq. (7) with zero value of control gain K.

The comparatively rapid recovery of the precision mode
and the finite steady-state error of the computer mode are

clearly visible in the time responses. The slower recov-

ery of the computer mode is attributed to a low-frequency

transfer function zero arising from Eq. (7), which is absent

from the precision-mode case.

Figure 6 shows the computer-mode disturbance torque
transient response for various antenna rates. The re-

sponses were generated from Eq. (7), where the DH/CH

term in the A matrix was adjusted according to Eq. (1) for
each antenna rate. The effect of the changing DH/CH zero

in the transfer function is evident from the change of the
transient shape and of the final value. Figure 6 can also

be used to judge the effects of increased hydraulic leakage

by converting a known volumetric leakage to an equivalent

antenna rate through the hydraulic displacement and gear

ratio. The characteristic corresponding to the sum of the

leakage equivalent rate and actual rate then represents the

system behavior.

Figure 7 shows the computer-mode transient response
for the various values of control gain If listed in Table 2. As

indicated earlier from the general properties of Eqs. (6) and

(7), the gain K is seen to influence the speed of recovery,
but has no effect on the final value.

Figure 8 shows tile computer-mode transient response
for the various values of estimator gain L listed in Table 2.

The effect of those L vectors having finite integral error

correction terms 11 is seen in the faster recovery time, as
well as reduction of the final value. The final value for

those cases is still finite due to the absence of position

integral feedback.

Figure 9 shows the precision-mode transient response

for the various values of control gain K listed in Table 2.

Increasing values of K are seen to decrease the peak error

and speed the recovery transient.

Figure 10 shows the precision-mode transient response
for the various values of estimator gain L listed in Table 2.

As expected, the estimator gain L has little effect on the

compliance transient when the response of the estimator

is faster than that of the control gain.

IX. Summary and Conclusions

The transient disturbance-torque rejection properties

of the 70-m axis servos are shown to be governed by phys-

ical hardware parameters, as well as by the properties of

the software-control algorithm. In particular, the effective

hydraulic damping DH/CH, which is strongly affected by
hydraulic leakage as well as by axis rate, determines the

peak transient error, and in the case of the computer mode

it also produces a finite steady-state error. The peak and
steady-state disturbance-torque errors are essentially un-

affected by the control gain K, but can be reduced by

increased estimator gain L at the expense of noise rejec-
tion.

The precision-control mode, by virtue of the direct

feedback of hardware (as opposed to estimated) position

and integral errors, is shown to have disturbance torque re-

jection properties superior to those of the computer mode.

This deficiency of the computer mode results from the
omission of the position integral error from thc estimator

equations, and can be corrected by modifying the equa-
tions to include the integral. Significant improvement can

also be obtained by modifying the estimator gain parame-

ter L to include a coefficient corresponding to the integral

position estimate.
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Table 1. The 70-m antenna axis servo parameter values

Symbol Parameter Units Value

JMA Inertia moment, azimuth in.-lb-sec 12.0

JME Inertia moment, elevation in.-Ib-sec 8.0

Y H Hydraulic displacement in.3/radlan 1.53

CH Hydraulic compressibility in.a/psi 0.00314

DH Hydraulic damping in.3/psi-sec 0.00188 to 0.0754

QHL Hydraulic leakage in.3/sec 1.67

N Reduction gear ratio dimensionless 28730

F1 Tach network negative pole frequency sec -1 80

P2 Lag network negative pole frequency sec -1 0.24

Z1 Tach network negative zero frequency sec -I 5.0

Z2 Lag network negative zero frequency sec -1 4.4

KR Rate loop gain constant in. 6 5.11

Kv Valve flow constant in.a/mA_sec/psi 0.S 0.731

Pv Valve pressure drop psi 2750

CTA Aerodynamic lift coefficient, azimuth dimensionless 0.1217

CTE Aerodynamic lift coefficient, elevation dimensionless 0.1231

DA Reflector aerodynamic diameter m 70
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Table2.System,controlgain,andestimatorparametera

(a) System matrices

ii 1.0000

0 0

A= 0 0

0

0

0

0

B= 0

16.2643

5.1070

C= [0 1.0000

D=[0]

0

1.0000

0

-23.7194

- 5.1070

:10.0833

-0.2711 [

--0.0851 J

0 0 0]

0 0

0 0

8.3333 0

-27.7072 13.2484
- 8.5117 -0.2400

(b) Control gMns K

Control gain K

K1

/(2

KS

/Q

K5

K8

Numerical value

0.5200

1.3417

0.5712

0
0

0.3162

0.9097

0.1685

0.0162
0.1416

0.4472

1.1113

0.2087

0.0279
0.1716

0,6325

1.3684
0.2642

0.0500

0.2106

0.8944

1.7032

0.3450

0.0916
0.2629

1.2649

2.1515

0.4690

0.1699

0,3339

Control poles from eigenvalue (A - BK)

-12.2372 + 12.5297i

-12.2372 - 12.5297i

-2.5455

-0.4636 + 0.4268i
-0.4636- 0.4268i

-12.8664 + 9.5595i
-12.8664 - 9.5595i

--2.4141

-0.3937 + 0.3861i
-0.3937 - 0.3861i

-12.9520 + 9.4886i
-12.9520 - 9.4886i

-2.4404

-0.4668 + 0.4539i

-0.4668 - 0.4539i

-13.1214 + 9.3446i
-13.1214 - 9.3446i

-2.4911

-0.5509 + 0.52911

-0,5509 - 0.5291i

-13.4526 + 9.0474i
-13.4526 - 9.0474i

-0.6445 + 0.6078i

-0.6445 - 0.6078i
-2.5861

-14.0877 + 8.4129i
-14.0877 - 8.4129i

-0.7426 + 0.6822i
-0.7426 - 0.6822i

-2.7556
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Table 2. System, control gain, and estimator parameters (contd)

(c) Estimator gains

Estimator gain L

L1

L2

L3

L4

Numerical value
Estimator poles from

eigenvalue (A - BI(4 - LC)

0 --12.7800 + 9.6298/

0.4546 --12.7800 -- 9.6298i

0.0033 --2.3859

--0.0020 -0.4559

0.0026 0

0.8638 --12.4988 -{- 9.7652i

3.1261 -- 12.4988 - 9.7652i

4.8336 --4.8845

-7.6308 --1.1912

-9.1392 0

0.8075 - 12.7656 -I- 9.6345i

1.4625 -12.7656 - 9.6345i

1.1140 -1.9392 4- 0.7044i

-0.6472 -1.9392 - 0.7044i

0.5716 0

0.6204 -12.7686 + 9.6345i
0.5545 - 12.7686 - 9.6345i

0.1357 -2.5083

-0.3804 -0.4562

--0.5582 0

Compliance zeros from

eigenvalue (A - BI<:4 - LC)

-13.1060 + 9.3382i

-13.1060 - 9.3382i

-2.1842
-1.4267

-0.4674

--12.6999 + 9.4375i
-12.6999- 9.4375i

-5.0267

-2.5190

-0.0162

-13.0283 + 9.3205i
--13.0283 - 9.3205i

-2.6041 + 1.3095i
-2.6041 - 1.3095i

-0.0333

-13.0829 + 9.3379i
-13.0829 - 9.3379i

-2.0488 + 0.4207i

-2.0488 - 0.4207i

-0.1267

Table 3. Typical disturbance torque levels

Wind moments for 30-mph wind

Breakaway friction torque

Azimuth

2.67 x 106 ft-lbs

729 psi

1.03 - 1.28 x 106

280 - 350 psi

Elevation

2.70 x 10 e ft-lbs

738 psi

0.84 - 1.46 x 10 e ft-lbs

230 - 400 psi
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Fig. 4. Servo position controller block diagram.
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