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VISCOUS SHOCK PROFILES AND PRIMITIVE FORMULATIONS

S. Karni 1

College of Aeronautics

Cranfield Institute of Technology

Cranfield, Bedford MK43, OAL

ENGLAND

ABSTRACT

We consider weak solutions of hyperbolic systems in primitive (non-conservation) form for

which a consistent conservation form exists. We show that for primitive formulations, shock

relations are not uniquely defined by the states to either side of the shock but also depend

on the viscous path connecting the two. Scheme-dependent high order correction terms are

derived that enforce consistent viscous shock profiles. The resulting primitive algorithm is

conservative to the order of the approximation. One dimensional Euler calculations of flows

containing strong shocks dearly show that conservation errors in primitive calculations are

reduced to truncation levels and that both conservative and primitive flow ca/culations are

of comparable quality.
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I. INTRODUCTION

It is common wisdom that consistent shocked solutions can be numerically

captured only if the numerical algorithm meets discrete conservation

requirements. Indeed, conservative numerical calculations satisfyling the

entropy condition converge to the correct physical solutions as the mesh

size tends to zero [4]. Conversely, examples easily show that calculations

which are not conservative converge to completely non-physical solutions.

(eg [5]). Non-conservative or primitive formulations, however, are

strikingly simpler and are less coupled than their conservative

counterparts. As such they may offer advantages, either in computational

efficiency or in accuracy gains. In Fluid Dynamics, the diagonal

characteristic formulation is probably the most prominent example [6].

Other formulations using the entropy function are also favoured by many.

The less common choice of velocity components and pressure, often leads to

accuracy gains near contact surfaces separating materials of different

types [3]. In multi-dimensional setups, this choice also enables the

advection of a uniform passive velocity, completely decoupled from the 1D

Riemann solver in the cross dfrection. In high speed near vacuum

conditions, the internal energy is an important but usually very small

quantity, which due to numerical truncation errors may become negative.

This problem may be resolved by using internal energy as a dependent

variable at the cost of sacrificing conservation. Exaples of primitive

forms arising in Elasticity are discussed by Colombeaux and Le Roux in

[1,2].

Straight forward discretizations of primitive formulations result in both

incorrect shock speed/location and wrong jump across shock transition. We

show, that primitive formulations do not possess unique jump conditions for

steady viscous shock profiles. Jump conditions depend not only on the

limiting left and right states but also on the viscous path that connects

them. This has also been shown in [1,2] using arguments from generalised

functions theory. The secret of correct shock capturing thus lies in

getting the path right. Although physically, there is only one correct

such path, numerically there are many. In fact, as many as there are

conservative numerical schemes. Indeed, while physical shock transition is



governed by physical viscosity mechanisms, numerical shock transition is

governed by numerical viscosity mechanisms, whose precise form depend on

numerical truncation errors. The analysis of Le Roux and Colombeaux in

[1,2] tries to enforce physical microscopic behaviour on the numerical

algorithm. The physical microscopic behaviour is deduced either from a

consistent conservation form or from empirical data. Ignoring numerical

viscosity mechanisms, this analysis is not fully justifiable on the

discrete level. In contrast, the analysis presented in this work is

performed directly on the dicrete level and enforces correct numerical

microscopic behaviour. We follow an idea introduced by Zwas and Roseman

[I0], who looked into the effect of non-linear transformations on weak

solutions of conservation laws. They have considered the particular case

of an original set of conservation laws which transforms into another set

of conservation laws. They have looked at the viscous form of the

equations and showed that unless the viscosity terms are included in the

transformation, the latter set of conservation laws will produce

inconsistent weak solutions. For a conservative system to transform into

another pseudo-conservative system is, however, a very special case. More

commonly, it transforms into a primitive form. Shocks obtained by

primitive calculations depend inherently on getting the underlying viscous

path right. We follow [I0] in the case of general formulations written in

primitive form, for which a consistent underlying conservation form exists.

This is where we believe its great promise rests. We consider hyperbolic

primitive formulations

+ 0w Acwjw =
--[ -- --x

and derive general, scheme dependent, high order correction terms

w '+ A(w)w = AtPf(w,w ,w ,_)
-t - --x -- -x -t

where p is the order of the scheme and k=At/Ax the mesh ratio. Their

inclusion on the RHS of the primitive formulation renders the viscous forms

of the conservative and primitive algorithms equivalent. Though not

strictly conservative, the resulting primitive algorithm is conservative to

the order of the approximation. Correction terms are obtained for the



first order Lax-Friedrichs and upwind schemes without reference to a
particular system. Their specific form is given for the ID Isothermal Euler

equations and the complete ID Euler equations. The effect of the

correction terms is demonstrated on one dimensional Euler calculations of

flows containing strong shocks. It is clearly seen that errors in weak

solutions are reduced to truncation levels, and that both conservative and

primitive flcw _nlculations are of comparable quality.

2. WEAK SOLUTIONS AND VISCOSITY

Consider scalar conservation laws described by the Initial Value Problem

(IVP),

u + f(u) = 0
t x

u(x,O) = _(x)

(I)

Denote by a(u) = df/du the characteristic speed of the equation, then

solutions to (i) can be written implicitly as

u(x,t) = 9(x-a(u)t)

Depending on whether a(_(x)) is an increasing or decreasing function of x,

an initially smooth solution u(x,t) will either remain smooth or develope

discontinuities or shocks. Integral conservation considerations allow the

solution to be extended beyond the time of shock formation. The broader

concept of _eak Solutions is introduced, describing piecewise smooth

solutions separated by curves of discontinuity, across which the solution

satisfies the Rankine-Huganiot jump conditions

f -£
R L

S = (2)
U - U
R L

Here s is the shock speed and ( ) and ( ) denote the states to its
R L

immediate right and left. Weak solutions, however, are not unique. The
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criterion that rules out all but one of the solutions is known as the

Entropy Condition. This condition can be shown [5] to select a unique

solution which is the limit of solutions uc(x,t) of the Viscous problem

u + f(u) = cu
t x xx

as viscosity vanishes c -_ 0. The concept of viscosity, thus lies in the

heart of correct, entropy satisfying, shock representation. While in

smooth parts of the flow, the viscosity term can be neglected on grounds of

order of magnitude, in regions of rapidly varying solutions its neglect

leads to ambiguities. These can only be resolved upon conceptual

re-introduction of the neglected terms.

CONSERVATION FORMS, PRIMITIVE FORMS AND VISCOUS SHOCK PROFILES

The more general viscous form of the equation reads

u + f(u) = c(F(u)u ) (3)
t x x x

for some function F(u). Assume that F(u) is such that stable shock

profiles exists and consider a steady viscous shock profile moving at a

constant speed s, u = u (x-st), satisfying

u > u u , u (4)
X--_ -e0 L X--_ ÷c_ R

u ) 0
x x--) i-co

Substituting (4) into (3) and integrating over xe(-_, _) gives

-s{uR -UL) + (fR -f[) = c [(F(u)u') e- (F(u)u') ]m
(5)

By (4c), the RHS of (5) vanishes, yielding the jump conditions (2).

Provided F(u) is admissible, this result does not depend on its precise

definition although the viscous path connecting uL and uR obviously does.

Let a transformation T be defined by Tdu=dw and assume there exists a g(w)

such that Tdf(u)=dg(w). Then (I) transforms into the conservation law,

4



w + g(w) = 0 (6)
t x

with shock solutions satisfying

gR - gL
S =

R I.

which is inconsistent with (2). Any other admissible non-zero RHS in (6)

of the form _:(G(w)w ) yields the same jump relations. If, however,
x X

equation (3) is transformed together with the viscosity term in (3), then

it reads

w + g(w) = 6T(F(u)u ) (7)
t X X X

= e(TF(u)u ) - 6T F(u)u
X X X X

Substituting a viscous shock profile (4) into (7) now yields

(D

s(w - wL) = (g_ - gL) + I T F(u)u dx (8)
X X

- (]D

and should give correct shock speed provided the viscous profile used in

the integration is consistent with (3).

Note that the transformed equation (6) may not always be written in

conservation form. More generally it reads

w + b(w)w = 0 (9)
t x

for some b(w). Note that b(w) always satisfies the conservation law

b{w) t + _ (b(w)) 2Ix =0 (10)

but this in itself does not make (i0) more correct than (6). That will

depend on whether the assumed underlying viscous form is the correct one.

5



Viscous conservative systems read

u + f(u) = c(F(u)u )
-t - - x - -x ×

where F(u) is now a Viscosity Matrix. Again, not every matrix F(u) yields

stable shock profiles. Under certain assumptions, the identity matrix I is

admissible (see for example [7] and references cited therein).

Primitive formulations of hyperbolic systems depend crucially on the

correct choice of viscous paths. Primitive systems have the form

w + A(w)w =0
--t -- --x

where A(w) is not a Jacobian matrix with respect to w.

primitive form is assumed to be

w + A(w) w = ew
-t -- -x -xx

If the viscous

(Ii)

steady viscous shock profiles satisfy

W
-R

f _(W) dW = S(W_R-WL)
w
-L

(12)

Since A(w) is not a Jacobian with respect to F, the integration is path

dependent and so are both the shock speed s and the jump (w - w ) (see-R -L

Figure (i)). They will only be correct if the integration is along a

consistent path, ie if a consistent RHS is taken in (II). If w varies

linearly across shock transition, then by (12)

x
R

X[{-XL X L

implying that the jump (w -w[) is an eigenvector of a path-dependent

average of A(w), and that the shock speed s is the associated eiqenvalue .



4. NUMERICAL SOLUTIONS, NON-LINEAR TRANSFORMATIONS AND CORRECT SHOCK

REPRESENTATION

Attempting to solve either (i) or (9) numerically immediately raises the

question of consistent viscous integration paths since due to numerical

viscosity, captured shocks always get smeared over a number of grid points..

The precise form of shock transition depends on numerical truncation

errors. Consequently, their relevance to physics is not in their precise

details but in some average interpretation of shock location and in an

asymptotic interpretation of the limiting states to either of its sides.

While there is only one correct physical shock transition, there are many

correct numerical shock transitions. Indeed, let a numerical grid be

n _ u(jAx, nAt).
defined by the partition parameters (_x, At) and let uj

Consider the system of conservation laws,

u + f(u) = 0 (13)
-t X

Then any conservative numerical scheme

n+l n _ hn

_j = Rj - (_+llZ -j-IIz )

that consistently approximates (13) produces shock transitions which are

correct in that average sense. Here h" =
--j+112 _(_j-£÷1 ..... _j+_) iS the

numerical flux function at the j+I/z cell interface, with _ and 4 denoting

the numerical stencil width, and consistency implies

h [l
__+ll2 (u,u ..... u_) = f__(u_)

Other considerations dictate which shock representation is more acceptable.

The role of the viscous path is revealed in a more concrete way by writing

the viscous form associated with a given numerical scheme [I0]. Keeping the

leading order terms in the numerical truncation error this reads

u + f(u) = AtP'F(u,u ,U ,X)
--t -- -- x -- --x --t

7



n+l 1 n Un=- (u_ +u_j 2 j-1 -j+1
- = ( - (14)

--'+I --'-

with the numerical flux function

hn 1 (f,, + fn)
-j+I/Z = 2 -j+1 -j

1 (un -- U )

-j+I -.I

the viscous form reads

u ÷ f(u) At (u / k z- - u ) (!5)
-t - - x 2 -xx -tt

and since (14) is conservative, the resulting viscous path is consistent,

though not unique. Let w be a different set of dependent variables, let T

the Jacobian of the transformation Tu = dw. Premultiplying (13) by T

yields the primitive system,

J

w + A(w)w = O (16)
--t -- --X =

Let (16) be approximated by a 'LxF- type' approximation

n+l 1 n n )_ n

-JW = 2- (_Wj_ 1+ _Wj+I) - _ (A]+1 +Aj_ i) (wj+I-n -JW_i) (17)

Then its viscous form reads

At kzw + A(w)w = _ (w / - w ) (18)
-t - -x 2 -xx -tt

Unless this viscous form is equivalent to (15), or for that matter to the

viscous form of any other first order conservative scheme, it will yield

inconsistent weak solutions. In other words, let

D T(u /_Z - Wtt ) (19)
= -u ) - (w /% z

-xx -tt -xx

then (13) and (16) will converge to the same weak solutions (to order At)

only if D m 0. This requirement will not in general be met. To enforce

correct weak solutions, the ccrrection terms D must be added to the RHS of

the primitive formulation (14), which should read instead,

8



w + A(w)w At
-t --x 2 D (19)

5. EXAMPLES

The ID isothermal Euler equations are given by

[,,I[,.,u+ z+ v.i = 0 (20)
/.,u pu pc )

[ x

Here U and u are density and velocity and c "_= i is the constant sound

speed. A right moving shoch with u = 0 satisfies the jump relations,
R

2 = (pL_pW)Z/pUl. IPR

S = ptUt/(pt-pR)

(21)

Multiplying (20) by the transformation matrix

(I o]T = -u/p I/p

gives a primitive formulation in terms of p and u

[:I[ :I[:I+ i/p (22)
t x

Although equation (23) may be rewritten in pseudo-conservation form

(23)

it does not represent any genuine physical conservation and will give

non-physical weak solutions. Indeed, the jump relations for system (23)

read (compare (21)),

9



z 2 (PL -OR )

u L - pt + pR)/II2(PL/PR )

S -- PLUL/(PL-PR)

(24)

A third formulation, in terms of in(p) and u takes a symmetric form,

t

for which the transformation matrix is

0 (25)

T:f1 o)_ -U/p 1/p

Denote the above systems by system I,II and III. System I is, in this

case, the consistent system. The correction terms for systems II and III

are respectively

0 1
DII = _ PxUx/k z - PtUt

DIII =

"-1/P2 (PxPxAZ - PtPt )l

2 x x/xz J
( p tJ - PtUt )

(26)

That the first component in DII is zero should come as no surprise, since

this is an equation for the conserved quantity p and requires no correction

of order At. For computational convenience, the time derivatives in (26)

may be replaced by spatial derivatives using (22) or (25).

The complete ID Euler equations in conservation form read

+ pu + p =0

uE + up
t x

(27)

Here E is the specific total energy and p the pressure, obtainable from

I0



1
p = (_-I)[E - _ uu2l

using the ideal gas assumption. The primitive form using P,u and p reads

u + 0 u i/p u = 0

P t 0 _p u P x

{28)

is obtained by the transformation

r _

1 0

-u/p i/p

(7-1)u z

• 2 -(_-i)u

0

0

(_-i)

and the correction terms are

D

0

2 x x/12( p U - Ptut)

A 2('l-i)P [u u - u u ]
x x t t

Consider the first order upwind approximation to (13)

n+l n .Ac._ _u = u - X ( (uj u ) + (_c)[ (uj - u )) (29)-j -j ( 1j-1/2 -j-1 ]+1/2 +1 -j

Here, A c = Of/Ou is the Jacobian matrix, (AC) ± denote its positive and

negative parts and (-) indicates locally averaged values. The superscript

c denotes to conservative formulation. The viscous form of the first order

upwind is

+ f(u) At Ac
u-t x = --2 ((I lU_x) x / X - Utt))_ (30)

Let w be a set of primitive variables and let T = Ow/Ou be the Jacobian of
8
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the transformation. The viscous form of the primitive formulation reads

At Ap
w + AP(w)w = _ ((l lw ) / X - w t))--t .... X 2 --X X --t

(31)

The superscript p denotes primitive formulation. Then

The correction terms for the first order upwind are

(32) &

D: { - .'.. -.,
-x x -x x -it -t t

or after rearrangement,

D = ( T (T-l)xlAPlW_x I/X - T (T-1)tw_t (33)

For the ID Euler equations in the particular set [ = (p,u,p), given in (28)

the correction terms are

0

1 ( PxUxCl + (I/cZ) UxPxCz + ((p/c) uZ+x(I/pC)PxPx)c4

_pi, x

x + (I/C)(#-l) r PUx u c 3 UxPxC 4

--2- t X - 2 pU t Ut

- 4 Pt ut) (34)

where
g

c = lu-cl + 21ul +lu+cl
1

c = tu-cl - 21ul +lu+cl
2

c = lu-cl + lu+cl
3

c = iu-cl - lu+cl
4

12



6. NUMERICAL EXPERIMENTS

In all the following Figures, the dashed profiles were obtained by a

conservative calculation, hence consistent solutions. The solid profiles

were obtained by a primitive calculation. Figures (2) and (3) describe

experiments with the ID isothermal Euler equations, given in genuine

conservation form in equation (20) and in two alternative primitive forms

in equations (22) and (25). The conservative form was approximated by the

LxF scheme (14) and the primitive forms by the 'LxF-Type' scheme (17). The

correction terms are given by equation (26), where time derivatives are

replaced by spatial derivatives, nodal values are replaced by centra]

averages and x derivatives by centered differences. Initial data for this

test were (DL,UL) = (0.4,1.0) and (pR,uR) = (0.1,0.0). The data were

chosen to yield distinctively different jump conditions for the first two

systems, given by equations (21) and (24) respectively. As is clear from

the Figures, adding the correction terms to the primitive formulations

reduces the errors to truncation level. It may also be noticed that the

error in Figure (3) is slightly larger than that in Figure (2). This may

be attributed to the fact that the variable In(p) is very sensitive to

small changes in p in the density range over which the test was conducted

and that consequently the respective formulation suffers larger truncation

errors. In Figure (4), the 1D Euler, equations, given in conservation form

by (27) and in primitive form by (28) are approximated by the first order

upwind scheme (29), using Roe's averages [8] for the conservation form and

simple arithmetic averages for the primitive form. The correction terms

are given by equation (34), where again, time derivatives are replaced by

spatial derivatives, local values are centrally averaged and x derivatives

are replaced by centered differences. The solution was found not to be

sensitive to the manner in which the correction terms were approximated.

Figure (4) depicts Sod's shock-tube problem, with initial data (DL, U[,pL) =

(1.0,0.0,1.0) and (p_,uR,p R) = (0.125,0.0,0.1). Again, the correction

terms reduce the errors to truncation level. Inspection of the correction

terms in (34) reveals that all the products that appear in them contain

either u or p or both. Both these derivatives vanish near contact
x M

surfaces, indicating that the correction terms only act away from these

regions. Applying the correction terms cannot thus affect the resolution

13



of contact surfaces. This was exploited in the tests shown in Figures (5)

and (6), where the correction terms (34) are used in conjunction with the

second order upwind scheme and superbee flux limiter [9]. Figure (5)

depicts Sod's shock-tube problem. Figure (6) depicts a more severe

shock-tube test, with initial data (pL,UL,PL) = (1.0,0.0,1.0) and

(p_,ur,pR) = (0.125,0.0,0.1), leading to a shock wave of pressure ratio

4:1. Indeed, the crisp representation of the contact surface is not

damaged in any way by the correction terms while the errors due to shock

formation are again removed. This novel feature is peculiar to choices of

primitive formulations that include u and p, both of which are constant

across contacts. It cannot, in general, be expected of other primitive

forms.

7. CONCLUSIONS

It has been shown that primitive formulations of conservation laws do not

possess uniquely defined weak solutions. Jump relations across shocks were

shown to depend not only on the limiting left and right state& but also on

the viscous path connecting the two. A technique has been described to

enforce consistent weak solutions on primitive formulations. The method is

based on deriving high order correction terms, that render the viscous form

of the conservative and primitive formulations equivalent. The resulting

primitive algorithm is conservative to the order of the approximation. The

explicit form of the correction terms is scheme-dependent. Expressions

were obtained for the first order LxF and upwind schemes. This technique

was implemented to the ID Euler equations in problems containing fairly

strong shocks. It has been demonstrated that applying the correction terms

reduced conservation errors to truncation levels and that conservative and

primitive flow calculations were of comparable quality. This method shows

great promise with other primitive formulations.

14
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Figure (2) - ID Isothermal Euler Equations:

Dashed line by conservation form (20)

Solid Line by primitive form (22)
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Figure (4) ID Euler Equations - Sod's shock tube problem by first order

upwind scheme:

Dashed-line by conservation form (27)

Solid Line by primitive form (28)

(A) Without and (B) with correction terms.
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Figure (6) - 1D Euler Equations - Strong shock tube problem by second order

upwind scheme:

Dashed line by conservation form (27)

Solid Line by primitive form (28)

(A) Without and (B) with correction terms.
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