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ABSTRACT

An unsteady compressible viscous wake flow past a circular cylinder has been successfully
simulated using spectral methods. A new approach in using the Chebyshev collocation method for
periodic problems is introduced. We have further proved that the eigenvalues associated with the
differentiation matrix are purely imaginary, reflecting the periodicity of the problem. It had been
shown that the solution of a model problem has exponential growth in time if “improper” boundary
conditions are used. A characteristic boundary condition, which is based on the characteristics of
the Euler equations of gas dynamics, has been derived for the spectral code. The primary vortex
shedding frequency computed agrees well with the results in the literature for Mach = 0.4, Re = 80.

No secondary frequency is observed in the power spectrum analysis of the pressure data.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract Nos.
NAS1-18107 and NAS1-18605 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1 Introduction

The behavior of the flow past a circular cylinder has been used as the model for fundamental studies
of external (open) flows (figure 1.1 shows the schematic of the flow past a circular cylinder). In
spite of the simplicity of the geometry, it embodies many interesting features of fluid dynamics,
ranging from steady Stokes flow, viscous wake flow to turbulent flow [1]. Morkovin [2] described
the behavior of flow past a circular cylinder as the “kaleidoscope of challenging fluid phenomena”.

Over the years, the unsteady viscous compressible wake flow past a circular cylinder has been
extensively investigated both theoretically and experimentally by many researchers. Theodore
von Karman [3] showed that the formation of the inviscid Karman vortex trail at low Reynolds
number (see section 2 for definition) behind a bluff body moving downstream with the flow is
linearly stable. The primary vortex shedding frequency is well established both ekperimenta.lly
and numerically over a wide range of Reynolds numbers [4]. If the frequency is nondimensionalized
by the free-stream velocity and the diameter of the cylinder, it is called the Strouhal number St
in the literature. For example, the Strouhal number of primary vortex shedding frequency St; at
Reynolds number Re=80 is about 0.156.

A recent paper by Sreenivasan [5] reported experiments indicating that the primary shedding
frequency is modulated by a lower secondary frequency, which is not a sub-harmonic to the shedding
frequency (see figure 1.2). He suggested that this lower frequency played a major role in the
period doubling route to chaos. Moreover, he also observed a discontinuity of the vortex shedding
frequency versus Reynolds number (windows of chaos), which was observed earlier by Tritton (6, 7],
Berger and Wille 8] and Friehe [9]. Sirovich [10] suggested some possible mechanisms to justify the
existence of the secondary frequency. He pointed out that the perturbation and interaction among
the vortex pairs can create a secondary frequency. However, Sreenivasan’s finding was disputed by
Van Atta and Gharib [11], who attributed it to aeroelastic coupling of the flow with the cylinder’s
vibrating modes.

In light of all these contradictory arguments of the secondary frequency among experimental-
ists, numerical simulations seem to offer an alternative means of gaining some insight into this
controversy. The numerical simulation of unsteady compressible wake flow past a circular cylin-
der by Townsend, Rudy and Sirovich [12] using a second—order finite-difference scheme seems to
confirm the existence of this controversial secondary frequency. The time trace of the pressure
and the power spectrum analysis (figure 1.3) clearly shows that the primary shedding frequency
was modulated by a lower secondary frequency. The numerical value of the secondary frequency
computed, however, is domain size dependent. Karniadakis and Triantafyllou [13] simulated the
incompressible flow past a cylinder using the spectral-element technique. No secondary frequency

was observed in their simulation. A secondary mode was excited by introducing the forcing term



into the momentum equation.

In this paper we report the results of a collocation (pseudospectral) simulation of the compress-
ible viscous Navier-Stokes equations. Our results demonstrate clearly that the secondary frequency
does not exist. However, we had difficulties in imposing outflow boundary conditions in a stable
way. In particular the boundary conditions used in [12] yield instabilities in the spectral code.
The only set of boundary conditions that stabilized the code will be described in detail and model
problems will be analyzed.

When these boundary conditions were implemented in the finite-difference code as well the
secondary frequency disappeared. The secondary frequency found in the finite-difference code
had been a purely numerical phenomenon. Moreover, Sreenivasan reported that changing the
aspect ratio of his wind tunnel, in effect pushing the outer boundaries further away, eliminated the
secondary frequency in the experiment.

This research illustrates an important feature of spectral methods. In contrast to the low
order (and more robust) finite—difference schemes, spectral methods are less tolerant to incorrect
implementation of boundary conditions. Thus the same boundary conditions that produced stable
but erroneous results in the finite-difference code were not tolerated in the spectral code. Results
with spectral codes are harder to achieve but they are reliable!

This paper is structured as follows: Section 2 describes the governing equations. In section 3
we describe the spectral code based on Chebyshev and Fourier collocation methods. In this section
we describe also the filtering used and several options of grid generation. Also in this section we
present a proof that the éigenvalues of the Chebyshev method applied to a periodic problem are
purely imaginary. Section 4 discusses the boundary conditions, this section is really the heart of

,,t,hi,s paper. In section § we present the numerical results. The conclusion is presented in section 6.

2 Navier-Stokes Equations

The governing equations are the two-dimensional compressible viscous Navier-Stokes equations in
strong conservation form [14]. They describe the laws of conservation of mass, momentum and
energy in the absence of external forces. This set of equations in the Cartesian coordinates (z, ¥)
is transformed into the general curvilinear coordinates (¢ ,717) with the transformation Jacobian

J = €zny — €Mz The nondimensional form of these equations is
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coupled with the nondimensional equation of state and the internal energy, respectively,
1
P=(nw-1)pT, E=p [T+§(u2+'v2)] .

The elements of the stress tensor are
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The viscosity is related to the temperature by the Sutherland viscosity law
G T%
T+ T

(2.2)

where ¢, and ¢, are constants. The ratio of specific heats 7 is 1.4 and the Prandtl number Pr is

0.72. ¢, is the specific heat at constant volume and x is the coefficient of thermal conductivity.

The free-stream Reynolds number Re = PooUocD/lieo of the flow is based on the diameter of

the cylinder D, free-stream velocity Uco, free-stream density poo and dynamic viscosity feo-
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parameter Re in the Navier-Stokes equations (2.1) is the reference Reynolds number computed
by the reference quantities Uref = Uy Pref = Poos Tref = UL /c, . We shall refer to the
free-stream Reynolds number as Re unless clarification is deemed necessary.

The Navier-Stokes equations (2.1) and their necessary supplementary relations such as the
Sutherland viscosity law (2.2) are characterized by four parameters [14]. These parameters are the
free-stream mach number M, free-stream Reynolds number Re, diameter of the cylinder D, and

dimensional temperature Tp.

3 The Numerical Method

The 2-D Navier-Stokes equations are solved numerically in polar coordinates with angular (6)
and radial (r) coordinates. Instead of using mapping techniques, such as exponential or algebraic
transformations [16, pages 71-75], to map the infinite physical domain into a finite size, the physical
domain is simply truncated at some fixed distance away from the cylinder center (see figure 3.1).
Typically the outer computational boundary is located about 23 cylinder diameters away from the
center of the cylinder. B 7

An O-type grid conﬁgufation with branch cut in the center of the wake behind the cylinder is

mapped into the computational domain with coordinates £ = £(4) and 5 = n(r), i.e.,

z=r(n)cos 8(¢), y=r(n)sinf(¢). -

The cylinder wall bounda.ry, the outer computational boundary and the periodic—cut boundary
are mapped into the four boundaries of the computational domain. This choice of grid structure
offers two major numerical advantages. First, the implementation of the boundary conditions is
simplified. Secondly, this choice of coordinate system is particularly suited for the employment of
the Fourier collocation method in the angular periodic direction and the Chebyshev collocation
method in the radial non-periodic direction. They are employed in the form of matrix vector
multiplication method instead of the commonly uéed Fast Fourier Transform method. The reader
is referred to [15, 16, 17] et al. for a detailed discussion of these methods.

In some of the numerical experiments, we employed a commonly used exponential filter

1 0 [k <k
e PEISN U D @)

where k. is the cut-off frequency, to improve the stability of the spectral scheme. The parameter
o is chosen in such a way that it drives oy to machine zero ¢, i.e., a = —In¢. The parameter -y
(7 =4 or 6 in this research) determines the order of the filter. The filter is incorporated into the
solution and differentiation matrices for both the Fourier and Chebyshev collocation methods.

In this application, the important physical phenomena are confined to the viscous wake behind

the cylinder and the boundary layer on the cylinder surface. In order to improve the resolution
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within these regions without resorting to allocating additional grid points, the grid transforma-
tion technique is used for grid point redistribution. Since we found that Chebyshev collocation
points provide sufficient resolution within the boundary layer, no additional mapping technique is
employed in the radial direction.

The angular grid transformation [18] used is expressed in the complex form

-7 _ g3
= 1-0 et(€—v) (3'2)

16

where § is a parameter controlling the amount of clustering of grid points at location 7 € [0, 27],
and |B]| < 1.

The advantages of this grid transformation are summarized as follows :

1. 8(¢) and all of its derivatives are analytic and periodic. Hence, the periodic boundary condi-

tions are satisfied and spectral accuracy is retained for spectral methods.
2. 0(¢) preserves the periodicity of the Navier-Stokes equations in the angular direction.

3. Analytical transformation derivatives are readily available without resort to numerical ap-

proximation, which is usually done in grid generation techniques.

In this numerical simulation of flow past a circular cylinder, § = —0.4 with v = 0 provides
a satisfactory resolution within various flow regions in the angular direction. At least half of the
grid points used are clustered within the wake region. The other half are distributed around the
remaining regions with gradually reduced resolution toward the front of the cylinder (see figure
3.1).

A seemingly attractive alternative to using the Fourier collocation method with mapping is
to use the Chebyshev collocation method. As noted before the Chebyshev collocation points are
unevenly distributed and cluster at both end points with spacing proportional to 1/N2. In our case
the two end points coalesce to 8 = 0 and this is exactly the region where we need more resolution.

Here we would like to further investigate some aspects of the application of Chebyshev methods
for periodic problems. There is more than one way of implementing the above idea. We will discuss
one method used for discretization of the first derivative operator and show that it leads to a
differentiation matrix with purely imaginary eigenvalues, reflecting the periodicity of the problem.

Consider the model problem

U = Ug (3.32)
u(-1,t) = u(l,t) (3.3b)
u(z,0) = f(z). (3.3¢c)

The simplest way to apply the Chebyshev collocation (pseudospectral) method to the model
problem is to satisfy the equation (3.3a) at the points {z; = cos (xj/N), 7=1,...,N -1}

5



and to impose the periodicity condition (3.3b). Since the numerical approximation uy(z,t) is a

polynomial of degree N, we need another condition, usually taken to be

‘9“”( L) = 2(1,1). (3.4)
To summarize u, satisfies
%‘t‘i Oun S + (Ao + B)Th (3.52)

un(~1,t) ; un(1,1) )
3.5
Eun(-1,t) = Zun(1,t). (3:80)

For even N, Ty is an even function and T} is odd, therefore, B = 0 in (3.5a).

We are ready now to state

Theorem 1 The eigenvalues of the periodic Chebyshev approzimation to the first derivative matriz

are purely imaginary.

Proof : Let ¢ (z, s) be an eigenfunction of the first derivative periodic operator and s an eigenvalue
then

% = sp-zT (3.6a)
e(-1,8) = ¢(1,s). (3.6b)

Since ¢ (z,s) is a polynomial of degree N in z, it can be written explicitly as

z T \(*) S
p(z,s) = Z( ::4_2 . (3.7)

” We denote by
1
(v) = ve(1,).
Thus

b(v) = f:(zT:;)‘*’(l) v

Z (2 T )(zk)(l) vk 4oy E (= Ty, )(2""'1)(1) 2k
k=0 k=0

and ﬁna.]ly upon setting u = 2, we get

Y(v)=h(p)+vg(n) (3.8)
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where

(k) = 3 (2T (1) b
k=0

00

> (@ Ta) (1) ut

k=0 .

h(n)

It had been shown that the roots of ¢ (v ) have all negative real part, this being a consequence
of the stability of the non-periodic Chebyshev method. By the theory of Hurwitz polynomials the
roots of g () and h(u) are real and negative.

Substituting (3.7) into (3.6b) we get that the eigenvalues s of the first derivative periodic
Chebyshev polynomials satisfy

$ TP :k(zT:v)""(-l) _o (39)

k=0
Now since z T/, is an even polynomial only the even powers of s remain in (3.9). Denoting u = s~32
(3.9) can be rewritten as A () = 0. The roots u are real and negative, therefore the eigenvalues

s are purely imaginary. This concludes the proof. Q.E.D.

A very surprising result follows from a closer look at h(p) = 0. This equation is the same
as the characteristic equation for the Chebyshev second derivative matrix with Dirichlet boundary
conditions. Thus the eigenvalues of the first derivative periodic Chebyshev are the square roots of
those of the gsecond derivative matrix with Dirichlet boundary conditions.

We plan, in the future, to further investigate the use of the periodic Chebyshev method for the
azimuthal direction. In this research we used standard Chebyshev in the radial direction and the

mapped Fourier method in the azimuthal direction.

4 Boundary Conditions

In this section, we examine the procedures of imposing various boundary conditions on the outer
computational boundary and the cylinder surface. Due to the geometry of this application, the
Fourier collocation method enforces the periodicity of all variables automatically in the angular
direction. The only challenge is to find a stable procedure in providing boundary conditions at the
cylinder surface and the outer computational boundary in the radial direction.

Since, in the present research, the viscous regions are concentrated within the thin boundary
layer on the cylinder surface and the narrow near wake behind the cylinder, it is quite reasonable
to assume that the flow is basically inviscid at the outer boundary if it is located sufficiently far
away from the cylinder. At the cylinder surface, however, viscous flow boundary conditions are
used. Also for the present research, the flow is subsonic everywhere. Thus the boundary conditions

can be taken from the analysis of hyperbolic equations.
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It is well known that great care should be exercised in the application of boundary conditions
when spectral methods are used for numerically solving hyperbolic systems of equations. We wish
to review here the theory of Chebyshev collocation methods applied to hyperbolic systems. Rather
than quote the theorems we wish to illustrate the theory by examples.

Example 1 : Consider the system of equations

U = Uz T Vg

w = — Uy (4.1)
with the boundary conditions

u(£1,t) =0 (4.2)

The straightforward application of the Chebyshev method can be summarized in three steps :

A) Given wu(z;t),v(z;,t); «;=cos(nj/N) j=0,...,N form §%(z;,t)and §&(z;,t).
B ) Use a time marching technique to get u(z;,t + At) and v(z;,t + At) again for j =0,...,N .
C ) Change u(z,,t + At) and u(zy,t + At) to satisfy the boundary conditions (4.2).

Thus the values of v at the boundaries are taken from step B.
We wish to demonstrate that the procedure outlined above is unstable. Consider the eigenvalue
associated with (4.1) :

st = 1+ 9+ (Az + B)Ty (4.3a)
b = g (4.3b)
a(+l,s) = 0 (4.3¢c)

where 4 and ¥ are Nth degree polynomials in z. Equation (4.3a,b,c) reflects the fact that the
boundary conditions are imposed on the variable u only.

Close inspection of (4.3b) reveals that ¥ = 0. The reason is that the left hand side of (4.3b) is
a polynomial of degree N whereas the right hand side is a polynomial of degree N — 1. Thus we

are left with the equation

st = A+ ¥+ (Az + B)T}, (4.4a)
a(£l,8) = 0 (4.4b)

A polynomxa.l solutxon of (4.4a) can be expressed in the form

X :z:T' T (k)
W(z,s) = Z k+1 Z( k-?-l

h Wn

w0

4
|
e Y N R AT [l md



Equation (4.4b) reads now

© (o # (k) oo 7 \(k)
AZ:-(-%Q+ BE%@ =0 (4.52)

%o (0! \(F) 7 y(k)
a3 CRE N p PO <o (450)

Upon adding and subtracting (4.5a) and (4.5b) and making use of the fact that = T} is even
and T}, is odd, one gets

A Z (z T;J)(zk)(l) J3) L B Z (T;J)(zkﬁ)(l) J3k+1)  — g

k 0 k=0
A (2 T2 p(38+1) 4 B (L)1) p® =0 (4.6)
k=0 k=0

where v = 1/s.
We denote by

a(¥?) = i(zT:v)""“’a)v(’k), () = 3 (2 THP (1) v,
k=0 k=0

n(7) = SSENETIQME | k()= D@ @)
k=0 k=0

So that (4.6) can be written as
A h(P)+Brvg(v?) = 0
Avg(v3)+ B h(v?) = 0 (4.8)
Thus the eigenvalues are determined by the characteristic equation
ha(P ) ha(#) = P (1) ga(v?) = 0 (49)

Equation (4.9) is expressed in term of v? = . Thus the only possibility for eigenvalues s without
positive real part is that the polynomial

hi(p)ha(p) — pa(p)ga(n) =0 (4.10)

has real negative roots.
Equation (4.10) is a special case of equation (4.10) in [19] with @ = f = = 6. The solution in
these cases must have positive real part since it approximates a solution of the form ef~®. Thus v

must have positive real part. This conclude the proof.

Example 2 : Consider again equation (4.1)-(4.2). Define
w(z,t) = 2u(z,t) + v(z, ) (4.11)

9



then it is clear that

Su _ v
8t = Oz
dv v
E = —a—z' (412)

with the boundary conditions

w(l,t) = v(1,1)
w(-1,8) = v(-1,1) (4.13)
The problem (4.12:)—(4.13) is identical with (4.1);(4.2). However the application of the Cheby-

shev collocation method is different than the one outlined before. Basically the first two steps of
the algorithm described above remain unchanged.

In the third step we change not only u(z,t) but also v(z,t) by using equations (4.11)- -(4.12)
in the following way :

At z = ~1 one has to specify v(—1,t) and to use w(—1,t) as computed from steps A) and B).
Thus, denoting by wc(—1,t + At) the value of 2u(~1,t + At) + v(-1,t + At) we have the system
2u(-1,t + At) + v(~1,¢ + At) = w(-1, + At) = we(-1,t + At)

u(-1,t + At)

0 (4.14)

Equation (4.14) is a system of equations used to update u(—1,¢4 At) and v(—1,t + At). A similar
procedure is carried out at the point z =1, - - =

The procedure outlined in (4.14) cast the numerical procedure in the form discussed in [20].
Of course the best procedure is to specify w(1,t) and v(—1,¢) and to use we(—1,t) and ve(1,1).

This procedure will be used in the current paper and referred to as the characteristic boundary
conditions.

4.1 Characteristic Boundary Conditions

In this section, we will give the general procedure of howfounpase the clié.racter'iréfirgrlr)buh&é,ry
conditions at the outer computational boundary followed by the specific implementation for the
numerical experiment.

General Procedure

Consider ghejsy;éiem of one-dimensional nonlinear hyperbolic partial differential equations with N
dependent variables in the conservation form '

%_.? + F(W) = 0 (4.1.1)

10
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and the Jacobian of F is defined as A(W) = Fyp .

The procedure consists of three main steps : linearization, characteristic decomposition and
characteristic treatment.
Linearization :

Equation (4.1.1) is linearized around some uniform state ), i.e.,

av'v’ + AT, o)aW

0 (4.1.2)

where the linearized Jacobian A(E’o) is a constant N x N matrix.

Characteristic decomposition :
The system (4.1.2), which is a hyperbolic system with constant coefficients, is diagonalized into
the characteristic form, i.e.,

OR; OR;

W"'A.E' 20, 1= 1,2,...,N (413)

where )\; are eigenvalues and R; = R; (W , W,) are characteristic variables (eigenfunctions).
The sign of each eigenvalue J; is then examined at each outer computational boundary point.

Suppose that

{,\;>o i=1,...,k (4.14)

MN<0 i=k+1,...,N '
then k quantities must be specified and N — k quantities should be obtained numerically at that

boundary point.

Characteristic treatment :

Let W,, denote the numerical value at the outer computational boundary. Spectral methods
update every grid point in the domain, including all of the boundary points, at each time step.
No additional extrapolation procedure is needed for the boundary values. Furthermore, we denote
W, to be the known value of the far—field conditions, for example the free-stream conditions at
infinity.

According to the linear theory, the characteristic quantities R; ( w , Wy ),i=1,...,kshould be
specified and the functions R, ( W, @, ),i =k +1,...,N should be obtained from the numerical

scheme. Thus
Ri(W, W) = Ri(TBu, D), i=L...,k
R(W, %) = Ri(Ww, @), i=k+1,...,N. (4.1.5)

This process results in a linear system of N equations with N unknowuns. Once solved, this
system of equations yields W at each boundary point. We will henceforth denote this procedure

as characteristic boundary conditions.

11



Characteristic Boundary Conditions for the 2-D Euler Equations of Gas Dynamics

Following the general procedure outlined in the previous section, we will derive the characteristic
boundary conditions for the 2-D Euler equations of gas dynamics.

Let us denote

T = (oo ,¥00) = (1,0) to be the free-stream velocity,

M = (mu ,my) = (pu,pv) to be the mass flux,

c = 1O -1Tx to be the local free-stream sound speed,
5n o1
¥ o= (#3)

= (Mz.my) /2 + 7k to be the unit radial normal vector,
and (p, my, my, E) to be conserved mass, momentums and internal energy. The subscript oo

denotes free—stream values.

Linearization :

Consider the 2-D Navier-Stokes equations (2.1),

o

ot

LOF 8G 1 (aF., ac‘:,,)

F " n “Re\ B¢ T an
where W = (0, Mu, My, E)*.

Far away from the boundary layer on the cylinder surface, the flow is dominated by the con-
vective term and viscosity exerts only a minor effect except inside the narrow wake. Hence, by
assuming v is small or Re is large, (2.1) becomes the 2-D nonlinear Euler equations in strong
conservation form. The nonlinear Euler equations can then be linearized with the free-stream
conditions Wy, = (poo , M, Ey), ie.,
oW ow . oW

o T A=y T Bogy =0 o (4.1.6)

where Ao, and B, are constant Jacobian matrices in the radial and angular directions respectively.
Since we are only interested in deriving the boundary conditions in the radial direction, we can
drop the angular dependent term Booa%w from consideration.

Characteristic decomposition :

It is a matter of algebra to find the eigenvalues ); and their corresponding characteristic vari-
ables R; of A,. They are

A1=A2=7°°-1—V", A3=ﬁw'ﬁ—c, A4=ﬁw-ﬁ+c, (417)
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and
2

y-1

(1T T 7 T4 2)

Ry = P

R, = (mu—puoo)-g—Z—(m.,—pvw)% (4.1.8)
Ry = - (i -pT) T+ (152 (36T Voo - - Tor + )
Re = (B-pT) Tt (152) (36T V- H- T 4 E)

Characteristic boundary conditions :

The values of all conservative variables are assumed to be known at the outer computational
boundary.

At the subsonic inflow region, i.e., ﬁw .N < 0and ﬁw N < ¢, one gets

<0, 1=1,2,3 Ay >0
from (4.1.7). Accordingly,

Ri(PaH)E) = Edg.Ri(Poo)Moo;Eoo): i=1,2,3
R4(P;H’E) = F4"1_:fR4(Puu;Hrm:Ema) (4-1-9)

should be used at each inflow boundary point.
At the subsonic outflow region, i.e., 700 .V > 0and Tf’w N < ¢, one gets

A>0, i=1,24 ;  A<O0

from (4.1.7) instead. Accordingly,

Ri(P;M»E) FidéfR{(Pnu:ﬂnu1Enu)s i=1)2:4
Rs(p, M, E) = F Y Ry(poos Moo, Eco) (4.1.10)
should be used at each outflow boundary point.

Remark : Since the grid structure can be constructed in such a way that N # (0, 1) at any outer

boundary point, the case of -l7°° . N = 0 will never arise in this application.

More specifically, equations (4.1.8), (4.1.9) and (4.1.10) together yield

B pig (3pUe Ve -H-Tu+E)

v
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— —

0 0
Fy = (my—puw) -a—z = (My — pV) a—;’ (4.1.11)

= pT) 4 (152) (3T T 7 T 5)

F3

Foo = (M-pTn)- N+ (77-1) (g,,m,.v; _H.mw) .

It is easy to check that if

[ (F3 + F4)

1.
hr=5(F-F), b=F ,
then the solution of (4.1.11) is

-1
p = LE(Rite)
My = (¢17z +837) + Pt (4.1.12)
my = (%ﬁ;_ ¢3ﬁ;) + PV
1
E = ¢ - Epﬁoo'?eo + MyUoo + My -
The primitive variables ( p, d, v, T' ) can then be extracted from (4.1.12) at each outer computational
boundary point.
4.2 Cylinder Surface Boundary Conditions

At the cylinder surface, the no—slip and constant temperature boundary conditions are enforced,
ie.,

U

v=0, T=Tw, p=pu, (4.2.1)

where p.,, is the density computed numerically by the spectral code.

5 Numerical Results and Discussion

The spectral code is fully vectorized to take advantage of the vector pipeline hardware architecture
of the Cyber 205 supercomputer at the NASA Langley Research Center. Based on the free—stream
flow conditions (Us = 186.0m/sec, Too = 538.3 K, P = 30.61Pa) and the cylinder diameter
D = 61.0mm, all the computations are made at free-stream Mach number, Mach = 0.4, and
free-stream Reynolds number, Re = 80.

To advance the flow field in time, the second—order Runge-Kunta method is employed. The
initial flow is started impulsively (uniform free-stream conditions throughout the whole domain
except the no-slip and constant temperature boundary conditions at the cylinder surface). After

the transient effect of the initial conditions has diminished from the flow-field, the numerical
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scheme is integrated over 20,000 or more time steps providing enough cycles of vortex shedding for
analysis. The time trace of the pressure signal at several locations is recorded and stored for later
power density spectrum analysis using the Discrete Fast Fourier Transform (DFFT) technique.
The chosen point for which the signal was analyzed is located at approximately 1D above the wake
centerline and 10D behind the cylinder within the wake (X..). We also recorded the pressure
signal at location 10D away from the cylinder center and 180 degrees around the cylinder in the
inflow region (X;,). In order to be able to compare the numerical results with the experimental
results, the signal point X,, is located approximately at the position of the hot wire probe in some
experiments of Sreenivasan.

Each set of time series contains the nondimensionalized pressure P(t)/Po, at each time step.
Since we are only interested in the perturbation signal superimposed on the uniform flow, the
average of P(t)/ P is first subtracted from each data set. The resulting time series P(t) is analyzed
in the frequency domain in order to identify individual dominant frequencies. This is usually
accomplished by the power density spectrum analysis. A discrete time series P(t,) of length T is
transformed into the frequency space by the Discrete Fast Fourier Transform technique.

If f, k and At denote the frequency, the wave number and the time increment respectively,
then

k=N
P(tn)= ), Pk 4
k=-N
where T = NAt, t, = nAt and k = fT.

For each wave number k, the complex coefficient a, is multiplied by its conjugate a,, i.e.
b, = axd,. {bs, k=0,...,N}is called the power spectrum, which measures the energy of each
wave number (frequency). Normally, the power of each wave number is plotted using a logarithmic
scale of base 10. Those dominant frequency components will show up as sharp peaks in the plotted
power spectrum. Since the DFFT of the pressure signal requires a uniform time increment ‘At, it
is fixed at 0.00434201 after the flow is settled in a regular pattern of alternate vortex shedding.

Spectral Scheme with characteristic boundary conditions — SP1

The resolution of the spectral code, which used 64 x 48 grid points in the angular and radial
directions respectively, is comparable to, if not better than, the resolution of the full finite~difference
code [12], which used 120x 151 gird points. The spectral scheme becomes unstable when the number
of grid points used is reduced in either directions. It appears that 64 x 48 is a lower limit of the
number of grid points required to achieve the resolution. This conforms to the typical exponential
convergence behavior of spectral methods. This should come as no surprise because the spectral
code is developed within the theoretical scope of spectral methods. Furthermore, since a lesser

number of grid points is employed in the spectral scheme, the larger spacing also allows a larger
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time step to be taken in the numerical simulation. Typically, the time step of the spectral code is
about 10 times larger than the full finite—difference method.

Figures 5.1a-b show contour plots of density p/po and temperature T/To, respectively. The
vortices pass through the outer computational boundary without any apparent reflection back
into the interior domain. Furthermore, no observable spurious perturbation travels back into the
interior domain either. The Karman vortex street is clearly demonstrated in the contour plots.

The pressure time series and its power spectrum at X,, and X;, are shown in figures 5.2a-b
respectively. As indicated in all the power density spectra, no secondary frequency can be observed
both within the wake and in front of the cylinder at the inflow region. The frequencies that appear
in the power spectrum are the primary vortex shedding frequency St; = 0.1574 and its harmonics

only.

Spectral Scheme with non-characteristic boundary conditions — SP2

To show the sensitivity of the boundary conditions for spectral methods, we replace the character-
istic boundary conditions by the non-characteristic one used in [12]. 'The initial flow is restarted
from the flow-field data of the previous run SP1. The simulation becomes explosively unstable

after only 71 time steps.

— Domain | Number of | Total

Scheme || size (D) | time steps time Sty Sty

SP1 46 D 20480 88.92 0.1574 | none

SP2 46 D 71 unstable

[SPL_ [ 41D | 19456 | 70.26 | 0.1565 | none |

Table 1: Results of the spectral simulation of unsteady compressible flow past a circular cylinder
with Ng = 64, Ny = 48, Mach = 0.4, Re = 80.

6 Conclusion

An unsteady compressible viscous wake flow past a circular cylinder has been successfully simulated
using the Fourier and Chebyshev collocation methods. A new approach in using the Chebyshev
collocation method for periodic problems is introduced. We have further proved that the eigenvalues
associated with the differentiation matrix are purely imaginary, reflecting the periodicity of the
problem. It had been shown that the solution of a model problem has exponential growth in
time if “improper” boundary conditions procedure is used. Hence, we derived the characteristic
boundary conditions, which is based on the characteristics of the Euler equations of gas dynamics,
for the spectral simulation. The primary vortex shedding frequency agrees well with the results in

the literature for Mach number 0.4 and Reynolds number 80. No secondary frequency is observed
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in the power spectrum analysis of the pressure data that is generated by the spectral code with

the characteristic boundary conditions.
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Figure 1.1: Schematic of flow past a circular cylinder of diameter D. The location of the hot wire
measurement in Sreenivasan’s experiments is marked as * .
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Figure 1.2: The power density spectrum of velocity u at Re=120, /D =8 as reported by Sreeni-
vasan [ 5 ]. The inset shows a typical hot wire aerometer oscillograph. The power is plotted on a
logarithmic scale of base 10.
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Figure 1.3: The pressure time series and the power density spectrum of the full finite-difference
scheme [ 12 ].
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Figure 3.1: The grid structure of flow past a circular cylinder in Cartesian coordinates (z, y).
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Figure 5.1b: Temperature contour plot of the spectral scheme SP1 at Time = 803.255.
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Figure 5.2a: Pressure time series and power density spectrum of the spectral scheme SP1 at the
point located 10D behind the cylinder and 1D above the wake centerline.
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Figure 5.2b: Pressure time series and power density spectrum of the spectral scheme SP1 at the
point located 10D away from the cylinder center and 180 degrees around the cylinder in the inflow
region.
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