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_r Abstract

An assumed-stress hybrid/mixed 4-node quadrilateral shell element is introduced that al-

leviates most of the deficiencies associated with such elements. The formulation of the

element is based on the assumed-stress hybrid/mixed method using the Hellinger-Reissner

variational principle. The membrane part of the element has 12 degrees of freedom in-

cluding rotational or "drilling" degrees of freedom at the nodes. The bending part of

the element also has 12 degrees of freedom. The bending part of the element uses the

Reissner-Mindlin plate theory which takes into account the transverse shear contributions.

The element formulation is derived from an 8-node isoparametric element. This process

is accomplished by assuming quadratic variations for both in-plane and out-of-plane dis-

placement fields and linear variations for both in-plane and out-of-plane rotation fields

along the edges of the element. In addition, the degrees of freedom at midside nodes are

approximated in terms of the degrees of freedom at corner nodes. During this process the

rotational degrees of freedom at the corner nodes enter into the formulation of the element.

The stress field is expressed in the element natural-coordinate system such that the element

remains invariant with respect to node numbering. The membrane part of the element is

based on a 9-parameter stress field, while the bending part of the element is based on a

13-parameter stress field. The element passes the patch test, is nearly insensitive to mesh

distortion, does not "lock", possesses the desirable invariance properties, has no spurious

modes, and for the majority of test cases used in this paper produces more accurate results

than the other elements employed herein for comparison.

Introduction

The finite element method is a powerful technique that is used to solve a variety of very

complicated problems in different fields of engineering and science. In the field of struc-

tural mechanics, the finite element method is the most widely used method for obtaining

solutions to structural analysis problems. The finite element modeling of general aerospace

shell structures usually requires the use of distorted meshes. Additional complexities arise

if the original finite element discretization is further refined through an adaptive refinement

procedures. Most of the 4-node shell elements developed in the past do not produce reliable

results for distorted meshes. The element developers are usually aware of the limitations

and pitfalls of the elements. The users, on the other hand, may not be aware of all these
limitations and make invalid uses of the these elements. It is desirable to develop simple

3-node and 4-node shell elements that are free from these limitations and pitfalls, such as

spurious zero-energy modes, locking, sensitivity to mesh distortion, invariant properties,



and most importantly produceaccurateand reliable results. The elementsthat have been

developed to date lack one or more of these characteristics. The standard 3-node and

4-node isoparametric elements are generally too stiff for most practical problems, and a

"blizzard" of these elements must be used to model even simple shell structures in order

to obtain accurate and reliable results. In order to remedy the situation, researchers have

developed many non-standard elements which have their own merits and shortcomings.

Some of these elements do not pass the patch test--a requirement for convergence to the

correct solution. Some other elements have spurious mechanisms (zero-energy deforma-

tional modes) such as the hour-glass mode, while some others do not possess the desirable

invariance properties with respect to node numbering. Furthermore, most elements are

sensitive to geometry or mesh distortion.

One way to remedy the deficiencies of the membrane elements is to include the nodal ro-

tational or "drilling" degrees of freedom in the element formulation. In early attempts,

these rotational degrees of freedom were used in cubic displacement functions. However,

Irons and Ahmad demonstrated that this concept had serious deficiencies[l]. The elements

formed in such a manner force the shearing strain to be zero at the nodes and do not pass

the patch test, which could produce serious error in some structural analysis problems.

Recently several researchers have used these rotational degrees of freedom in quadratic

displacement functions with more success[2-5]. This latter method is constructed in the

following way. First, the element is internally assumed to be an 8-node (4 corner nodes

and 4 mldside nodes) isoparametric element with 16 degrees of freedom and the stiffness

matrix associated with this "internal" element is calculated. Then, this stiffness matrix is

condensed to that of a 4-node element with 12 degrees of freedom by associating the dis-

placement degrees of freedom at the mldside nodes with the displacement and rotational

degrees of freedom at the corner nodes. MacNeal[4] has used this approach to develop

4-node displacement-based membrane elements with selective reduced-order integration.

Yunus et al.[5] have also used this method to develop assumed-stress hybrid/mixed mem-
brane elements.

In this paper, this method is extended to the plate problem as well as the membrane

problem to develop a 4-node assumed-stress hybrid/mixed quadrilateral shell element with

24 degrees of freedom. The formulation is based on the Hellinger-Reissner variational

principle. The =element formulation is derived from an S-node isoparametric shell element

with 40 degrees of freedom by eliminating the degrees of freedomatltia_ mldside _nodes

at the expense of adding the rotational degrees of fregd0m to the corner nodes. This

process is acc0mplished by assuming quadrati-cvar]ations for both in-piane and out-of-

plane boundary displacements and linear variations for both in-plane and out-of-plane

boundary rotations along the edges of the element and evaluating these functions at the

midside locations. These mldside values are then used to condense the stiffness matrix of

the 8-node element to that of the 4-node element. As a result, the rotational degrees of

freedom at the corner nodes enter into the formulation.

The membrane part of the element has 12 degrees of freedom, thre_pf which account

for the rigid body modes. Therefore, a minimum of 9 independent stress parameters are

needed to avoid rank deficiency for the membrane part. The bending part of the element
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alsohas12degreesof freedom, threeof which accountfor the rigid body modes. Therefore,

a minimum of 9 independent stress parameters are also needed to avoid rank deficiency for

the bending part. The membrane stress field is represented with 9 independent parameters.

The bending stress field, on the other hand, is represented with 13 independent parameters

which was derived in references [6-8] through an asymptotic power-series expansion of

stresses in the thickness direction. This 13 parameter selection of stresses for the bending

part is less sensitive to geometry or mesh distortion than a 9 parameter selection obtained

from a degenerate solid model[9].

Evolution of Hybrid Method

The classical assumed-stress hybrid formulation of Plan[10] is based on the principle of

minimum complementary energy. The displacements are described only along the element

boundary, and an equilibrating stress field is described over the domain of the element.

It was later recognized that the same method may be derived from the Hellinger-Reissner

principle[ll-13]. However, in the Hellinger-Reissner principle the stress field is not required

to satisfy the equilibrium equations a priori, while the displacement field must be described

over the domain of the element and not just along the boundaries. The stress field would

then satisfy the equilibrium equations only in a variational sense. Therefore, the stress field

may be described in the natural-coordinate system of the element which would make the

element less sensitive to mesh distortion, and a proper selection of the stress field would

make the element invariant with respect to node numbering. For example, if the node

numbering is changed from 1-2-3-4 to 2-3-4-1, then the natural coordinate of the element

would rotate by 90 °. Therefore, a selection of stresses that is invariant under a 900 rotation

would make the element invariant. Because of these desirable attributes, researchers have

developed assumed-stress hybrid/mixed elements using the Hellinger-Reissner principle.

In this study, the Hellinger-Reissner principle is used to develop a 4-node shell element,

which includes the rotational degrees of freedom in the membrane part of the element for-

mulation. The details of the assumed-stress hybrid/mixed formulation using the Hellinger-

Reissner principle has been extensively discussed in the literature (e.g:, see references [11-

13]), and only a brief outline is given herein for completeness. The variational functional

is given as

II=-_l/vcrTDordV+/v_rTf.[u]dV-/s, uTtodS (1)

where D is the compliance matrix of the material, o" is the stress array, u is the displacement

array, to is the prescribed traction array, matrix/: is a differential operator which produces

a strain field when operated on the displacement field, V is the domain of the element,

and St is the part of the boundary where to is specified. The assumed-stress hybrid/mixed

formulation is based on assuming a stress field in the interior of the element as

(2)

and assuming the displacement field as

u=Nq (3)
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where the matrices P and N consist of the appropriate interpolating functions for stresses

and displacements, respectively, and the vectors/3 and q are the unknown stress parameters

and nodal displacements and rotations, respectively.

The expressions for stresses in equation (2) and displacements in equation (3) are substi-

tuted into the functional II of equation (1) and the variation of the functional with respect

to the element internal unknowns/3 are set to zero. This stationary condition gives

/3 = H-1Tq (4)

where
/,

H = Jv pTDPdV (5)

T = Iv pTL[N]dV (6)

The substitution of the expression for/3 in equation (4) into the functional II of equation

(1) and a subsequent variation of the functional with respect to the global unknowns q

yields

Kq = F (7)

where the stiffness matrix K is given by

K = TTH-1T (8)

and the generalized force vector F by

F = Is NTt°dS
t

(9)

...... Eiement Formuiation

Midside Displacement Approximation

As discussed earlier, the stiffness matrix for the present 4-node element is obtained from

the stiffness matrix associated with the "internal" 8-node element shown in Figure i. This

process is accomplished by associating the degrees of freedom at midside nodes with the

degrees of freedom at corner nodes by expressing the displacement components along each

edge of the element as quadratic functions in terms of the nodal displacements and rotations

as follows. If a typical edge of a quadrilateral is considered to be a 2-node beam (see Fig. 1,

edge 1) with constant shear deformations then a displacement component perpendicular

to the beam axis, for example the v r component, may be described as a quadratic function

as

F

V = a0 + al_ + a2_ 2 (10)

where, _ is a non-dimensional coordinate in the direction of the axis of the beam such that

node 1 of the beam is at _ = -1 and node 2 of the beam is at _ = +1.
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The rotation about the z axis, 0z, is given by

- 7' (11)Oz Oz'

where 7 _is the constant shear deformation of the beam in the z-V plane. The four unknowns

a0, al, a2 in equation (10), and 3" in equation (11) may be solved for in terms of the two

nodal displacements vl and v_ and the two nodal rotations 0zl and 0_2. The displacement

component v' is given by

(12)

where l is the length of the beam. The normal or "drilling" rotation is given by

Oz = 1(1 - _)0_1 + 1(1 + _)0_2 (13)

and the shearing strain by

7' 1 , , l (Oz2 + 0_1)= - - (14)

The displacement parallel to the beam axis is described as a linear function in terms of

the two nodal displacements as

(15)

These concepts may be readily extended to triangular and quadrilateral dements. There-

fore, the in-plane displacement and rotation fields on a typical edge of a quadrilateral

dement (e.g., edge 1 of Fig. 1) expressed in the element reference z-y coordinate system

may be described as

u --= l (1-- _)ul T1(1+ _)u2 q- _---_l (1--_2)(Oz2 -- Oz1)

2 (1 - - )

1 AZl

v= (l-t_)vl + (l+t_)v2-
(16)

0z = 2(1 - f)0.1 + 1(1 + f)0z2

where, Am1 and Ayl are the Am and Ay of edge 1 with respect to the reference local

dement x-y coordinate system (e.g., Axl = z2 --zl). Note that only the displacement

functions described in equations (16) enter into the membrane formulation. It should be

mentioned here that the true nodal rotations are given by ½(°'_ o,,o_ _) evaluated at the

nodes. Hence, the terms O_i are not true nodal rotations, and they may be referred to as

"rotational connectors"[2].



In references [2-5], the above displacement functions were used for construction of mem-

brane elements. However, this same procedure may also be used for development of a bend-

ing element. Again, quadratic functions are used to describe the out-of-plane displacement

component w and linear functions are used to described the out-of-plane rotations #z and

0_ along each edge of the element. The final result for the out-of-plane displacement and

rotation fields on edge 1 of Figure 1 is

w = l (1- _)wl +1(l + _)w2 - --
Ayl

(1- _)(e_2 - e_l) + -=-_(1 - _2)(e_ - 0_1)
8 O

1 1e_ = _(1- _)o_ + (1+ _)e_

1 (1 + _)0_2e_= (1- _)e_ +

(17)

Equations (16) and (17) indicate that both the membrane part and the bending part of

the element are formulated in the same manner. All three displacement components are

quadratic functions, while all three rotations are linear functions. This conformity in the

order of the approximating polynomials for all displacement components and all rotation

components is very desirable in the analysis of shell problems.

The basic concept of the element is similar to that of Cook's proposed 4-node membrane

element[3]. However, this concept is extended in this paper to the bending problem in order

to construct a 4-node fiat shell element. Internally the element is an 8-node isoparametric

quadrilateral element. Externally, the midside degrees of freedom of the 8-node element

are approximated by the above displacement and rotation functions, so that the midside

degrees of freedom are eliminated at the expense of adding drilling degrees of freedom to

the 4-node element. For example, on edge 1 of Figure 1, the midside degrees of freedom

are given by evaluating the functions in equations (16) and (17) at _ = 0. This gives

1 __

1 Azl (ez_- e_l)v5 = _(vl + v2) 8

1 _ Awl [nw5 -- _(wl + w;)- (e_2 - 0_1) + --_,_2 - e_l) (lS)

1 e

1

The description for other midside nodes is readily obtained. It is not necessary to evaluate

the function Oz in equations (16) at _ -- 0 since the normal rotation 8z does not enter

into the membrane formulation. It is observed that the extra nodal degrees of freedom are
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associated with the membrane part of the element only. The bending part of the problem

does not add any extra degrees of freedom to the element.

Equations (16), when extended to all four sides of the element, indicate that the membrane

part of the element has 12 degrees of freedom. Two of these are the in-plane translational

rigid body motions and one is the in-plane rotational rigid body motion. Of the nine

remaining degrees of freedom, three represent the constant strain states, five represent

higher-order strain states, and the final degree of freedom represents a special type of zero-

energy "spurious" mode. This zero-energy mode is associated with a state of zero nodal

displacements and equal nodal rotations. This state renders the u and v displacement

components in equations (16) zero on all four sides of the quadrilateral, while all four

corner nodes of the quadrilateral are rotated about its normal by equal amounts Oz. This

mode is shown in Figure 2 using cubic interpolation for displacements and may be called

a "zero displacement" mode[2]. It occurs because the quadratic displacement functions

are based on the differences of the nodal rotations and not the nodal rotations themselves.

One of these differences is dependent on the other three. Therefore, the membrane part

of the element has, in fact, only 11 independent displacement modes but is expressed in

terms of 12 degrees of freedom. Hence: one of the normal rotational degrees of freedom

is extraneous and must be eliminated. This zero-energy mode is of a special type and is

different from other spurious mechanisms such as the hour-glass mode. In reference [4], this

zero-energy mode is removed by artificially adding a small energy penalty to the stiffness

matrix to make the stiffness matrix non-singular. Although, this could be accomplished

with little effort, prescribing the value of normal rotation for at least one node in the entire

finite element model of the structure will eliminate this extraneous degree of freedom.

Equations (17) indicate that the bending part of the element also has 12 degrees of freedom.

One of these is the out-of-plane translational rigid body motion and two of these are the

out-of-plane rotational rigid body motions. Of the nine remaining degrees of freedom,

three represent the constant curvature states, two represent the constant transverse shear

strain states, and the other four represent higher-order strain states. No zero-energy modes

are associated with the bending part of the element. Note that although the displacement

function w described in equations (17) is also in terms of the differences of the nodal

rotations and not the rotations themselves, each one of the nodal rotations are accounted

for by the functions 0z and 0_ in equations (17). This is not the case for the membrane

part because the rotation function Oz in equations (16) does not enter into the membrane

formulation, while both rotation functions 0_ and 0y in equations (17) enter into the

bending formulation.

Stress Field Description

The stress field should be selected in such a manner that no spurious zero-energy mode

is produced. A spurious zero-energy mode is produced when the product of a selected

stress term and the strains that are derived from the displacement functions produces

zero strain energy under a particular, but not trivial, deformational displacement field. In

order to avoid spurious zero-energy modes, each independent stress term must suppress

one independent deformation mode. The problem of spurious zero-energy modes generally

occurs for regular geometries such as rectangular planar elements and brick solid elements



and it disappears for irregular geometries[14].

As discussed previously, the membrane part of the element has 12 degrees of freedom--

three of which are due to the in-plane rigid body motions. Therefore, a stress field with

a minimum of 9 independent parameters is needed to describe the membrane stress (re-

sultant) field. The following stress (resultant) field is first considered for the membrane

part

N_ = Zl + _,_ + _6_ + _8_

1 2 1_2N_, = _3 - _8_ - _,_ - 5_8'I -

(19)

This stress (resultant) field is obtained by integrating, through the thickness, the com-

ponents of the contravariant stress tensor expressed in the natural coordinates. These

components must be transformed to the physical stress components in the element refer-

ence coordinates by contravariant tensor transformation laws. However, the components

of the transformation are evaluated at the origin of the natural coordinates in order to

retain the constant terms in the stress field description[l 1-13]. When the stress (resultant)

field in equations (19) is specialized to the rectangular coordinate system, the stress resul-

tants of the stress field assumed by Robinson[15,16] for his 8-node and 4-node membrane

elements are obtained. In the above stress (resultant) field, the first five terms represent

the stress field that was used in Plan's 4-node assumed-stress hybrid membrane element

which had no rotational degrees of freedom[ll-13]. The remaining terms are present to

suppress the rotational degrees of freedom present in this formulation. However, experi-

mentations with a single rectangular element revealed that the stress (resultant) field in

equations (19) produces one spurious zero-energy mode. It should be mentioned here that

Robinson's suggested stress field worked for his formulation which was based on a cubic

displacement field. Therefore, it is proposed herein to use the following 9-term stress field

for the membrane part

Ne = _1 + _4,7+ f_6_+ f_8_2

N_,, = _ - _,7 - _

(20)

This stress field produces no spurious zero-energy mode for the assumed displacement field

described in equations (16) for the membrane part. When the elements are rectangular in

shape this selection of stress field satisfies the equations of equilibrium a priori. In reference

[5], a different 9-term stress field was selected which assumes linear variation for all stress

components which satisfies equilibrium in a variational sense for all element geometries

including rectangular-shaped elements.

The bending part of the element has 12 degrees of freedom--three of which are due to the

out-of-plane rigid body motions. Therefore, a stress field with a minimum of 9 independent

parameters is needed to describe the stress field. The following stress (resultant) field is



chosenfor the bending part

g, -- A + A_ + A,7 + A_,7
I- 2 1- 2

Me, = A + _io_ + _1_,7+ _i_ + _,7

(21)

The transverse shear forces are taken to be derived from the moments such that the

equilibrium equations are satisfied for rectangular elements

Q_ = M_,_+ M07,. (22)
Q. = Me.,e + M.,.

which gives

Q_ = (_6 +/3zl) + (/_s +/3z3)_7 (23)

¢, = (A + _10)+ (A + _1_)_

Again, this stress (resultant) field is obtained by integrating, through the thickness, the

components of the contravariant stress tensor expressed in the natural coordinates and

must be transformed to the physical components in the element reference coordinates by
contravariant tensor transformation laws. As for the membrane part, the components of the

transformation are evaluated at the origin of the natural coordinates in order to retain the

constant terms in the stress field description. This stress field selection for the bending part

satisfies the equations of equilibrium for rectangular-shaped elements a priori. When the

above bending stress resultant field is specialized to the rectangular coordinate system, one

obtains the resultants of the stress field that was derived in references [6-8]. The derivation

of the stress field in references [6-8] consists of expressing the stress components as power

series in the plate thickness, substituting these stresses into the continuum equations of

elasticity, and equating the coefficients of like powers of the plate thickness. As discussed

earlier, this 13 parameter selection of stresses for bending is less sensitive to geometric

distortion than a 9 parameter selection obtained from a degenerate solid model[9]. This

selection of stresses produces no spurious zero-energy modes.

In this paper, the Reissner-Mindlin Plate theory is used for the bending part. The bending

part is of class C ° and takes into account the effects of transverse shear deformations by

assuming constant transverse shear strains through the thickness of the plate. This means

that the transverse shear stresses are also constant through the thickness of the plate.

However, generally the transverse shear stresses are zero on the plate surfaces. Therefore,

a parabolic variation of transverse shear stresses and strains through the plate thickness

is more reasonable. To account for this discrepancy, a static correction factor of 5/6 is

included in the transverse shear strain energy, see Reissner[17].

Other Element Matrices

Other element matrices needed to complete the element formulation may be derived in a

similar fashion. The element force vector F in equation (9) may be derived in a manner
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consistentwith the stiffnessmatrix. The surfacetraction and pressureloads areassumedto

vary bilinearly over the element surface and the force vector F of equation (9) is calculated
for the "internal" 8-node element. This force vector is then condensed to that of the 4-node

dement using the approximations for the midside degrees of freedom described earlier. For

line load calculations, on the other hand, it is not necessary to use the "internal" 8-node

element. The force vector F corresponding to line loads may be calculated directly based

on the 4-node element by assuming linear variation of line loads on the edges of the element

and using the displacement and rotation shape functions derived earlier.

The mass and geometric stiffness matrices for the present element may also be derived
from the ':internal" 8-node element in the same manner as for the stiffness matrix.

Numerical Results

Assessment of the 4-node quadrilateral shell element developed in this paper is presented in

this section. The element has been implemented in the CSM Testbed Software System[18]

using the generic element processor template[19]. Selected test problems include the patch

test, the straight cantilever beam, the curved cantilever beam, the twisted cantilever beam,

the Cook's tapered and swept panel, the thick-walled cylinder, and the Scordelis-Lo roof

problem. The assumed-stress hybrid/mixed flat shell quadrilateral element derived in this

paper will be referred to as AQR8 (Assumed-stress Quadrilateral Reduced from an 8-node

element) in the following discussion for convenience. The results for the present element

are compared with the results using the QUADg element of the MSC/NASTRAN from

reference [20], the Q4S element of reference [4], the AQ element of reference [5], and the

ES1/EX47, ES5/Egl0, and ES4/EX43 elements of the NASA Langley CSM Testbed. A

brief description of these elements is given in the appendix. The dimensions and properties

for the test problems are chosen in consistent units.

Patch Test

As the first test of the accuracy of the element, the patch test problem suggested in

reference [20] is solved. This patch test is shown in Figure 3. Elements of arbitrary shapes

are patched together to form a rectangular exterior boundary which makes it easy to apply

boundary conditions corresponding to constant membrane strains and constant bending

curvatures. The applied displacement boundary conditions and the theoretical solutions

are also shown in Figure 3. The ability of the element to reproduce constant states of

strains is an essential requirement for achieving convergence to the correct solution as the

finite element mesh is refined. This requirement is observed by considering an individual

element within a mesh with a complicated stress field. As the mesh is refined, the stresses

within the elements tend towards a uniform value. Therefore, the elements that cannot

produce a state of constant strains should not be trusted to converge to the correct solution

as the mesh is refined[l]. The present element (AQR8) passes both the membrane and the

bending patch tests with no error. The recovered strains and stresses are both exact.

Straight Cantilever Beam

As a second test, the straight cantilever beam problem suggested in reference [20] is solved

for the three discretizations (six elements) shown in Figure 4. The constant and linearly
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varying strains and curvatures are evoked by applying loads at the free end of the beam

to test the ability of the element to recover these states of deformations. The theoretical

results for extension, in-plane shear, out-of-plane shear, and in-plane moment are simply

calculated from the elementary beam theory including shear deformations. The theoretical

result for the twist is .03406, according to Timoshenko and Goodier's Theory of Elastic-

ity[21]. Reference [20] quotes the answer to be .03208. Analysis with three successively

refined meshes converged to .03385 which is much closer to the theory of elasticity solu-

tion than to that of reference [20]. Therefore, the solution from the theory of elasticity

is taken herein for normalization purposes. The normalized results are shown in Table 1.

The results show that all elements perform well for the rectangular mesh. However, for the

trapezoidal and parallelogram meshes which contain considerable distortions, only the Q4S

element and the present element (AQR8) are adequate. For the present element, while the

error for all meshes and loads is less than 3.5%, the parallelogram mesh with a twist end

load exhibits an error of 15.9% which shows the sensitivity of the selected bending stress

field to mesh distortion.

Curved Cantilever Beam

Next, the curved cantilever beam problem shown in Figure 5 is solved. The beam is

formed by a 90 ° circular arc. In-plane and out-of-plane loads are applied at the free end

to produce in-plane and out-of-plane deformations, respectively. The theoretical solutions

are taken to be those quoted in reference [20]. The normalized results from the present

element (AQR8) are tabulated in Table 2. Also shown in Table 2 are the results from

other elements for comparison. In this problem the mesh is distorted only slightly and

the results for all elements are good. However, it is seen that the AQR8 element performs

better than the other elements in the table, particularly for the in-plane shear loading.

Twisted Cantilever Beam

The twisted cantilever beam problem is shown in Figure 6. The beam is twisted 90 ° over

its length. There are 12 elements along the length of the beam. Therefore, each element

has a 7.50 warp. The beam is subjected to in-plane or out-of-plane unit loads at its free

end. Both the membrane and the bending contributions are significant for either type

of load. The theoretical solutions are taken to be those quoted in reference [20]. The

normalized results from the present element (AQR8) are tabulated in Table 3. Also shown

in Table 3 are the results from other elements for comparison. In this problem the mesh

is comprised of rectangular shaped elements and there is no in-plane mesh distortion.

Therefore, this problem tests the sensitivity of the elements due to warp distortion. The

results show that, although the AQR8 element exhibits good performance, the QUAD4

element performs even better for this problem.

Cook's Tapered and Swept Panel

The tapered and swept panel with one edge clamped and the other edge loaded by a

distributed shear force is analyzed next (see Fig. 7). This problem was used by Cook

and many other researchers to test the sensitivities of finite elements due to geometric

distortions. The panel was analyzed by a coarse 2×2 mesh and a finer 4x4 mesh. The

reference solution for the vertical displacement at point C is taken to be 23.90 quoted in

reference [5] as the best known answer. The normalized results for the present element
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(AQR8) along with the results for other elements are shown in Table 4. The mesh for this

problem is distorted only slightly and all the elements produce reasonable results. The

AQR8 element, however, yields results that are closest to the best known answers.

Thick-Walled Cylinder

The thick-walled cylinder problem is shown in Figure 8. This problem was suggested by

reference [20] to test the performance of finite elements for nearly incompressible materi-

als. Plane strain conditions and radial symmetry are assumed so that the only non-zero

displacement component is in the radial direction. The theoretical solution for this prob-

lem is given in any standard text bOO k on elasticity (e.g.i see reference [21]) and is shown

ill Figure 8. The normalized results for the present element (AQR8) along with the re-

sults for other elements are shown in Table 5. The mesh in this problem is distorted

only slightly and the main purpose is to test the behavior of the elements for nearly in-
compressible materials. It is observed that, while the pe-rf0rmance of the hybrid elements

(i.e., the ES4/EX43 and the AQR8 element) does not deteriorate as the Poisson ratio

approaches 0.5, the other elements fail to retain their performance. This insensitivity to

nearly incompressible materials is a trait of assumed-stress hybrid elements.

Scordelis-Lo Roof

Finally, the Scordelis-Lo roof shown in Figure 9 is analyzed. This structure is a singly

curved shell problem in which both the membrane and the bending contributions to the

deformation are significant. The result reported in most references is the vertical dis-

placement at the midpoint of the free-edge. The theoretical value for this displacement is

quoted in reference [22] to be 0.3086, but the reference value quoted in reference [20] is
0.3024 for normalization of results. The latter value is also used herein for normalization

purposes. Because of symmetry, only one quadrant of the problem is modeled. The mesh

on one quadrant is chosen to be NxN for N=2,4,6,8,10 (N=number of elements along each

edge) to show the convergence of the solutions for the AQR8 element. The results of the

normalized displacement at the midside of the free-edge are shown in Table 6. The results

for other elements are also shown in Table 6 for comparison. The mesh for this problem

is comprised of rectangular shaped elements and all the elements in the table seem to

perform well.

Conclusions

A 4-node quadrilateral shell element with 24 degrees of freedom has been developed which
alleviates most of the deficiencies associated with 4-node shell elements. The element is

based on the assumed-stress hybrid/mixed formulation using the Hellinger-Reissner princi-

ple. The membrane part of this element has 12 degrees of freedom and includes the drilling

(in-plane rotational) degrees of freedom at the nodes. The bending part of this element

also has 12 degrees of freedom. The bending part is of class (7 o and takes into account the

transverse shear deformations. Both in-plane and out-of-plane displacements are assumed

to have quadratic variations along the edges of the element, while both in-plane and out-

of-plane rotations are assumed to vary linearly. A 9-parameter stress field is assumed for

the membrane part and a 13-parameter stress field is assumed for the bending part. The

element formulation is derived from an 8-node isoparametric element by eliminating the
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midside degrees of freedom in favor of rotational degrees of freedom at corner nodes. Al-

though the concepts of the present element are simple, the derivation and implementation

of the element is somewhat awkward and indirect. Nearly all element matrices are derived

based on an "internal" 8-node element.

Results from the numerical studies demonstrate that this element is accurate, passes both

the membrane and the bending patch tests, does not "lock", has no spurious modes,

and is nearly insensitive to mesh distortion. The present element also has the desirable

property of being invariant with respect to node numbering. The results indicate that

whereas the present element offers little advantage for problems with nearly rectangular

meshes, it produces more accurate results when dealing with distorted meshes, than the

other elements for the majority of test cases in this paper. This is important in general

modeling of shell problems and adaptive refinement. The results also indicate that the

present element produces more accurate results than the other elements in this paper

when dealing with nearly incompressible materials, which is a consequence of assumed-

stress hybrid element formulation.

Results obtained to date warrant further research in making the element formulation more

direct and extending the capabilities of the element to include stability analysis, dynamic

analysis, and non-linear analysis.
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Appendix

The following is a brief description of the elements used in Tables 1-6 for comparison with

the element developed in this paper.

The QUAD4 MSC/NASTRAN element is a 4-node isoparametric shell element with selec-

tive reduced-order integration. The transverse shear uses a string-net approximation and

augmented shear flexibility[23]. This element was developed by MacNeal and is available

in the MSC/NASTRAN finite element code.

The Q4S element is a 4-node shell element in which the membrane part is formulated

internally as an 8-node isoparametric element with selective reduced-order integration and

later reduced to a 4-node element by eliminating the midside degrees of freedom in favor

of rotational degrees of freedom at the corner nodes. This element was developed by

MacNEAL[4]. The bending part of the Q4S is the same as that of the QUAD4[4].

The AQ element is a 4-node assumed-stress hybrid/mixed membrane element which is

formulated internally as an 8-node isoparametric membrane element and later reduced to

a 4-node membrane element by eliminating the midside degrees of freedom in favor of

rotational degrees of freedom at the corner nodes. This element was developed by Yunus

et al.[5]. The only result reported in reference [5] for the cantilever beam problem in

Table 1 using the AQ element is for the mesh with trapezoidal-shaped elements with a

unit in-plane end moment. This result is reported to be .85. The difference in the results

between the AQ membrane element and the membrane part of AQR8 is in the selection
of the assumed-stress functions.

The ES1/EX47 element is a 4-node C o isoparametric assumed natural-coordinate strain

(ANS) shell element developed by Park and Stanley[24-25] and implemented in the CSM

Testbed Software System[18] by Stanley using the generic element processor template[19].

This element is not invariant and does not pass the patch test. This element does not

include the drilling degrees of freedom in the formulation.

The ES5/E410 element is a 4-node C 1 shell element which was originally implemented in

the STAGS finite element code and later in the CSM Testbed by Rankin[26]. This element

includes the rotational degrees of freedom in its formulation and uses cubic interpolation

for all displacement fields. This element is not invariant and does not pass the patch test.

The ES4/EX43 element is a simple 4-node C o isoparametric assumed-stress hybrid/mixed

shell element implemented in the CSM Testbed by this author[27]. This element passes

the patch test and is invariant with respect to node numbering. This element does not

include the drilling degrees of freedom in its formulation and uses linear interpolation for

all displacement and rotation fields.
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Table 1. Normalized tip displacements in direction of

loads for straight cantilever beam.

Tip Loading

Direction

QUAD4

MSC/
NASTRAN

ES1/ ESh/
EX47t E410t

ES4/

EX43

AQR8

(present)

(a) rectangular shaped elements

Extension

In-plane Shear

Out-of-Plane Shear

Twist

End Moment

.995

.904*

.986

.941"*

.995

.904

.980

.856

.910

.994

.915

.986

.680

.914m

(b) trapezoidal shaped elements

.996

.993

.981

1.023

1.000

.998

.993

.981

1.011

1.000

Extension

In-plane Shear

Out-of-Plane Shear

Twist

End Moment

.996

.071"

.968

.951"*

(c) parallelogram

.761

.305

.763

.843

.505

shaped

.991

.813

#

#

.822

.999

.052

.075

1.034

.102

.998

:986

.965

1.029

.996

elements

Extension

In-plane Shear

Out-of-Plane Shear

Twist

End Moment

.996

.080*

.977

.945**

.966

.324

.939

.798

.315

.989

.794

.991

.677

.806

.999

.632

.634

1.166

.781

.998

.977

.980

1.159

.989

t These elements are not invariant and do not pass the patch test.

* The results from MacNeal's Q4S element for in-plane shear load are reported in ref-
erence [4] to be .993, .988, and .986 for the meshes in (a), (b), and (c) respectively.

** These results for twist were normalized with .03028 in reference [20]. Herein, all
the other results for twist are normalized using .03046 according to Timoshenko and
Goodier's Theory of Elasticity[21].

# The element produces a singular stiffness matrix for this mesh.

17



Table 2. Normalized tip displacements in direction of

loads for curved cantilever beam.

Tip Loading

Direction

In-plane Shear

Out-of-Plane Shear

QUAD4

MSC/
NASTRAN

.833

.951

ES1/

EX47

.929

.935

ES5/
E410

.938

.887

ES4/

EX43

.888

.925

AQR8

(present)

.997

.956
.r

Table 3. Normalized tip displacements in direction of

loads for twisted cantilever beam.

Tip Loading

Direction

In-plane Shear

Out-of-Plane Shear

QUAD4

MSC/

NASTRAN

.993

.985

ES1/

EX47

1.357

1.293

ES5/
E410

1.054

1.173

ES4/

EX43

1.361

1.359

AQR8

(present)

.991

1.093

Table 4. Normalized vertical deflection at point C

for tapered and swept panel.

Mesh

2x2

4x4

AQ

.914

.973

ES1/

EX47

.880

.953

ES5/
E410

.873

.953

ES4/

EX43

.882

.962

AQR8

(present)

.930

.979

Poisson's

Ratio

0.49

0.499

0.4999

Table 5. Normalized radial displacements at inner

boundary for thlck-wailed cylinder.

QUAD4

MSC/
NASTRAN

.846

.359

.053

ES1/

EX47

.831

.352

.052

ES5/

E410

.848

.360

.053

ES4/

EX43

.990

.990

.990

AQR8

(present)

.989

.988

.988
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Mesh

2x2

4x4

6x6

8×8

10x10

Table 6. Normalized displacements at the midpoint of

the free-edge for Scordelis-Lo roof.

QUAD4

MSC/
NASTRAN

1.376

1.050

1.018

1.008

1.004

ESl/
EX47

1.387

1.039

1.011

1.005

1.003

ES5/
E410

1.384

1.049

1.015

1.005

1.001

ES4/

EX43

1.459

1.068

1.028

1.017

1.011

AQR8

(present)

1.218

1.021

1.006

1.003

1.001
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Figure 1. Element coordinate system definition.
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Figure 2. The "zero displacement" mode.
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a

__.__ ×

Location of nodes:

.node x y

1 .04 .02

2 .18 .03

3 .16 .08

4 .08 .08

Applied displacements:

(a) Membrane patch test

Boundary conditions:

Theoretical solution:

(b) Bending patch test

Boundary conditions:

u = 10-3(. + u/e)
v = 10-3(./2 +y)

e** = %y = _zy ----10-3

o'._ = o_ = 1333., o'_ = 400.

w = -lO-3(x 2 + zy + y2)/2

e_ =-lo-_(_/2 +_)
0y = -lO-Z(x + y/2)

Theoretical solution:

Bending moments per unit length:

M_ = My = 1.111×10 -v, M_ = 3.333×10 -s

Surface stresses:

_r_, = a_y = -t-0.667, a_ = -4-0.200

Figure 3. The patch test problem, a=0.24, b=0.12, t=0.001, E=10 s, v=0.25.

(Consistent units are used for various properties.)
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1 I I I
a) rectangular shape elements

45
',,, ,/ \

b) trapezoidal shape elements

45

45

/ ,/ /
c) parallelogram shape elements

Theoretical solutions:

Tip load direction Displacement in direction of load

Extension .3 x 10 -4

In-plane shear .1081

Out-of-plane shear .4321

Twist .03406

In-plane moment .009

Figure 4. Straight cantilever beam problem. Length=6., height=0.2, depth=0.1, E=107,

u=0.3, mesh=6×l. Loading: unit forces at the free end.
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Theoretical solutions:

Tip load direction Displacement in direction of load

In-plane shear .08734
Out-of-plane shear .5022

Figure 5. The curved cantilever beam problem. Inner radius=4.12, outer radius=4.32,
depth=0.1, E=107, v=0.25, mesh=6xl. Loading: unit forcesat the free end.
(Consistent units areusedfor various properties.)
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Theoretical solutions:

Tip load direction Displacement in direction of load

In-plane shear .005424

Out-of-plane shear .001754

Figure 6. The twisted cantilever beam problem. Length=12., width=l.1, depth=0.32,

twist=90 ° (root to tip), E=29. x10 _, v=0.22, mesh=12x2. Loading: unit
forces at the free end.

(Consistent units are used for various properties.)
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48 _--_,_ (48,60)

_ .._/(48,44) l

(0,22) "_ 4i

(o,o)
(a)

Figure 7.

_-- 48 -----_
|,

10 16

44

(b)
The tapered and swept panel problem. Thickness=l, E=I., r,=l/3,

mesh=N×N. Loading: unit in-plane shear force distributed on the free edge.

Reference solution: Vertical displacement at C=23.90 from reference [10].
(a) 2x2 mesh, (b) 4x4 mesh.

(Consistent units are used for various properties.)
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Theoretical solutions:

(1 + v)pR_ [R_/," + (1 - 2v)r]
u(r) = E(R_ - R_)

where p=pressure on the inner surface, R1 =inner radius, R2=outer radius.

Poisson's ratio, v Radial displacement at r = R1

.49 5.0399x 10 -3

.499 5.0602×10 -3

.4999 5.0623 x 10-3

Figure 8. The thick-walled cylinder problem. Inner radius=3., outer radius=9.,

thickness=l., E=1000., plane strain condition, mesh=5xl as shown.

Loading: unit pressure on inner boundary.

(Consistent units are used for various properties.)
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Figure 9.

Z

Yx

,\\_' R
\

The Scordelis-Lo roof problem. Length=50., radius=25, thickness=0.25,

E=4.32×10s_ u=0.3_ mesh=NxN. Loading: 90. per unit area in vertical direc-

tion, i.e., gravity load; u_=uz=O on curved edges. Reference solution: vertical

displacement at midpoint of free-edge=0.3024 from reference [23].

(Consistent units are used for various properties.)
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