NASA
 Reference
 Publication
 1233, Vol. 1

January 1990

Satellite Radar Altimetry Over Ice

Volume 1-Processing and
Corrections of Seasat Data
Over Greenland
H. Jay Zwally,

Anita C. Brenner,
Judith A. Major,
Thomas V. Martin,
and Robert A. Bindschadler

SBel noc unctas
$11 / 40$ U? 169

$$
\begin{aligned}
& \text { \& } \\
& 5 \square=\square
\end{aligned}
$$

$$
\begin{aligned}
& \text { 프:- --: }
\end{aligned}
$$

NASA
Reference Publication 1233, Vol. 1

1990

Satellite Radar

 Altimetry Over IceVolume 1-Processing and Corrections of Seasat Data
Over Greenland
H. Jay Zwally

Goddard Space Flight Center
Greenbelt, Maryland
Anita C. Brenner and Judith A. Major
ST Systems Corporation
Lanham, Maryland
Thomas V. Martin
Van Martin Consulting, Inc.
Rockuille, Maryland
Robert A. Bindschadler
Goddard Space Flight Center
Greenbelt, Maryland

N/SA

National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division

TABLE OF CONTENTS
PREFACE v
1.0 INTRODUCTION 1
2.0 ICE DATA RECORDS 5
2.1 EDITING AND RETRACKING 5
2.2 SENSOR-RELATED CORRECTIONS 27
2.3 ATMOSPHERIC CORRECTIONS 28
2.4 SURFACE DYNAMIC CORRECTIONS 30
2.5 ORBITAL CORRECTIONS 30
2.6 SLOPE CORRECTION 36
2.7 SUMMARY OF CORRECTIONS 38
3.0 WAVEFORM DATA RECORDS 41
4.0 GEO-REFERENCED DATA BASE 43
5.0 GRIDS 47
5.1 POLAR STEREOGRAPHIC PROJECTION 47
5.2 GRIDDING PROCEDURE 50
TABLES 55
REFERENCES 143
INDEX 145

The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented in this first volume of a series. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height crrors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given. The various levels of ice data sets are described in this report, but the user is referred to Volumes 2 (Grecnland) and 4 (Antarctica) for more detailed descriptions of the gridded elevation data sets and the gco-referenced data bases.

INTRODUCTION

This volume is the first in a series documenting the data-processing methods and ice data products derived from satellite radar altimeter measurements over the ice sheets of Greenland and Antarctica and surrounding sea ice. The data-processing procedures and corrections derived and applied to the Seasat radar altimeter data are described in detail in this report. A flowchart depicting the procedures involved in obtaining the various data products is given in Figure 1. A detailed description of the editing and retracking algorithm is given in Section 2, along with descriptions of the other corrections. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are described. The various levels of ice data sets produced are described in this report, but the user is referred to Volumes 2 and 4 for more detailed descriptions of the gridded elevation data set and the geo-referenced data base.

The input Seasat radar altimeter data, in the form of Geophysical Data Records (GDR's) and Sensor Data Records (SDR's) produced by NASA's Seasat project at the Jet Propulsion Laboratory, were obtained from the NOAA Environmental Satellite Data and Information Scrvice (EDIS) archive on about 1000 magnetic tapes. Development of the data processing methods, the production of higher-level geophysical data products, and analysis and cvaluation of the data have been supported at the Goddard Space Flight Center by funding for research and data analysis, provided primarily by NASA's Ocean Processes Program and by the Climate program. Computer programming and technical assistance has been provided by the EG\&G Washington Analytical Services Center, Inc. until January 1989 and by ST Systems Corporation since then. Numcrous other individuals have provided valuable assistance.

Results have been reported in refereed scientific literature (e.g., Brenner et al., 1983; Martin et al., 1983; Zwally et al., 1983; Thomas et al., 1983; and Gundestrup et al., 1986). In addition, elevation data in various forms have been provided to other scientists and placed in the National Snow and Ice Data Center (NSIDC) and the National Space Science Data Center (NSSDC). The purpose of this series of reports is to document technical details and provide guidance to users of the ice data products.

While all reasonable quality-control efforts have been made to eliminate erroncous data, some data of questionable quality is likely to have persisted, particularly in the lower-level data products. Users should apply normal standards of scientific caution in their use of the data.

Figure 1. Processes Involved in Obtaining Data Products

The current list of reports is:

Satellite Radar Altimetry over Ice, Volume 1: Processing and Corrections of Scasat Data over Greenland, July 1989. This volume.

Satellite Radar Altimetry over Ice, Volume 2: User's Guide for Grcenland Elevation Data from Seasat, July 1989. NASA Reference Publication. \qquad -.

Satellite Radar Altimetry over Ice, Volume 4: User's Guide for Antarctic Elcvation Data from Seasat, July 1989. NASA Reference Publication. \qquad -.

Volume 3 will be the Antarctic equivalent of Volume 1. Additional volumes will include descriptions of the data sets being produced by NASA from the radar altimeter data acquired by the U.S. Navy's GEOSAT, using methods similar to those for the Seasat data.

The Seasat spacecraft (e.g., Lame and Born, 1982 and Lame et al., 1980) was launched in late June 1978, and during its brief 110-day lifetime, collected 90 days of nearly continuous radar altimeter data from July 9 through October 10 between the latitudes of $72^{\circ} \mathrm{S}$ and $72^{\circ} \mathrm{N}$. Although designed only for measurements over water, the Seasat radar altimeter (MacArthur, 1978; Tapley et al., 1982; and Townsend, 1980), acquired more than 600,000 uscful altimeter range measurements over the continental ice sheets of Greenland and Antarctica.

Over sloping and undulating surfaces, such as ice covered land, or surfaces with highly-variable reflecting characteristics, such as in regions of sea ice, the range to the surface and the characteristics of the received radar pulse changed faster than the response capability of the altimeter electronics. Consequently, it has been necessary to correct each range value for lags of the altimeter range servo-tracking circuitry by a procedure called retracking (Martin et al., 1983). The retracking correction typically had a mean value of +1.4 m as applicd to the surface clevation, a standard deviation of 2.9 m , and maximum and minimum values of $\pm 15 \mathrm{~m}$. In addition, the pulse-limited footprint (1.6 km minimum diameter), which was located near the satellite nadir point over the relatively flat ocean, was in general located anywhere within the beam-limited footprint (22 km in diameter) over sloping surfaces. The resulting slope-induced error, which was nearly 80 m over slopes of 0.8 degree, can be partially corrected using the procedures described in Brenner et al., 1983. Corrections are also made for errors in orbit determination, atmospheric propagation path-length variations, and earth and ocean tides.

Elevation measurements were obtained at $0.1-$ second intervals, corresponding to $662-\mathrm{m}$ intervals along the subsatellite ground track. The precision of the corrected range measurements is about 1.6 m overall with a minimum of about 0.25 m in the smoothest regions of the ice shects
(Zwally et al., 1983). The 5- to $10-\mathrm{cm}$ precision over the ocean is for 1 -sec data averages.) The absolute accuracy of the elevations is primarily determined by the limitations on the correction methods for the slope-induced errors and uncertainties in the geoid reference level.

The principal ice data sets produced and/or retained are:

Level 4: Contour maps and gridded elevations with respect to earth ellipsoid and sea level (e.g., this Volume and Volume 2).

Level 3: Geo-referenced data base including all individual elevation measurements (including time, latitude/longitude positions, and slope-correction estimates) accessible by geographic cells (e.g., this Volume and Volume 2).

Level 2: Ice Data Records (IDR's). Orbital-format data records including altimeter parameters, corrected elevations, latitude/longitude positions, AGC, applied corrections, retracking beta parameters, and estimates of along-track and cross-track slope corrections. (this Volume)

Level 1: Waveform Data Records (WDR's). Orbital-format data records including waveform amplitudes by gate, ranges, AGC, and latitude/longitude positions. (this Volume)

Sensor Data Records (SDR's)
Geodetic Data Records (GDR's)

SECTION 2.0

ICE DATA RECORDS

The Seasat altimeter data were released in two forms: the Altimeter Sensor Data Record (hereafter referred to as SDR), and the Geophysical Data Record, GDR. The SDR's were obtained from the NOAAEDIS archives and contain, among other quantities, the telemetered range measurements between the spacecraft and earth's surface, averaged radar return pulses, the altimeter status flags and the satellite latitude, longitude, and elevation. The data are output in $0.098-\mathrm{sec}$ intervals. The GDR's contain processed SDR data averaged over $1-\mathrm{sec}$ intervals, and the sensor, atmospheric, and surface dynamic corrections necessary to utilize the data in detailed geodetic work. Data over the ice sheets are not available from the GDR's.

To obtain the ice sheet elevation measurements, data from the SDR's are used and the appropriate corrections and adjustments applied. This subset of ice sheet data obtained from the SDR's is referred to as ice data records or IDR's. A detailed description of these records may be found in Table 1. The surface heights, located in bytes 73-76 of the IDR, are referenced to the IUGG 1980 Geodetic Reference Ellipsoid (Moritz, 1980), which is defined with a $6378.137-\mathrm{km}$ semi-major axis of the earth and a flattening ratio of $1 / 298.257$. Heights relative to sea level can be calculated by subtracting the geoid value from the surface height. Geoid values, linearly interpolated from a one-by-one degree GEM10-B geoid grid, are located in bytes 61-64 of the IDR.

Figure 2 is a map of Greenland which depicts the coverage obtained from the IDR's after data were edited and retracked (see Section 2.1). The gaps in the data are a result of the altimeter not being able to maintain valid height measurements over the rougher surfaces of the ice sheets. Table 2 gives a concise catalog of the available Seasat Greenland IDR data. Included in this table are the start and stop locations of each rev, the number of points in each rev, and the data base bins (see Section 4.0) through which each rev traverses. The rev numbers are ordered such that all ascending passes are listed first, ordered by increasing latitude as they cross 315 degrees East Longitude. Then the descending passes are listed using the same ordering criterion as for the ascending passes.

2.1 EDITING AND RETRACKING

As explained in Section 1.0, Seasat altimetry returns over non-ocean surfaces required special processing in order to calculate meaningful height measurements. To understand this processing one must first have an understanding of the return itself.

Each altimeter return, referred to as a waveform, consists of the output of a set of 63 gates that span a height window of approximately 30 m . Each gate has a level of return associated with it measured in counts. A typical occan return from Seasat is presented in Figure 3. The level of return in the first 22 gates is at the noise or pre-pulse level of 4 or 5 counts. The level quickly increases to a relative maximum and then slowly decreases over the latter portion of the window. There are three half-gates at the center that have a spacing of 23 cm instead of 46 cm . The tracking gate is the center of these. The on-board tracker attempts to kecp the center of the return leading edge positioned at the tracking gate by predicting the travel time of each pulse based on previous returns. The measurement telemetered from the altimeter is equivalent to the travel time to the tracking gate.

Altimeter returns over non-ocean surfaces vary greatly from this ocean return. Figure 4 shows representative returns over ice sheet surfaces for a Seasat pass over Antarctica (Martin et al., 1983). The Figure 3 sea ice returns are represented by one or more sharp spikes that may or may not be at the tracking gate. As the altimeter travels onto the ice shelf, acquisition is lost, represented as a flat return. On the ice shelf the returns are shaped similar to the oceans, but again are not always centered at the tracking gate. As the satellite moves over the ice sheet, acquisition is again lost temporarily. Over the ice shects the returns are noisy, have multiple leading edges, and the mid-point of the first leading edge is not always aligned with the tracking gate.

The measurement telemetered from the on-board tracker needs to be corrected for the variation of the mid-point of the leading edge from the tracking gate. This retracking correction, $\Delta H_{r e t}$ is calculated as

$$
\begin{equation*}
\Delta H_{\mathrm{ret}}=(\mathrm{Gm}-\mathrm{Gt})^{*} \mathrm{~g} 2 \mathrm{~m} \tag{2.1}
\end{equation*}
$$

where

```
Gm = gate of the mid-point of the leading edge (sce Sections 2.1.3-2.1.4),
Gt = the tracking gate (29.5 where the whole gates are numbered from 0 to 59; sce
        Figure 3), and
g2m = the conversion from gates to meters =.4684375 m/gate.
```


Figure 3. Ideal Ocean Altimetry Return Pulse

It then follows that

$$
\begin{equation*}
\mathrm{H}_{\mathrm{ret}_{\mathrm{t}}}=\mathrm{H}_{\mathrm{meas}_{\mathrm{t}}}+\Delta \mathrm{H}_{\mathrm{ret}}^{\mathrm{t}+1} \mathrm{l} \tag{2.2}
\end{equation*}
$$

where
$H_{r e t}=$ the retracked altimeter measurement at time t,
$\mathrm{H}_{\text {meas }}=$ the measurement calculated by the on-board tracker at time t , and
$\Delta \mathrm{H}_{\mathrm{ret}}^{\mathrm{t}+\mathrm{l}}=$theretrackingcorrectioncalculatedfromwaveformattime $\mathrm{t}+.098 \mathrm{sec}$.

Due to the return being telemetered one time step later, the retracking correction for the measurement at time t is calculated from the return at time $t+.098 \mathrm{sec}$. Methods have been developed at NASA/GSFC to calculate the $\Delta H_{\text {ret }}$ for returns over the ice sheet, ice shelf, and sca ice which can yield valid height measurements. A detailed description of these procedures may be found in Sections 2.1.3 and 2.1.4. Parameters resulting from these retracking techniques may be found in bytes 109-144 of the IDR. The criteria used to automatically select and discriminate between different types of returns are described in the next two sections.

2.1.1 Selecting Retrackable Non-Ocean Altimetry Returns

The SDR for Scasat includes all telemetered altimeter data even when the instrument was in calibration or standby mode. Since valid measurements could be acquired when the tracker was in acquisition mode, all data that are not in acquisition or track modes are discarded.

All tracking and acquisition returns have to meet two initial tests to determine if the waveform actually represents the initial return, or if the return is outside the tracking window.

1) The counts in the first gate must be less than 100 :
2) There must be at least one gate with a count value greater than 25.

2.1.2 Categorizing the Returns

The remaining returns are then categorized into two groups. Group one will be referred to as specular and consists of those returns that display a sharp spike. Returns in this catcgory are usually found in regions of sea ice or over flat, desert-type surfaces. The second group, consisting of the remaining returns, is called diffuse and resembles ocean returns. These returns
are found over continental ice and the ice shelves. Different methods are used to retrack each group.

Returns are automatically categorized as either diffuse or specular depending on the existence of a significant spike in the return. To determine this the following algorithm is used. The noise level, Yn, is calculated as the average number of counts in the first five gates. The maximum, Ymax, is calculated as the maximum number of counts in any gate. The value Ymed is then calculated using the equation

$$
\begin{equation*}
\text { Ymed }=\frac{(Y \max -Y n)}{2.0}+Y n \tag{2.3}
\end{equation*}
$$

The gate number, Gmid, is then found as the first gate where the number of counts excecds Ymed. Two sums of consecutive counts from the signal are then formed, Ylow and Yhigh, where

$$
\begin{align*}
& \text { Ylow }=\sum_{i=\text { Gmid }}^{i=\text { Gmid }_{1}+9} \mathrm{Y}_{1} \tag{2.4}\\
& \text { Yhigh }=\sum_{\mathrm{i}=\text { Gmid }+10 .} \mathrm{Y}_{\mathrm{Gmid}}+20 \tag{2.5}
\end{align*}
$$

If Gmid is so large that there are less than 20 remaining gates, then the number of gates used to form the sums is adjusted. When the ratio of Yhigh/Ylow is ≤ 0.7, the return is considered specular.

2.1.3 Retracking Specular Type Returns

Specular waveforms are not found in the Seasat altimeter data over Greenland. This is probably due to the absence of sea ice near Greenland during Seasat's lifetime. As a result, all of the Greenland returns are retracked using the diffuse method. However, for the sake of completeness, the method used to retrack specularly shaped returns, which is employed in the region of the Antarctic, will be discussed.

Specular-type returns are defined for this procedure as being characterized by one or more extremely sharp spikes and are retracked by attempting to locate the mid-point or halfpower point of the first significant spike. In addition, since the shape of the return essentially records topographic characteristics, parameters are also calculated which define the shape of a single-or double-peak return. Figure 5 a shows the five-parameters required to define a singlepeak return, while Figure 5b shows the nine-parameters required for a double-peak return.

2.1.3.1 Half-power Point of First Significant Peak

In determining the mid-point of the first significant spike, the location of this spike must first be found. The value of Ymed, which is calulated to determine whether or not the return is specularly shaped (Equation 2.3), is used. Starting with the gate number prior to Gmid, where Gmid is define to be the gate number whose counts exceed Ymed, a gate is sought whose counts exceed or equal 25% of the difference between Ymax and Yn. Upon finding this gate, Grise, it is determined to be the first significant spike if the following conditions are met:

$$
\begin{align*}
Y_{\text {Grise+1 }} & -Y_{\text {Grise }}
\end{align*}<0.0 \text { Ymax } * .3
$$

where

$$
\begin{array}{cl}
Y_{\text {Grise }} & \text { is the counts for gate Grise, and } \\
Y_{\text {Grise }+1} & \text { is the counts for gate Grise }+1 .
\end{array}
$$

Smaller, more rounded waveforms, which might be encountered in the vicinity of an ice shelf require that the following condition be met:

$$
\begin{array}{rlr}
Y_{\text {Grise }+1} & -Y_{\text {Grise }} & <(\text { Ymax-Yn }) * .05 \\
& \text { for } Y_{\text {Grise }} & \leq Y_{m a x} * .3 . \tag{2.7}
\end{array}
$$

Grise is incremented by one, up to the maximum number of gates, until one of the above conditions is met, after which the gate of the first significant spike, Glst, and its corresponding counts, Y1st, are used to determine the half-power point of the peak. The count value at the halfpower point, Ymidl, is determined as follows:

$$
\begin{equation*}
\text { Ymid } 1=\frac{(Y 1 \text { st-Yn) }}{2.0}+Y n \tag{2.8}
\end{equation*}
$$

The exact gate location of the half-power point, Gtmid 1 , is then determined by performing a linear interpolation for the count value Ymid1 located between gates X 1 and X 2 , with corresponding count value Y1, Y2.

2.1.3.2 Remaining Parameters to Define Shape

In order to define the exact shape of the specular returns depicted in Figures 5a and 5b, it is necessary to calculate several other parameters in addition to the noise level, the maximum counts of the first significant peak, and the gate location of the half-power point. For the singleand double-peak return, additional quantities which define the width of the significant peak and slope at the half-power point are defined. A double-peak return has four additional quantities calculated: the maximum counts for the second significant peak, the gate location of the halfpower point for the second peak, the slope at the second half-power point, and the minimum counts found between the two significant peaks.

The slopes at the half-power point for both the first and second significant peaks, Slp 1 st and Slp2nd, are determined by the following algorithm:

$$
\begin{equation*}
\text { Slp1st }=\frac{\mathrm{Y} 2-\mathrm{Y} 1}{\mathrm{X} 2-\mathrm{X} 1} \tag{2.9}
\end{equation*}
$$

Slp2nd uses the gate locations and corresponding counts determined to surround the half-power point of the second significant peak. These values are found in a manner similar to that of the first peak.

The actual existence of a second significant peak is determined in the following manner. Starting with the gate location of the first significant peak, the difference between counts of consecutive gates is monitored. As soon as the change in successive gates becomes negative, at gate location Gentmin, it is assumed that another peak has been encountered. At this point, a sum if formed, Totup, which totals the counts in all gates following the Gentmin. When Totup equals or exceeds 9% of Y1st then the second peak is considered significant. The gate at which the second peak occurs, X2nd, is determined to occur when the difference in the counts of consecutive gates becomes positive.

The counts at the second significant peak, Y2nd, are then used in the following manner to calculate the counts at the half-power point of the second peak, Ymid2:

$$
\begin{equation*}
\text { Ymid2 }=\frac{\text { (Y2nd-Cntmin) }}{2}+\text { Cntmin } \tag{2.10}
\end{equation*}
$$

(a) Single Peak

(b) Double Peak

Figures 5a and 5b. Specularly Shaped Waveforms

Again, a linear interpolation is performed in a manner identical with the first significant peak to determine the exact gate location of the second significant peak half-power point, Gtmid2.

The final parameter to be determined is the total width of the peak or peaks at the first half-power point. The width is defined as the number of gates between Gtmidl (Section 2.1.3.1) and the location, Gtrail, where the trailing cdge passes through Ymid 1 (Equation 28). The width is computed as follows:

$$
\begin{equation*}
\text { Width }=\text { Gtrail }- \text { Gtmid } 1 \tag{2.11}
\end{equation*}
$$

In summary, the parameters for a specular return with a single significant peak are as follows:

$$
\begin{align*}
\beta_{1} & =\text { Yn } \\
\beta_{2} & =\text { Y1st } \\
\beta_{3} & =\text { Gtmid } 1 \tag{2.12}\\
\beta_{4} & =\text { Slp1st } \\
\beta_{5} & =\text { Width } .
\end{align*}
$$

The parameters for a specular return with double significant peaks are as follows:

$$
\begin{align*}
& \beta_{1}=\text { Yn } \\
& \beta_{2}=\text { Y1st } \\
& \beta_{3}=\text { Gtmidl } \\
& \beta_{4}=\text { Slp1st } \\
& \beta_{5}=\{\text { Y2nd } \tag{2.13}\\
& \beta_{6}=\text { Gtmid2 } \\
& \beta_{7}=\text { Slp2nd } \\
& \beta_{8}= \\
& \beta_{9}=\text { Width } \\
& \text { Cntmin } .
\end{align*}
$$

2.1.4 Retracking Diffuse-Type Returns

The method used to retrack the diffuse return is to model the return with a function that has the retracking position (the mid-point of the leading edge) as a parameter. The Bayesian leastsquares method (Ref. 8) is used to solve for the parameters of the function that best fit the return. For this method, initial estimates of the parameters must be provided. Weights are given to these initial estimates that designate how well each parameter is known relative to the others.

Residuals are then calculated between the return value and the function value at each gate. These residuals are weighted based on their proximity to the mid-point of the leading edge position. A minimum to the sum of these squared weighted residuals is sought by an iterative method which simultaneously adjusts all of the function parameters. The process is repeated until convergence or until the maximum number of iterations is reached. Because linear methods are used to solve a non-linear problem the procedure can be numerically unstable. Checks are done to assure the reasonableness of the results. The key to making this method function correctly is in the choice of the initial estimates and weighting functions.

The theory of solving for the function parameters using Bayesian least-squares can be found in Ref. 8. The actual equations used will be presented here without justification.

Given an overdetermined set of equations $\mathrm{MX}=\mathrm{R}$ where
$M=$ the matrix of partials $\left[\begin{array}{llll}\frac{\partial c_{1}}{\partial \beta_{1}} & \cdots & \frac{\partial c_{1}}{\partial \beta_{n}} \\ \frac{\partial c_{m}}{\partial \beta_{1}} & \cdots & & \frac{\partial c_{m}}{\partial \beta_{n}}\end{array}\right] \quad m \quad m>n$
$\mathrm{x}=$ column vector $=\left[\begin{array}{cl}\beta_{\mathrm{c} 1} & -\beta_{1} \\ \vdots \\ \beta_{\mathrm{cn}} & -\beta_{\mathrm{n}}\end{array}\right]$
$R=\left[\begin{array}{ccc}m_{1} & -c_{1} \\ & \cdot & \\ & \cdot & \\ m_{m} & & -c_{m}\end{array}\right]$
and
$m_{t}=$ observed value (counts at $t=$ gate i),
$c_{1}=$ calculated values of m_{1} based upon a given set of parameters β,
$\beta_{\mathrm{J}}=$ current best estimate of the model parameters β,
$\beta_{\mathrm{cj}}=$ corrected best estimate of the model parameters β,
$i=$ gate number ($0-59$), and
$\mathrm{n}=$ number of parameters in the function.

We can then define a weight matrix, W
$W=\left[\begin{array}{cccc} & & & \\ & & & \\ & & & \\ & & \cdot & \\ & & & \\ & 0 & & \\ & & \\ & & & \\ m\end{array}\right]$
where $w t_{1}$ is the weight associated with each observation i.

If we multiply both sides of the equation by W we get
$W M X=W R$.

Multiplying through by M^{T} gives

$$
\begin{equation*}
M^{T} W M X=M^{T} W R . \tag{2.18}
\end{equation*}
$$

The solution of X is solved for as

$$
\begin{equation*}
\mathrm{X}=\left[\mathrm{M}^{\mathrm{T}} \mathrm{WM}\right]^{-1} \mathrm{M}^{\mathrm{T}} \mathrm{WR} \tag{2.19}
\end{equation*}
$$

where $M^{T} W M$ is referred to as the normal matrix. To add information as to the validity of the current best estimate of the model parameters the a priori covariance matrix V_{O} is included

$$
\mathrm{V}_{\mathrm{o}}=\left[\begin{array}{ccc}
\mathrm{wt}_{\beta 1} & & 0 \tag{2.20}\\
\cdot & & \\
& \cdot & \\
0 & \mathrm{wt}_{\beta \mathrm{n}}
\end{array}\right]
$$

where $\mathrm{wt}_{\beta \mathrm{j}}=$ weight associated with the a priori value of parameter j . This matrix is then added to the normal matrix before it is inverted so the equation becomes

$$
\begin{equation*}
\mathrm{X}=\left(\mathrm{M}^{\mathrm{T}} \mathrm{WM}+\mathrm{V}_{\mathrm{o}} \mathrm{o}^{-1} \mathrm{M}^{\mathrm{T}} \mathrm{WR} .\right. \tag{2.21}
\end{equation*}
$$

X then is the vector giving the new best estimate of the β parameters.

2.1.4.1 The Function Representing the Altimeter Return

It has been shown (Miller and Brown, 1974) that the mean return waveform over a Gaussian surface can be mathematically described using the function

$$
\begin{equation*}
\mathrm{c}(\mathrm{t})=\beta_{1}+\beta_{2} * \mathrm{P}(\mathrm{~W}) \tag{2.22}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{P}(\mathrm{~W})=\int_{-\infty}^{\mathrm{W}} \mathrm{Z}(\mathrm{q}) \mathrm{dq} \tag{2.23}\\
& \mathrm{Z}(\mathrm{q})=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-\mathrm{q}^{2}}{2}\right) \tag{2.24}\\
& \mathrm{W}=\frac{\mathrm{t}-\beta_{3}}{\beta_{4}} . \tag{2.25}
\end{align*}
$$

This assumes that the pointing angle errors have negligible effects on the waveform shape. This also represents the ice sheet waveforms very well if it is modified to include a slope to the trailing edge. The modified function used to represent the diffuse-type waveforms is chosen as

$$
\begin{equation*}
c(t)=\beta_{1}+\beta_{2}\left(1+\beta_{5} G(x)\right) P(W) \tag{2.26}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{G}(\mathrm{x}) & =0 \text { for } \mathrm{t}<\beta_{3}+0.5 \beta_{4} \\
& =\mathrm{t}-\mathrm{x} \text { for } \mathrm{t}>\beta_{3}+0.5 \beta_{4}
\end{aligned}
$$

This is plotted in Figure 6a where
(a) Single-Ramp Function

β_{4} Is the waveform risetime parameter

$$
\begin{aligned}
& y=\beta_{1}+\beta_{2}\left(1+\beta_{5} Q\right) P \frac{\left(t-\beta_{3}\right)}{\beta_{4}} \text { where } Q=0 \text { for } X<\beta_{3}+0.5 \beta_{4} \\
&=1 \text { for } X \geq \beta_{3}+0.5 \beta_{4} \\
& X=t-\left(\beta_{3}+0.5 \beta_{4}\right) \\
& z \\
& P(z)=\int_{\infty} \frac{1}{\sqrt{2} \pi} \exp \left(-q^{2 / 2}\right) d q
\end{aligned}
$$

(b) Double-Ramp Function

β_{4} and β_{7} are risetime parameters for the 1 st and 2 nd ramp respectively
Where $y=\beta_{1}+\beta_{2} P \frac{\left(t-\beta_{3}\right)}{\beta_{4}}\left\{1+\beta_{9} Q\left(x_{1}\right)\right)+\left(\beta_{5} P \frac{\left(t-\beta_{6}\right)}{\beta_{7}}\left(1+\beta_{3}\left(Q\left(X_{2}\right)\right)\right.\right.$

$$
\begin{array}{rlr}
x_{1}=t-\beta_{3}-0.5 \beta_{4} \\
x_{2}=t-\beta_{6}-0.5 \beta_{7} & Q(x) & =0 \text { for } x<0 \\
& =1 \text { for } x \geq 0 & P(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \exp \left(-q^{2} / 2\right) d q
\end{array}
$$

Figures 6a and 6b. Diffusely Shaped Waveforms
$\mathrm{x}=\beta_{3}+0.5 \beta_{4}$.

The partials of this function with respect to each parameter are

$$
\begin{align*}
& \frac{\partial c}{\partial \beta_{1}}=1.0 \tag{2.27}\\
& \frac{\partial c}{\partial \beta_{2}}=P[W]+\beta_{5} \Theta \mathrm{P}[\mathrm{~W}] \tag{2.28}\\
& \frac{\partial c}{\partial \beta_{3}}=-\beta_{2}\left\{\frac{\left(1+\beta_{5} G\right)}{\beta_{4}} \frac{\partial \mathrm{P}}{\partial \mathrm{~W}}+\mathrm{P}(\mathrm{~W}) \beta_{5}\right\} \tag{2.29}\\
& \frac{\partial c}{\partial \beta_{4}}=\beta_{2}\left\{\frac{\left(1+\beta_{5} G\right)}{\beta_{4}} \frac{\partial \mathrm{P}}{\partial \mathrm{~W}} \mathrm{~W}+\beta_{5} \frac{\mathrm{P}(\mathrm{~W})}{2}\right\} \tag{2.30}\\
& \frac{\partial c}{\partial \beta_{5}}=\beta_{2} \mathrm{BP}[\mathrm{~W}] \tag{2.31}
\end{align*}
$$

where

$$
\frac{\partial P}{\partial W}=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-W^{2}}{2}\right)
$$

The value of β_{3} is the mid-point of the leading edge, Gm. As previously noted, some of the returns display multiple leading edges. A nine-parameter function is used to represent these returns, where the mid-point of the first leading edge is still β_{3}. The mid-point of the second leading edge, $\beta 6$, probably represents a return from another surface in the footprint and is being stored for future use. The nine-parameter function is

$$
\begin{equation*}
c(t)=\beta_{1}+\beta_{2} \mathrm{P}\left(\mathrm{~W}_{1}\right)\left(1+\beta_{9} \mathcal{G}\left(\mathrm{x}_{1}\right)\right)+\beta_{5} \mathrm{P}(\mathrm{~W})\left(1+\beta_{8}\left(\mathrm{G}\left(\mathrm{x}_{2}\right)\right)\right. \tag{2.32}
\end{equation*}
$$

This is plotted in Figure 6b where

$$
\begin{aligned}
& \mathrm{x}_{1}=\mathrm{t}-\beta_{3}-.5 \beta_{4} \\
& \mathrm{x}_{2}=\mathrm{t}-\beta_{6}-0.5 \beta_{7}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{w}_{1}=\frac{\mathrm{t}-\beta_{3}}{\beta_{4}} \\
& \mathrm{w}_{2}=\frac{\mathrm{t}-\beta_{6}}{\beta_{7}}
\end{aligned}
$$

The partials of this nine-parameter function are

$$
\begin{align*}
& \frac{\partial c}{\partial \beta_{1}}=1.0 \tag{2.33}\\
& \frac{\partial c}{\partial \beta_{2}}=P\left(W_{1}\right)\left[1+\beta_{9}\right] G_{1} \tag{2.34}\\
& \frac{\partial c}{\partial \beta_{3}}=-\beta_{2}\left[\frac{\left(1+\beta_{9} G_{1}\right)}{\beta_{4}} \frac{\partial \mathrm{P}}{\partial W_{1}}+\mathrm{P}\left(\mathrm{~W}_{1}\right) \beta_{9}\right] \tag{2.35}\\
& \frac{\partial c}{\partial \beta_{4}}=-\beta_{2}\left[\frac{\left(P\left(W_{1}\right) \beta_{9}\right.}{2}+\frac{\left(1+\beta_{9} Q_{1}\right)}{\beta_{4}} \frac{\partial \mathrm{P}}{\partial \mathrm{~W}_{1}} \mathrm{~W}_{1}\right] \tag{2.36}\\
& \frac{\partial c}{\partial \beta_{5}}=1+\beta_{8} G_{2} \mathrm{P}\left(\mathrm{~W}_{2}\right) \tag{2.37}\\
& \frac{\partial c}{\partial \beta_{6}}=-\beta_{5}\left(\mathrm{P}\left(\mathrm{~W}_{2}\right) \beta_{8}+\frac{\left(1+\beta_{8} \Theta_{2}\right)}{\beta_{7}} \frac{\partial \mathrm{P}}{\partial \mathrm{~W}_{2}}\right] \tag{2.38}
\end{align*}
$$

$$
\begin{align*}
& \left.\frac{\partial c}{\partial \beta_{7}}=-\beta_{5} \quad \frac{\left(1+\beta_{8} \mathrm{G}_{21}\right.}{\beta_{7}} \mathrm{~W}_{2} \frac{\partial \mathrm{P}}{\partial \mathrm{~W}_{2}}+\frac{\mathrm{P}\left(\mathrm{~W}_{2}\right)}{2} \beta_{8}\right) \tag{2.39}\\
& \frac{\partial \mathrm{c}}{\partial \beta_{8}}=\beta_{5} \mathcal{G}_{2} \mathrm{P}\left(\mathrm{~W}_{2}\right) \tag{2.40}\\
& \frac{\partial \mathrm{c}}{\partial \beta_{9}}=\beta_{2} \mathrm{G}_{2} \mathrm{P}\left(\mathrm{~W}_{1}\right) . \tag{2.41}
\end{align*}
$$

2.1.4.2 Setting the Initial Estimates for the Parameters

Initial estimates of each parameter are calculated from each individual return. To calculate these the general shape of the waveform is mathematically described by defining a mean slope and average value (bias) for every whole gate. For gates 4 through 56 , the mean slopes and biases correspond to a straight line that is fit using least-squares minimization through the gate in question and the six surrounding gates. The biases for gates 1 through 4 are taken as the gate values and the slopes are delined as zero. For gates 57 through 60 the biases are the gate values and the slopes are defined as the slope calculated for gate 56 . This set of slopes and biases is then interrogated to determine the locations of the leading edges and how many occur in the waveform.

The conditions required for a leading edge at gate Ir are:

1) The Slope(lr) must be greater than a given valuc, Thsl. A value of Thsl $=0.5$ count/gate is used to find the first leading edge, for succeeding leading edges Thsl is set to 1.0 count/gate. These numbers were chosen by visually and mathematically evaluating many typical ice sheet waveforms to determine when a leading edge designating a valid return could be perceived.
2) The $\operatorname{Slope}($ Ir $)$ must be a relative maximum, ic:
```
Slope(Ir) > Slope (Ir-1)
Slope(Ir) > Slope (Ir +1) .
```

3) There must be a significant increase in counts after the leading edge compared with that before the leading edge, i.c.:
$\operatorname{Bias}(\mathrm{Ir}+3)-\mathrm{Bias}(\mathrm{Ir}-3)>$ Thbs
where
Thbs $=13.5$ counts for first leading edge
$=20.0$ counts for succecding leading edge.
4) If there was a leading edge already detected within 3 gates of Ir then the location is taken as that with the larger slope.

The initial estimates of the function parameters are then calculated from the position of the leading edge(s) and the Slopes and Biases. The five-parameter function (2.26) is used when only one leading edge is found, the nine-parameter function (2.32) is used when two or more lcading edges are found.

Initial estimates, β_{1}^{0}, and the corresponding standard deviations of these estimates, Sig(1) through Sig(5), for the five-parameter function are defined as:

```
\beta
\beta
\beta
\beta
        Slope(Ir)}*0.5 (gate)
\beta
```

```
Sig(1)=0.01 (count)
```

Sig(1)=0.01 (count)
Sig(2)}=10.0(counts

```
Sig(2)}=10.0(counts
```



```
Sig(4)=.01 \betao(4)(gatcs)
```

Sig(4)=.01 \betao(4)(gatcs)
Sig(5)=.01(count/gatc).

```
Sig(5)=.01(count/gatc).
```

Initial estimates and the corresponding standard deviations for the nine-parameter function are defined as:

$\beta_{1}^{\mathrm{o}}=\mathrm{Bias}(4)$ (counts)	Sig(1) $=.01$ (count)
$\beta_{2}^{\text {o }}=\operatorname{Bias}(\operatorname{Ir} 1+3)-\operatorname{Bias}(4)$ (counts)	$\operatorname{Sig}(2)=0.1$ (count)
$\beta_{3}^{\text {o }}=$ Ir 1 (gates)	$\operatorname{Sig}(3)=.05 \beta_{\mathrm{o}}(4)$ (gates)
$\beta_{4}^{o}=\begin{gathered} \{\mid \operatorname{Bias}(\operatorname{Ir} 1+3)-\operatorname{Bias}(\operatorname{Ir} 1-3) V \\ \text { Slope(Ir } 1)\} * 0.5 \text { (gates) } \end{gathered}$	Sig(4) $=.005 \beta_{\mathrm{o}}(4)$ (gates)
$\beta_{5}^{0}=\operatorname{Bias}(\operatorname{Ir} 2+3)-\operatorname{Bias}(\operatorname{Ir} 1+3)$ (counts)	$\mathrm{Sig}(5)=0.1$ (count)
$\beta_{6}^{\mathrm{o}}=\mathrm{Ir} 2$ (gates)	Sig(6) $=.05 \beta_{0}(7)$ (gates)
$\beta_{7}^{\circ}=\underset{\substack{\text { Slope(Ir2) }\} \text { (gates) }}}{\{[\text { Bias(Ir2 } 2+3) \text { Bias (Ir2-3) }}$	$\mathrm{Sig}(7)=.005 \beta_{\mathrm{o}}(7)$ (gates)
$\beta_{8}^{0}=0.0$ (count/gate)	$\mathrm{Sig}(8)=.01$ (count/gate)
$\beta_{9}^{0}=0.0$ (count/gate)	$\mathrm{Sig}(9)=.01$ (count/gate)

where

Ir l is the predicted gate corresponding to the mid-point of the first leading edge

Ir2 is the predicted gate corresponding to the mid-point of the second leading edge.

2.1.4.3 Calculating the Weight Matrix, w

The weight associated with each observation, wt_{l}, is selected to optimize the fit in the vicinity of the leading edge.

$$
\begin{equation*}
\mathrm{wt}_{1}=1+\mathrm{K}_{1} *\left\lfloor\exp \left(\mathrm{~K}_{2}\right)+\mathrm{K}_{3}\right] \tag{2.44}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{K}_{1} & =\left(\mathrm{I}_{\text {ter }}-1\right) * 0.5 \\
\mathrm{I}_{\mathrm{ter}} & =\text { iteration number } \\
\mathrm{K}_{2} & =\mathrm{T}_{\mathrm{c}}+0.5 \\
& =\operatorname{Min}\left(\mathrm{K}_{2}, 60\right) \\
& =\operatorname{Max}\left(\mathrm{K}_{2}, 1\right) \\
\mathrm{T}_{\mathrm{c}} & =\mathrm{X}_{1}-\beta_{3}-\operatorname{Max}\left(5.0, \beta_{4}\right) \text { for 5-parameter function }
\end{aligned}
$$

$=X_{1}-\beta_{6}-\operatorname{Max}\left(5.0, \beta_{7}\right)$ for 9-parameter function
$\mathrm{X}_{1}=$ gate number of the ith observation
for the five-parameter function

$$
\begin{aligned}
\mathrm{K}_{3} & =0 \text { for }\left|\mathrm{T}_{\mathrm{c}}\right| \geq 2.0 \\
& =1 \text { for }\left|\mathrm{T}_{\mathrm{c}}\right|<2.0
\end{aligned}
$$

for the nine-parameter function

$$
\begin{aligned}
\mathrm{K}_{3} & =0 \text { for }\left|\mathrm{T}_{\mathrm{c}}\right| \geq 5.0 \\
& =1 \text { for }\left|\mathrm{T}_{\mathrm{c}}\right|<5.0 .
\end{aligned}
$$

2.1.4.4 Calculating the Covariance Matrix, V_{o}

A priori values of V_{o} are calculated from the sigmas in equations (2.42) and (2.43) as follows:

$$
\begin{align*}
w_{\mathrm{t}_{\beta_{\mathrm{j}}}} & =w \text { scale/Sig(j) })^{2} \tag{2.45}\\
w \text { scale } & =1+.6 * \mathrm{~K} * \mathrm{H} 1 / 3 /(120 * \mathrm{~g} 2 \mathrm{~m}) \tag{2.46}\\
\mathrm{H} 1 / 3 & =1.875 * \beta_{4} \\
\mathrm{~K} & =4
\end{align*}
$$

Using the function, w scale, causes the initial estimate information to have a greater effect on the solution when the rise time is large.

After each iteration, n, the values of $\operatorname{Sig}(3), \operatorname{Sig}(4)$ and K are altered as follows:

$$
\begin{aligned}
& \operatorname{Sig}(3)=\operatorname{Sig}(3)_{n-1} * 0.1 \\
& \operatorname{Sig}(4)=\operatorname{Sig}(4)_{n-1} * 10.0
\end{aligned}
$$

$$
\mathrm{K}=\mathrm{K}_{\mathrm{n}-1}+.5
$$

This has the effect of weighting the current best estimate of the leading edge position more and the rise time of the leading edge less. This has proven to speed up convergence.

2.1.4.5 Method of Iteration

An interative scheme is used starting out with the initial estimate of the β parameters. The Bayesian least-squares method is then used to solve for another set of β parameters that better fits the data. Iterations are performed always using the current set for the best estimate until $\Delta \mathrm{H}_{\text {ret }}$, as calculated from $\beta_{3}(2.1)$, converges to within 10 cm or the number of iterations exceeds 7.

Each succeeding set of β parameters is checked for reasonableness using these criteria:

$$
\begin{aligned}
& 0.0<\beta_{2} \\
& 0.0<\beta_{3}<60.0 \\
& 0.0<\beta_{4} \\
& \beta_{3}<\beta_{6}<60.0 \\
& 0.0<\beta_{7}
\end{aligned}
$$

If any of the criteria fail, then the fit is considered unsuccessful and the waveform is discarded.

After convergence or the maximum number of iterations is reached, tests are then made to assure that the values reasonably represent the return. The rms of the residuals between the waveform and the function for the portion of the waveform from gate zero to just past the top of the leading edge is calculated.

$$
\mathrm{RMS}_{\mathrm{E}}=\frac{\sum_{i=1}^{\text {Iedit }}\left(\mathrm{C}_{1}-\mathrm{m}_{\mathrm{i}}\right)^{2}}{\text { Iedit }}
$$

where

$$
\begin{aligned}
\text { Iedit } & =\beta_{3}+0.5 \beta_{4} \text { for the five-parameter function } \\
& =\beta_{6}+0.5 \beta_{7} \text { for the nine-parameter function. }
\end{aligned}
$$

If $\mathrm{RMS}_{\mathrm{E}}$ is greather than 20.0 counts then the fit is unacceptable. If the nine-parameter function is being fit and the process is unsuccessful, then the initial estimates are reset to
coincide with the initial estimates for the first leading edge and a five-parameter fit is tried. If problems occur during the five-parameter fit, the initial estimates are altered so that the leading edge position is taken as the gate, I_{r}, where Slope (I_{r}) (as defined in Section 2.1.4.2) is a maximum for the waveform. If the fit is still unsuccessful, then the waveform is discarded.

The procedures explained here and the numerical values given yield the best results to date. Wherever possible values were chosen based on theory, but many times trial and error was necessary. At the time the Seasat Greenland data were processed, the procedures and numcrical values differed slightly. There was no $\mathrm{RMS}_{\mathrm{E}}$ check as explained in the last part of Section 2.1.4.5, nor were the initial parameter values altered if an unsuccessful fit was made. The variables that were different and their values for the Greenland processing were:

$$
\begin{aligned}
\text { Thbs } & =5.0 \text { counts for the first leading edge } \\
& =10.0 \text { counts for the second leading edge } \\
\operatorname{Sig}(3) & =\beta_{0}(4) \quad \text { (for the five-parameter function) } \\
\operatorname{Sig}(4) & =0.1 \beta_{0}(4) .
\end{aligned}
$$

A direct consequence of these differences was that the entire Greenland data sct had to be visually reviewed to assure that the fit adequately represented the data. This resulted in approximately 1% of the data being discarded which would not have been rejected using newer methods. The newer methods described here identify these problems automatically.

2.2 SENSOR-RELATED CORRECTIONS

After the ice altimeter data are edited and retracked, the precise orbits from NASA/GSFC (PGS-S4) are used to calculate the measured ice shect elevation above the ellipsoid (Lerch et al., 1982). Corrections are then applied to correct for sensor-related biases.

Both the time tag and center of gravity corrections are calculated using the algorithms released by JPL (Lorell, 1979). These are summarized below.

2.2.1 Time Tag Correction

The SDR time tag, $\mathrm{t}_{\mathrm{SDR}}$, is corrected for a track mode correction and a signal travel time correction so that the resultant data time, t, refers to the time of signal reflection from the ice sheet.

$$
\begin{equation*}
\mathrm{t}=\mathrm{t}_{\mathrm{SDR}}-0.0794+\mathrm{H} / \mathrm{c} \tag{2.47}
\end{equation*}
$$

where
$\mathrm{c}=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{sec}$,
$\mathrm{H}=$ spacecraft altitude in meters, and
0.0794 is the track mode correction in seconds.

2.2.2 Center of Gravity Correction

The correction applied to make the spacecraft center of gravity the height reference point is

$$
\begin{equation*}
\Delta H_{c g}=Z_{c g}-Z_{\mathrm{cone}} \tag{2.48}
\end{equation*}
$$

where
$Z_{\mathrm{cg}}=$ the distance from the altimeter base plate to the spacecraft center of gravity. This varied during the flight due to maneuvers. Table S-07 of Lorell (1979) is used to obtain Z_{cg}
$Z_{\text {cone }}=-1.238 \mathrm{~m}$ which is the sum of the distance from the feed flange on the antenna to the base plate and a distance corresponding to a time bias in the electronic circuitry.

This correction is located in bytes 49-52 of the IDR.

2.3 ATMOSPHERIC CORRECTIONS

The measurements are corrected for ionospheric and tropospheric refraction using parameters supplied by JPL on the GDR's (Lorell et al., 1980).

2.3.1 Ionosphere Correction

The ionosphere correction for the ice data, $\Delta \mathrm{H}_{\mathrm{ION}}$, is calculated by linearly interpolating from the ionosphere corrections on the GDR's. Bytes 57-60 on the IDR contain the value of this correction. A detailed description of the algorithm used is given in Lorell et al., (1980).

2.3.2 Troposphere Correction

The wet tropospheric correction is calculated using the following equations explained in Lorell et al., (1980).

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{TROP}}^{\mathrm{WET}} ⿵ 冂=2.277^{*} 10^{-3 *} \mathrm{E}_{\mathrm{o}}\left(1.25503 / \mathrm{T}_{\mathrm{K}}+0.5\right) \tag{2.49}
\end{equation*}
$$

where

$$
\mathrm{E}_{\mathrm{o}}=6.11 * \mathrm{H}_{\mathrm{R}}^{*} 10^{\left(7.5^{*} \mathrm{~T}_{\mathrm{K}}-273.16\right) /\left(\mathrm{T}_{\mathrm{K}}-35.86\right)}
$$

T_{K} is the surface temperature calculated by assuming a linear temperature profile with boundary conditions:
at sea level $\quad T_{K}=2.73 .0 \mathrm{~K}$
at 3200 m above sea level $\mathrm{T}_{\mathrm{K}}=243.0 \mathrm{~K}$, and
$H_{R} \quad$ is the relative humidity (assumed to be 100% over the ice sheet).

The dry tropospheric correction is calculated from the equation

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{TROP}}^{\mathrm{DRY}}, ~=2.277^{*} 10^{-3 *}\left\{\mathrm{P}^{*}\left[1.0+0.0026^{*} \cos (\phi)\right]\right\} \tag{2.50}
\end{equation*}
$$

where
$\phi=$ subsatellite latitude,
$\mathrm{P}=\mathrm{P}_{\mathrm{o}} *\left(1.0-1.1138^{*} 10^{-4} * \mathrm{Ht}\right)$,
$P_{o} \quad-\quad$ is the atmospheric pressure interpolated from the GDR's, and
$\mathrm{Ht} \quad$ - is the ice sheet elevation above sea level in meters.

The total height correction due to the troposphere is

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{TROP}}=\Delta \mathrm{H}_{\mathrm{TROP}}^{\mathrm{WET}}-2 \mathrm{H}_{\mathrm{TROP}}^{\mathrm{DRY}} \tag{2.51}
\end{equation*}
$$

The troposphere correction may be found in bytes 53-56 of the IDR.

2.4 SURFACE DYNAMIC CORRECTIONS

The solid earth tides are computed by linearly interpolating their values from the GDR's. The resultant interpolated value may be found in bytes $83-84$ of the IDR.

2.5. ORBITAL CORRECTIONS

The NASA/GSFC PGS-S4 orbits which are used to improve the height measurements, have rms radial errors of 1.5 m . In an effort to reduce the radial error of these orbits, a technique was devised to further improve the orbit accuracy by referencing the orbits to a common ocean surface. Previous attempts to adjust the orbits using crossover minimization techniques with the ice sheet crossovers proved unsuccessful due to extreme segmentation of the data (see Figure 2). The new technique is not dependent upon the ice data but upon ocean altimetry, and utilizes the smoothed Seasat 84306 global ocean surface (Marsh et al., 1986). Through crossover minimization techniques the radial orbit error for the 84306 ocean surface has been reduced to 11 cm in the open ocean areas.

The method involves obtaining the residuals between the Seasat ocean data for passes which traverse Greenland, and the smoothed 84306 ocean surface. Using least-squares minimization, these residuals are then fit to a linear or quadratic function depending on the proximity of the data to Greenland. The function is, in turn, interpolated or extrapolated to determine the value of the orbit adjustment over Greenland which is to be subtracted from the surface height. This function is of the following form:

$$
\begin{equation*}
\mathrm{f}(\mathrm{t})=\mathrm{C}_{0}+\mathrm{C}_{1} \Delta \mathrm{t}+\mathrm{C}_{2} \Delta \mathrm{t}^{2} \tag{2.52}
\end{equation*}
$$

where
C_{0}, C_{1}, C_{2} are the coefflcients of the fit where the units are meters, meters/fractions of a day and meters/(fractions of a day) ${ }^{2}$, respectively, and
$\Delta t \quad$ is the time from the start of the pass in fractions of a day.

Since this method attempts to adjust for orbit error only, the ocean data which are used must have all sensor, atmospheric, and surface dynamic corrections applied. The ocean data used in the adjustment are obtained from the Seasat Geophysical Data Records (GDR's), as corrected by JPL (Lorell et al., 1980).

Since the orbit error is strongly periodic, with a dominant frequency of two cycles per one revolution, only data from the northern hemisphere need to be used in computing the orbit adjustment over Greenland.

The distribution of the data affects the way in which the residuals are fit. To aid in categorizing the distributions of data, the northern hemisphere is subdivided into five ocean regions: 1) the area to the east of Greenland and within 1000 km . of the coast; 2) the area to the east of Greenland from 1000 km . from the coast to the Greenwich meridian; 3) the Indian Ocean; 4) the area to the west of Greenland between Greenland and North America; and 5) the Pacific Ocean (see Figure 7). The type of fit performed depends upon particular regions containing a minimum amount of data. If the criteria are not met, then no fit is performed

Figure 7 summarizes the type of fit which is performed depending upon the region(s) in which data are found. An ' X ' in regions $1,2,3$ or 5 represents a minimum of 10 points, whilc region 4, due to its limited open ocean area, requires a minimum of 19 points. Linear fits are performed when data are found either very close to Greenland or are widely separated from Greenland. Guadratic fits are performed when the data are more evenly distributed over several regions.

After the coefficients for the fit are initially determined, outlying data which satisfy the following criterion are removed:
$|\mathrm{H}(\mathrm{t})-\mathrm{f}(\mathrm{t})| \geq \mathrm{m}$ * RMS
where
is an integer editing multiplier,

RMS is the rms between the residual heights and the function $f(t)$, and
$H(t)$ is the surface elevation of the datum point.

Figure 7. Orbit Adjustment Regions and Effects of Data Distribution on the Orbit Adjustment Fit

REGIONS (MINIMUM NUMBER OF POINTS					$\begin{gathered} \text { TYPE OF } \\ \text { FIT } \\ \mathrm{L}=\text { LINEAR } \\ \mathrm{g}=\mathrm{QUADRATIC} \end{gathered}$
$\begin{gathered} 1 \\ (10) \end{gathered}$	$\begin{gathered} 2 \\ (10) \end{gathered}$	$\begin{gathered} 3 \\ (10) \end{gathered}$	$\begin{gathered} 4 \\ (19) \end{gathered}$	$\begin{gathered} 5 \\ (10) \end{gathered}$	
XX			X		L
					L
			X		L
		X		X	L
	X			X	L
X				X	8
	X	X		X	9
		X	X		9
	X		X		8

'X' INDICATES A REGION CONTAINING THE MINIMUM NUMBER OF POINTS

The remaining data are then used to solve for the function. This process is repeated until either the latest computed rms does not change by more than .02 m from the previous iteration, or 15 iterations are completed. In the case of the Seasat Greenland data, an editing multiplier of 4.0 is used with an initial rms of 20.0 m .

After solving for the coefficients and removing outliers, the function must satisfy a final test. For a linear function, the orbit adjustments are computed at the endpoints of the pass. If the absolute value of the orbit adjustment at either endpoint exceeds 3.0 m , then the function is not used. In the case of a quadratic function, the extremum of the function is first located. If the extremum is outside the endpoints of the data just fit, then the endpoints of the pass are checked as in the linear case. If the extremum lies between the endpoints, its value is checked. Again, a 3.0 m adjustment is deemed too large and if exceeded, an attempt is made to refit the data with a linear function. Of the 331 GDR passes for which an orbit adjustment was computed, 181 resulted in quadratic fits and 150 in linear fits. Of the 194 quadratic fits initially attempted, 12 failed the extremum test and were refit using a linear function. Of these, only one failed the endpoint test.

Two examples of results from the orbit adjustment procedure are shown in Figures 8 and 9. In the first case (Figure 8), data which are found in close proximity to Greenland are fit by a linear function. The latitude and east longitude of the points along the pass closest to the west and east coasts of Greenland are indicated. A linear function is fit to the smoothed ocean surface residuals. The orbit adjustment in the region traversing Greenland is indicated by dashes. Figure 9 shows the orbit adjustment results when a quadratic fit is necessary due to data being available just off Greenland's east coast and in the Pacific Ocean. The final rms between the data and function are 27 cm in the linear case and 14 cm the quadratic case.

Table 3 summarizes the orbit adjustments computed for each GDR rev at 310,320 , and 330 East Longitudes, representing the west coast, central region, and east coast of Greenland. Also included are the coefficients for the function (Equation 2.52) and the elapsed time in fractions of a day from the start point of the pass used to compute the adjustment for the longitude in question.

Utilizing Equation (2.52), the orbit adjustment is then computed for each Seasat IDR, and subtracted from the surface height. The orbit adjustment and its corresponding rms are located in bytes 93-96 and 97-100, respectively, of the IDR.
OBS HT - REF SURF HT (METERS) REV 519

SECONDS PAST START OF PASS

OBS HT - REF SURF HT (METERS) REV 158

Figure 9. Orbit Adjustment Computed From Widely Distributed Data

Application of the orbit adjustment to the data yields improved crossover results. When the differences in heights are computed at 1235 crossover locations for ascending and descending passes over Greenland, the resultant crossover residual mean of the data without the orbit adjustment is 33 cm with an rms of 1.15 m . After application of the orbit adjustment, the data give a crossover residual mean of 7 cm and an rms of 0.99 m .

2.6 SLOPE CORRECTION

The altimeter height is measured to the closest point within its footprint, which does not correspond to the subsatellite location for sloping surfaces. This effect introduces an error into the height measurement which can be corrected by adjusting either the value of the measurement or its location (Brenner et al., 1983). Upon examination of both techniques, the method which was chosen for the Seasat data is to adjust the measurement. The magnitude of the slopeinduced error may be represented by:

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{SLOPE}}=\mathrm{H}(1-\cos \alpha) \tag{2.54}
\end{equation*}
$$

where

H is the satellite altitude in meters
$\alpha \quad$ is the maximum regional surface slope in radians
or

$$
\begin{equation*}
\Delta \mathrm{H}_{\mathrm{SLOPE}}=\frac{\mathrm{H} \alpha^{2}}{2}, \text { for small } \alpha . \tag{2.55}
\end{equation*}
$$

The surface slope in Equation (2.55) for any one point is calculated using the following equation:

$$
\alpha=\sqrt{\alpha} \begin{align*}
& 2 \tag{2.56}\\
& \text { along-track }
\end{align*}+\alpha_{\text {cross-track }}^{2}
$$

where
$\alpha_{\text {along-track }} \quad$ is the slope of the surface in the along-track direction of the data, and
$\alpha_{\text {cross-track }} \quad$ is the slope of the surface in the cross-track direction of the data, perpendicular to the along-track direction.

The cross-track slope is obtained by using a reference surface of Greenland, generated from the Seasat data. This surface consists of a two-dimensional grid of heights. The spacing between grid points is 20 km . Bilinear interpolation between these grid values is used to determine the heights at the points where the cross-track intersects the closest grid lines. From these heights, the cross-track slope is then determined.

The along-track slope is obtained using the available along-track data. Since the height profile is initially unknown, an iterative procedure is used to attempt a reconstruction of the true height proflle. The initial along-track slope at a data point location is calculated by performing a linear fit to the five elevations of the along-track data points nearest the data point in question. A slope correction is then calculated for that point and each point in the pass using Equation (2.55), but applying only 25% of the correction to the elevations. This entire procedure is repeated using the revised elevations three more times, each time applying 25% of the current elevation correction. After the final iteration, the total along-track height correction and Equation (2.55) are used to calculate an "effective" along-track slope. This slope may then be used in Equation (2.56) along with the cross-track slope to calculate the total slope. In the case of both the along and cross-track slopes, a maximum of .8 degree is allowed. This is a limitation set by the physical characteristics of the altimeter.

If two points cannot be found on both sides of the point being adjusted, after having searched 10 km in both directions, then the reference grid which is used to calculate the crosstrack slope is also used to determine the along-track slope in a manner equivalent to the crosstrack slope calculation described above.

Slope corrections are not applied to the surface heights on the IDR's. However, the alongtrack and cross-track slopes, from which the slope correction may be computed, are stored in bytes $85-86$ and $87-88$, respectively. Bytes $89-90$ contain the size of the window required to find the five points to perform the along-track linear fit. Bytes $91-92$ give information pertaining to how the along-track and cross-track slopes were determined.

2.7 SUMMARY OF CORRECTIONS

In order to obtain a corrected surface elevation relative to sea level with the solid tide effects removed, the following algorithm is used.

$$
\begin{gather*}
\mathrm{H}_{\mathrm{COR}}=\mathrm{H}_{\mathrm{SC}}-\mathrm{H}_{\mathrm{ALT}}-\Delta \mathrm{H}_{\mathrm{RET}}-\Delta \mathrm{H}_{\mathrm{CG}}+\Delta \mathrm{H}_{\mathrm{ION}}+\Delta \mathrm{H}_{\mathrm{TROP}}-\Delta \mathrm{H}_{\mathrm{TIDE}} \\
-\Delta \mathrm{H}_{\mathrm{ORB}}-\Delta \mathrm{H}_{\mathrm{SLOPE}}-\mathrm{H}_{\mathrm{GEOID}} \tag{2.57}
\end{gather*}
$$

where
$\mathrm{H}_{\mathrm{SC}} \quad$ is the height of the spacecraft above the ellipsoid,
$\mathrm{H}_{\mathrm{ALT}} \quad$ is the original altimeter measurement,
$\Delta \mathrm{H}_{\mathrm{RET}} \quad$ is the retracking correction,
$\Delta \mathrm{H}_{\mathrm{CG}}$
$\Delta \mathrm{H}_{\text {ION }} \quad$ is the center of gravity correction,
$\Delta \mathrm{H}_{\mathrm{TROP}} \quad$ is the ionospheric correction,
$\Delta \mathrm{H}_{\mathrm{TIDE}} \quad$ is the value of solid tide,
$\Delta \mathrm{H}_{\mathrm{ORB}}$
$\Delta \mathrm{H}_{\mathrm{SLOPE}} \quad$ is the orbit adjustment,
$\mathrm{H}_{\mathrm{GEOID}} \quad$ is the slope correction, and

The surface elevation on the IDR is relative to the ellipsoid and is corrected for tropospheric and ionospheric effects, the center of gravity offset, the retracking correction, and the orbit adjustment when available. However, the elevation still contains solid tide effects, and the application of the slope correction or removal of the solid tides have been left to the discretion of the user. The surface elevation status word located in bytes 77-78 of the IDR should be checked to verify whether or not corrections have been applied.

Corrections which are applied to the altimeter measurement are done in the opposite sense from the surface elevation corrections and may be verified using the altimeter measurement status word in bytes 13-16 of the IDR.

An outline of the adjustments and corrections required to the Seasat data and their values or range of values is given in Table 4.

SECTION 3.0
 WAVEFORM DATA RECORDS

The averaged radar return pulses contained in the SDR's are stored on a separate file called the Waveform Data Records (WDRs) to facilitate their use. Table 5 outlines in detail the format of this record.

The time, geographical position, and altimeter measurement on the WDRs are not identical to the corresponding records on the IDRs. This is due to the fact that the WDRs information is obtained directly from the SDR's without the application of any correction or adjustment of any kind. The time differs by the time tag correction described in Section 2.2.1. Positions on the WDR are from the orbits on the SDR's and not PGS-S4 orbits. The altimeter measurement represents the raw observation on the SDR without any of the corrections described in Section 2.7 applied.

SECTION 4.0

Ordering the Seasat data merely by time presents certain limitations when only data in a particular locale are desired. This situation arises when data are used to generate a grid of smoothed surface heights. To circumvent this problem, a data base was developed which orders the Seasat data by geographical areas or "bins". Figure 10 shows the configuration of the 4,300 bins in the vicinity of Greenland. Bin sizes vary in order to compensate for the higher data density near Seasat's maximum latitude. Each bin is assigned a number starting with " 1 " in the southwestern-most corner. Bin numbers increment first from west to east and then from south to north. The ending bin number for each row is indicated in the right-most margin of the map in Figure 10, while the number of data points is printed within the appropriate bin. Bins which contain no data have no number entered. Table 6 summarizes the number of points and the rev numbers found in each bin, along with the geographical coordinates of the southwestern-most corner of the bin. The bin number in which a particular data point is located may be found in bytes 153-156 of the IDR.

The geo-referenced data base is a subset of the IDR's, containing only information relating to the position, rev number, surface height, slope correction and orbit adjustment for each data point. Slope correction and orbit adjustment values are flagged with a -9999, if unavailable. In addition, the data are ordered first by bin number and then by time within each bin. The surface elevations on this data set have the orbit adjustment applied where it was available. If the orbit adjustment was not available, (indicated by the orbit adjustment value for that record being set to -9999) then the surface elevation contains the value calculated from the unadjusted orbit. The slope correction has not been applied to any of the surface elevations.

The data base is designed to be used on a direct-access device, so that data from one or several bins may be accessed without the need to read all the records prior to the location desired. This is achieved by dividing the data base into three sections.

The first section of the data base, a header, consists of one logical record and gives a summary of its configuration: the locations of the corners of the data base, the number of latitudinal rows, the width in degrees of each of these rows, and the number of longitudinal divisions in each row. These pieces of information give the layout of the data base, as depicted in Figure 10. Information pertaining to the size of the data base, the starting record of the bin directory, and the corrections applied to the data are also contained in this header.

Figure 10. Seasat Greenland Geo-referenced Data Base Configuration

Following the header are the altimetry data ordered by bin number and, within each bin, by time. The altimetry data are subdivided into two groups for each bin which contains data. The first subgroup consists of one logical record which indicates the number of data points contained in the bin. The second subgroup consists of the actual altimetry data (position, rev number, surface height, orbit adjustment and slope correction), with each record corresponding to a data point.

The final section is a bin directory which follows the altimetry data. The bin directory starts at the logical record indicated in the data base header. The directory contains an entry for each bin, and starting with the first bin, indicates the record number in the data base (not including the header record) at which the start of the data for a particular bin may be found. Bins which contain no data have a zero entered in the directory. Table 7 summarizes the structure of the data base in greater detail.

One use of the data base is to assist the gridding program (Section 5.0) in locating and accessing all data contained within a specifled radius of a grid location. In addition, the data base may be used to locate data within any desired area. The following example demonstrates how this may be donc. The limits of a desired area are used in conjunction with the header information to determine exactly which bin numbers contain the data. Using the southernmost latitude of the desired area, along with the width of the latitude rows, establishes the southernmost row which contains the data. Longitudinal limits of the desired area are then checked in conjunction with the size and location of the longitudinal divisions in that row. When the longitude limit of the desired area for that latitudinal group is exceeded, the process starts again with the next latitude row to the north. These steps are repeated until the northernmost boundary limit of the desired area is reached.

Equipped with the bin numbers which contain the data, the directory, which gives the logical record on the direct-access disk at which each bin begins, is read. If the directory value for the bin is non-zero, this logical record is then read to determine the number of records which follow and are contained in the same bin. The subsequent data is then read for each bin.

SECTION 5.0

GRIDS

The uneven distribution of Seasat data presents problems when attempting to create computer generated contours. An intermediate step is useful which fits the data to nodes of a regular grid. Data local to each grid point are fit with a biquadratic or bilinear surface to determine the surface height at the grid point. This procedure is referred to as gridding the data. Grids are generated using the corrected and adjusted data in the geographical data base.

5.1 POLAR STEREOGRAPHIC PROJECTION

Grids of the Greenland data are generated in a tangent polar stereographic projection where the plane of projection is located at the geographic North Pole (the projection latitude) and is normal to the earth's axis. This projection is conformal which results in equality of scale about a point. Figure 1la depicts the concept behind this type of projection. A straight line is drawn from the South Pole (pole of projection), through a point on the earth's surface, 9 , to the projection plane which is tangent to the North Pole. The projection plane is in turn divided into square grids from the pole to the Equator with the North Pole at the center. Three projection parameters define the size and the orientation of the plane and the grid size:

S - a conversion factor from half-inch grids at the projection latitude to the desired grid size;
ϕ_{p} - the minimum latitude extent of the map perimeter for the projection latitude located at the North Pole; maximum latitude extent for the projection latitude located at the South Pole;

G - the Greenwich orientation in degrees

In the case of Greenland, where 20 kilometer grid cells were decided as being optimum for the data distribution, values of $S=1.65, \phi_{\mathrm{p}}=50^{\circ}$, and $\mathrm{G}=45^{\circ}$ were chosen.

These three parameters are sufficient to define a grid of the northern hemisphere, from the North Pole to 50° north latitude where the number of cells of desired size from the pole to the equator may be represented by:

Figures 1la and 1lb. Polar Stereographic Projection of Point 9 with Latitude ϕ and Longitude λ onto Plane with Map Perimeter 50°

$$
\begin{equation*}
D=\frac{2 R}{S \times 10^{6}} \tag{5.1}
\end{equation*}
$$

where R is the radius of the earth measured in one half-inch grid cells and was chosen to be consistent with polar stereographic projections described in other documentation.

The integer number of grids of desired size from the pole to the map perimeter is:

$$
\begin{equation*}
\mathrm{N}=\mathrm{D} \times \tan \frac{90-\left|\phi_{\mathrm{p}}\right|}{2} \tag{5.2}
\end{equation*}
$$

The grid, defined by I and J axes, with the origin in the upper left corner (see Figure 11b), represents the coordinate of the North Pole as:

$$
\begin{align*}
& \mathrm{Ip}=\mathrm{N}+1 \tag{5.3}\\
& \mathrm{Jp}=\mathrm{N}+1
\end{align*}
$$

Any point with latitude ϕ and longitude λ, which is located in the northern hemisphere north of ϕ_{p} is positioned at the following I, J coordinate:
$I=I N T[d x A \times \cos (X)+I p+0.5]$
$J=I N T[d x \sin (X)+J p+0.5]$
where
d is $D \times \tan \frac{90-\left|\phi_{p}\right|}{2}$
X is $\lambda+\mathrm{G}$
A is +1 if $\phi_{p} \geq 0$
A is -1 if $\phi_{p}<0$.

5.2 GRIDDING PROCEDURE

The surface height at each grid point location is calculated by fitting the surrounding data to the following biquadratic surface modeling function:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{ij}}(\lambda, \phi)=\mathrm{C}_{1_{\mathrm{ij}}}+\mathrm{C}_{2_{\mathrm{ij}}} \frac{\left(\lambda-\lambda_{\mathrm{i}}\right)}{\text { capmin }}+\mathrm{C}_{3_{\mathrm{ij}}} \frac{\left(\phi-\phi_{j}\right)}{(\operatorname{capmin})\left(\cos \phi_{\mathrm{j}}\right)} \\
& +\mathrm{C}_{4_{\mathrm{ij}}} \frac{\left(\lambda-\lambda_{i}\right)}{(\text { capmin })} \frac{\left(\phi-\phi_{j}\right)}{(\operatorname{capmin})\left(\cos \phi_{\mathrm{j}}\right)}+\mathrm{C}_{5_{i \mathrm{l}}} \frac{\left(\lambda-\lambda_{1} 1^{2}\right.}{\text { capmin }^{2}} \\
& +\mathrm{C}_{6_{1 J}} \frac{\left(\phi-\phi_{j}\right)^{2}}{\left(\cos ^{2} \phi_{j}\right)\left(\operatorname{capmin}^{2}\right)}
\end{aligned}
$$

where
$h_{i j} \quad=$ value of the surface elevation function for the $i j g r i d$ point as evaluated at the location (λ, ϕ);
$\mathrm{C}_{1_{1 \mathrm{j}}}-\mathrm{C}_{6_{\mathrm{ij}}}=$ numerically determined coefficients of the biquadratic function for grid point ij; and
$\lambda_{1} \phi_{\mathrm{j}} \quad=$ longitude and latitude of the ij grid point in deg.
capmin $\quad=$ minimum cap size in deg longitude.

A weighted least-squares method is used to solve for the coefficients $C_{1_{1 j}}-C_{6_{1 j}}$ at each grid point ij. The weighting is invoked to prevent the obliteration of the local surface details by the smoothing process, and to lend greater importance to the data closest to the grid point location. The form of the weighting function is

$$
\begin{equation*}
\mathrm{w}_{\mathrm{k}_{\mathrm{ij}}}=\frac{1}{\sigma_{\mathrm{O}_{\mathrm{k}} \mathrm{D}_{\mathrm{k}_{1 \mathrm{j}}}^{2}}^{\mathrm{N}}} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{w}_{\mathbf{k}_{\mathrm{ij}}}=\begin{array}{l}
\text { weight of the } \mathbf{k}^{\text {th }} \text { data point used in determining the coefficlents of the surface } \\
\text { function for the } i \mathrm{j} \text { grid location; }
\end{array} \\
& \sigma_{\mathrm{o}_{\mathbf{k}}}=\text { observation standard deviation of the } \mathbf{k}^{\text {th }} \text { data point; } \\
& \mathrm{N}=\text { power of inverse distance weighting; and } \\
& \mathrm{D}_{\mathrm{k}_{\mathrm{ij}}}=\text { the distance from the } \mathbf{k}^{\text {th }} \text { data point to location } \mathrm{ij},
\end{aligned}
$$

where $\quad D_{k i j}=\left\{\left[\left(\lambda_{k}-\lambda_{i}\right) \cos \phi_{k}\right]^{2}+\left(\phi_{k}-\phi_{j}\right)^{2}\right\}^{1 / 2}$
The observation standard deviation was assigned a value of 1.0 m . The power of inverse distance weighting was assigned a value of 2.0 m . The formula used for the least-squares minimization in matrix notation is

$$
\begin{equation*}
P_{i j}^{T} W_{i j} P_{i j} C_{i j}=P_{i j}^{T} W_{i j} H_{i j} \tag{5.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{C}_{1 \mathrm{j}}=\left[\mathrm{P}_{\mathrm{ij}}^{\mathrm{T}} \mathrm{~W}_{\mathrm{ij}} \mathrm{P}_{\mathrm{ij}}\right]^{-1} \mathrm{P}_{\mathrm{ij}}^{\mathrm{T}} \mathrm{~W}_{\mathrm{ij}} \mathrm{H}_{\mathrm{ij}} \tag{5.8}
\end{equation*}
$$

where

$$
\mathrm{H}_{\mathrm{ij}}=\left[\begin{array}{l}
\mathrm{h}_{1} \\
\vdots \\
\mathrm{~h}_{\mathrm{k}} \\
\vdots \\
\mathrm{~h}_{\mathrm{m}}
\end{array}\right]
$$

is the observational data set used in determination of grid point ij ;

$$
\mathrm{P}_{\mathrm{ij}}=\left[\begin{array}{ccccc}
\partial \mathrm{h}_{1} & \frac{\partial \mathrm{~h}_{1}}{} & \cdot & \cdot \frac{\partial \mathrm{~h}_{\perp}}{\partial \mathrm{C}_{6_{\mathrm{ij}}}} \\
\partial \mathrm{C}_{1_{i j}} & \frac{\partial \mathrm{C}_{2_{\mathrm{ij}}}}{} & & & \vdots \\
\vdots & & & & \vdots \\
2 \mathrm{~h}_{\mathrm{m}} & \cdot & \cdot & \cdot & \frac{2 \mathrm{~h}_{\mathrm{m}}}{\partial \mathrm{C}_{6_{\mathrm{ij}}}}
\end{array}\right]
$$

is the matrix of observational partial derivatives;

$$
c_{1 j}=\left[\begin{array}{c}
c_{1_{1 j}} \\
\vdots \\
c_{6_{1 j}}
\end{array}\right]
$$

is the set of coefficients for grid point;

$$
\mathrm{w}_{1 \mathrm{j}}=\left[\begin{array}{lllll}
\mathrm{w}_{1_{1 j}} & & & & 0 \\
& & \cdot & & \\
& & & \cdot & \\
0 & & & \cdot & w_{\mathrm{m}_{1 j}}
\end{array}\right]
$$

is the observation weighting matrix.

A solution exists for Equation (5.8) if the determinant of the normal matrix $B_{i j}=P_{i j}^{T} W_{i j} C_{i j}$ is positive. However, poor data distribution can cause ill-conditioned matrices yielding solutions that vary considerably from the expected results. One needs to be able to recognize when numerical problems occur to assure reasonable solutions. To this end the singular value decomposition (SVD) method is used to solve the matrix equation. The results of the SVD process give an indication of the stability of the equations and therefore whether a unique stable solution exists (Forsythe, Malcolm, and Moler, 1977). When the normal matrix B_{l} is used as input to SVD, three output matrices are calculated: Σ, U, and $\mathrm{V} . \Sigma$ is a diagonal matrix, such that

$$
\Sigma=\left[\begin{array}{lllll}
\sigma_{1} & & & & 0 \\
& \cdot & & & \\
& & \cdot & & \\
0 & & & & \sigma_{6}
\end{array}\right]
$$

where the σ 's are referred to as the singular values of B. The matrices U and V are used to transform the equations

$$
\mathrm{Bc}=\mathrm{y}
$$

into an equivalent diagonal set of equations

$$
\Sigma \bar{c}=\bar{y}
$$

In principle, if none of the σ 's are zero the transformed equations could be solved using

$$
\overline{\mathrm{C}}_{1}=\frac{\overline{\mathrm{y}}_{1}}{\sigma_{1}}
$$

In practice, when any of the σ 's are small, numerical instability can result, giving unreasonable answers. The key to using SVD is to set a tolerance τ which reflects the accuracy of the data and the arithmetic used. If any σ 's are less than τ times the largest σ then those corresponding
\bar{c} 's are not uniquely defined and unreasonable results can occur. When problems occur, steps must be taken to provide more information to evaluate the surface function.

Once τ is chosen, then Σ, U, and V are used in the following manner to calculate cach coefficient C_{1}.

$$
S=\sum_{j=1}^{m} U(j, i) Y_{j}
$$

for all j where $\sigma_{\mathrm{j}}>\tau$

$$
C_{1}=\sum_{k=1}^{n} \frac{S}{\sigma_{k}} V(i, k)
$$

In this study the value of τ used was .001 m . SVD is then used to determine when there are sufficient data to provide a unique solution to the surface modeling function. When a unique solution cannot be found more data are added and the function is reevaluated. At each grid location ij , data within the circular area defined by radius R from the grid location are used in the solution. Four different values for R are used: $33 \mathrm{~km}, 55 \mathrm{~km}, 88 \mathrm{~km}$, and 132 km . Initially the smallest value of R is used and if a solution cannot be found then R is increased. If the biquadratic solution at the maximum value of R is unsatisfactory according to the SVD criterion, then the function (Equation 5.5) is reduced to a bilinear function by setting coefficients C 4 through C 6 to zero. If a valid solution still cannot be found, then the grid value is considered undefined and set to -1000.0 .

Individual data point removal is also invoked during the gridding process. After finding a valid solution at location ij , the weighted rms of the residuals of the data with respect to the surface is calculated using

where

$$
\operatorname{Res}_{k l j}=h_{k}-h_{k l j}
$$

$h_{\mathrm{kij}}=\quad$ height at location of measurement k evaluated using the surface function for grid location ij.

The following inequality is then evaluated for each data point used in the solution.

$$
\begin{equation*}
\frac{\operatorname{Res}_{k y}}{\sigma_{\mathrm{O}_{\mathrm{k}} D^{N}}^{N}}<\mathrm{E}_{\text {mult }} * \mathrm{RMS}_{\mathrm{WT}_{\mathrm{ij}}} \tag{5.10}
\end{equation*}
$$

A value of the editing multiplier ($\mathrm{E}_{\text {mult }}$) equal to 3.5 is used and all data points that do not satisfy the inequality are deleted. When any data points are deleted the surface function is reevaluated using the remaining data. A minimum of 10 data points are required to solve for the function.

The standard deviation associated with the grid height, $\sigma_{\text {Gij }}$, is then calculated to determine how well the grid represents the data.

$$
\sigma_{\mathrm{GIIf}}=\mathrm{RMS}_{\mathrm{WT}_{\mathrm{ij}}} \cdot\left(\mathrm{~V}_{11} \mathrm{ij}\right)^{1 / 2} .
$$

where

$$
\mathrm{V}_{\mathrm{ij}}=\quad \mathrm{B}_{\mathrm{ij}}^{-1} \mathrm{P}_{\mathrm{ij}} \mathrm{~W}_{\mathrm{ij}}\left[\begin{array}{cccc}
\sigma_{\mathrm{o}_{1}}^{2} & & & \\
& & & \\
& \ddots & & \\
& & \ddots & \\
& & & \\
0 & & & o_{\mathrm{o}_{\mathrm{o}}}^{2}
\end{array}\right] \quad\left[\mathrm{B}_{1 \mathrm{j}}^{-1} \mathrm{P}_{\mathrm{ij}}^{\mathrm{T}} \mathrm{~W}_{\mathrm{ij}}\right] \text {. }
$$

Grid points that have a large value of σ_{G} do not represent the data as well as those that have smaller σ_{G} 's.

The format of the grid record is described in Table 8. The location, coefficients, σ_{G}, number of points used and other pertinent parameters are output for each grid point location. The user can utilize these parameters to decide the accuracy of the individual grid values.

TABLES

Table 1. Ice Data Record Description

General Characteristics:

Record Format	- variable
Record Size (bytes)	$-164+4$ for IBM record control word
Blocksize (bytes)	$-31920+4$ for IBM block control word

The first seven records of the IDR data set are 80 bytes long and contain a brief description of the contents of the file. The remaining records follow the 164 -byte format.

HEADER RECORDS

	FORTRAN Variable Type	Description
Bytes	Al	Brief description of file contents. (Comprises first seven records only)

DATA RECORDS

Bytes	FORTRAN Variable Type	Description
1-4	I*4	Satellite ID - This is the international satellite designation nnpppqq where:
		nn - last two digits of the year of launch (e.g., 197474,1969 69).
		ppp - order of launch. Example: The 25th vehicle launch in a given year is designated with $\mathrm{ppp}=025$.
		qq - component identifier (e.g., component a $\rightarrow 01$, component $\ell \rightarrow 12$, etc.).
5-6	I*2	Measurement type
		40-44 Altimeter height
		$40=$ Long pulse (GEOS data)
		$41=$ Short pulse (GEOS data)
		43 = Seasat altimetry

Table 1. Ice Data Record Description (Cont.)

Table 1. Ice Data Record Description (Cont.)

Table 1. Ice Data Record Description (Cont.)

Bytes	FORTRAN Variable \qquad Type Desc	ion	
(13-16 Cont.)	Bits	Value	Description
	14	0 1	Total tide indicator Solid and ocean tides removed from observation if found on data record Observation includes solid and ocean tides
	15	0 1	Center of gravity indicator Center of gravity correction applied to observation Center of gravity correction not applicd to observation
	16-20		Unused
	21	$\begin{gathered} 0 \\ 1 \end{gathered}$	Altimeter mode (GEOS only) Global track mode Intensive track mode
	22-27		Unused
	28	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Location indicator Over water Over land
	29	0 1	Orbit adjustment indicator Orbit adjustment has been applied to observation Orbit adjustment has not been applied to observation
	30	0 1	Slope correction indicator Slope correction has been applied to observation Slope correction has not been applied to observation
	31	0 1	Retracking correction indicator Retracking correction has been applied to observation Retracking correction has not been applied to observation

Table 1. Ice Data Record Description (Cont.)

Bytes	FORTRAN Variable \qquad	Description
17-20	I*4	Modified Julian Date (MJD) of observation Julian Date $=$ MJD +2400000.5
21-28	R*8	Fraction of day past midnight (GMT)
29-36	R*8	Altimeter range measurement in meters
37-40	R*4	Satellite latitude in degrees
41-44	R*4	Satellite east longitude in degrees
45-48	R*4	Measurement standard deviation in meters
49-52	R*4	Center of gravity correction in meters
53-56	R*4	Tropospheric refraction correction in meters
57-60	R*4	Ionospheric refraction correction in meters
61-64	R*4	GEM10-B geoid height above reference ellipsoid in meters
65-68	R*4	Total tide height above reference ellipsoid in cm .
69-72	I* 4	Rev number
73-76	I* 4	Surface height with respect to ellipsoid in cm.
77-78	$\mathrm{I}^{*} 2$	Surface height status word
		Bits Value Description
		0-8 0 Unused
		$\begin{array}{lll} 9 & 1 & \text { Slope correction applied } \\ & 0 & \text { Slope correction not applied } \end{array}$
		$\begin{array}{lll} 10 & 1 & \text { Orbit adjustment applied } \\ 0 & \text { Orbit adjustment not applied } \end{array}$
		1131 Solid tides removed 0 Solid tides not removed
		12 1 Retracking correction applied Retracking correction not applied
		$13 \begin{array}{lll}1 & \text { Center of gravity blas applied } \\ 0 & \text { Center of gravity bias not applied }\end{array}$

Table 1. Ice Data Record Description (Cont.)

$\frac{\text { Bytes }}{(77-78}$	FORTRAN Variable \qquad Type	Bits	Value	Description
		14	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Tropospheric correction applied Tropospheric correction not applied
		15	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Ionospheric correction applied Ionospheric correction not applied
79-80	I*2			
81-82	I*2	Automatic Gain Control (AGC) in dB		
83-84	I*2	Solid tides in cm.		
85-86	I*2	Tangent of along-track slope ($\times 10^{5}$)		
87-88	I*2	Tangent of cross-track slope ($\times 10^{5}$)		
89-90	I*2	Size of window used in obtaining along-track slope in meters		
91-92	I*2	Along-track and cross-track slope correction word. If all bits are zero, then slopes for slope correction were not able to be computed.		
		Bits	Value	Description
		0-9		Unused
		10	1	Along-track slope set to the maximum value of .8 degree during iterative procedure.
		11	1	Cross-track slope set to the maximum value of .8 degree.
		12	1	Along-track slope set to .8 degree after final iteration.
		13	1	Window was extended to 20 km with no point found; reference grid used to calculate alongtrack slope.
		14	1	Window had to be extended in both directions to determine along-track slope, but it is less than 20 km .
		15	1	Two adjacent points were found and used to determine along-track slope.
93-96	R*4	Orbit adjustment to 84,306 ocean surface in meters		
97-100	R*4	RMS of	rbit adju	tment fit in meters

Table 1. Ice Data Record Description (Cont.)

Table 1. Ice Data Record Description (Cont.)

Bytes	FORTRAN Variable Type	Description		
(161-162	Cont.)	Bits	Value	Description
		6	0 1	For double waveforms the retracking correction is not calculated from a weighted average of the two leading edges. For double waveforms the retracking correction is calculated from a weighted average of the two leading edges.
		7	0 1	No problem with leading edge definition of waveform Waveform not defined well enough to filter, no leading edges or too many leading edges
		8	0	No problem retracking Problem retracking
		9	0	Timing bias was not applied to time tag Timing bias applied to time tag
		10	0	Waveform not retracked Waveform retracked
	applies to water data	11	0	Whole edge retracked Leading edge retracked
		12	0	Ht correction not applied due to $\ddot{\mathrm{h}}$ Ht correction applied due to $\ddot{\mathrm{h}}$
		13	0	Attitude seastate correction not applied to h Attitude seastate correction applied to h
		14-15	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	Tracking mode 1 Tracking mode 2 Tracking mode 3 Tracking mode 4
163-164	I*2	Version number of retracking program that converted the data from SDR to IDR format		
		$\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3} \mathrm{n}_{4} \mathrm{n}_{5}$		
		$\mathrm{n}_{1} \mathrm{n}_{2}$	year	version
		$\mathrm{n}_{3} \mathrm{n}_{4}$	mon	f version
		n_{5}	poin	. of version

$\begin{aligned} & \text { REV } \\ & \text { NUMBER } \end{aligned}$	APPROXIMATE LATITUDE AND DIRECTION AT 315.0 E LONG $A=A S C E N D I N G$ $D=D E S C E N D I N G$ D = DESCENDING		$\begin{gathered} \text { STAR } \\ \text { LEAT } \end{gathered}$	$\begin{aligned} & \text { ING } \\ & \text { LONG } \\ & \text { DEG } \end{aligned}$	$\begin{gathered} \text { END } \\ \operatorname{DEGT} \mathrm{S}_{\mathrm{K}} \end{gathered}$	NC LONG DEG E	NUMBER OF PTS				$\underset{R E}{\text { BINS }}$	$\begin{aligned} & \text { THROU } \\ & \text { TRAV } \end{aligned}$	$\begin{aligned} & \text { H WHI } \\ & \text { RSES } \end{aligned}$			
805	70.53	A	68.310	327.112	71.604	304.313	447	1295	1452	1608	1685	1684	1764	1763	1762	1853
								2252	1851	1951	1950	2050	2049	2148	2147 2540	2247 2640
								2646	2738	2734	2835	2934	3032	3130	3128	3228
								3227	3226	3326	3324	3712	3811			
604	70.62	A	69.792	320.366	70.650	314.611	103	1951	2051	2050	2445	2444	2443	2641	2740	2739
	70.78	A	68.879				536	2738 1533	2838	2837						2054
848				326.476	71.336	309.603		1533 2053	21512	2152	1689	2251	2250	2350	2349	2348
								2448	2447	2547	2546	2545	2645	2644	2643	2743
								2742	2741	2841	2840	2939	2938	2937	3037	3036
								3035	3135	3134	3133	3233	3231	3331	3330	3329
								3328	3428	3427	3426	3525				
647	70.80	A	69.386	324.062	71.393	309.039	574	1689 2153	1768 2152	1857	1856	1956 2250	1955	2055 2349	2054	2053 2448
								2447	2547	2546	2545	2645	2644	2643	2743	2742
								2842	2841	2840	2939	2938	3038	3036	3035	3135
								3134	3133	3233	3231	3331	3330	3329	3328	3428
								3427	3426	3526 1534	3525 1690	3523 1769				
891	70.85	A	68.446	329.146	71.715	305.207	575	1379 2055	1535 2155	1534	21690	1769	1858	2358	2351	2056 2350
								2450	2449	2549	2548	2547	2647	2646	2645	2745
								2744	2743	2843	2842	2841	2941	2940	2939	3039
								3038	3037	3137	3136	3135	3235	3234	3332	
								3429	3428	3427	3525	3524	3624	3914		
1020	70.89	A	68.603	328.751	71.498	308.684	507	1458	1614 2155	1692	1770 2254	1768 2253	1958 2353	1957	2057 2351	2056
								2450	2449	2549	2548	2647	2646	2746	2745	2744
								2844	2843	2842	2942	2941	2940	3040	3038	3138
								3136	3236	3235	3234	3233	3332	3430	3428	3528
								3526	3625	3622						
1493	70.89	A	68.484	329.376	68.503	329.293	12	1379 1380								
1321	70.89 70.89	A	68.445 71.326	329.532 310.857	71.794	309.528	21	358	3526	3625	3624					
1235	70.89 70.89	A	71.392	310.110	71.441	309.515	13	3526	3626	3625	3624					
690	70.97	${ }_{\text {A }}$	68.590	329.348	71.790	304.691	527	1379 2354	1536 2353	1769	1959	2057	2157 2551	2156 2550	2255	2254 2649
								2648	2647	2747	2746	2745	2845	2844	2843	2943
								2942	2941	3041	3039	3139	3138	3137	3237	3334
								3333	3431	3529	3528	3625	3912			
446	70.98	A	69.127	326.991	71.388	310.684	651	1614	1771	1770	1860	1960	1959	2059	2058	2057 2452
								2451	2551	2550	2549	2649	2648	2647	2747	2746
								2846	2845	2844	2944	2943	2942	33042	33041	3040 3431
								3139 3430	3137 3529	3237 3527	3236	3235	3335	3334	3333	3431

$\begin{aligned} & \text { REV } \\ & \text { NUMBER } \end{aligned}$	APPROXIMATE LATITUDE AND DIRECTION AT 315.0 E LONG $A=A S C E N D I N G$ $D=$ DESCENDING D = DESCENDING		$\begin{gathered} \text { STARTING } \\ \text { LAT \& IONG } \\ \text { DEGN DEG E } \end{gathered}$		Table 2. Seasat IDR Greenland Catalog (Cont.)					Bins through which REV TRAVERSES								
			$\begin{gathered} \text { LAT } \\ \text { ENI } \end{gathered}$	$\begin{aligned} & \text { ING } \\ & \text { LONG } \\ & \text { DEG E } \end{aligned}$	$\begin{aligned} & \text { NUMBER } \\ & \text { OF PTS } \end{aligned}$													
401	69.95	D			71.680	330.606	68.899	309.260										
				330.606	68.899	309.260	264	3877 3053	3772 2953	3670 2952	3565 2951	3462 2851	3360 2850	3155 2849	3055	3054 2748		
								2646	2645	2442	2342	2341	2239	2849 2138	1746	2748 1745		
645	69.97	D	71.920	335.139	68.859	308.895	635	1664	1663	1580	1500	1499						
					68.859	308.895	635	4188	4086 3567	4084	4083	4082	3978	3877	3876	3874		
								3258	3257	3157	35156	3462	33154	3360 3054	3359 3053	3259		
								2952	2951	2950	2850	2849	2848	2748	2747	3052 2746		
								2646	2645	2545	2544	2543	2443	2442	2441	2341		
								2340	2240	2239	2238	2138	2137	2036	1934	1833		
846	70.00	D	71.672	330.105	68.958	309.216		1832	1746	1745	1744	1663	1581	1580	1499	1498		
					68.958	309.216	638	3876 336	3875 3359	3772	3669	3667	3564	3462	3461	3361		
								3054	3053	3052	2952	2951	2950	2850 285	2859	3154 2848		
								2748	2747	2746	2646	2645	2644	2544	2543	2848		
								2442	2441	2341	2340	2239	2238	2137	2136			
								2035	1935	1933	1833	1745	1744	1743	1663	1662		
803	70.30	D	71.960	334.170	69.319	309.108	474	1499	4184	4183	3975	3974	3972					
								3665	3662	3562	3561	3560	3559	3459	3458	3767 3457		
								3456	3356	3355	3354	3254	3253	3252	3151	3767 3150		
								2947	2946	2945	2845	2844	2843	2743	2742	2641		
	70.41	D						2640 2132	2539 1659	2538	2437	2436	2335	2234	2233	2133		
559	70.41	D	71.929	332.481	69.499	309.216	749	4182	4181	4076	3971	3766	3764	3763	3663	3662		
								3661 3454	33660	3560 3353	3559	3558	3557	3457	3456	3455		
								3148	3147	3047	3046	3045	2945	2944	2249	3149		
								2842	2841	2741	2740	2739	2639	2638	2637	2843		
								2536	2436	2435	2434	2334	2333	2232	2231	2537 2131		
760	70.58	D	71.895	330.394	70.041	311.170	617	2130 4076	2129	2029	2028	1928	1826	1739				
						31.170		3659	3658	3968	3856	3763	3762	3761	3760	3660		
								3452	3451	3351	3350	3349	3249	3248	3247	3453 3145		
								3144	3044	3043	3042	2942	2941	2940	2840	3145 2839		
								2838	2737	2635	2634	2534	2533	2432	2431	2331		
272	70.59	D	72.051	336.279	69.867	310.053	810	2330 4291	2229 4290	4228	4287							
								3970	3969	3968	3967	3867	3866	3865	3864	4072		
								3763	3762	3761	3760	3660	3659	3658	3657	3863		
								3556	3555	3554	3454	3453	3452	3451	3351	3350		
								3349	3249	3248	3247	3246	3145	3144	3044	3043		
								2635	2634	2534	2533	2432	2839	2838	2737	2736		
516	70.61	D	72.019	334.122	69.643	308571		2228	2127	2026						2229		
					69.643	308.571	731	4286 3863	4285	4183	4075	3968	3967	3866	3865	3864		
								3656	3556	3555	3554	3553	3453	3659	3658	3657		
								3350	3349	3348	3248	3247	3145	3144	3044	3043		
								3042	3041	2941	2940	2939	2839	2838	2737	3645 2635		
								2634	2534	2533	2432	2431	2228	2127	1822			

＞${ }_{\text {u }}^{\text {u }}$	a	m	N	\bigcirc	0	5	かがいけんか
W詈	$\underset{\sim}{N}$	N	$\stackrel{-}{\sim}$	$\underset{\sim}{\infty}$	M	0	N
$\frac{2}{2}$							－

品以

 NNHNOGOmw

 б曰9

mヵo

MUNNMMMNMMNMNOMMNMNMGNMMMMNNMNMMMMMNMMNNMNMMNMMMMMNMMMM

 onow

 のMow

人

	5	जmintinvtm 00000000	noty no	GGG	$\stackrel{n}{0}$		$\stackrel{\mathbf{5}}{\mathbf{5}}$		呂品	17		ng	呂吕	5	Mg
															ロロロ
	＊	cNe6OMN	NHO 0 m	O	0	17			Nm	∞					
		5060000n	1n meoo	¢	U	n	＋	∞	$\cdots \infty$	\bigcirc	け	ON	Nr		）
	\cdots	teorobomo	nmorio	omm	＊	－	＋			N	\cdots		mr	N	
		－	心Mr－to			1				N		M	－1		
			11	11					I			1	T		100
	NMNNMNMNNMMNMNOMNMMMMMNMMMMNNNMNMMNーNMMNーAMMNMMMMNMMMMNM 00														
O	NGTGM														
8	1111111111110														
	GNNO以ONG以														

LAT END LON

 MMMNMMNMNMMNMNMNMMMMMMNNMNMMMMMNNMMSNNMMMMNNMNNMAMNMNMMM

 ©000

 0000000000000000000000000000000-100-100000000000000000000

 -00000000000000m0000000000000000-100000000000000 10000000-100

 -9 -

MMNMMNNMMEMNGMNMMNMMNMMNMMMMMMMMNMNNMMMNMMMMMMMMMMNMGMMN

Table 4. Corrections To Seasat Ice Data Records

CORRECTION ADJUSTMENT	VALUE OR RANGE	MANNER IN WHICH APPLIED		SECTION IN WHICH DOCUMENTED
		TIME	SURFACE HEIGHT	
RETRACKING CORRECTION accounts for lag in tracker response	$-15 \mathrm{~m}<\Delta \mathrm{H}_{\mathrm{RET}}<15 \mathrm{~m}$	N/A	(-)	2.1
TIME BIAS accounts for track mode correction	$-7.9451 \times 10^{-2} \mathrm{~s}$	(+)	N/A	2.2.1
SIGNAL TRAVEL TIME CORRECTION	$-2.67 \times 10^{-3} \mathrm{~s}$	$(+)$	N/A	2.2.1
CENTER OF GRAVITY OFFSET adjusts measurement to s / c center of mass	$\sim 6.04 \mathrm{~m}$	N/A	(-)	2.2.2
IONOSPHERIC REFRACTION CORRECTION accounts for signal delay	$\sim 2-3 \mathrm{~cm}$	N/A	(+)	2.3.1
TROPOSPHERIC REFRACTION CORRECTION accounts for signal delay	$\sim 1.5-2.5 \mathrm{~m}$	N/A	(+)	2.3.2
SOLID TIDE removal	$\sim 2-10 \mathrm{~cm}$.	N/A	(-)	2.4
ORBIT ADJUSTMENT reduces orbit crror and references the data to a mean ocean surface	$3 \mathrm{~m} \leq \Delta \mathrm{H}_{\mathrm{ORB}} \leq 3 \mathrm{~m}$	N/A	(-)	2.5
SLOPE CORRECTION accounts for signal being returned from closest point within satellite footprint	$\mathrm{Om} \leq \Delta \mathrm{H}_{\mathrm{SLOPE}}<80 \mathrm{~m}$	N/A	(-)	2.6

Table 5. Waveform Data Record Description

General Characteristics:

$\begin{array}{ll}\text { Record Format } & - \text { variable } \\ \text { Record Size (bytes) } & -170+4 \text { for IBM record control word } \\ \text { Blocksize (bytes) } & -31842+4 \text { for IBM block control word }\end{array}$

FORTRAN
Variable
Bytes
$1-8$
9-16
17-20 R^{*}
21-24 R*4
25-28

29-32 $\mathrm{R}^{*} 4$
33-36 I*4
37-38 I*2
$39-40 \quad I * 2$
41-166 I*2
167-168

Type
R*8
R*8
R*4

R*4

I*2

Description

Fraction of day past midnight from sensor data record
Altimeter range measurement in meters from sensor data record
Satellite latitude in degrees from sensor data record
Satellite east longitude in degrees from sensor data rccord
Altitude error $\Delta \mathrm{h}$ in meters

Altitude rate error $\Delta \mathrm{h}$ in meters/sec

Modified Julian Date of observation from sensor data record
Significant wave height ($\mathrm{H} 1 / 3$) in cm .
Automatic Gain Control (AGC) in dB
Waveform counts
Word indicating original data flags

Bits Value Description
0-10 Unused

11	1	Not in track mode
12	1	Chirp/cw
13	1	Altimeter error status
14	1	Reacquisition
15	1	Acq/Trk

Table 5. Waveform Data Record Description (Cont.)

| Bytes | FORTRAN
 Variable
 Type | Description |
| :--- | :--- | :--- |\quad| Retracking status word |
| :--- |

Table 5. Waveform Data Record Description

Table 6. Seasat Greenland Geographical Data Base (Cont.)

-

NM
응 0080
-
 BIN NUMBER

$777(10)$

0	000
∞	OUNOC
N	Muthoo
-	Crnrrmo
m	MMMMM
0	-0000
0	OOOO
	-
6	66
6	-6か0

uninuminumin in unininumininininumin
 inininuminunvion 0 vo

[^0]

 $\rightarrow \underset{\sim}{N}$
\qquad
 nononomoingomonoinounonononoodinoino

 -
 BIN NUMBER

[^1]
 NNNNNNNNNNNNNNNNNNNNNNNNNNMMMMMMM

 NMMNWMNMMMMMMMMMMMM
0000000000000000000

 जMNMMMMMMMMMMMMMMMMMMNMMMMMMMMMMM
 $\infty \infty \infty \infty \infty \infty . \infty . \infty . \infty$

 - $\rightarrow \rightarrow \rightarrow$

OM

[^2]R

(

 n

R

ヘn

 NNNGNロ

-	-	-	\sim
N	m	\bigcirc	$\stackrel{\sim}{n}$
\checkmark	\checkmark		
N	Э	0	
ה	N	∞	$\stackrel{+}{0}$
\rightarrow	$\underline{\square}$	∞	$\underline{-}$

 MMMMMMMMMMMMMMMMMMMMNNNNNN
 が

REV（NUMBER PTS）									
875	2）								
1219 （	3）								
676	18）	7176	2）	12648	2）				
7176	2）	1264	2）						
7196	3）								
4756	1）								
2726	13）	516	12）	7601	8）				
5168	5）	518 （	2）	760 （	11）				
5181	4）								
559	1）	7626	10）						
8036	4）								
8036	22）								
8051	5）								
846	24）								
846	19）								
647 （	6）	8481	12）	8891	23）	10186	8）		
848 （	25）	889 （	19）	1018	15）				
4440	13）	647 （	13）	688 （	25）	8481	6）	891	16）
4441	10）	6881	18）	8916	22）	10208	21）		
4441	5）	4461	6）	6901	15）	8916	1）	1020	20）
6901	24）								
446 （	13）	6901	4）						
2451	4）	4891	14）						
4891	25）	5301	9）						
2866	21）	4896	3）	5300	24）	7746	6）		
5301	10）	774 （	25）						
5326	21）	7746	12）						
5326	20）	5736	16）	776	18）				
5736	25）	776 C	24）						
6161	3）								
8191	15）								
819 （	24）								
6591	12）	8191	3）						
10326	8）								
10326	5）								
417 （	13）	10346	6）						

볨ㅁㅁㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ웅응 ， 0000000000000000000000000

00000ののaのaのaraaのaのaのaのaのaの
 monooonthNNMmmytunnion moob MWMNNNNNNNNNNNNNNNNNNNNNMO
 0000000000000000000000000

 GNGHNNNNMMMMMMMMMMGUGUGUGG MNNNNNNNNNNNNNNNNNNNNNNNNN

r

				G~					\widehat{m}
				$\begin{aligned} & \sim \sim \\ & \text { on } \\ & \text { Th } \\ & 0 \rightarrow-1 \end{aligned}$					$\begin{aligned} & \text { C } \\ & \text { N } \\ & \mathbf{O} \\ & \end{aligned}$
			$\underset{\sim}{e}$		$\underset{\sim}{m}$				$\underset{\sim}{\text { ®ペ }}$
			$\begin{aligned} & V \\ & \text { N } \\ & \text { - } \\ & \text { - } \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { N̈ } \\ & \text { n } \end{aligned}$				
on	$\underset{\sim}{\pi}$	∞	GヘMño	GMG6もG $\mathrm{NHN} N=$	$\underset{\sim}{\mathcal{N}}$				OMOA
	$\begin{aligned} & n \\ & \underset{\infty}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & \ddots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		wonanem $\mathbf{W e m}_{\infty}^{\infty} \infty \times \infty$ $\infty \infty \infty$	$\begin{aligned} & \text { GG } \\ & \text { NN } \end{aligned}$				
$\stackrel{\sim}{3}$	SOM	$\underset{\sim}{G}$	$\underset{\sim}{\text { NAOMM }}$	か勺のすきたの HN－－			のペ	かへのべ	$\underset{\sim}{\text { MoGNOMNOM}}$
\propto	$\begin{aligned} & \sim N \\ & N \sim \\ & N \sim \end{aligned}$	甘̌ 0 ON		GunNoNm ずけMmmm 	からOMy －NMNM onnmo －		－NN $\operatorname{Hin}_{\infty}$	～ñ～ NOH心 $\infty \infty$	ぶふOO Gbana がいow
	$\underset{\sim}{G}$	ज़	OGNOGN		NHNNNM	\hat{G}	NGN:	Gm@M	GNONON NNN
	$\begin{aligned} & \text {-゙N } \\ & \text { oiv } \end{aligned}$		NへNOO げすのがo が0ッ60	ーソーンーどい亿onnowisun 	OOOONRNG ∞ がいいけvo	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \end{aligned}$			が心いい

[^3]

$1018(2)$

?	$\cdots \infty$	$\stackrel{\text { ホH}}{N}$	MON
1060 जN $\infty \uparrow \infty$	$\begin{aligned} & =\infty \\ & \infty \\ & \infty \\ & -4 \\ & 0 \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & \text { Gv } \\ & \text { Mw } \\ & \mathbf{0} 0 \end{aligned}$	$\begin{aligned} & \text { ロッO } \\ & \text { NoN } \\ & 0 \infty 0 \\ & -\infty \end{aligned}$

 MNAMNANMNM

[^4]

$\underset{\sim}{G}$	$\underset{M}{M}$
$\begin{aligned} & \sim \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\underset{\infty}{\sim}$

MNM
ーいい
$\underbrace{\infty} \times$
サー口

0
-0
$-\infty$
∞
m
N
－
0
0

	mo	$\underset{\sim}{N}$	$\underset{N}{N}$	$\underset{m-\infty}{N Q}$
－ 0 incoor जホNNONO $\infty \infty \infty$－ －$\quad 1$	$\begin{aligned} & \because \sim \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \sim \\ & \text { N } \\ & \text { N } \end{aligned}$	$\stackrel{\bullet}{\bullet}$	－
	GO		$\underset{\sim}{\wedge}$	$\begin{gathered} \rightarrow \sim M \\ \rightarrow N M \end{gathered}$
NNemboro Mmsotas $\infty \infty 000$ vじけ		$\begin{aligned} & 6 v \\ & 00 \\ & 0 \mathrm{OH} \\ & n=1 \end{aligned}$	$\begin{aligned} & \text { onc } \\ & \text { nn } \\ & \text { nin } \end{aligned}$	

MべGもべご心	̂ơ
N－NいNいのい	NN
とひールーーソ	
	O
	ONN
－OOOUNNJN	GNN

HNNN	HHMNHN N NNHNH
nnNNNNMOOO 	

	$\underset{\sim}{N}$								m			
	$\begin{gathered} \text { G} \\ M \\ \mathbf{O} \end{gathered}$								$\begin{aligned} & \underset{n}{n} \\ & \sim \\ & \sim \\ & \sim \end{aligned}$			
	ヘૂ๗ N		a						\hat{G}	\cdots		\cdots
	$\begin{aligned} & \text { WOV } \\ & \text { MOG } \\ & \text { Mro } \\ & \text { ong } \end{aligned}$		－						$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$		$\begin{aligned} & \sim \\ & N \\ & \infty \end{aligned}$
$\stackrel{\rightharpoonup}{n}$	OのMNか	$G \underset{N}{G}$	$\underset{\sim}{N}$		$\stackrel{N}{N}$				－ถ	$\underset{\sim}{\infty}$	$\underset{N}{N}$	$\begin{aligned} & \text { MOS } \\ & \text { MNO } \end{aligned}$
		Mn $0 \sim$ 0 ∞	－		$\begin{aligned} & - \\ & \infty \\ & \infty \\ & \infty \end{aligned}$						$\begin{aligned} & \underset{\sim}{n} \\ & \underset{N}{2} \end{aligned}$	
3	Momono	ONNA~	On		$\underset{\sim N}{N A}$	\cdots			ño	$\underset{\sim}{\mathrm{N}}$	๓กิกิ －NNN	$\underset{N}{\sim} \widehat{N O}_{0}^{\infty}$
\propto	AN60か 	マロッ以 ninco $\boldsymbol{n} \rightarrow \infty$			Mッシ $\infty \infty \infty$	$\begin{aligned} & \smile \\ & \underset{\infty}{n} \\ & \underset{\infty}{2} \end{aligned}$			$\begin{array}{r} \text { No } \\ \text { مNo } \\ \infty 0 \\ \text { no } \end{array}$		N゚プロ mnn mnN	
	6inninn	${\underset{N M O N}{\infty}}_{\infty}^{\infty}$	$\underset{\sim}{G}$	\cdots	ตลิ NN	べ心	$\underset{\sim}{N}$	m	$\underset{\sim}{G}$	$\underset{\sim}{\operatorname{Gin}}$	NOOOOSNOM	ANONN
	anOOO NN000 NNGGG		$\begin{aligned} & \text { Ơo } \\ & \text { ovy } \end{aligned}$	$\begin{aligned} & \sim \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { NNN } \\ & \text { NNN } \\ & \text { Nown } \end{aligned}$	$\cdots \rightarrow 0$ ∞ け	$\begin{aligned} & \text { vo } \\ & \text { b } \\ & 0 \end{aligned}$	$\begin{aligned} & \sim \\ & \text { N } \\ & \text { G } \end{aligned}$			NON NNN N －∞ M ∞ MM $\infty \infty$ 	

 H－HNNNINNNNUNUNR －

엉ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇN

 MMMMMMMMMMMMMMMMMM

 NNNMMMMMMMMMMG世ホは号

$1034($	$6)$
$875($	$22)$
$875($	$3)$
$717($	$1)$

$875(22)$
$674(22)$
$674(22)$
$674(1)$

-60
nrr

$$
889(2)
$$


```
1248(3)
```

 ON
 -N
のan
-

N NoinonMmNMoncon

 NNNMmज $\dot{\sim}$

anajoraranaramanaooo angmnangmingmnnagoveon nininoirnogaooninvivin

 Hn

	$\underset{A}{\pi}$	\hat{G}			\cdots							$\underset{\sim \rightarrow-1}{ }$	R	\hat{n}	N	$\stackrel{\square}{\square}$
	$\underset{\sim}{n} \underset{\sim}{n}$	$\underset{\sim}{N}$			ঙ্ড								－	G N －	$\stackrel{\pi}{N}$	$\stackrel{\sim}{N}$
	$\underset{\sim}{\mathcal{N}}$	$\underset{N}{N}$	$\underset{\sim}{\text { InNin }}$	$\underset{\sim}{N}$	ゴ心							6ิ¢	6	\cdots	$\stackrel{\sim}{N}$	$\underset{\sim}{7}$
		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	かんた	$$	$\begin{aligned} & \text { No } \\ & \text { NR } \end{aligned}$									－	－	N
$\stackrel{\omega}{\omega}$	$\underset{\sim}{\sim}$	$\hat{\boldsymbol{N}}$	$\underset{N}{\sim N}$	ลิNN	${\underset{N N}{N M}}^{n}$					2	N	Gิก	$\stackrel{\text { O}}{\substack{-- \\ \hline}}$	$\xrightarrow{\text { m }}$	－	$\stackrel{\sim}{\sim}$
		$\underset{\sim}{n}$			$\begin{aligned} & \text { oum } \\ & \text { inc } \end{aligned}$					$\stackrel{\text { N }}{ }$	\cdots		$\stackrel{\text { ¢ }}{\text { F }}$	－	－	－
z	mom	$\underset{N}{N}$	GூM6	$\underset{\sim}{i-\infty} \underset{\sim}{\infty}$	Nิ¢		N			\cong	\uparrow	GGO	กn	m	ก	$\stackrel{\underset{\sim}{\sim}}{ }$
\propto		$\underset{G}{G}$		$\begin{aligned} & \text { SNON } \\ & \text { ONBN } \end{aligned}$	$\begin{aligned} & \text { ־̌o } \\ & \text { inin } \end{aligned}$		¢			$\xrightarrow{-}$	－	$\begin{aligned} & \text { Con } \\ & \text { oon } \\ & \text { ont } \end{aligned}$	等	N	－	－
	Nôni		AㅇNM	$\mathfrak{j}=\underset{\sim}{\mathrm{N}}$	－2	$\underset{\sim}{\sim}$	－～ロ	m	6	ヘิ์		$\underset{N}{N}$	m		-100	an
					$\begin{aligned} & \text { NNO } \\ & \text { NNO } \end{aligned}$	Mo	$\begin{aligned} & \text { MN } \\ & \text { Mio } \\ & \infty \infty \infty \end{aligned}$	¢	$\stackrel{\sim}{N}$	$\begin{aligned} & \text { Y̌0 } \\ & \text { Nin } \end{aligned}$		$\left\{\begin{array}{l} \text { NK~ } \\ \text { SGO } \end{array}\right.$	－			

LAT-LONG SW CORNER

NUMBER PTS

IN NUMBER

ふ
$\stackrel{\infty}{\sim}$
4030
4031
4032

 HNNNMNNN NNWNNN HNNNNNNNHNNN NTN -

[^5] $71.80 \quad 318.80$ $\begin{array}{ll}0 \\ 0 \\ 0 & 0 \\ -1 & M \\ 0 & 0 \\ \infty & 0 \\ \cdots & \cdots\end{array}$ 00
00
oid
MN
OO
mo
MN 0
0
0
0
N
0
∞
\cdots
\cdots

 $\infty \infty \infty, \infty \infty \infty, \infty-\infty$,

BIN NUMBER	NUMBER PTS	LAT－LON	G SW COR					REV（NUMBER PTS）							
4088	5	71.80	334.79	14050	1）	14916	4）								
4090	10	71.80	335.59	4446	4）	12916	3）	13776	3）						
4112	5	71.90	304.40	7760	5）			1377							
4113	3	71.90	304.80	2301	2）	7768	1）								
4114	4	71.90	305.20	2736	1）	7766	3）								
4115	1	71.90	305.60	2731	1）										
4119	1	71.90	307.20	2738	1）										
4121	19	71.90	308.00	2738	8）	4170	4）	5176	7）						
4122	16	71.90	308．40	1738	2）	4608	2）	10346	2）						
4124	38	71.90	309.20	1738	$7)$	8176	12）	4601	3）	5601	7）	6036	4）	8048	9）
4125	38			847 （	5）										
	38	71.90	309.60	158 （	1）	1730	3）	2591	1）	5036	1）	6036	6）	6468	5）
4126	43	71.90	310.00	1588	4）	4600	1）	5036	1）	6468	9）	8040	17）	8476	2）
4127	53	71.90	310.40	$1034($	11）	6460	3）								
				11916	18）		3）	847	3）	8900	6）	10198	4）	11486	8）
4128	85	71.90	310.80	158 （	$15)$	4601	4）	5036	2）	6469		8476	5）	8906	4）
4129				10198	3）	11488	18）	11919	6）	12346	17）				
4130	66	71.90	311.20 311.60	4608 1586	6）	6461	1）	1019	1）	11488	3）	11916	1）	12346	3）
				8478	20）	8900	4）	10198	6）	1191 （		12346	2）	6896	
4131	51	71.90	312.00	2598	10）	6466	21）	8476	20）						
4132	170	71.90	312.40	1586	18）	2016	21）	2591	21）	4451	20）	4886	7）	5036	
				5468	9）	6461	10）	6891	11）	7901		8901	17）	10198	7）
4133	177	71.90	312.80	12346	4）										
				5460	17）	6898	18）	7901	18）	8900	17）	10196	16）	4881	19）
4134	120	71.90	313.20	2018	18）	2446	21）	4450	21）	488 C	19）	6896	19）	7908	21）
4135	136	71.90	313.60	2016	21）	2446	21）	4451	21）	488 （		5461	18）	6891	11）
4136	140	71.90	314.00	7901	21）	83336	17）			4458		488	18）	586	9）
				6320	15）	7906	17）	8336	21）	445		488	18）	5461	9）
4137	146	71.90	314.40	2018	4）	2446	21）	2876	21）	4886	21）	6320	21）	7758	16．）
4138	134	71.90	314.80	2446	21）	833 287	21）	488！	21）	6326	21）	7750	19）	7906	10）
4139	150	71.90	315.20	83338	21）										
				7756	21）	8331	21）	8766	18）	5746	5）	6320	21）	6756	2）
4140	182	71.90	315.60	1876	7）	2446	17）	2876	21）	4316	18）	4885	6）	5746	9）
4141	168	71.90	316.00	6328	21）	675 287	21）	7756 4316	21）	833 6328	21）	8768	21）		21）
			316.00	8338	21）	8760	21）	4316				675 ${ }^{\circ}$	21）	775	21）
4142	169	71.90	316.40	1876	21）	2871	21）	4310	21）	6320	22）	6751	21）	7756	21）
4143	167	71.90	316.80	8337	21）	8768	21）	$431($	21）	4740	4）				
				675	21）	7186	4）	7751	21）	8331	7）	8768	21）		
4144	182	71.90	317.20	$187($	21）	2301	16）	287 （	7）	4311	21）	4746	21）	6171	19）
4145	164	71.90	317.60	675 187	21）	718 2306	21）	7750	14）	8768 4748	21）	6171	19）	675	21）
				$718($	21）	876	21）								21）

BIN NUMBER	NUMBER PTS	LAT－LON	G SW Cor					REV（NUMBER PTS）							
4088	5	71.80	334.79	14050	1）	14916	4）								
4090	10	71.80	335.59	4446	4）	12916	3）	13776	3）						
4112	5	71.90	304.40	7760	5）			1377							
4113	3	71.90	304.80	2301	2）	7768	1）								
4114	4	71.90	305.20	2736	1）	7768	3）								
4115	1	71.90	305.60	2731	1）										
4119	1	71.90	307.20	2738	1）										
4121	19	71.90	308.00	2738	8）	4176	4）	5176	7）						
4122	16	71.90	308.40 308.80	1738	2）	4608	2）	10346	2）						
4124	38	71.90	309.20	1738	$7)$	8176	12）	4601	3）	5600	7）	6036	4）	8045	9）
4125				847 （	5）										
4125	38	71.90	309.60	1588	1）	1736	3）	2591	1）	5036	1）	6036	6）	6468	5）
4126	43	71.90	310.00	1588	4）	4600	1）	5036	1）	6468	9）	8046	17）	8475	2
4127	53	71.90	310.40	$\begin{array}{r}1034 \\ 158 \\ \hline\end{array}$	11）	6461	3）								
				11916	18）		3）	847	3）	8906	$6)$	10198	4）	11486	）
4128	85	71.90	310.80	158 （	15）	4601	4）	5036	2）	6469		8476	5）	8901	$4)$
4129				10198	3）	11488	18）	11919	6）	12346	17）				
4130	66	71.90	311.20 311.60	1586	6）	6461	1）	1019	1）	1148	3）	11916	1）	12346	3）
				8471	20）	8906	4）	10198	6）	$1191($		12346	2）	6896	
4131	51	71.90	312.00	2598	10）	6468	21）	8476	20）						
4132	170	71.90	312.40	1586	18）	2016	21）	$259($	21）	4451	20）	4886	7）	5036	8）
				5468	9）	6468	10）	6891	11）	7901		8901	17）	10196	7）
4133	177	71.90	312.80	12346	9）	2016	19）	2441	17）	2591	7）	445	20）	488 C	19）
				5466	17）	6891	18）	790 （	18）	8901	17）	10196	16）	488	19）
4134	120	71.90	313.20	12019	18）	2446	21）	445	21）	4886		6891	19）	7901	21）
4135	136	71.90	313.60	2016	21）	2446	21）	4451	21）	488 （		546 （	18）	689 （	11）
4136	140	71.90	314.00	7901	21）	8336	2）								
				6320	15）	7906	17）	8336	21）	4456	16）	4888	18）	5461	9）
4137	146	71.90	314.40	2015	4）	2440	21）	2876	21）	488 C	21）	6326	21）	7756	16．）
4138	134	71.90	314.80	2440	21）	88331	21）	488！	21）	6326					
4139	150			8336	21）								19）	906	10）
	150	71.90	315.20	2448	21）	2871	21）	4886	20）	5746	5）	6326	21）	6756	2）
4140	182	71.90	315.60	1878	21）	2446	17）		$18)$						
				6321	20）	6751	21）	7756	21）	83318	18）	4888	21）	5746	9）
4141	168	71.90	316.00	1876	21）	2876	21）	4316	21）	$632($	21）	6756	21）	775	21）
4142	169	71.90	316.40	833 187	21）	8761	21）	4310	21）	6320	22）	675	21）	775	21）
4143				8336	21）	8766	21）								
4143	167	71.90	316.80	1875	21）	2878	21）	$431($	21）	4746	4）	6176	8）	6326	18）
4144	182	71.90	317.20	6757	21）	718	16）	7750	21）	8331	21）	876% 4740	21）	6170	
4145	164			$675($ 187	21）	7180	21）	7751	14）	8768	21）				
4145	164	71.90	317.60	7878	21）	2306	21）	$431($	21）	4746	19）	617（	19）	675（	21）

BIN NUMBER	NUMBER PTS	LAT－LON	G SW Cor					REV（NUMBER PTS）							
4088	5	71.80	334.79	14050	1）	14916	4）								
4090	10	71.80	335.59	4446	4）	12916	3）	13776	3）						
4112	5	71.90	304.40	7760	5）			1377							
4113	3	71.90	304.80	2301	2）	7768	1）								
4114	4	71.90	305.20	2736	1）	7768	3）								
4115	1	71.90	305.60	2731	1）										
4119	1	71.90	307.20	2738	1）										
4121	19	71.90	308.00	2738	8）	4176	4）	5176	7）						
4122	16	71.90	308.40 308.80	1738	2）	4608	2）	10346	2）						
4124	38	71.90	309.20	1738	$7)$	8176	12）	4601	3）	5600	7）	6036	4）	8045	9）
4125				847 （	5）										
4125	38	71.90	309.60	1588	1）	1736	3）	2591	1）	5036	1）	6036	6）	6468	5）
4126	43	71.90	310.00	1588	4）	4600	1）	5036	1）	6468	9）	8046	17）	8475	2
4127	53	71.90	310.40	$\begin{array}{r}1034 \\ 158 \\ \hline\end{array}$	11）	6461	3）								
				11916	18）		3）	847	3）	8906	$6)$	10198	4）	11486	）
4128	85	71.90	310.80	158 （	15）	4601	4）	5036	2）	6469		8476	5）	8901	$4)$
4129				10198	3）	11488	18）	11919	6）	12346	17）				
4130	66	71.90	311.20 311.60	1586	6）	6461	1）	1019	1）	1148	3）	11916	1）	12346	3）
				8471	20）	8906	4）	10198	6）	$1191($		12346	2）	6896	
4131	51	71.90	312.00	2598	10）	6468	21）	8476	20）						
4132	170	71.90	312.40	1586	18）	2016	21）	$259($	21）	4451	20）	4886	7）	5036	8）
				5468	9）	6468	10）	6891	11）	7901		8901	17）	10196	7）
4133	177	71.90	312.80	12346	9）	2016	19）	2441	17）	2591	7）	445	20）	488 C	19）
				5466	17）	6891	18）	790 （	18）	8901	17）	10196	16）	488	19）
4134	120	71.90	313.20	12019	18）	2446	21）	445	21）	4886		6891	19）	7901	21）
4135	136	71.90	313.60	2016	21）	2446	21）	4451	21）	488 （		546 （	18）	689 （	11）
4136	140	71.90	314.00	7901	21）	8336	2）								
				6320	15）	7906	17）	8336	21）	4456	16）	4888	18）	5461	9）
4137	146	71.90	314.40	2015	4）	2440	21）	2876	21）	488 C	21）	6326	21）	7756	16．）
4138	134	71.90	314.80	2440	21）	88331	21）	488！	21）	6326					
4139	150			8336	21）								19）	906	10）
	150	71.90	315.20	2448	21）	2871	21）	4886	20）	5746	5）	6326	21）	6756	2）
4140	182	71.90	315.60	1878	21）	2446	17）		$18)$						
				6321	20）	6751	21）	7756	21）	83318	18）	4888	21）	5746	9）
4141	168	71.90	316.00	1876	21）	2876	21）	4316	21）	$632($	21）	6756	21）	775	21）
4142	169	71.90	316.40	833 187	21）	8761	21）	4310	21）	6320	22）	675	21）	775	21）
4143				8336	21）	8766	21）								
4143	167	71.90	316.80	1875	21）	2878	21）	$431($	21）	4746	4）	6176	8）	6326	18）
4144	182	71.90	317.20	6757	21）	718	16）	7750	21）	8331	21）	876% 4740	21）	6170	
4145	164			$675($ 187	21）	7180	21）	7751	14）	8768	21）				
4145	164	71.90	317.60	7878	21）	2306	21）	$431($	21）	4746	19）	617（	19）	675（	21）

BIN NUMBER	NUMBER PTS	LAT－LON	G SW Cor					REV（NUMBER PTS）							
4088	5	71.80	334.79	14050	1）	14916	4）								
4090	10	71.80	335.59	4446	4）	12916	3）	13776	3）						
4112	5	71.90	304.40	7760	5）			1377							
4113	3	71.90	304.80	2301	2）	7768	1）								
4114	4	71.90	305.20	2736	1）	7768	3）								
4115	1	71.90	305.60	2731	1）										
4119	1	71.90	307.20	2738	1）										
4121	19	71.90	308.00	2738	8）	4176	4）	5176	7）						
4122	16	71.90	308.40 308.80	1738	2）	4608	2）	10346	2）						
4124	38	71.90	309.20	1738	$7)$	8176	12）	4601	3）	5600	7）	6036	4）	8045	9）
4125				847 （	5）										
4125	38	71.90	309.60	1588	1）	1736	3）	2591	1）	5036	1）	6036	6）	6468	5）
4126	43	71.90	310.00	1588	4）	4600	1）	5036	1）	6468	9）	8046	17）	8475	2
4127	53	71.90	310.40	$\begin{array}{r}1034 \\ 158 \\ \hline\end{array}$	11）	6461	3）								
				11916	18）		3）	847	3）	8906	$6)$	10198	4）	11486	）
4128	85	71.90	310.80	158 （	15）	4601	4）	5036	2）	6469		8476	5）	8901	$4)$
4129				10198	3）	11488	18）	11919	6）	12346	17）				
4130	66	71.90	311.20 311.60	1586	6）	6461	1）	1019	1）	1148	3）	11916	1）	12346	3）
				8471	20）	8906	4）	10198	6）	$1191($		12346	2）	6896	
4131	51	71.90	312.00	2598	10）	6468	21）	8476	20）						
4132	170	71.90	312.40	1586	18）	2016	21）	$259($	21）	4451	20）	4886	7）	5036	8）
				5468	9）	6468	10）	6891	11）	7901		8901	17）	10196	7）
4133	177	71.90	312.80	12346	9）	2016	19）	2441	17）	2591	7）	445	20）	488 C	19）
				5466	17）	6891	18）	790 （	18）	8901	17）	10196	16）	488	19）
4134	120	71.90	313.20	12019	18）	2446	21）	445	21）	4886		6891	19）	7901	21）
4135	136	71.90	313.60	2016	21）	2446	21）	4451	21）	488 （		546 （	18）	689 （	11）
4136	140	71.90	314.00	7901	21）	8336	2）								
				6320	15）	7906	17）	8336	21）	4456	16）	4888	18）	5461	9）
4137	146	71.90	314.40	2015	4）	2440	21）	2876	21）	488 C	21）	6326	21）	7756	16．）
4138	134	71.90	314.80	2440	21）	88331	21）	488！	21）	6326					
4139	150			8336	21）								19）	906	10）
	150	71.90	315.20	2448	21）	2871	21）	4886	20）	5746	5）	6326	21）	6756	2）
4140	182	71.90	315.60	1878	21）	2446	17）		$18)$						
				6321	20）	6751	21）	7756	21）	83318	18）	4888	21）	5746	9）
4141	168	71.90	316.00	1876	21）	2876	21）	4316	21）	$632($	21）	6756	21）	775	21）
4142	169	71.90	316.40	833 187	21）	8761	21）	4310	21）	6320	22）	675	21）	775	21）
4143				8336	21）	8766	21）								
4143	167	71.90	316.80	1875	21）	2878	21）	$431($	21）	4746	4）	6176	8）	6326	18）
4144	182	71.90	317.20	6757	21）	718	16）	7750	21）	8331	21）	876% 4740	21）	6170	
4145	164			$675($ 187	21）	7180	21）	7751	14）	8768	21）				
4145	164	71.90	317.60	7878	21）	2306	21）	$431($	21）	4746	19）	617（	19）	675（	21）

a
N
n

$\stackrel{n}{n}$
$\underset{N}{n}$

 $\approx ニ 26$ Table 6．Seasat Greenland Geographical Data Base（Cont．）

```
    {ᄆNOᄋNᄋᄋNOOᄋNON
                                    O
                                0
                                O
                                O
                                0
                                NOO
                                0ッブZIE
```


$\left.\begin{array}{lll}1491(& 4\end{array}\right) \quad 1377(3)$

O

BIN NUMBER	NUMBER PTS	LAT－LON	G SW Cor					REV（NUMBER PTS）							
4088	5	71.80	334.79	14050	1）	14916	4）								
4090	10	71.80	335.59	4446	4）	12916	3）	13776	3）						
4112	5	71.90	304.40	7760	5）			1377							
4113	3	71.90	304.80	2301	2）	7768	1）								
4114	4	71.90	305.20	2736	1）	7768	3）								
4115	1	71.90	305.60	2731	1）										
4119	1	71.90	307.20	2738	1）										
4121	19	71.90	308.00	2738	8）	4176	4）	5176	7）						
4122	16	71.90	308.40 308.80	1738	2）	4608	2）	10346	2）						
4124	38	71.90	309.20	1738	$7)$	8176	12）	4601	3）	5600	7）	6036	4）	8045	9）
4125				847 （	5）										
4125	38	71.90	309.60	1588	1）	1736	3）	2591	1）	5036	1）	6036	6）	6468	5）
4126	43	71.90	310.00	1588	4）	4600	1）	5036	1）	6468	9）	8046	17）	8475	2
4127	53	71.90	310.40	$\begin{array}{r}1034 \\ 158 \\ \hline\end{array}$	11）	6461	3）								
				11916	18）		3）	847	3）	8906	$6)$	10198	4）	11486	）
4128	85	71.90	310.80	158 （	15）	4601	4）	5036	2）	6469		8476	5）	8901	$4)$
4129				10198	3）	11488	18）	11919	6）	12346	17）				
4130	66	71.90	311.20 311.60	1586	6）	6461	1）	1019	1）	1148	3）	11916	1）	12346	3）
				8471	20）	8906	4）	10198	6）	$1191($		12346	2）	6896	
4131	51	71.90	312.00	2598	10）	6468	21）	8476	20）						
4132	170	71.90	312.40	1586	18）	2016	21）	$259($	21）	4451	20）	4886	7）	5036	8）
				5468	9）	6468	10）	6891	11）	7901		8901	17）	10196	7）
4133	177	71.90	312.80	12346	9）	2016	19）	2441	17）	2591	7）	445	20）	488 C	19）
				5466	17）	6891	18）	790 （	18）	8901	17）	10196	16）	488	19）
4134	120	71.90	313.20	12019	18）	2446	21）	445	21）	4886		6891	19）	7901	21）
4135	136	71.90	313.60	2016	21）	2446	21）	4451	21）	488 （		546 （	18）	689 （	11）
4136	140	71.90	314.00	7901	21）	8336	2）								
				6320	15）	7906	17）	8336	21）	4456	16）	4888	18）	5461	9）
4137	146	71.90	314.40	2015	4）	2440	21）	2876	21）	488 C	21）	6326	21）	7756	16．）
4138	134	71.90	314.80	2440	21）	88331	21）	488！	21）	6326					
4139	150			8336	21）								19）	906	10）
	150	71.90	315.20	2448	21）	2871	21）	4886	20）	5746	5）	6326	21）	6756	2）
4140	182	71.90	315.60	1878	21）	2446	17）		$18)$						
				6321	20）	6751	21）	7756	21）	83318	18）	4888	21）	5746	9）
4141	168	71.90	316.00	1876	21）	2876	21）	4316	21）	$632($	21）	6756	21）	775	21）
4142	169	71.90	316.40	833 187	21）	8761	21）	4310	21）	6320	22）	675	21）	775	21）
4143				8336	21）	8766	21）								
4143	167	71.90	316.80	1875	21）	2878	21）	$431($	21）	4746	4）	6176	8）	6326	18）
4144	182	71.90	317.20	6757	21）	718	16）	7750	21）	8331	21）	876% 4740	21）	6170	
4145	164			$675($ 187	21）	7180	21）	7751	14）	8768	21）				
4145	164	71.90	317.60	7878	21）	2306	21）	$431($	21）	4746	19）	617（	19）	675（	21）

NUMBER PTS

IN NUMBER

 NNNNNNMMNMMMNNMMMMMMM 앵ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 MAMANMMMMANMNAMMAN

$\stackrel{\sim}{N}$	N~N	으N	$\begin{gathered} \text { HO } \\ \text { NO } \end{gathered}$	스N	AO	กิล์	$\underset{N-\infty}{\sim}$	\bigcirc	$\underset{N}{N}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	กิ	∞
			\sim			\checkmark	\checkmark	\checkmark	\sim	\checkmark	\checkmark	
nin	nn	nin	Nun	nin	nn	으우	noro	\sim	∞	∞	$\stackrel{n}{n}$	N
或へ	志N	先N	NN	NN	NN		可兑尔	J	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	N	\cdots

Table 7. Seasat Geo-referenced Data Base Header Description

Table 7. Seasat Geo-referenced Data Base Header Description (Cont.)

(477-480 Cont.)	Bits		Value	
			Description	
	27			Retracking correction applied
	28	0		Retracking correction not applied
		1		Center of gravity bias applied
	29	0		Center of gravity bias not applied
		1		Tropospheric correction applied
	30	0		Tropospheric correction not applied
		0		Ionospheric correction applied
Ionospheric correction not applied				
	31	1		Time bias applied

Table 8. Seasat Geo-referenced Data Base Description

GILE 2:	GEO-REFERENCED DATA BASE
	Record Format:
	Blocksize:
	19040 logical records correspond to one physical record

Subgroup 1: One logical record for each bin containing data

Bytes	FORTRAN Variable Type
I*4	Description
$5-32$	Indicates the number of logical records which follow which are located in the bin
Unused	

Subgroup 2: One logical record for each data point in the bin

Bytes	FORTRAN Variable Type	Description
$1-4$	I*4	North latitude of datum point in degrees ($\times 10^{6}$)
5-8	I* 4	East longitude of datum point in degrees ($\times 10^{6}$)
9-12	I* 4	Surface height relative to the ellipsoid in cm .
13-16	I* ${ }^{\text {4 }}$	Height sigma, arbitrary value of 1.0 m used ($\times 10^{5}$)
17-18	I*2	Rev number
19-20	I*2	Used for temporary flags when gridding the data
21-24	I*4	Orbit adjustment in meters ($\times 10^{5}$) (-999999999 if unavailable)
25-28	I*4	RMS of orbit adjustment in meters ($\mathrm{X} \mathrm{10}{ }^{5}$) (-999999999 if unavailable)
29-32	I* 4	Slope correction in meters ($\times 10^{5}$) (-999999999 if unavailable)

NOTE: Subgroups 1 and 2 are repeated for as many bins with data.

Table 8. Seasat Geo-referenced Data Base Description (Cont.)

Subgroup 3: Directory

Bytes	FORTRAN Variable \qquad	Description
1-4	I*4	Record number at which data for bin 1 starts
5-8	I*4	Record number at which data for bin 2 starts
9-12	I*4	Record number at which data for bin 3 starts
13-16	I*4	Record number at which data for bin 4 starts
17-20	I*4	Record number at which data for bin 5 starts
21-24	I* 4	Record number at which data for bin 6 starts
25-28	I*4	Record number at which data for bin 7 starts
29-32	I* 4	Record number at which data for bin 8 starts

NOTE: The directory contains as many 32-byte logical records as necessary to designate the record locations of all bins.

FILE 4:	ELEVATION GRID HEADER RECORD
	Record Format: One logical record corresponds to one physical record
	Blocksize:
	80 Bytes

	FORTRAN Variable
Bytes	Type

$1-4$	$I * 4$
$5-8$	$I * 4$
$9-12$	$I * 4$
$13-16$	$I * 4$
$17-20$	$I * 4$
$21-24$	

Description
Number of latitude increments in the grid for a non-polar stereographic grid (140)

Number of longitude increments in the grid for a non-polar stereographic grid (152)

Starting north latitude of grid in degrees North ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (50000000)

Starting east longitude of grid in degrees East ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (300000000)

Ending north latitude of grid in degrees North ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (73000000)

25-28 I*4
21-24 I*4

Ending east longitude of grid in degrees East ($\times 10^{6}$) (this will be approximate for a polar stereographic grid) (340000000)

Status word for data used to generate grid. A zero in any bit position indicates that the correction is not applied.

Table 9. Elevation Grid Header Description (Cont.)

Bytes	FORTRAN Variable Type	Description
29-32	I* 4	Polar stereographic grid size conversion and scaling factor from (1650000)
33-36	I* 4	The number of grids of desired size from the pole to the equator based on the grid size conversion and scaling factor ($\mathrm{x} 10^{6}$) (608754894)
37-40	I* 4	Latitude of the map perimeter in degrees North ($\times 10^{6}$) (500000000)
41-44	I*4	Greenwich orientation in degrees ($\times 10^{6}$) (450000000)
45-48	I*4	```Polar stereographic switch (1) =0,grid has constant increment in latitude and longitude =1,grid is in polar stereographic projection```
49-52	I* 4	Number of I -axis divisions to the extent of the map perimeter (445)
53-56	I*4	Number of J-axis divisions to the extent of the map perimeter (445)
57-60	I* 4	J coordinate of the projected pole (223)
61-64	I* 4	I coordinate of the projected pole (223)
65-68	I* 4	Minimum J index of the grid (166)
69-72	I* 4	Maximum J index of the grid (317)
73-76	I*4	Minimum I index of the grid (305)
77-80	I* 4	Maximum I index of the grid (444)

Table 10. Elevation Grid Description

FILE 5:	ELEVATION GRID DATA RECORD	
	Record Format: Blocksize:	10 logical records correspond to one physical record 1800 Bytes
	Variable	
Bytes	Type	Description
1-4	I* 4	Condition number of the matrix used in the least-squares solution to the function ($\times 10^{6}$)
5-8	I* 4	Capsize in degrees latitude - radius from grid location defining area from which data was used to define grid ($\times 10^{6}$)
9-12	I* 4	North latitude of grid point in degrees ($\times 10^{6}$)
13-16	I* 4	East longitude of grid point in degrees ($\times 10^{6}$)
17-20	I* 4	Height values of the grid at location relative to sea level in meters ($\times 10^{5}$)
21-24	I* 4	Number of data values that were used to calculate grid value
25-28	I* 4	Number of parameters used to define function, NPT, (equals 0 , 3, or 6)
29-52	I* 4	Six gridding function coefficients. If NPT is <6 then the rest of the coefficients are initialized to zero. ($\times 10^{5}$)
53-76	I* 4	Set of null coefficients associated with any negligible singular values (sce SVD reference). If NPT is <6 then rest of coefficients are initialized to zero ($\times 10^{6}$)
77-80	I*4	Distance in km from grid locations to closest data point ($\times 10^{6}$)
81-84	I*4	North latitude of closest data point to grid location in degrees ($\times 10^{6}$)
85-88	I* 4	East longitude of closest data point to grid location in degrees ($\times 10^{6}$)
89-92	I*4	Height associated with closest data point to grid location in meters ($\mathrm{x} 10^{5}$)
93-96	I*4	Standard deviation of the data with respect to the gridding function in meters ($\times 10^{6}$)
97-180	1*4	Correlation matrix from solution. This is a symmetrical 6×6 matrix so only the upper triangular portion is stored. The order of storage is elements $1-6$ are the first row elements, $7-11$ columns $2-6$ of second row etc. ($\times 10^{5}$)

NOTE: Ten of the above-mentioned 180-byte logical records make up one block of data.

REFERENCES

1. Brenner, A.C., R.A. Bindschadler, R.H. Thomas, H.J. Zwally, Slope-Induced Errors in Radar Altimetry Over Continental Ice Sheets, Journal of Geophysical Research, Vol. 88, 1617-1623, 1983.
2. Forsythe, George E., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall Inc., 1977.
3. Gundestrup, N.S., R.A. Bindschadler, H.J. Zwally, Seasat Measurements Verified on a 3-D Ice Sheet, Annals of Glactology 5, 1986.
4. Lame, D.B., G.H. Born, J.A. Dunne, A.J. Spear, C.A. Yamarone, Seasat Performance Evaluation: The First Two Steps, IEEE Journal of Oceanic Engineering, Vol. OE-5, No. 2, 72-73, April 1980.
5. Lame, D.B., G.H. Born, Seasat Measurement System Evaluation: Achicvements and Limitations, Journal of Gcophysical Research, Vol. 87, No. C5, 3175-3178, April 30, 1982.
6. Lerch, F.J., J.G. Marsh, S.M. Klosko, R.G. Williamson, Gravity Model Improvement for Seasat, Journal of Geophysical Research, Vol. 87, (C5), 3281-3296, 1982.
7. Lorell, J., M.E. Parke, J.F. Scott, Seasat Geophysical Data Record (GDR) Users Handbook (Altimeter), Doc. 622-97, Revision A, Jet Propulsion Lab., Pasadena, CA, 1980.
8. Lorell, J., Seasat Algorithm Development Facility Altimeter Sensor Algorithm Specifications, Doc. 622-202, Jet Propulsion Lab., Pasadena, CA, June 1979.
9. MacArthur, J.L., Scasat-A Radar Altimeter Design Description, The Johns Hopkins University Applied Physics Laboratory, Doc. SDO-5232, Nov. 1978.
10. Marsh, J.G., A.C. Brenner, B.D. Beckley, T.V. Martin, Global Mean Sca Surface Based Upon the Seasat Altimeter Data, Journal of Geophysical Research, Vol. 91, 3501-3506, 1986.
11. Martin, T.V., H.J. Źwally, A.C. Brenner, R.A. Bindschadler, Analysis and Retracking of Continental Ice Sheet Radar Altimeter Waveforms, Journal of Geophysical Research, Vol. 88, 1608-1616, 1983.
12. Martin, T.V., W.F. Eddy, A.C. Brenner, B. Rosen, J. McCarthy, GEODYN System Description Volume I, Prepared by EG\&G WASC under contract NAS 5-22849, Feb., 1980.
13. Miller, L.S., and G.S. Brown, Engineering Studies Related to the GEOS-C Radar Altimeter, NASA CR-137462, 1974.
14. Moritz, H., Geodetic Reference System 1980, Bulletin of Geodesy, Vol. 54, 395-408, 1980.
15. Tapley, B.D., G.H. Born, M.E. Parke, The Seasat Altimeter Data and Its Accuracy Assessment, Journal of Geophysical Research, Vol. 87, No. C5, 3179-3188, April 30, 1982.
16. Townsend, W.F., An Initial Assessment of the Performance Achieved by the Seasat-1 Radan Altimeter, IEEE Journal of Oceanic Engineering, Vol. OE-5, No. 2, 80-92. April 1980.
17. Thomas, R.H., T.V. Martin, H.J. Zwally, Mapping Ice-Sheet Margins from Radar Altimetry Data, Annals of Glaciology 4, 283-288, 1983.
18. Zwally, H.J., R.A. Bindschadler, A.C. Brenner, T.V. Martin, R.H. Thomas, Surface Elevation Contours of Greenland and Antarctic Ice Sheets, Journal of Geophysical Rescarch, Vol. 88, 1589-1596, 1983.

Report Documentation Page		
1. Report No. NASA RP-1233, Vol.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Satellite Radar Altimetry Over Ice Volume 1 - Processing and Corrections of Seasat Data Over Greenland		5. Report Date \qquad 6. Performing Organization Code 671.0
7. Author(s) H. Jay Zwally, Anita C. Brenner, Judith A. Major, Thomas V. Martin, and Robert A. Bindschadier		8. Performing Organization Report No. 89800239
9. Performing Organization Name and Address Goddard Space Flight Center Greenbelt, Maryland 20771 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546-0001		11. Contract or Grant No.
		13. Type of Report and Period Covered \qquad 14. Sponsoring Agency Code
```15. Supplementary Notes H. Jay Zwally - Oceans and Ice Branch, NASA-GSFC, Greenbelt, MD; Anita C. Brenner and Judith A. Major - ST Systems Corporation, 4400 Forbes Blvd., Lanham, MD; Thomas V. Martin - Van Martin Consulting, Inc., P.O. Box 2203, Rockville, MD; Robert A. Bindschadler - Oceans and Ice Branch, NASA-GSFC, Greenbelt, MD.```		
16. Abstract   The data processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented in this first volume of a series. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given. The various levels of ice data sets are described in this report, but the user is referred to Volumes 2 (Greenland) and 4 (Antarctica) for more detailed descriptions of the gridded elevation data sets and the geo-referenced data bases.		
17. Key Words (Suggested by Author(s)) 18. Distribution Statement   Radar Altimetry, Ice Sheets, Sea Ice, Unclassified - Unlimited   Data Processing, Retracking Algorithm,    Seasat Subject Catego		
19. Security Classif. (of this report)   Unclassified	20. Security Classif. (of this page)   Unclassified	21. No. of pages 22. Price   156 A08

ALTIMETER ..... 1, 3-5, 9-11, 18, 27, 28, 36-39, 41, 57, 58, 60, 61, 89, 136, 143, 144CENTER OF GRAVITY--see CORRECTIONSCORRECTIONS--
center of gravity ..... $27,28,38,60,61,88,137,140$
ionosphere ..... $28,38,59,61,62,88,137,140$
orbit $.1-3,27,30-36,38,43,60,61,83-87,88,136,138,140$
retracking $1,2-5,7,10,11,15,38,60,61,63,64,88,90,137,140$
slope $.2,4,36-38,43,60-62,88,136,138,140$
time-tag $.27,41,64,88,91$
troposphere $28,29,38,59,61,62,88,137,140$
CROSSOVERS ..... 30, 36
DATA RECORDS--
Geophysical ..... $1,2,4,5,28-30,33$
lce $.2,4,5,10,28-30,33,37,38,41,43,57-64,65-82$
Sensor ..... $1,2,4,5,10,27,28,41,63,64,90$
Waveform ..... $2,4,41,63,89-91$
ELLIPSOID ..... $.4,5,27,38,61,136$
GEOID ..... $.4,5,38,61$
GEOPHYSICAL DATA RECORDS (GDR's)--see DATA RECORDSGEO-REFERENCED DATA BASE1, 2, 4, 43-46, 136-139
geographical bins 43-46, 63, 138-139
GRIDS--
procedure ..... 43, 46-48, 50-54, 140-142
projection ..... 47-49, 140-142
ICE--
sea ..... $.1,3,7,10,11$
sheets ..... $1-3,5,7,9,10,18,22,27,29,30$
shelves ..... 7,10-12
ICE DATA RECORDS (IDR's)--see DATA RECORDSIONOSPHERE--see CORRECTIONSOCEAN SURFACE (84306).......................................................... . 2, 5, 7, 30, 33, 62ORBITS--
adjustment--see CORRECTIONS
efror ..... 3, 30, 31, 88
PGS-S4 ..... 27, 30, 41
RETRACKING
correction--see CORRECTIONS
parameters ..... 5-27, 63, 90
procedure ..... 5-27
SENSOR DATA RECORDS (SDR's)--see DATA RECORDS SLOPE CORRECTION--see CORRECTIONS SOLID TIDES ..... $38,59,61,62,88,136,140$
TIME-TAG-see CORRECTIONS
TRACKING GATE7
TROPOSPHERE--see CORRECTIONS
WAVEFORM--
diffuse ..... 10, 11, 15-22
specular ..... 10, 11-15, 63, 90
WAVEFORM DATA RECORDS (WDR's)--see DATA RECORDS


National Aeronautics and
Space Administration Code NTT-4

Washington, D.C.
20546-0001

Olficial Business
Penalty tor Private Use, 5300
Washington, D.C.

SPECIAL FOURTH CLASS MAIL BOOK


[^0]:    

[^1]:    - NoognmumogonNMung - ㄷNNNNNNinNovNNNNNNN NNNNNNNNNNNNNNNNN

[^2]:    
    
    

[^3]:    

[^4]:    
    
    

[^5]:     No $\stackrel{\square}{0}$ -
    

