
J_)
J_ _J

v

N90- 20657

Binary Space Partitioning Trees and Their Uses

By: Bradley N. Bell

Barrios Technology Inc.

1331 Gemini

Houston, Texas 77058

ABSTRACT

Binary Space Partitioning (BSP)

Trees have some qualities that make

them useful in solving many graphics

related problems. The purpose of

this paper is to describe what a BSP

tree is, and how it can be used to

solve the problem of hidden surface

removal, and constructive solid

geometry. The BSP tree is based on

the idea that a plane acting as a

divider subdivides space into two

parts with one being on the positive

side and the other on the negative.

A polygonal solid is then

represented as the volume defined by

the collective interior half spaces

of the solid's bounding surfaces.

The nature of how the tree is

organized lends it self well for

sorting polygons relative to an

arbitrary point in 3 space. The

speed at which the tree can be

traversed for depth sorting is fast

enough to provide hidden surface

removal at interactive speeds. The

fact that a BSP tree actually

represents a polygonal solid as a

bounded volume also makes it quite

useful in performing the boolean

operations used in constructive

solid geometry. Do to the nature of

the BSP tree polygons can be

classified as they are subdivided.

The ability to classify polygons as

they are subdivided can enhance the

simplicity of implementing

constructive solid geometry.

INTRODUCTION

The goal of this paper is

explain what a Binary Space

Partitioning (BSP) tree is and how

it can be used to depth sort

polygons and perform boolean

operations on polyhyedra. Depth

sorting of polygons is a technique

that has been widely used on

personal computers to provide hidden

surface removal. With the use of a

BSP tree polygons can be sorted fast

enough to support the interactive

display of shaded polygons with

hidden surfaces removed even on a

personal computer. Also BSP trees

can be employed to solve the problem

of Constructive Solid Geometry

(CSG) . CSG, which is implemented in

many model builders, provides the

capability to describe complex

objects as the intersection, union,

and/or difference of simpler

primitives. To understand how to

use a BSP tree it is important that

we have a clear idea of what one is.

BSP TREES

A Binary Space Partitioning

(BSP) tree is a data structure that

represents the partitioning of space

where each branching node represents

a plane that divides the space it

occupies into two parts and each

leaf represents either a polygon

(for depth sorting) or a bounded

volume (for boolean operations).

Given any point in space polygons

can be sorted far to near or near to

far by using a simple but

mathematically determined traversal

of the tree. Boolean operations on

polyhedron can be performed by

cutting the polygonal representation

of one operand by the BSP

representation of the other.

BUILDING BSP TREE

TO DEPTH SORT POLYGONS

In order to use a BSP tree to

depth sort polygons the tree can be

constructed by using the polygons

themselves as planes that subdivide

space. This can be accomplished by

39

https://ntrs.nasa.gov/search.jsp?R=19900011341 2020-03-19T22:52:40+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42824289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

first determining the data structure

needed to define a node in the tree.

The following is used as an example.

typedef struct node

{
float A, B, C, D;

POLYGON *p__poly;

struct node *p_front;

struct node *p back;

}
NODE;

Note: It is convenient to use

the sign of the value returned from

the plane equation when determining

if a point is in front or in back of

the plane.

Here the node contains the

polygon's plane equation

coefficients, a pointer to the

polygon representing the sub-

dividing plane, and two pointers to

nodes that represent the space in

front and the space in back of this

polygon. Well use a box to
illustrate how the tree would be

constructed (fig. 2)°

BOX WITH

SUBDIVIDING PLANES SHOWN

F

< +---I---+ >

F 4 B B 2 F

i B I
< +---3---+

F f
I
I

E I

BSP TREE OF BOX

FRONT< >BACK

1

/ \
2

/ \
3

/ \
4

/ \

F = Front side of polygon

B = Back side of polygon

E = Example Eye point

(fig. 2)

Where the numbers are used to

identify the polygons that make up

40

the box. We'll start with a group

of polygons at the root of the tree.

Then selecting polygon number I, we

will divide the remaining polygons

into two groups one representing the

polygons in front and the other

representing the polygons in back.

In this example all of the polygons

are on the back side of the first

polygon. Next we will select a

polygon from each group which will

be used to subdivide its group in

much the same way as we did the root

of the tree, and when a group of

polygons contains only one polygon
then that branch of the tree is

completed. Once the tree has been

built a simple but mathematical

traversal of the tree can be

performed to determine which order

to display the polygons in so that

the nearest one gets drawn last.

SORTING FROM FAR TO NEAR

To begin sorting polygons from

far to near start by entering the

eye point into the plane equation of

the root node to determine which

side of the polygon the eye is on.

In (fig. 2) the eye point is shown

to be on the back side of polygon

number I. In order to sort the

polygons from back to front the half

of the tree representing the

opposite side of the polygon from

the eye must be traversed first then

the polygon in this node then the

side of the tree representing the

side of the polygon the eye is on.

So in this example we would traverse

the Front side of the tree starting

at the root before we would output

polygon number 1 after which we

would traverse the Back side of the

tree. As we traverse the tree we

perform the same eye plane test as

was done before but using the plane

equation at the node we are on in
the tree to determine which branch

of the node will be traversed first.

The tree traversal proceedure can

easily be implemented as a

recurrsive function (fig. 3 as an

example).

SORTING FROM NEAR TO FAR

To sort polygons from near to

far the process is identical except

instead of traversing the side of

the polygon that is on the opposite

side of the dividing plane first,

you traverse the side of the polygon

that the eye is on first.

ORIG_,iAL FAdE ,_5

OF POOR QUALITY

FarToNear(n, x, y, z)

NODE *n;

float x, y, z;

{
float p;

if(n)

{

p = n->A * x + n->B * y
+ n->C * z + n->D;

/* ASSUMING THE NORMAL OF

THE PLANE IS POINTING

TO FRONT HALF */

if(p < 0.0)

FarToNear(n->p_front,x,y,z) ;

else

FarToNear(p->p_back,x,y,z);

DrawPolygon(n->p__poly);

if(p > 0.0)

FarToNear (n->p_front, x, y, z) ;

else

FarToNear (n->p_back, x, y, z) ;

(fig. 3)

BOOLEAN OPERATIONS ON POLYGONAL

MODELS

One way to perform boolean

operations on polygonal models is to

use a BSP tree. This can be

accomplished by first constructing a

BSP tree representation of each

model then using the tree of one

model to subdivide the polygons of
the other model into inside and

outside components. Then depending

on the operation being performed the

pieces needed are gathered together

fromboth models to form the result.

The BSP representation however

differs slightly from the one used

to depth sort polygons.

BUILDING BSP TREE

TO PERFORM BOOLEAN OPERATIONS

The BSP tree used to perform

boolean operations is constructed in

a similar way as the one used to

depth sort polygons with the

exception that the branches of the

tree represent the division of space

into inside and outside components

with the subdividing plane

representing a polygon which is part

of the model. In order to explain

how the tree could be constructed we

need to determine what type of data

structure to use. The following is

given as an example.

41

typedef struct node

{
float A, B, C, D;

POLYGON *p_poly;

struct node *p_outside;

struct node *p_inside;

}
NODE;

Here a node in the tree

contains a plane equation, a

reference to a polygon, a pointer to

the branch of the tree representing

the outside of the volume and a

pointer to the branch representing

the inside. To construct the BSP

representation of the model we first

select a polygon from the model that

we will use as the dividing plane at

the root of the tree. We then

proceed to divide the remaining

polygons by the dividing plane at

the root of the tree into two

groups, one to the outside of the

plane and the other to the inside.

Each group represents a branch from

the root node of the tree. Next

from each group a polygon is

selected to become the dividing

plane of its group and is placed

into the appropriate node. Each

group is then subdivided by its

associated node and placed into two

separate groups again representing

the polygons to the inside and

outside of the dividing polygonal

plane. This proceedure is performed

recurrsively until their is only one

polygon left in the group which is

then placed into its own node with

both of its branch pointers set to

0. The following is given as an

example.

DIAGRAM OF SIMPLE MODEL

1

+ +

I\\\\\\l

1\\\\\\16
J\\\\\\; 5

21\\\\\\+ +

I\\\\\\\\\\\\l

1\\\\\\\\\\\\14

I\\\\\\\\\\\\1
+ +

3

KEY:

1-6

\
Polygon identification

The interior of the model

TREE REPRESENTING THE ABOVE MODEL

INSIDE< >OUTSIDE

1

/\

2

/\
3

/\
4

/\
5

/\
6

/\

Once the BSP tree has been

constructed for both operands of the

boolean operation the polygons of

each model can be subdivided by the

other model's BSP tree. To

subdivide a polygon by the BSP tree

we take the polygon and start at the

root of the tree and test to see if

the polygon is inside, outside, or

on both sides of the subdividing

plane. If the polygon is on both

sides of the subdividing plane then

it is split into two polygons with

the one representing the inside part

and the other representing the

outside part. The polygon (parts)

is (are) then tested against the

plane in the node pointed to by the

associated branch. This proceedure

is performed recurrsively until a

branch pointing to nothing is

reached at which time the polygon

(part) is given the classification

of the branch. If the polygon being

tested lies in the same plane as the

subdividing plane then a more

complex procedure is required.

First we send the whole polygon down

the inside branch of the tree. Next

we make note of the classifications

given to the resulting parts. Then

we send each part down the outside

branch of the tree. If the part

comes back with the same

classification as it did going down

the inside branch of the tree then

it is correctly classified. Should

the part get subdivided while being

passed down then the subparts that

have the same classification are

correctly classified. The the parts

that come back with a different

classification are considered as

coplaner polygons and are assigned

the classification of OPPOSITE if

the polygon's normal points in the

opposite direction as the normal of

polygon it is coplaner to otherwise

it is given the classification of

SAME. Once all of the polygons in

both operands have been classified

in this manner the resultant model

can be formed. The following table

describes for each boolean operator

which polygons are taken from each

operand to form the resulting model.

OPERATION AND I OR l -

OPERANDS A B r A B I A B

......... +..... I..... I.....
INSIDE I X X i i F

OUTSIDE J r X X i X

OPPOSITE I I I X

SAME I X r X l

= DO not use to form result

X = Use directly to form result

F = Flip normal of polygon

before using to form result

CONCLUSION

Even though Binary Space

Partitioning (BSP) trees can be used

to perform the tasks described in

this paper they are not practical

when working with models that are

highly complex. The tree tends to

grow exponentially as the model

complexity grows linearly, However

they do offer implementation

simplicity and therefore have a

useful place in software

development.

ORIGiNAl. PAGE IS

OF POOR QUALITY

42

