
\
a_) _,

/b' N90.:2067
• •

GRAPHICAL PROGRAMMING AND THE USE OF SIMULATION
FOR SPACE-BASED MANIPULATORS

Debra S. McGrath and James C. Reynolds
The MITRE Corporation

1120 NASA Road 1

Houston, TX 77058

ABSTRACT

Robotic manipulators are difficult to program even without the

special requirements of a zero-gravity environment. While
attention should be paid to investigating the usefulness of
industrial application programming methods to space
manipulators, new methods with potential application to both
environments need to be invented. These methods should

a/low various levels of autonomy and human-in-the-loop
interaction and simple, rapid switching among them. For all
methods simulation must be integrated to provide reliability

and safety. Graphical programming of manipulutors is a
candidate for an effective robot programming method despite
current limitations in input devices and displays. A research
project in task-level robot programming has built an
innovative interface to a state-of-the-art commercial simulation

and robot programming platform. The prototype demonstrates
simple augmented methods for graphical programming and
simulation which may be of particular interest to those
concerned with Space Station applications; its development

has also raised important issues for the development of more
sophisticated robot programming tools. This paper discusses
both aspects of the project.

1. INTRODUCTION

1.1 Inherent Difficulty of Robot Programming

Programming robotic manipulators for safe and reliable

execution in the face of inevitably uncertain conditions is
difficult for a number of reasons [7]. Many robots today still
provide only rudimentary control instructions that are roughly
equivalent to machine language for computers. The only

space-based robotic arm, the Remote Manipulator System
(RMS), can only be programmed, as opposed to teleoperated,

by setting the joint values. Obviously, the impossibility of
envisioning the movement of the arm by mentally solving the
forward kinematic problem makes this method unsatisfactory.

More advanced industrial manipulators provide sophisticated

control languages like VAL II or Karel with point-level
instructions and modem branching constructs for structured

programming. Most often, these languages are not used
because it is difficult for programmers to reliably envision
spatial operations and exceptions even at the point level. A
"bug" introduced off-line can have much more disastrous

effects in a robot program than, for example, in a word
processor.

Consequently, most robots are programmed with a teach
pendant. This is an easy method and appropriate for simple,

repetitive tasks. Its disadvantages are many: on the factory
floor it requires down-time; complicated tasks like assembly
are almost impossible to program; there is little if any

branching capability, especially on complex feedback from
machine vision systems or force/torque sensors. With regard
to its use in space-based robotics, this last disadvantage is
decisive. In addition, the experience of the RMS shows that

space-based manipulators are more likely needed for
complicated, "one-of-a-kind" tasks than for simple, repetitive

operations, and on the Space Station Freedom, NASA plans
to use the Flight Telerobotic Servicer (FI'S) for assembly.

1.2 Task-level Robot Programming

1.2.1 Requirements for Task-level Robot

Programming

The difficulties and limitations of current methods of

programming robotic manipulators both on Earth and in space
have motivated considerable research in developing new
methods. One line of research beginning in 1976 [13] and

continuing with impressive momentum during recent years
has the goal of developing systems that allow manipulators to
be programmed at the "task" level. An example of a space-
oriented task command is PLACE ORU-1 IN PAYLOAD-

BIN-2. A task-level robot programming system would
translate this command into a sequence of motions and
sensing operations that would reliably and safely accomplish
the task. A necessary component of such a system is a model
of the workspace and manipulator, including geometry with
tolerances, kinematics, and dynamic attributes like mass and

required forces and torques for assembly. The key challenge
to building such a system is that any model is inaccurate to
some extent, and therefore manipulator motion occurs in the
context of uncertainty [81.

1.2.2 Programming Methods Must Allow Various
Levels of Autonomy

One advantage of a task-level programming system for space-
based robotics is that it provides the building blocks for
various levels of autonomy. This is essential for the astronaut

who uses the system to control a manipulator to gain
confidence in its reliability and safety. At a lower level of
autonomy the sequence of point-level motions and sensing

operations generated by the task-level system can be
examined, simulated, or executed one at a time under close

monitoring; at a higher level of autonomy a number of task-
level commands could be combined into a more complicated

script. Using advanced ideas of augmented control [2],
teleoperation could take over at any time.

PRECEDING PACE DLf.":X "'--,,.;_ V'...;__,,:_.,_,,,_r.

165

@,jI__|NI_ENTiONkLLI BLANK

https://ntrs.nasa.gov/search.jsp?R=19900011358 2020-03-19T22:52:03+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42824272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.3 The Need for Simulation

As mentioned above, it is absolutely imperative that a robot
programming system provides simulation capabilities. The
use of simulation is as vital to programming manipulators as

the use of a symbolic debugger is vital to programming large
data manipulation applications for a conventional computer
system. Despite a long-time and often world-class emphasis
on simulation for training, NASA has not baselined
simulation capabilities for the FTS. Real-time, three-

dimensional (3D) simulation of manipulators in space is
necessary for astronauts to gain confidence in any form of
autonomous control.

1.4 Graphical Programming

All of the research at Stanford, MIT, and Carnegie Mellon in
task-level robot programming has assumed a keyboard-based
textual interface with the manipulator. Until recently this was

justified by the relatively low resolution and slow speed of
graphics workstations, and the resulting difficulty in
specifying robot motions and effects. The last few years have

demonstrated that high resolution, three-dimensional graphics
displayed in real-time can be a practical component of a
desktop-based robot programming system, while even more
revolutionary simulation capabilities like stereoscopic displays
and three-dimensional input devices are realizable in the near
future.

For space the need for non-keyboard devices to input
manipulator commands that can be simulated in real-time 3D

is even more critical. Keyboard input is simply too awkward

in zero gravity, and robot programming requires too much
knowledge of the workspace not to be facilitated by
contemporary interface components like menus and mice.

1.5 The Task-level Robot Programming Prototype

For the last year and a half the MITRE Corporation, with
initial funding from NASA, has been conducting research in
approaches to building a task-level robot programming system
(TLRPS). A prototype has been built that includes an
innovative interface to a state-of-the-art commercial simulation
and robot programming software platform (Deneb Robotics'
IGRIP) nmning on an advanced graphics workstation (Silicon
Graphics' IRIS 4DfTOGT). The interface is used to control a
Microbot Alpha manipulator performing pick-and-place and

bin-filling operations in an appropriately simple plastic blocks
world. Feedback is provided by a 2D vision system capable
of recognizing circles, triangles, and squares.

The prototype demonstrates simple augmented methods for
graphical task specification and the use of simulation for
testing commands that may be of interest to those concemed
with Space Station Freedom robotic applications. In the

course of building the prototype, limitations in today's 3D
display and non-textual input devices became apparent,
suggesting new requirements for tomorrow's applications.

2. SIMULATION

2.1 Need for Simulation on board the Space Station
Freedom

Simulation of planned RMS teleoperation is conducted
rigorously prior to Shuttle missions using world-class high

fidelity simulation facilities. Experience has shown that many
uses of the RMS were not predicted and yet were critical to
mission success. On the Space Station Freedom, over much

longer duty cycles, this may be even more true for its
manipulators. If this is the case and control of space-based

manipulators advances from continual man-in-the-loop
teleoperation to some degree of autonomy, then simulation
capabilities on board will be a necessity.

2.2 Uses of Simulation

2.2.1 Complete Simulation before Execution

This type of simulation is used today for the off-line
programming of industrial manipulators and could be used for
ground-based programming of complicated planned
manipulator operations on the Space Station Freedom. The
programmer describes the manipulator actions desired, either

at a point-level or a task-level, and then views the complete
simulation that was specified. If there are problems like joint
limits exceeded or collisions detected, the program is altered
and simulated again. From this loop of program, simulate, re-
program, will develop a correct program that can with

confidence be downloaded and executed by the actual
manipulator. This use of simulation has been implemented in
MITRE's task-level robot programming system prototype,
building on top of IGRIP's simulation and robot-specific
translation capabililies.

2.2.2 Simulation Simultaneous with Execution

The task-level robot programming system prototype uses the
simulation capability of IGRIP simultaneously with execution
by the Microbot manipulator to implement collision detection,

reachability checks, and simple grasp planning. The
simulation is run ahead of the execution by the robot so that

any actions that result in undesirable effects are not physically
carried out. This type of operation would allow continual
supervision of the manipulator without teleoperation, and it is

believed that the strain on the astronaut in a space-based
implementation would be significantly reduced. It is important
that the world model and the graphical display be updated to
reflect changes in the workspace after manipulator actions.
Ideally, this would be in real-time; in MITRE's task-level

robot programming system prototype, updates can occur only
after the task or collection of tasks is completed, and the
Microbot returns to home position.

3. GRAPHICAL PROGRAMMING

3.1 Commercial programs

The ability to graphically program a robot is limited by the

current state-of-the-art in input devices and displays.
Although true 3D displays and pointing devices are in
development, they are not widely available. We are therefore
constrained to showing a projection of a 3D scene on a 2D
graphics screen. The latest generation of graphics
workstations lets us show perspective views of 3D scenes and

even translate and rotate them in real time, but they are still
only 2D projections.

Trying to point to an arbitrary location in 3 dimensions on a
2D screen poses problems. It is difficult to determine the
dimension corresponding to depth into the scene, or distance
from the user (see Figure 1). Several methods are used to

help remedy this problem. The S-GEOMETRY 3D graphics
software from Symbolics attempts to alleviate the problem by
allowing optional cursors for selecting points [12]. These
cursors have extra lines drawn to help the user determine the

current 3D location. One cursor, the arm cursor (see Figure
2), has lines drawn from the cursor point to the intersection of

166

each of the x, y, and z planes. A second cursor, the box

cursor (see Figure 3), has lines drawn from the cursor point
to the intersection of the three planes (as in the arm cursor)
and lines drawn to the coordinate axes. Cursor motion in
combination with mouse buttons determine the 3D motion of

the point. Even with these methods, accurately specifying a
3D location requires concentration and can be difficult if the
screen is cluttered with objects.

Figure 1 - Crosshair Cursor

Figure 2 - Arm Cursor

Figure 3 - Box Cursor

Commercially available robot programming and simulation
packages typically allow the user to program the robot by
specifying a desired position and orientation for the

manipulator's toolpoint. The toolpoint is most often the tip of
the robot gripper and its position and orientation in space is
called a "pose". A pose can be specified by giving the x, y,

and z coordinates and the yaw, pitch, and roll angles or by
selecting predefined locations in the robot's workspace.
These predefined, named location are called tagpoints or
reference frames by the various robot programming packages
[3, 4, 9]. To avoid the 3D pointing problems mentioned

above, the tagpoints are defined in advance by specifying
coordinates or by aligning a new coordinate system with

components of objects in the workspace. Thus a tagpoint can
be coincident with the local origin of an object or aligned with
a vertex, for example. The robot programming package can
perform the inverse kinematics to translate a pose into a set of
joint angles, or a configuration, for the specific robot. Motion

between configurations can be constrained to be a straight line
in cartesian space or can be joint-interpolated, meaning the
joint angles will change linearly between configurations but
the resulting path of the toolpoint will be curved.

Robot programming and simulation packages generally
provide a Pascal-like language in which robot programs can

be written and simulated. Figure 4 is an example of a
program written in GSL, the programming language in IGRIP
from Deneb Robotics. These languages are robot-independent
and are therefore ideal for prototyping and simulation, where

different manipulators may be tested. If a translator is
available, the programs in these language can be translated
into the language understood by the robot controller hardware

or software. For example, the program in Figure 4 can be
converted to a form that a Microbot Alpha I robot can use, as
in Figure 5. It is obvious that programs written in the high-

level languages are much easier to write, test, and debug than
are robot-specific programs.

program moveit

..

VAR

round cap_l_l, pos_l: POSITION

..

begin

UNITS = ENGLISH

Smotype = JOINT

move link 6 by 50 relative nosimul

move near round cap_l_l by 3

move to round_cap_l_l

move link 6 by -30 relative nosimul

grab round_cap_l_l at link 6

move away 3

move near pos_l by 3

move to pos 1

release round_cap_l 1

move link 6 by 30 relative nosimul

move away 3

move home

move link 1 by 60 relative nosimul

end moveit

Figure 4. GSL Program

167

IGRIP also has a menu-driven graphical robot programming
capability, which provides an interactive method of producing
GSL programs [4]. Menus provide the ability to set up
parameters and choose manipulator motion commands. When

a motion "move to tagpoint" type command is chosen, the
user has the option of pointing to tagpoints on the screen or
choosing the named point from a list, as well as keying in the
name. Motion commands are carried out by the simulated
robot as they are specified. An entire robot program can be

generated in this manner and then tested, translated, and
downloaded to the actual manipulator for execution.
However, because this programming is at the point level, the

use of menus can become tedious compared to simply writing
the program directly in GSL.

!STEP

!STEP

!STEP

!STEP

!STEP

!STEP

!STEP

!STEP

!STEP

!STEP

!STEP

199 0,0,0,0,0,I136

199 -1345,815,503,1025,623,503

199 0,390,176,0,0,176

199 0,0,0,0,0,-681

199 0,-390,-176,0,0,-176

199 -690,693,-408,-431,431,-408

199 0,415,50,0,0,50

199 0,0,0,0,0,681

199 0,-415,-50,0,0,-50

199 690,-1515,-98,-595,-1057,-1234

199r1351¢0¢0t0f0r0

Figure 5. Microbot Alpha Program

3.2 TLRPS prototype and extensions

3.2.1 Specifying parts

An important step up from manually creating a robot program

by specifying individual points on the manipulator's path is
the ability to specify the objects to be manipulated and their
goal positions, with an appropriate path automatically
generated. This is the capability that the TLRPS adds to the

commercial programming package. For a simple pick and
place task, the object to be moved and its goal location must
be specified. In the TLRPS prototype an object to be
manipulated is chosen from a menu of all known objects in
the workspace. The object is then highlighted on the graphics
screen to allow the user to confirm the choice. A goal location
can then be chosen from a menu of predef-med locations and

the tagpoint is highlighted for confirmation. Optionally, the
user can specify an x-y location, in inches from the origin, for

the goal, with z and rotations defaulted to reasonable values
for a pick-and-place operation. A tagpoint for the specified
goal is created and highlighted for confirmation.

Once an object and a goal have been chosen a sequence of
motions is automatically generated to move the object from its
original location to the goal. Checks are made along the way
to ensure that all locations are reachable by the robot and

neither the robot nor the object being moved will collide with
other objects in the workspace. The user needs only to
specify the object and the goal; the TLRPS generates the

intermediate steps needed to safely move the object.

With manual robot programming or the menu-driven
programming provided by IGRIP, a complete robot program
must be written, tested, translated, and downloaded before the

actual manipulator can be used. The TLRPS prototype allow
more interactive control of the manipulator. The user may
choose to test the task to be complete by simulation only.

However, the TLRPS provides the ability to simultaneously

simulate the task and execute it with the actual robot. This

was discussed in greater detail in Section 2.

3.2.2 Dragging objects

Although specifying operations by naming objects or
choosing them from a menu is certainly an advance from

point-by-point programming, a more intuitive interface would
he to allow the user to point to an object to be moved.
Pointing to an object in 3D is not a problem. An object can be
chosen by placing the cursor over any portion of the object

facing the user. The function providing selection of objects
with a mouse under program control is not available in the
simulation and robot programming package currently being
used for the TLRPS prototype, so this capability has not been

implemented. Another desirable option, which is not
implemented in the current prototype, is to allow the user to
drag an object on the screen from its original location to a new
location and have the TLRPS generate the equivalent

manipulator motions to move the object without collisions.
With this option there still is the problem of visualizing the 3D
motion on a 2D screen.

3.3 Input Devices for 3D Manipulation and New
Display Technology

Even with a more functional and open software platform to
use in building a graphical interface to the control of a
manipulator, the inherently two dimensional input and display

technology of today's workstations would be severely
limiting. There are, however, laboratory efforts and even a
few advanced commercial products that demonstrate this will
not he true in the near future. With respect to space-based
robotics and Space Station Freedom in particular, it is of

utmost importance that plans should be made now to provide
hooks and scars so that these rapidly developing technologies
can eventually be used.

Complex interaction in zero gravity with the computer control
of dynamic physical devices such as a manipulator requires a
large bandwidth of information that would be difficult if not

impossible to communicate using a keyboard. Current NASA
thinking foresees voice recognition technology as an
alternative. The use of this technology will be an important
advance, but for robotic control it will have to be implemented

together with to the interactive display concepts (menus and
highlighting) described above, or else too much workspace
knowledge (names, dimensions, dynamic attributes) will be

requited of the astronaut operator.

The most natural control and programming of a

manipulator, though, can only be expressed with three-
dimensional input devices. If an object needs to be

grasped, the operator should only have to move his hand
appropriately and the effect should he displayed on the screen.
This is, in fact, possible today. There are two commercial
products, a glove-like device (DataGlove TM by VPL

Research) and an optical gesture sensing device (by Sensor
Frame Corporation) that could he used to build an interface to

a manipulator. Ames Research Center is already using the first
device in conjunction with demonstrations of their head-
mounted display technology. An alternate device for

manipulator programming that is within the realm of today's
technology, although not commercially available, is a small
manipulator replica that could provide true three-dimensional

input for graphical display.

Equally important, especially to NASA, is the development of
true three-dimensional displays. This is necessary for remote

168
ORIG|NP.L PAGE iS

OF POOR QUALITY

teleoperation as well as supervised autonomy. It has been
demonstrated that the remote control of robots in response to
ordinary video feedback is extremely difficult. True 3D
displays may be built using stereoscopic or holographic

technology; there are many laboratory efforts currently in
progress with the objective of developing these displays.

4. ISSUES

4.1 Uncertainty

Most robot programming and control systems assume a
perfect world: error-free sensors, perfect object models, and

robots that can be positioned precisely where desired. The
real world, unfortunately, falls far short of perfection. The
robot and environment can be engineered to minimize these

errors and uncertainties, but they will never be perfect. Robot
programs need to handle differences between models and
actual objects and handle errors in sensor data and

manipulator control. Practical methods for dealing with these
uncertainties need to be developed. Brooks [1], Erdmann [6],
Durram-Whyte [5], and Volz, Xiao, and Desai [14], among

others, have published work upon which a practical system
might be based.

4.2 Path planning

The current version of the TLRPS prototype does not have
any true path planning capabilities. To move an object from

one position to another the system follows a fixed set of steps
with a few parameters for initial object location and goal. The
manipulator first opens the gripper and moves to a pose
directly above the object to be moved, then moves straight
down over the object and closes the gripper to grasp the
object. Next the manipulator moves straight up, then to a
pose directly above the object's goal location, then straight
down. Then the robot opens the gripper and moves straight
up again. This sequence of motions is sufficient to handle
any simple pick-and-place operation in two dimensions,
where the objects are all roughly the same height and can be

grasped from the top.

Some minor modifications of this same plan would enable the

system to handle a more extensive collection of objects and
limited three dimensional placement. To cover a larger set of
tasks, however, these heuristics should be replaced by

algorithmic path planning. This would add the capability,
given the initial and goal poses, to compute a path for the
manipulator through the free space or unoccupied volume of

the workspace avoiding collisions. Some of the commercial
robot programming package vendors are developing this kind
of path planning capability.

4.3 Human-in-the-loop

Any method of robot programming must allow various levels
of autonomy and human-in-the-loop interaction and simple,

rapid switching among them. While it is desirable to automate
as much as possible to free the astronaut from tedious and
time-consuming chores, we still need to allow the human to
immediately and safely assume control if it becomes

necessary. Once a crisis situation has ended, the system
should be able to resume autonomous operations with as little
input from the human as possible and preferable without

having to re-plan an entire task from scratch. Sheridan [10],
Stark, Kim, and Tendick [11], and Conway, Volz, and
Walker [2], among others, have all made some suggestions

and progress along these lines, but there is still much work to
be done.

5. CONCLUSIONS AND FUTURE WORK

Graphical programming of manipulators is an effective
approach despite current limitations in input devices and

displays. The prototype TLRPS described in this paper
includes an interface that takes advantage of these graphical

techniques. In the future we would like to investigate both the
use of voice recognition technology with the interactive
display methods described in this paper and true three-

dimensional input devices that promise a more natural way of
programming manipulators. We feel this is an especially
important technology area for NASA to develop and exploit.

REFERENCES

1. Brooks, Rodney, "Symbolic Error Analysis and Robot

Programming," International Journal of Robotics Research,
Vol. 1, No. 4, Winter 1982, pp. 29-68.

2. Conway, Lynn, et al., "Tele-Autonomous Systems:
Methods and Architectures for Intermingling Autonomous and
Telerobotic Technology," in Proceedings 1987 IEEE
International Conference on Robotics and Automation,

Raleigh, NC, 1987, pp. 1121-1130.

3. Deneb Robotics, Inc., GSL Graphics Simulation
Language Reference Manual, Version 1.5, Deneb

Robotics, Inc., Troy, MI, July 1988.

4. Deneb Robotics, Inc., IGRIP Simulation System User

Manual, Version 1.5, Deneb Robotics, Inc., Troy, MI, July
1988.

5. Durrant-Whyte, Hugh, "Uncertain Geometry in Robotics,"
IEEE Journal of Robotics and Automation, Vol 4, No. 1,
February, 1988, pp. 23-31.

6. Erdmann, Michael, On Motion Planning with Uncertainty,

Master's Thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
1984.

7. Lozano-Perez, Tomas, "Robot Programming,"
Proceedings of the IEEE, Vol. 71, No. 7, July 1983.

8. Lozano-Perez, Tomas and Brooks, Rodney, "An Approach
to Automatic Robot Programming," A.I. Memo No. 842,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, April 1985.

9. Silma, Inc., CimStation User's Manual, Revision 3.0,

Silma, Inc., Los Altos, CA, 1986.

10. Sheridan, Thomas, "Human Supervisory Control of
Robot Systems," in Proceedings 1986 IEEE International
Conference on Robotics and Automation, San Francisco,

CA, 1986, pp. 808-812.

11, Stark, Lawrence, et al., "Cooperative Control in
Telerobotics," in Proceedings 1988 IEEE International

Conference on Robotics and Automation, Philadelphia,
PA, 1988, pp. 593-595.

12. Symbolics, Inc., S-Geometry, Graphics Division of

Symbolics, Inc., Cambridge, MA, October 1986.

169

13. Taylor, Russell, "The Synthesis of Manipulator Control
Programs from Task-Level Specification." AIM-382,
Stanford Artificial Intelligence Laboratory, Palo Alto, CA,
July 1976.

14. Volz, Richard, et al., "Contact Formations and Design
Constraints: A New Basis for the Automatic Generation of

Robot Programs," unpublished report, the University of

Michigan and the Jet Propulsion Laboratory, 1988,

170

