NASA Technical Memorandum 102571

Millimeter Wave Surface Resistance of $RBa_2Cu_3O_{7-\delta}$ (R = Y, Eu, Dy, Sm, Er) Superconductors 1997 - 19 F.A. Miranda, W.L. Gordon, and T.G. Eck Case Western Reserve University Cleveland, Ohio K.B. Bhasin, J.D. Warner and K.A. Jenkins Lewis Research Center Cleveland, Ohio Prepared for the March Meeting of the American Physical Society Anaheim, California, March 12-16, 1990 M-102571) MILLIMETER WAVE SURFACE N90-20886 RESISTANCE OF RBa2Cu30(7-DELTA) (R=Y,Eu,Dy,Sm,Er) SUPERCONDUCTORS (NASA) CSCL 20L Unclas **Q** p G3/75 0275345

MILLIMETER WAVE SURFACE RESISTANCE OF RBa₂Cu₃O₇₋₈

(R = Y, Eu, Dy, Sm, Er) SUPERCONDUCTORS

F.A. Miranda, W.L. Gordon, and T.G. Eck Department of Physics Case Western Reserve University Cleveland, Ohio 44106

K.B. Bhasin, J.D. Warner, and K.A. Jenkins National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

SUMMARY

We report on the measurements of the millimeter wave surface resistance (R_s) at 58.6 GHz of bulk samples of $RBa_2Cu_3O_{7-\delta}$ (R = Y,Eu,Dy,Sm,Er) and of YBa_2Cu_3O_{7-\delta} superconducting films, in the temperature range from 20 to 300 K. The bulk samples were prepared by cold pressing the powders of $RBa_2Cu_3O_{7-\delta}$ into 1 in. diameter disks which were sintered at 925 °C in one atmosphere of oxygen. The thin films were deposited on SrTiO3 and LaGaO3 substrates by pulsed laser ablation. Each sample was measured by replacing the end wall of a gold-plated TE_{O13} circular mode copper cavity with the sample and determining the cavity quality factor Q. From the difference in the Q-factor of the cavity, with and without the sample, the R_s of the sample was determined.

INTRODUCTION

Investigation of the properties of the high transition temperature (T_C) superconductors at millimeter wave frequencies is important not only to evaluate their potential for practical microwave applications but also in an attempt to determine the extent to which the standard microscopic theories are able to describe the phenomena of superconductivity in these new materials. From the application point of view, the main interest is to determine how well these materials will perform when implemented to transmission lines and microwave devices in comparison with the most commonly used normal metals (Cu and Au) and lower T_C superconductors currently in use. A parameter which directly provides this information is the surface resistance (R_S). To date, a considerable amount of work has been done on measurements of the R_S both in bulk and thin film high T_C superconductors at different temperatures and frequencies (refs. 1 to 6). Nevertheless, to the best of our knowledge, no measurements of R_S have been reported at frequencies around 60 GHz. In this paper, we report on the measurements of the surface resistance of R-Ba-Cu-O (R = Y, Eu, Dy, Sm, Er) bulk superconductors and YBa₂Cu₃O_{7- δ} superconducting thin films at 58.6 GHz and at temperatures from 20 to 300 K.

EXPERIMENTAL

The bulk samples were made from cold pressed (20,000 psi) sintered powders made from starting powders of BaO₂ (99.89 percent pure), CuO (99.99 percent pure) and R₂O₃ (R = Y,Eu,Dy,Sm,Er), (99.99 percent pure). The powders were ground together by hand, fired at 925 °C in flowing oxygen (O₂, 99.995 percent pure) for 6 hr, and were cooled to 450 °C at the rate of 2 °C/min. The material was then held at 450 °C for 6 hr before being cooled to room temperature at 2 °C/min. Afterwards, the powders were reground and refired using the same procedure. After the second firing x-ray diffraction showed that the powders were in the superconducting phase. Then the powders were ground and pressed into disks of 1 in. diameter and 1/4-in. thickness and fired at 925 °C.

The pulsed laser ablation technique used for the deposition of the film is similar to that used by other researchers (refs. 7 and 8). The deposition was performed at a substrate temperature of 750 °C at an ambient oxygen pressure of 170 mtorr. The laser wavelength was 248 nm, the pulse length was 20 to 30 ns, and the pulse rate was 4 pps. During deposition, the distance between the target and the sample was kept at 7.5 cm and the laser fluence on the target was maintained at 2.0 J/cm^2 per pulse. During this process, the laser beam was scanned up and down 1 cm over the target using an external lens on a translator. At the end of the deposition process, the oxygen pressure was raised to 1 atm, and the temperature was lowered to 450 °C at a rate of 2 °C/min. The temperature was held at 450 °C for 2 hr before it was lowered to 250 °C at a rate of 2 °C/min. The heater power was turned off and the sample was allowed to cool down to 40 °C or less before it was removed from the chamber. A more detailed description of the deposition technique is given in reference 9.

Surface resistance measurements of both types of samples were made at 58.6 GHz applying the same experimental technique. Using an HP-8510 network analyzer and Ginzton's impedance method (refs. 10 and 11) the Q-factor of the cavity was determined from the reflection coefficient. In each case the end wall of the cylindrical cavity (TE_{013} mode) was replaced by the superconducting sample, and R_s was calculated from the difference in Q values of the bare cavity and the cavity with the sample in place. All the measurements were taken at temperatures from 20 to 300 K, and under a vacuum of less than 10 mtorr.

RESULTS

The dc resistance versus temperature measurements were performed using a standard four probe method. For the bulk samples the transition temperatures $(T_C, R_{dC} = 0)$ were distributed between 91.8 K (Eu-Ba-Cu-O) to 79.0 K (Y-Ba-Cu-O and Sm-Ba-Cu-O), as can be seen from dc resistance versus temperature curves shown in figures 1(a) and (b). All the samples had densities from 50 to 60 percent of the ideal, and from SEM micrographs grain sizes of approximately 5 μ m were observed. Figure 2 exhibits the measured Q-factor for the cavity as a function of temperature for cases in which its end wall had been replaced by each of the bulk samples under study. It is observed that the Y, Eu, and Dy based samples show a clear increase of the Q-factor at temperatures below T_C , while a rather discrete change is noticed for the Sm-based sample. No change in the rate of increase of Q with decreasing temperature, at temperatures below T_C , is observed for the Er-Ba-Cu-O sample.

Therefore, these observations appear to suggest that although the cold pressing method yields bulk samples with reasonably good T_C values, is does not guarantee obtaining samples with low R_S values. Clear evidence of this is observed in particular in the Er-based sample, and to less extent in the Eu-based sample. The behavior of the Q-factors for the different samples considered is in fair agreement with the concept that the losses in these ceramics appear to be dominated by the weak coupling between grains (ref. 12), especially for grains close to the surface where most of the losses take place.

Figure 3 shows the experimental values of the surface resistance for the Y-, Dy- and Eu based bulk samples. Also plotted is the experimental surface resistance for the gold-plated copper cavity for comparison. It is observed that the R_s for the YBa₂Cu₃O_{7- δ} sample is smaller than that for the other bulk samples, at temperatures below T_c . The R_s values for the samples at temperatures below T_c are beyond a factor of 2 smaller than the values in the normal state. Nevertheless, none of the samples showed an R_s better than that of the gold-plated cavity even at temperatures below T_c . The fact that the surface resistance obtained for these samples is not comparable with that of gold at any temperature is evidence of the poor quality of the surface of samples prepared by the preparation process considered in this study.

Figure 4 shows the dc resistance versus temperature curves corresponding to $YBa_2Cu_2O_{7-\delta}$ superconducting films deposited on $SrTiO_3$ and $LaGaO_3$ substrates by laser ablation. Zero dc resistance was attained at 90.0 and 88.9 K for the films on $SrTiO_3$ and $LaGaO_3$, respectively. The x-ray diffraction pattern revealed that both films are predominantly c-axis oriented, while SEM micrographs showed that both films are polycrystalline, as can be seen from figure 5. Figure 6 shows the measured Q-factor for the cavity as a function of temperature for cases in which its end wall had been replaced by the $YBa_2Cu_3O_{7-\delta}$ films. A clear increase in the Q-factor is observed for both films at temperature below T_C , with the rate of increase of the Q-factor with decreasing temperature being higher for the film on $SrTiO_3$ than for the one on $LaGaO_3$ down to 50 K. At temperatures below 50 K we are limited by the resolution of our measurements. Therefore, contrary to what was observed in the bulk material, the value of T_C appears to be directly related with lower microwave losses.

The measured $R_s(T)$ curves for the two films under study are shown in figure 6, in addition to the curve corresponding to the gold-plated copper cavity. The R_s of the films is comparable in the normal state, while the R_s for the film on SrTiO₃ was lower than that for the film on LaGaO₃ at temperatures just below T_c . Using the normal skin depth formula $R_s = (\omega\mu_O\rho/2)^{1/2}$ a typical resistivity ρ at 300 K of approximately 118 and 158 $\mu\Omega$ -cm is obtained for the film SrTiO₃ and LaGaO₃ exhibit a drop of R_s to effective values of 103 and 144 m Ω at 77 K, and 82 and 116 m Ω at 70 K, respectively. The surface resistance at 77 K for the film on SrTiO₃ is less than that of the gold-plated cavity. Nevertheless, the value of R_s at 77 K for both films is higher than the theoretical R_s value expected for copper at the same temperature and frequency.

Since we are operating at a fixed frequency, we cannot study the frequency dependence of R_S directly from our measurements. Nevertheless, a comparison

of the R_s values with those reported by other researchers in similar types of films and at different frequencies, may be helpful to formulate a frequency dependence trend for R_s . Thus, using the results obtained by Klein, et al. (ref. 13) for c-axis textured layers samples of YBa₂Cu₃O₇₋₈, and fitting their data to a quadratic frequency dependence for R_s , gives an R_s value of 102 m Ω at 58.6 GHz and 77 K. This value agrees very well with our experimentally obtained value of 103 m Ω at the same temperature. A similar approach was used for the film on LaGaO3. Using the values for R_s at 22, 86, and 148 GHz and at 70 K reported by Cooke, et al. (ref. 14) for a YBa₂Cu₃O_{7-§} superconducting film deposited by magnetron sputtering on LaGaO3, we were able to find by interpolation an $R_{\rm S}$ value of 106 m Ω at 58.6 GHz. This value is within experimental uncertainty of our measured value of 116 m Ω . These results indicate that our value fit well with the nearly quadratic dependence for $R_s = (R_s \alpha \omega^n)$, $n = 2.06 \pm 0.14$) reported by Cooke, et al. (ref. 14). Our results, as well as those obtained by the above mentioned researchers, indicates that the quadratic dependence observed for $\,{\tt R}_{{\tt S}}\,$ is consistent with the experimental behavior observed in low T_C superconductors and also with the predictions of the BCS theory.

CONCLUSIONS

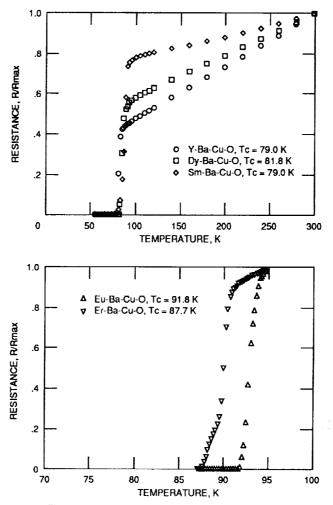
There appears to be no direct correlation between the surface resistance R_s and the transition temperature T_c in the $RBa_2Cu_3O_{7-\delta}$ bulk superconducting samples obtained by the cold pressing preparation method. Therefore, the dominating factors which control the microwave losses can only be guessed at. Some of the possible factors which could control the losses are: the weak coupling at grain boundaries, the purity of the sample and the possible segregation of composition at the surface. Two main factors can contribute to the presence of weak coupling. The first is the intrinsic mismatch of the lattice and the segregation of impurities to the grain boundaries, while the second could be reactions with the ambient environment (i.e., water vapor and CO₂). This environmental reactions primarily occur at the surface and would not appreciably affect the bulk properties in a short time period. If the losses are due to either the reaction of the surface with the environment or due to porosity, then a different pressing process to make denser pellets should give samples with lower microwave losses

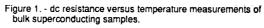
For the YBa₂Cu₃O₇₋₈ superconducting films on SrTiO₃ and LaGaO₃ we found from a correlation of the R_s values obtained for both films with those obtained for similar films measured by other researchers at different frequencies, that these values are consistent with the frequency dependence for R_s observed in classical superconductors, and also with the predictions of the BCS theory.

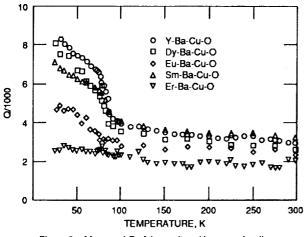
In summary, we have measured the R_s of bulk $RBa_2Cu_3O_{7-\delta}$ (R = Y,Dy,Eu, Sm,Er) superconducting samples and found that none of them performed as well as gold. Also, for the 1.2 μ m thin films of $YBa_2Cu_3O_{7-\delta}$ on SrTiO₃ and LaGaO₃ we obtained values of R_s significantly lower than gold at temperatures below 70 K, but we are limited by the resolution of our measurement in accurately determining R_s values below 50 K.

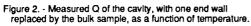
REFERENCES

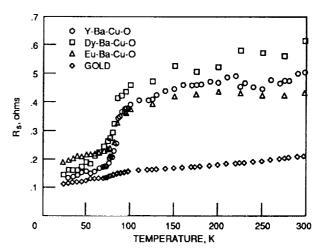
- 1. Cohen, L., et al.: Surface Impedance Measurements of Superconductivity YBa₂Cu₃O_{6+X}. J. Phys. F: Met. Phys., vol. 17, 1987, pp. L179-L183.
- Sridhar, S.; Shiffman, C.A.; and Hamoleh, H.: Electrodynamic Response of Y₁Ba₂Cu₃O_y and La_{1.85}Sr_{O.15}CuO₄₋₈ in the Superconducting State. Phys. Rev. B, vol. 36, no. 4, Aug. 1, 1987, pp. 2301-2304.
- 3. Martens, J.S.; Beyer, J.B.; and Ginley, D.S.: Microwave Surface Resistance of YBa₂Cu₃O_{6.9} Superconduting Films. Appl. Phys. Lett., vol. 52, no. 21, May 23, 1988, pp. 1822-1824.

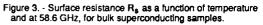

Ę

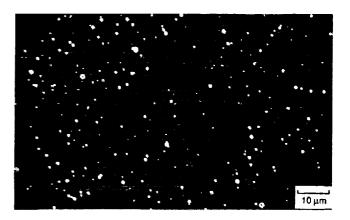

4. Carini, J.P., et al.: Millimeter-Wave Surface Resistance Measurements in Highly Oriented YBa₂Cu₃O₇₋₈ Thin Films. Phys. Rev. B, vol. 37, no. 16, June 1, 1988, pp. 9726-9729.


Ē


<u>1</u> =


- Newman, H.S., et al.: Microwave Surface Resistance of Bulk Ti-Ba-Ca-Cu-O Superconductors. Appl. Phys. Lett., vol. 54, no. 4, Jan. 23, 1989, pp. 389-390.
- Klein, N., et al.: Millimeter Wave Surface Resistance of Epitaxially Grown YBa₂Cu₃O_{7-x} Thin Films. Appl. Phys. Lett., vol. 54, no. 8, Feb. 20, 1989, pp. 757–759.
- 7. Inam, A., et al.: As-Deposited High T_c and T_c Superconducting Thin Films Made at Low Temperatures. Appl. Phys. Lett., vol. 53, no. 10, Sept. 5, 1988, pp. 908-910.
- 8. Roas, B.; Schultz, L.; and Endres, G.: Epitaxial Growth of YBa₂Cu₃O_{7-x} Thin Films by a Laser Evaporation Process. Appl. Phys. Lett., vol. 53, no. 16, Oct. 17, 1988, pp. 1557–1559.
- 9. Warner, J.D.; Meola, J.E.; and Jenkins, K.A.: Study of Deposition of YBa₂Cu₃O_{7-x} on Cubic Zirconia. NASA TM-102350, 1989.
- 10. Ginzton, E.L.: Microwave Measurements. McGraw-Hill, 1957, p. 406.
- Romanosky, R.R.: Analytical and Experimental Procedures for Determining Propagation Characteristics of Millimeter-Wave Gallium Arsenide Microstrip Lines. NASA TP-2899, 1989.
- 12. Hylton, T.L., et al.: Weakly Coupled Grain Model of High-Frequency Losses in High T_C Superconducting Thin Films. Appl. Phys. Lett., vol. 53, no. 14, Oct. 3, 1988, pp. 1343-1345.
- 13. Klein, N., et al.: Millimeter Wave Surface Resistance and London Penetration Depth of Epitaxially Grown YBa₂Cu₃O_{7-x}. Physica C, vol. 162, Dec. 1989, pp. 1549-1550.
- 14. Cooke, D.W., et al.: Surface Resistance of YBa₂Cu₃O₇ Films Deposited on LaGaO₃ Substrates. Physica C, vol. 162, Dec. 1989, pp. 1537–1538.





(a)

(b)

Figure 5. - Scanning electron micrographs of laser ablated $YBa_2Cu_3O_{7-\delta}$ superconducting films on SrTiO₃ (a) and LaGeO₃ (b) substrates.

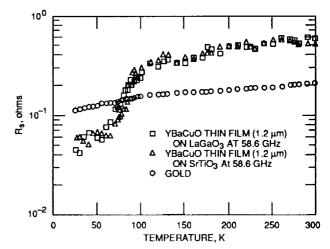
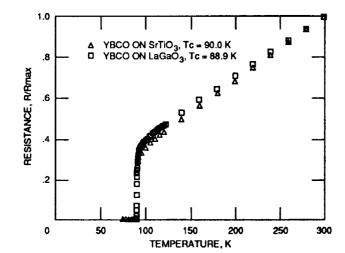



Figure 7. - Surface resistance (R_s) at 58.6 GHz versus temperature for 1.2 μm films of YBa₂Cu₃O_{7.8} deposited by laser ablation onto SrTiO₃ and LaGaO₃ substrates, and for goldplated cavity.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 4. - dc resistance versus temperature measurements of laser ablated $YBa_2Cu_3O_{7,\delta}$ superconducting films on SrTiO_3 and LaGaO_3 substrates.

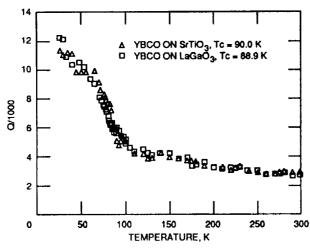


Figure 6. - Measured Q of the cavity, with one end wall replaced by the thin film, as a function of temperature.

	NAISON Report Documentation Page				
1	. Report No. NASA TM-102571	2. Government Acce	ssion No.	3. Recipient's Catalo	og No.
4	Title and Subtitle Millimeter Wave Surface Resistance of $RBa_2Cu_3O_{7-\delta}$ (R=Y,Eu,Dy,Sm, Superconductors		=Y,Eu,Dy,Sm,Er)	5. Report Date 6. Performing Organization Code	
	Author(s) F.A. Miranda, W.L. Gordon, T.G. Eck, K.B. Bhasin, J.D. Warner and K.A. Jenkins			 8. Performing Organization Report No. E-5395 10. Work Unit No. 506-44-20 	
9.	Performing Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191			11. Contract or Grant 13. Type of Report an	
12.	. Sponsoring Agency Name and Address			Technical Memorandum	
	National Aeronautics and Space Administration Washington, D.C. 20546–0001			14. Sponsoring Agency Code	
Ohio 44106. K.B. Bhasin, J.D. Warner, and K.A. Jenkins, NASA Lewis Research Center. 16. Abstract We report on the measurements of the millimeter wave surface resistance (R _s) at 58.6 GHz of bulk samples of $RBa_2Cu_3O_{7-\delta}$ (R=Y,EU,Dy,Sm,Er) and of $YBa_2Cu_3O_{7-\delta}$ superconducting films, in the temperature range from 20 to 300 K. The bulk samples were prepared by cold pressing the powders of $RBa_2Cu_3O_{7-\delta}$ into one in. disks. The powders were prepared by several sinterings in one atmosphere of oxygen at 925 °C, with grindings between sinterings, to obtain the superconducting phase. The thin films were deposited on $SrTiO_3$ and $LaGaO_3$ substrates by pulsed laser ablation. Each sample was measured by replacing the end wall of a gold-plated TE_{013} circular mode copper cavity with the sample and determining the cavity quality factor Q. From the difference in the Q- factor of the cavity, with and without the sample, the R _s of the sample was determined.					
	a second de la constante de la La constante de la constante de				
17.	Key Words (Suggested by Author(s)) Surface resistance; Millimeter wave; S Quality factor; Cavity	sistance; Millimeter wave; Superconductors; Uncla		Statement sified – Unlimited Category 76	
19.	Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		21. No. of pages 8	22. Price* A02

Ŧ

.

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161