L

. o o *
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

N90-209
APPLICATION OF STOCHASTIC ROBUSTNESS TO
AIRCRAFT CONTROL SYSTEMS

Laura E. Ryan
Department of Mechanical and Aerospace Engineering
Princeton University

INTRODUCTION

Guaranteeing robustness has long been an important design objective of control system
analysis. Stochastic robustness is a simple numerical procedure that can be used to measure and gain
insight into robustness properties associated with linear control systems. In the realm of aircraft
control systems, problems such as the effects of flight condition perturbations and model-order
uncertainties on robustness are easily and effectively analyzed using stochastic robustness. The
concept of stochastic robustness will be reviewed and examples will be presented demonstrating its
use in flight control system analysis.

e Summary of stochastic robustness
» Control system robustness with flight condition perturbations

1  Control system robustness with model-order uncertainties

| Actuator dynamics
| Aeroelastic effects

» Summary of results
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DEFINITIONS

Control system robustness is defined as the ability to maintain satisfactory stability or performance
characteristics in the presence of all conceivable parameter variations. A good robustness measure is vital
to guarantee and understand control system robustness. Stochastic robustness provides such a
measure. It uses the statistics of a plant's variable parameters and Monte Carlo simulation to compute the
probability distributions of closed-loop system characteristics. Present research has concentrated on
stability robustness as characterized by the closed-loop eigenvalues, although the method can be extended
to other closed-loop characteristics. Stochastic robustness is computationally simple. For a single Monte
Carlo evaluation, random numbers are generated and shaped to match the parameter statistics, added to the
mean parameter vector, and the closed-loop eigenvalues are computed using the modified parameters.
Repeated Monte Carlo evaluations give rise to the stochastic root locus, a plot of the probability
distributions of the closed-loop eigenvalues. The probability of instability, or probability that all of
these eigenvalues lie in the open left-half s plane,is the scalar measure of robustness.

Robustness

The ability to maintain satisfactory stability/performance
characteristics in the presence of all conceivable parameter
variations.

Stochastic robustness

A robustness measure based on the probability distributions of
closed-loop characteristics, given the statistics of a plant's variable

parameters.

« Characteristics can be eigenvalues, performance,
control authority, disturbance rejection

« Based on Monte Carlo simulation

« Not limited to Gaussian parameters

Stochastic root locus
Plot of the probability distributions of closed-loop eigenvalues.
Probability of instability

Probability that closed-loop system is unstable - a scalar measure of
stability robustness.
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STOCHASTIC ROBUSTNESS
APPLIED TO DEMONSTRATOR AIRCRAFT

As an example of the application of stochastic robustness, three controllers are applied to a

fourth-order longitudinal model of an open-loop unstable aircraft. A ten-element parameter vector

consisting of elements of the dynamic and control effect matrices is chosen. The three control designs are
chosen to reflect increasingly robust controllers. The first two Cases are LQR controllers with low and
high control weighting respectively, and the third controller multiplies the Case (b) controller by a factor of
five to restore the closed-loop bandwidth to that of Case (a). These three cases have been chosen not to
satisfy any particular flying qualities criteria, but merely to demonstrate the impact of differing generalized

design criteria on stochastic robustness.

Fourth-order longitudinal dynamic model
x=F(p)x+G(p)u
=-Cx

Ten-element parameter vector

P = [f1; f15 £13 25 £35 £33 811 812 831 832]

fi;, gij are elements of matrices F and G.

Control design ( C matrix) to demonstrate stochastic robustness
Case (a) LQR with low control weighting.
Case (b) LQR with high control weighting.

Case (¢) Gain matrix of Case (b) is multiplied by 5 to restore
bandwidth.
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Stochastic root loci for demonstrator aircraft with 30%
standard-deviation Gaussian parameters

The results for 30% Gaussian parameters and 10,000 Monte Carlo evaluations reflect the expected
increase in robustness between control designs. The stochastic root locus shows the extent to which
eigenvalues can vary. The eigenvalue near the origin is least affected by the parameter changes, and its
peak dominates the distribution. In Cases (a) and (c), the left-most eigenvalue (not shown) has an
enormous variance along the real axis. Interaction of roots around the origin causes instability.
Robustness improves from Case (a) to (b) as control usage is restrained by high control weighting, and the
ad hoc robustness recovery technique used in Case (¢) gives additional improvement.

pr(A)

Case (a)
P=0.0711

Case (b)
P=0.0169

Case (¢)
P =0.0033
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Stochastic root loci for demonstrator aircraft with 30% uniformly

distributed parameters

For 30% uniformly distributed parameters and 10,000 Monte Carlo evaluations, the probability of
instability for all three cases is zero. The stochastic root locus gives a good indication of the effects of

Gaussian "tails" on the eigenvalue probability densities.

pr(A)

Case (a)
P=0.0

Case (b)
P=0.0

Case (¢)
P=0.0
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CONTROL SYSTEM ROBUSTNESS WITH
FLIGHT CONDITION PERTURBATIONS

Demonstrator Aircraft with Flight Condition Effects

Dynamic pressure variations can be considered separately and included in the parameter vector.

Although velocity (V) and air-density (p) are essentially deterministic, including them as separate
parameters gives the ability to look at flight condition perturbations around the nominal and eliminates

correlation of the remaining parameters. A twelve-element parameter vector results. p and V are modeled
as uniform parameters, giving an indication of stochastic robustness over a range of flight conditions.

Fourth-order longitudinal dynamic model
x=F@)x+G(@)u

u=-Cx

Twelve-element parameter vector

p=Ip V112513522 032/33 811 812 831 832]

p is the air density (nominal value 0.00152 s/ft3)
V is the velocity (nominal value 670 ft/sec)
fij» &ij are elements of F and G with p and V considered separately.

Model p and V as uniform parameters and apply stochastic
robustness using the same three control designs as previous example.
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Stochastic root loci for demonstrator aircraft with 30% Gaussian
parameters and 30% uniform p and V

Next, we examine the stochastic root loci for these three cases: for 30% uniform p and V, and
30%-standard-deviation Gaussian uncertainty on each of the remaining elements of the parameter vector.
The shapes of the root loci are similar to the case with correlated parameters.

Case (a)
P=0.0736

Case (b)
P=0.0166

pr(A)

Case (¢)
o P =0.006
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SUMMARY OF STABILITY ROBUSTNESS RESULTS FOR
DEMONSTRATOR AIRCRAFT FOURTH-ORDER MODEL

Considering a case with non-varying flight condition along with the above results, the probabilities of
instability seem to indicate that instability in Case (a) is a stronger function of uncertainties in individual

parameters or stability derivatives than 30% V and p variations, while the remaining two cases are sensitive

to flight condition variations.

Correlated parameters
30% Gaussian variations

Uncorrelated parameters
30% Gaussian variations

30% uniform p and V

Uncorrelated parameters
30% Gaussian variations

no p and V variations
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Case (a)

0.0711

0.0736

0.0746

Controller

Case (b)

0.0169

0.0166

0.0162

Case (¢)
0.0033

0.0060

0.0030



CONTROL SYSTEM ROBUSTNESS
WITH ACTUATOR DYNAMICS

Stochastic robustness can be used to quantify the effects on robustness of actuator dynamics.
First-order actuator dynamics are added for each control, resulting in a 14-element parameter vector. A
controller is designed with LQR weighting specifications intended to approximate the controller of Case (a),
while not pushing the actuator dynamics to unrealistic frequencies.

Fourth-order longitudinal dynamics and first-order actuator dynamics
for each control

x=F'(p')x+G'(')u

u=-Cx

14-element parameter vector
P'=1p Vi1 fi2f13f22132133 811 812 831 832 T Tt ]

T = canard time constant (nominal value 0.1 sec)

T, = thrust time constant (nominal value 1.0 sec)

*Redesign Case (a) controller such that closed-loop longitudinal
eigenvalues are the same as previous example and actuator dynamics
are reasonable.

*Apply stochastic robustness using new controller,
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PROBABILITY OF INSTABILITY FOR VARIOUS GAUSSIAN
CONTROL PARAMETER UNCERTAINTIES

Stochastic robustness is applied for different values of the variance associated with each time
constant, in order to detail the separate effects of each control lag. As indicated by the first line in the
Table, simply including actuator dynamics increa’ses the probability of instability, even if the associated
parameters are known perfectly. This is a reasondble result because actuator dynamics are no longer
infinitely fast but are allowed to interact with the rigid-body states. Qualitatively, bringing actuator
dynamics in from infinity pushes the root-locus closer to instability. Stochastic robustness quantifies the
effect. The thrust time constant has a small effect on the probability of instability, while a large increase in
the probability of instability is seen as the canard time-constant standard-deviation increases from 30% to
150%.

p and V are 30% uniform parameters.
fij’ gjj are 30% Gaussian parameters.

standard-deviation of To standard-deviation of Tt P
0 0 0.092
0 30 0.0988
30 30 0.101
30 150 0.1014
150 30 0.1474
No control dynamics 0.0736
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Stochastic root loci for demonstrator aircraft with 30% Gaussian
parameters, 30% uniform p and V, and non-varying T, and 7,

The stochastic root loci show that a strong coupling due to uncertainties can occur between the
control and dynamic states, which tends to push more eigenvalues towards the right-half plane.

ORIGINAL PAGE IS
OF POOR QUALITY

jo

r 45.0

I 15.8

- 5.8

-
~45.0

-35.0

-25.0

=-15.0

5.0

Case (a)
P =0.092
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Stochastic root loci for demonstrator aircraft with 30% Gaussian
parameters, 30% uniform p and V, and 30% Gaussian Te and Ty

Increasing the standard-deviations associated with the time constants shows that the complex pair of
eigenvalues has a small "variance" in the 6-direction, and a large variance in the jog direction.

jo
[ vs.o Case (a)
P=0.101

- 35.0 )
- 25.0

ORIGINAL PACE 1S

OF POOR GUALITY | so

; o I s.e
. : . . . K o r c
—45.8 -3..d -25.90 -15.0 - 5.0 5.0
pr(d)
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Stochastic root loci for demonstrator aircraft with 30% Gaussian
parameters, 30% uniform p and V,

30% Gaussian T, and 150% Gaussian T;

The o-direction variance is largely due to the uncertainty associated with the thrust time constant, as
illustrated by increasing the standard-deviation on this parameter to 150%. Increasing the uncertainty of T
has little effect on the probability of instability because it does not cause significant coupling with the

dynamic modes.

ORIGINAL PAGE 1S
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jo |

r 45.8

I 15.0

Case (a)
P=0.1014

~45.9

-35.0

=-25.8

-15.8
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Stochastic root loci for demonstrator aircraft with 30% Gaussian
parameters, 30% uniform p and V,

150% Gaussian Teo and 30% Gaussian T

The variation at constant ¢ and coupling of c'(;ntroller and dynamic modes is largely due to variation

of the canard time constant . Uncertainty in T causes eigenvalues to migrate to the real axis and split off to
form the complex "cloud" of eigenvalues that reaches instability.

jo

Case (a)
[ =0 P=0.1474
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Stochastic root loci for demonstrator aircraft with aeroelastic effects

(-2.95 + 32.03)) shift towards instability.

jw/.

(

\

for 30% uniform p and V

r 15.0

-20.8

jw/’

o ——

-20.8

+ 15.0

-28.0

For 30% uniform variations in velocity and density alone, using the reduced-order gains, the
probabilities of instability are zero. As expected, the closed-loop torsion eigenvalues at s=-0.1 + 212.5j
(not shown in figures) do not change with velocity and do not effect the probabilities of instability.
Bending mode eigenvalues show a definite velocity trend, migrating towards instability as velocity
increases. The closed-loop mean eigenvalues of rigid-body modes shift from the reduced-order case
because of the presence of the added dynamics. In each case, the open-loop bending mode eigenvalues

Case (a)
P=0.0

Case (b)
P=0.0

Case (¢)
P=0.0
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Stochastic root loci for demonstrator aircraft with aeroelastic effects
for 30% Gaussian parameters and 30% uniform p and V
Next, the stochastic root loci for 30% uniform variations in p and V and 30% Gaussian variations of

the parameters are evaluated. The peak near the origin is magnified to bring out the distribution associated
with the bending mode eigenvalues.

Case (a)
P=0.043

I 15.8

ORIGINAL PAGE IS
OF POOR QUALITY
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CONTROL SYSTEM ROBUSTNESS WITH AEROELASTIC
EFFECTS

With second-order, dynamic-pressure-dependent aeroelastic effects representing the wing's first
bending and torsional modes, the (8x8) and (8x2) system matrices can be partitioned as shown, where Fr

=F and G = G represent dynamic and control effects for rigid body modes, Fra and Far couple the rigid
and flexible modes, and F,, Gj represent aeroelastic dynamic and control effects. To separate effects of
material properties, the four parameters Ky , Mp, K¢, and M; are assumed to be known perfectly. The
aeroelastic matrices introduce 32 additional parameters, and the resulting 44-element parameter vector

includes separate p and V effects. For preliminary analysis, 40 parameters were used, although concern
for statistical significance and limits on the computational facilities used to date calls for modification of the
number of parameters for future studies.

Fourth-order longitudinal dynamics coupled with fourth-order
aeroelastic effects

x=F'(p')x+G'(@)u

u=-Cx

F' = F, Fpy C'= G,

| Fy Fy | G, |

Fr =F, Gy = G represent rigid body modes
F3, G, represents coupled second-order bending and torsion modes
Frq and F4 couple rigid and aeroelastic modes

44-element parameter vector
P’ =lp Vi fiaf135523233 811 812 831 832 + uncertain terms
from Frq, Far, Fa, and G4 |
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CONTROL SYSTEM ROBUSTNESS WITH AEROELASTIC
EFFECTS (CONTINUED)

In terms of structural-dimensional derivatives, Fg can be represented as given. Material properties

dominate the torsional mode, which varies little with dynamic pressure variations. Stochastic robustness is
applied to the new system using the reduced-ordér gains. Coupling of the systems through Fry and Fyp

causes the closed-loop system to be sensitive to adroelastic terms.

» Assume generalized mass and stiffness of bending and torsion
modes are known perfectly.

) 1 0 0 ]

1 1 1 1
(Snb'Kb)/Mb S ﬂb/Mb Sm/Mb S 1,h/Mb

Fa =
0 0 0 1
S2 ‘S 2 2 K S 2
i nb/Mz ﬂb/Mt (S N /M 1,h/Mt__

Kp, Mp, K¢ and M; are generalized stiffness and mass for each
mode.
Snl are structural dimensional derivatives.

* Apply stochastic robustness to new system using gains established
previously.

C'=[C 0]

Fclosed-loop = F r- GI'C Fra
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Stochastic root loci for demonstrator aircraft with 30% Gaussian
parameters and 30% uniform p and V

| e
- 35.0

Case (b)
P=0.017

I -15.8

- 20.8
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Stochastic root loci for demonstrator aircraft with 30% Gaussian
parameters and 30% uniform p and V

Case (¢)
P=0.0415
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SUMMARY OF ROBUSTNESS OF DEMONSTRATOR
AIRCRAFT WITH AEROELASTIC EFFECTS

While definite conclusions cannot be reached because of the small sample space, this example
illustrates the type of analysis possible using stochastic robustness. Certain trends are evident. The
disparity in robustness between Cases (a) and (c) is reduced, and Case (c) shows a considerable decrease in
robustness, while the robustness of the first two cases is at least retained or possibly improved.
Application of a reduced-order controller to a higher order system does not guarantee that the robustness
margins of the original system are retained, but the robustness of the system does not always go in the
adverse direction. (This is somewhat analogous to the loss of guaranteed stability margins when applying
LQG). Stochastic robustness again provides an excellent framework to quantify the effects of applying a
reduced-order controller to a higher-order system. In each of these examples, questions concerning the
selection of the number of Monte Carlo simulations, confidence limits, and statistical significance of results
are issues of future research.

Probability of instability:
without aeroelastic effects with aeroelastic effects

Case (a) 0.0736 0.0430
Case (b) 0.0166 0.017
Case (c) 0.006 0.0415

Closed-loop eigenvalues:
without aeroelastic effects with aeroelastic effects

Case (a) -0.02 -0.02
-3.32,-5.14 -4.96 + 1.27;j
-35.0 -35.0
-2.3 + 32.0j
Case (b) -0.02 -0.02
-1.09 -1.01
-3.36, -5.15 -4.8 + 1.38j
-2.53 + 32.05
Case (¢) -0.01 -0.02
-3.44, -5.15 -3.6, -5.53
-32.21 -34.1
-1.74 + 32.88;j
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SUMMARY

Stochastic robustness offers a rigorous yet straightforward alternative to current metrics for control
system robustness that is simple to compute and is unfettered by normally difficult problem statements,
such as non-Gaussian statistics, products of parameter variations, and structured uncertainty. The
approach answers the question, "How likely is the closed-loop system to fail, given limits of parameter
uncertainty?" It makes good use of modern computational and graphic tools, and it is easily related to
practical design considerations.

The examples presented here illustrate the use of stochastic robustness and its advantage in studying
aircraft control systems. The parameters of aircraft stability and control effect matrices (stability derivatives
and nominal flight condition parameters) lend themselves to this type of analysis tool. The stochastic
robustness of different control system designs can be directly compared. Stochastic robustess can be used
to study stability with flight.condition variations. The method is also easily applied to model-order
uncertainties in aircraft control systems by adding the uncertain dynamics to the system and assigning
appropriate statistics to the new parameters. Quantitative effects of individual parameters or combinations of
parameters on robustness can be measured in terms of the probability of instability. The principal difficulty
in applying this method to control systems is that it is computationally intensive; however, requirements are
well within the capabilities of existing computers. The principal advantage of the approach is that it is
easily implemented, and results have direct bearing on engineering objectives.

1. Stochastic robustness can be used to study effects of flight
condition perturbations on robustness.

« By considering flight condition parameters separately,
parameters are uncorrelated.
« Can separate flight condition effects on robustness from

parameter uncertainty effects.

2. Stochastic robustness can be used to study effects of model-order
uncertainties on robustness.

« Shows magnitude of actuator dynamics effect on robustness.
« Reveals instability or robustness degredation due to
neglected dynamics.
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