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SUMMARY

Space power systems for Space Station Freedom will be exposed to the harsh

environment of low Earth orbit (LEO). Neutral atomic oxygen is the major

constituent in LEO and has the potential of severely reducing the efficiency of solar

dynamic power systems through degradation of the concentrator surfaces. Several

transparent dielectric thin films have been found to provide atomic oxygen protection,

but atomic oxygen undercutting at inherent defect sites is still a threat to solar

dynamic power system survivability. Leveling coatings smooth microscopically rough

surfaces, thus eliminating potential defect sites prone to oxidation attack on

concentrator surfaces. This paper investigates the ability of leveling coatings to

improve the atomic oxygen durability of concentrator surfaces. The application of an

EPO-TEK R 377 epoxy leveling coating on a graphite epoxy substrate resulted in an

increase in solar specular reflectance, a decrease in the atomic oxygen defect density

by an order of magnitude and a corresponding order of magnitude decrease in the

percent loss of specular reflectance during atomic oxygen plasma ashing.

INTRODUCTION

Electrical power of 75 kilowatts for the initial phase of Space Station Freedom

(SSF) will be generated by traditional photovoltaic (PV) power sources. Power will

be increased during the growth phase (--4 years after the initial phase begins) by the

addition of two solar dynamic (SD) power modules 1. Each SD power module will

be capable of generating 50 kW of available power.

In a solar dynamic power system, a solar concentrator collects and focuses the

sun's light into the aperture of a heat engine such as a closed Brayton cycle system 1.

In such a system a gaseous working fluid is heated by solar energy in the heat

receiver, and converted to electricity by a power conversion unit 1. Solar dynamic

systems have the potential for significantly higher solar-to-electric power efficiency than



PV systems,with about 60% smaller solar collection area for a given power output1.
This can result in a substantial savingsover the life of SSFdue to lower aerodynamic
drag and lower reboost requirements'. Figure 1 showsthe current solar concentrator
configuration for SSF solar dynamic power modules2'3. The solar concentrator is
comprised of 19 hexagonal elements, each comprised of 24 spherically contoured
triangular facets measuring 1 meter per side. The mirror facets are composedof two
sheetsof graphite epoxybonded to an Al honey-combcore. Reflective and protective
thin film coatings are deposited onto the graphite epoxy face sheet4.

The efficiency of a SD system depends on the ability of the solar concentrator

to accurately direct the maximum amount of the sun's incident rays into the heat

receiver. Thus, the concentrator must have and maintain a high solar specular

reflectance. Solar specular reflectance is defined as the percentage of incident solar

energy reflected through an aperture of a given solid angle. In this case, the aperture

is defined by the diameter and orientation of the heat receiver aperture and the

distance from the concentrator to the receiver. Diffusely reflected radiation from the
concentrator will not be adequately directed into the heat receiver, and thus is almost

entirely wasted energy.

Low Earth orbital (LEO) environment, in which Space Station Freedom will

operate, is comprised of many elements which can cause considerable damage to

power system materials. Neutral atomic oxygen is the predominant species in LEO s

(see figure 2), and is a threat to the survivability of both PV and SD systems 6'7.
Other harmful LEO elements include UV radiation, thermal cycling, micrometeoroid

and debris impacts and synergistic effects of these elements 2.

Survivability of the concentrator reflective media in the harsh LEO environment

is essential for power generation on a SD system. Several transparent dielectric thin

films have been identified as atomic oxygen protective films, including MgF2, A1203
and SiO24'6. Although metal oxides are found to be atomic oxygen protective, atomic

oxygen undercutting at inherent defect sites is still a threat to SD survivability.

Undercutting of oxidizable substrate materials at defect sites in protective

coatings, in which the damaged or oxidized area extends far beyond that of the
original defect area, has been studied extensively at the NASA Lewis Research

Center 2'8'9'1°'11'12. The potentially catastrophic result of atomic oxygen undercutting in

LEO is receiving widespread recognition as a threat to spacecraft materials
survivability.

Inherent atomic oxygen transparent defects (transparent being those in which

atomic oxygen can penetrate) are formed during fabrication. Atomic oxygen

transparent defects can also be introduced during handling, deployment, or from
micrometeoroid and space debris impact. Although it will not be possible to affect

the number of particle impacts occurring in space, we can greatly reduce the number

of atomic oxygen transparent defects which occur during fabrication and handling.

The control of defect density in protective coatings appears to be the key to long-
term protection of solar concentrator surfaces in LEOL
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The SSF concentrator graphite epoxy substrate is fabricated by transfer casting.
Both the mold release agent and tile mold surface finish will partially determine the
smoothness of the transfer cast composite face sheet of the concentrator 2. Graphite
epoxy print-through, caused by epoxy shrinkage during polymerization produces a
macroscopic fiber pattern on the surface of the composite 2. Both print-through and

transfer cast surface roughness can be sites for atomic oxygen defects. The planned
multi-layer reflective and protective thin films for the SSF concentrator surface will

be deposited by electron beam evaporation. Evaporation is a line-of-sight deposition
technique; microscopic and macroscopic roughness, as formed during transfer casting
and from print-through, along with dust particles on the surface can be sites of
discontinuity in the deposited films and thus potential atomic oxygen defect sites.

This study uses a RF plasma asher to simulate the LEO atomic oxygen
environment 12. Figure 3a illustrates atomic oxygen undercutting at a protective coating
defect site on a graphite epoxy substrate. The shallow but very wide undercut region

is representative of the shape of undercutting which occurs in an atomic oxygen
plasma environment. The micrograph in figure 3b illustrates that atomic oxygen
damage can occur to solar concentrator surfaces with a multi-layer protective system.
This sample has the same reflective, protective, and substrate layers which are
currently planned for SSF concentrator surfaces: a graphite epoxy substrate, an

adhesion promoting layer of Cu, a Ag reflective layer, and two atomic oxygen
protective layers, SiO 2 on AI203. The aluminum oxide also acts as an adhesion
promotor between SiO 2 and Ag.

Leveling coatings have generally been applied as a means to increase the
specular reflectance of optical surfaces. A lacquer leveling coating has been used

successfully for producing very smooth surfaces for x-ray telescopes 2. Sandia National
Laboratories has applied sol-gel derived leveling coatings for increasing the solar
specular reflectance of stainless steel substrates for solar mirrors 13.

It is believed that the number of inherent atomic oxygen transparent defect
sites can be greatly reduced through the application of a surface tension leveling

coating. If a leveling coating is applied onto the graphite epoxy substrate prior to
deposition of the reflective and protective layers, the rough undulations of the graphite
epoxy can be smoothed, and electron beam deposition will produce continuous
reflective and protective films. This in turn will decrease the number of atomic

oxygen transparent defects. The proposed protection afforded by a leveling layer is
shown schematically in figure 4. This paper addresses preliminary studies on the
effectiveness of applying leveling coatings for decreasing the atomic oxygen defect
density and thus increasing the LEO durability of solar concentrator surfaces.

3



EXPERIMENTAL PROCEDURES

Sample Fabrication

Mechanically polished (T-300/934) and unpolished (AS4/MY 720) graphite

epoxy samples were prepared at NASA Lewis Research Center. The procedure for
polishing was as follows: 600 grit emery paper, water rinse and final polish with 3

micron diamond paste. Both polished and unpolished graphite epoxy samples are
similar in composition to the graphite epoxy for SSF solar concentrator substrates

(polyacrylonitride (PAN), preimpregnated epoxy with fibers (prepreg.) and
unidirectional ply).

Several epoxies were evaluated as potential leveling coatings. Extra Fast Setting

Epoxy (Hardman, Inc.), EPON R 815-Deta epoxy, EPON R 815-Tetra epoxy (Shell

Chemical Co.), and EPO-TEK R 377 high temperature epoxy (Epoxy Technology, Inc.)

were evaluated as potential leveling coatings. Surface tension leveled coatings were

produced by preparing the epoxies as directed and pouring them onto the surface of

the polished and unpolished graphite epoxy samples. The epoxy coated samples were

then cured as directed. The EPON R 815 coated samples were put under vacuum
before curing in an attempt to remove air bubbles.

Graphite epoxy samples which were polished, unpolished, and had leveling

coatings, along with fused silica optical slides were coated with aluminum by electron
beam evaporation using a CHA Industries Model 271 Four Pocket Electron Beam

Gun equipped with an Eratron Model EB-8 Electron Beam Power Supply. Pressure
during deposition was approximately 1 x 10 -6 torr. Aluminum was chosen because it

could serve as both the reflective and the protective layers for this study 14. Aluminum

film thickness was determined by profiling the fused silica optical slide using a Sloan
Dektak II programmable diamond stylus profilometer.

Atomic Oxygen Exposure

Samples were exposed to an atomic oxygen environment in a Structure Probe,

Inc. Plasma Prep II asher. This asher generates a plasma by exciting ambient air
with 100 W of continuous RF power at 13.56 MHz _. The operating pressure was

approximately 5.0 x 10-2 torr. The effective atomic oxygen fluence was calculated

based_ on mass loss data of 5 mil KaptonR24 H p.olyimide which was ashed along with
the samples. An erosion yield of 3 x 10- cm3/atom for the Kapton R was assumed
based on space flight data 2'7.

Reflectance Measurements

The reflectance measurements were obtained using a Perkin-Elmer Lambda 9

UV/VIS/NIR spectrophotometer operated with a 60 mm diameter barium sulfate

coated integrating sphere. The specular reflectance was measured at an 8 degree

angle from normal incidence, with an aperture solid angle of 0.096 steradians (230 x

320 mrad aperture). Integrated solar reflectances were obtained by measuring the
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reflectance over the wavelength range 250-2500nm and then using a NASA Lewis

written program to convolute this spectrum into the air mass zero (AMO) solar

spectrum over the same wavelength range 1°.

Scanning Electron Microscopy (SEM) & Defect Density Concentration

Samples were coated with approximately 200/_ of Au in preparation for

examination on a Cambridge 200 SEM. Micrographs were taken at regular intervals

along each sample for defect density counting. Both secondary electron (SE) and

back scattered electron (BSE) images were obtained. Defect density concentrations

were calculated from the SEM micrographs based on sites in which undercutting was

apparent.

RESULTS AND DISCUSSION

Solar Specular Reflectance

Table 1 lists the solar specular reflectance of the evaluated samples before

(pristine) and after ashing. Also included in this table is A1 thickness, percent loss

in solar specular reflectance due to ashing, and effective fluence for each sample.
The specular reflectance of the EPON R 815-Deta, and two of the Extra Fast Setting

Epoxy (EFSE) leveling coated samples (#1 and #2) were relatively high (0.793, 0.807

and 0.817, respectively). But, visual appearance of the EPON R 815 and EFSE leveling

coated samples revealed various surface morphologies such as: bubbles, creased lines,

and in the case of the EPON R 8115 vacuum treated samples, many small swirled

regions. After electron beam evaporation of A1 onto the surfaces, some of the EFSE

samples obtained a diffuse appearance which was attributed to sample heating during

deposition. Ashing these samples produced a decrease in the solar specular
reflectance from 6.1 to 57.5 percent. The exception was the EPON R 815-Tetra coated

sample which showed an increase in the solar specular reflectance. This is attributed

to a variation in the surface morphology across the surface; the exact region scanned
was probably not the same before and after ashing. Since EPON R 815 and EFSE

leveling coatings were not smooth, some became diffuse during evaporation, and had

a large drop in specular reflectance with ashing; they were found to be inadequate as

leveling coatings.

EPO-TEK R 377 high temperature epoxy produced a smooth leveling layer over

the unpolished graphite epoxy substrates. The pristine integrated solar specular

reflectance was increased from 0.098 for an unpolished graphite epoxy samp.le to
0.893 for an unpolished graphite epoxy with a leveling coating of EPO-TEK" 377

epoxy, an increase of _-800 percent. This epoxy was not affected by heating during

deposition or ashing. The loss in solar specular reflectance due to ashing ranged
from 0.6% to 1.2% for a fluence of 5.15 x 102o atoms/cm 2 (--0.5 yr SSF), and from

2.6% to 3.1% for a fluence of 1.15 x 1021 atoms/cm 2 (_-1.1 yr SSF). These values

are more than an order of magnitude lower than for unpolished graphite epoxy sample

ashed with the same fluence, which resulted in losses of 35.7% and 44.3%,
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respectively. It should be noted that although polishing the graphite epoxy can
increase the solar specular reflectance, the application of a leveling coating can further
increase the solar specular reflectance by an additional 54 percent (as found in this
study). A comparison of the solar specular reflectance of Al-coated unpolished,
polished, and leveling coated unpolished graphite epoxy samples are shown in figure
5.

Defect Density Concentration

Many types of surface defects may be visible during SEM examination. Only

the defects which are atomic oxygen transparent are a threat to the atomic oxygen
durability of solar concentrator surfaces. Thus, only defects which undercut during
ashing were counted. These defects can become visible during SEM examination in
two ways, depending on the size of the undercut region and the materials involved.
When nonconductive materials are examined, such as SiO 2 on Kapton R polyimide,
charging is usually evident in the normal secondary electron image. If conductive
materials are examined, such as AI on graphite epoxy, charging does not always occur.
By using backscattered electron imaging, undercutting of conductive materials can be
observed as seen in figure 6. Backscattered images distinguish between light and

heavy elements; light elements appear dark, heavy elements appear bright. Either
oxidized or void regions would appear dark in the BSE image.

Both of the Al-coated unpolished graphite epoxy samples without leveling
coatings did not readily show visible signs of undercutting in either SE or BSE
imaging. Many of the fibers were directly exposed to the surface prior to A1
deposition, and the fibers which were covered had a very thin layer of epoxy, so

electron charging did not occur at the defect sites. In BSE imaging the underlying
graphite fibers were visible as bright lines. This caused confusion in determining
undercut areas in the BSE mode since it was difficult to distinguish between dark
regions which were undercut and dark regions of epoxy. Defect density concentrations
could not be obtained for these samples. The defect density concentration of the A1-
coated polished graphite epoxy sample was obtained. Undercut areas which were not

visible in the SE images were readily visible in the BSE images and used for atomic
oxygen transparent defect counting. This sample, ashed to a fluence of 8.99 x 1020
atoms/cm 2, resulted in a defect density concentration of 262,300 defects/cm 2. Two of

the Al-coated EPO-TEK R 377 coated samples were used for defect density counting:
#3, ashed to a fluence of 5.15 x 102° atoms/cm 2, and #2, ashed to a fluence of 1.15
x 1021 atoms/cm 2. These leveling coated samples resulted in defect density

concentrations of 22,500 and 21,000 defects/cm 2, respectively. Leveling coatings
produced a decrease in the atomic oxygen defect density concentration by an order of

magnitude (figure 7). In figure 8, SE and BSE micrographs of ashed uncoated and
leveling coated samples show the increased atomic oxygen durability and smoothing
effects provided by leveling coatings.



CONCLUSION

Several types of epoxies were evaluated as potential leveling coatings for

reducing the number of atomic oxygen transparent defects in protective coatings for
solar concentrator surfaces. EPON R 815-Tetra, EPON R 815-Deta and Extra Fast

Setting epoxies were found to be unsuitable as leveling coatings because they did not

A1 and they displayedproduce smooth coatings, some became diffuse during deposition

a large drop in specular reflectance with ashing. EPO-TEK R 377 high temperature

epoxy produced a smooth surface tension leveling layer over an unpolished graphite

epoxy substrate. An increase in the pristine solar specular reflectance of 811% was

produced compared to an unpolished graphite epoxy coupon. Leveling coatings

produced a decrease in the inherent atomic oxygen defect density concentration by an

order of magnitude (262,300 to 22,000 defects/cm2), and a corresponding order of

magnitude decrease in the percent loss of solar specular reflectance during ashing

(35.7-44.3 percent to 0.6-3.1 percent).

The application of a leveling coating can increase the solar specular reflectance

and the atomic oxygen durability of solar concentrator surfaces, increasing both the

efficiency and the lifetime of solar dynamic power systems.
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TABLE I

Solar Specular Reflectance of Pristine and Ashed Samples

Sample Description

Leveling Coating

(Graphite Epoxy Substrate)

Substrate

Polished
Solar Specular Refit)

Integrated Values

Pristine Ashed

% Loss in

Specular Refit.

Due to Ashing

1 No Leveling Coat #1 No

2 No Leveling Coat #2 No

3 No Leveling Coat #2 Yes

4 EPO-TEK R 377 #1 No

5 EPO-TEK R 377 #2 No

6 EPO-TEK R 377 #3 No

7 EPO-TEK R 377 #4 No

8 EPON k 815-Tetra #1 No

9 EPON R 815-Deta #1 No

10 Extra Fast Setting Epoxy #1 Yes

11 Extra Fast Setting Epoxy #2 Yes

12 Extra Fast Setting Epoxy #3 Yes

13 Extra Fast Setting Epoxy #4 Yes

14 Extra Fast Setting Epoxy #5 Yes

0.098 0.0631

0.203 0.1132

0.580 0.5663

0.860 0.8551

0.883 0.8602

0.893 0.8821

0.892 0.8642

0.392 0.4151

0.793 0.3371

0.807 0.7512

0.817 0.7672

0.340 0.2471

0.356 0.3001

0.373 0.3422

35.7

44.3

2.4

0.6

2.6

1.2

3.1

-5.9

57.5

6.9

6.1

27.4

15.7

8.3

a All samples have 1700/_, of A1, except sample #3 which has 940A,

1 Fluence = 5.15 x 102° atoms/cm z (_-0.5 yr SSF)

2 Fluence 1.15 x 10 zl atoms/cm 2 (_-1.1 yr SSF)

3 Fluence 8.99 x 102° atoms/cm 2 (_-0.8 yr SSF)
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