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ABSTRACT

Space simulated thermally induced deformations and stresses in continuous fiber reinforced com-

posites were investigated with a micromechanics analysis. The investigation focused on two

primary areas. First, available explicit expressions for predicting the effective coefficients of ther-

mal expansion (CTE's) for a composite were compared with each other, and with a finite element

(FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide

range of fiber/matrix systems, and predicted values were compared with experimental data. All of

the analyses predicted nearly indentical values of the axial CTE, _1, for a given material system,

and all of the predictions were in good agreement with the experimental data. Results from the

FE analysis, and those from the solution of a generalized plane strain boundary value problem,

were in excellent agreement with each other, and with the experimental data for the transverse

CTE, _2. Less rigorous formulations were in poor agreement with the experimental data.

The second area of investigation focused on the determination of thermally induced stress fields in

the individual constituents. Stresses predicted from the FE analysis were compared to those pre-

dicted from a closed-from solution to the composite cylinder (CC) model, for two carbon fiber/epoxy

composites. A global-local formulation, combining laminated plate theory and FE analysis, was

used to determine the" _,_esses in muitidirectional laminates. Thermally induced damage initiation

pr,'-' _,,s were also made. The type of analysis (i.e. CC or FE) was shown to significantly effect

the distributions and magnitudes of the predicted stresses. Thermally induced matrix stresses

increased in absolute value with increasing fiber volume fraction, 10utwere not a strong function

of fiber properties. Multidirectional [02/+ 0Is laminates had larger predicted thermally induced
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matrix stresses than unidirectional ([0]) laminates, and these stresses increased with increasing

lamination angle 0. Thermally induced matrix failure predictions, using a maximum stress failure

criterion based on the normal interracial stress component and the measured transverse lamina

strength, were in excellent agreement with experimental data.
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1.0 Introduction

Continuous graphite fiber reinforced composites are candidate materials for many space structures

because of their capability for high stiffness, low coefficient of thermal expansion, and light weight.

This combination of properties allows for the design of large stiff structures with minimal thermal

distortions. Examples of applications currently under consideration includethe large truss structure

of NASA's Space Station Freedom (SSF) (1), Figure 1, and the support structure and reflector panels

for NASA's Large Deployable Reflector (LDR) spacecraft (2). The NASA Hubble Space Telescope,

already built and scheduled for launch in 1990, makes extensive use of composites in the optics

metering and support structure(3)(Figure 2). Although composite materials offer the potential for

enhanced performance and significant weight savings, there are concerns about their long-term

stability in the space environment.

Materials in the space environment are exposed to ultraviolet and particulate radiation, atomic oxy-

gen, vacuum, micrometeoroids, and large cyclic changes in temperature (4). The level of exposure

to most of these parameters depends upon the orbit and protection systems on the spacecraft. For

example, spacecm_ ;,} low-earth-orbit (LEO), approximately 250 to 500 miles, are exposed to sig-

_:" _.Lamounts of energetic atomic oxygen. In geostationary-earth-orbit (GEO), at approximately

22,000 miles, the levels of atomic oxygen are negligible, but there are significant amounts of par-

ticulate (electron and proton) radiation. Spacecraft are exposed to vacuum, ultraviolet radiation,

and the threat of micrometeoroid impact in both orbits.

Intro_uction 1
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Figure 1. NASA Space Station Freedom.

Figure 2. NASA Hubble Space Telescope.
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Temperature cycling also occurs in both orbits, however the frequency of the cycling does vary with

the orb;t. In LEO, spacecraft are exposed to approximately 16 cycles per day. A LEO spacecraft

designed for a 30 year lifetime, such as SSF, will experience approximately 175,000 thermal cycles.

In GEO, the thermal cycling frequency is 1 per day. The maximum and minimum temperatures in

a given cycle can be controlled by various thermal control/protection schemes, including active

heating/cooling, and/or passive coatings and enclosures. The coating system proposed for the

truss structure tubes of SSF have a predicted "worst case" temperature cycle of ± 150 oF (1).

In order to successfully design spacecraft structures with composite materials the effects of the

space environment must be well understood. Most of the environmental parameters discussed

above can affect the response and performance of composite materials during the design lifetime

of the structure (4). Previous research has shown that large temperature changes and/or repeated

thermal cycling can cause significant damage in composite materials and adversely affect their

performance(S-lo) (Figure 3). The majority of past research has focused on analysis and testing of

laminate response. However, the effects of constituent properties and microstructural characteris-

tics (i.e. micromechanics) have not been thoroughly investigated for composites exposed to the

thermal environment of space.

The objective of this research is to analyze the deformations and stresses, induced by thermal

loading, in continuous fiber reinforced composites using the properties and behavior of the con-

stitutents (i.e. fiber, matrix, and interface). The research will focus on two primary areas. First,

available explicit expressions for predicting effective coefficients of thermal expansion for the com-

posite will be. c_m_c, ed with each other, and with a finite element analysis that was developed

as pz,,, of this research. Comparisons will be made for a wide range of fiber/matrix systems to

determine the influence of the constituent properties. All of the predictions will be compared with

experimental data to assess the validity and shortcomings of the individual analyses. The remain-

der of the research will focus on the determination of thermally induced stress fields in the individual

Introduction 3
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Figure 3. Effects of thermal cycling on cross.ply graphite/epoxy laminates.

constituents. Stresses predicted from a finite element analysis will be compared to those predicted

from a closed-form analysis available in the literature. The constituent properties and microstruc-

ture that control the behavior will be identified and material modifications to improve the behavior

will be suggested. A simple global/local formulation will be used to determine the influence of mul-

tiple ply laminate constraints on the constituent stresses. Thermal stress calculations will be used

to predict probable damage initiation locations, and the results will be compared to experimentally

observed damage in polymer matrix composites.

Four papers have been published by the author during the course of this research(l°-13). This

report will contain details not included in these papers, as well as new unpublished results.

Identification of commercial products in this report is provided to adequately describe the products

and does not constitute officialendorsement, expresses or implied, of such products or manufac-

turers by NASA.
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2.0 Literature Review

The micromechanics literature can be divided into two categories. The first deals with the devel-

opment of explicit expressions for directly predicting the effective properties of the composite from

the properties of the constituents. The second category covers analyses that provide detailed in-

formation about the displacements, strains, and stresses in the composite from which the effective

properties can be calculated. Extensive research for general multiphase composite materials has

been conducted and published in both of these categories. This review will be limited to those pa-

pers dealing specifically with continuous fiber reinforced composites. Furthermore, this review will

address only those papers that deal specifically with predicting the effective coefficients of thermal

expansion (CTE's), or present stress analyses that are applicable to thermally induced loading.

2.1 Effective Coefficients of Thermal Expansion

Numerous expressions have been derived, with varying degrees of complexity, for predicting the

in-plane CTE's of un!_;, ectional continuous fiber reinforced composites. A summary of research

on. ..,ung both the effective mechanical and thermal properties of composites was given by

Chamis and Sendeckyj(14), where various analyses were compared with each other and experi-

mental data. Chamis and Sendeckyj divided the analysis methods into the following major cate-

gories: strength of materials, self-consistent models, variational or energy approaches, and exact

Literature Review 5



Fiber

Matrix

1

Figure 4. Unidirectional composite geometry and principal material coordinates.

(i.e. using the concept of a periodic array of fibers and a repeating unit cell). Several theories have

been proposed since this publication, and much more experimental data exists on current material

systems. A bdef description of some of the more widely used current analyses will be given here.

The geometry of the problem under consideration is shown in Figure 4. There are several basic

assumptions that are common to all of the analyses to be presented and can be stated as follows:

1. The fibers are circular in cross-section and infinitely long in the 1-direction.

2. All of the constituents exhibit linear elastic material behavior.

3. The displacements are continuous across the fiber/matrix interface.

4. The temperature distribution is uniform throughout the body, and the constituent material

properties do not vary with temperature.

Shapery (is) derived expressions for the effective longitudinal and transverse CTE's (el and e2,

respectively) of a unidirectional composite with isotropic fibers embedded in an isotropic matrix,

gterature Review 6



based on a variational energy appraoch. These expressions may be written as

and

E_0(_Vf + Em_rnv m

0(1 = E_vf + Emv m (2.1.1)

f f f
0(2 = (1 + _'rn)0(mVm+ (1 + u12)0(1V - 0(lU12 (2.1.2)

The terms E, _, and V refer to Young's modulus, Poisson's ratio, and phase volume fraction, re-

spectively. Terms without superscripts in equations (2.1.1) and (2.1.2) refer to effective composite

properties. All other terms with superscripts of f and m, refer to fiber and matrix properties, re-

spectively. This superscript convention is applied throughout the paper. The subscripts used in

equations (2.1.1) and (2.2.2), and throughout this section, refer to the principal matedal coordinates

of Figure 4.

Unfortunately, most fibers such as graphite are not isotropic, but are orthotropic. Graphite fibers

are often considered to be transversely isotropic (i.e. the plane of isotropy is perpendicular to the

longitudinal axis of the fiber). A further discussion of the implications of fiber orthotropy will be

given in Section 5.1. Strife and Prewo (16) have used a simple modification of equation (2.1.2) by

replacing the isotropic fiber CTE, 0(_, with the transverse fiber CTE, of, to account for transversely

isotropic fibers. This modified expression is written as

f f f
_2 = (1 + t.,m)0(mvm + (1 + _,12)0(2 v - 0(lt)12 (2.1.3)

However, the authors note that the modification is not based on any mathematical derivation. Com-

parisons between experimental data for unidirectional Kevlar/epoxy and predicted values from

equations (2.1.1) and (2.1.3) have been reported by Strife and Prewo(16). A simple rule-of-mixtures

Uterature Review 7



formula written as

v12 = v_2 vf + vmv m (2.1.4)

was used for the effective longitudinal Poisson's ratio of the composite needed in equation (2.1.3).

The agreement between experimental and predicted values of el was very poor. The authors

attributed the poor agreement to inaccurate input values of _. The predicted values of (x2 were

within 15 percent of the measured values.

Chamberlain (17) used the plane stress solution of a thick walled cylinder to derive simple expres-

sions for el and e2 of a transversely isotropic fiber embedded in a cylindrical isotropic matrix

region. The expression for o_1is identical to equation (2.1.1). The expression for _2 takes the form

2(el2 - (xm)v f
_2 = am + (2..1.5)

_,m(F - 1 + Vm) + (F + V f) + (Em/E_)(1 - u_2)(F - 1 + Vm)

where F is a packing factor which accounts for fiber packing geometry, and is equal to 0.9069 and

0.7854 for hexagonal and square packing geometries, respectively.

Rogers et al(18)used equations (2.1.1) and (2.1.5) to predict the CTE's of unidirectional graphite/

epoxy composites, and compared the predicted values with measured values. The predicted val-

ues were within 2 percent of the measured vaules of (_2, using the hexagonal packing factor. The

el predictions, in absolute terms, were within O.03x lO-SpF of the measured values. Strife and

Prewo (is) also used equation (2.1.5) to pred'ct _2 for Kevlar/epoxy, and reported differences of

about 13 percent from the measured values.

Uterature Review 8



Chamis09) used a simple force-balance, or strength-of- materials approach, to derive expressions

for the CTE's of unidirectional composites consisting of transversly isotropic fibers in an isotropic

matri)c The expression for _1 is again identical to equation (2.1.1). The expression for (_2can be

written as

_2 = afvf + ermvm( 1 + vfvrnEfl/El) (2.1.6)

where E1 is the longitudinal Young's modulus of the composite, given by the simple rule-of-mixtures

formula written as

E1 = E_Vf + Emvm (2.1.7)

No comparisons between measured and predicted values using equation (2.1.6) could be found

in the literature. However, a comparison between equation (2.1.6) and a finite element analysis

showed ven/poor agreement (2°).

Rosen and Hashin (21)extended the work of Levin (22) to derive expressions for the effective CTE's

of multiphase composites. Hashin (23)summarized this approach for unidirectional fiber reinforced

composites with transversly isotropic constituents. This analysis is the most general of the anal-

yses discussed thus far, and relates the volume average stresses and strains in a characteristic

volume element t_ thu effective properties of that element. The derivation leads to complicated

te,,-,_or_xpressions for oc1 and e2, and requires three of the effective elastic mechanical properties

(longitudinal modulus and Poisson's ratio, and transverse bulk modulus) of the composite in the

calculations. In contrast, the Shapery analysis requires only the effective longitudinal Poisson's

ratio, the Chamis analysis requires only the effective longitudinal modulus, and the Chamberlain

Uterature Review 9



analysisrequiresnoneoftheeffectiveelasticmechanicalproperties. The general form ofthe results

may be written in tensor notation as(23)

aij = _ij "i- (_f) --_rn))Pklrs(Srsij- Srsij) (2.1.8)

Pklrs(S_ij (m)- Srsij ) --- Iklij (2.1.9)

where Srsi|are the elastic compliances and Iklij is a fourth rank symmetric unit tensor. Superscripts

(f) and (m) refer to fiber and matrix, respectively, are enclosed in parentheses to distinguish them

from tensor indices. The terms with an overbar and hat refer to effective and volume average

composite properties, respectively. Composite volume average properties are obtained by

I_ = Vfp f + vmp rn (2.1.10)

where p is the property of interest.

For transversely isotropic constituents, equation (2.1.8) simplifies to

= /c_(O _ (m) -°_1 al +_, kl °_kl )Pklrs(Srs11 - Srs11) (2.1.11a)

_2 = a2 + _I(_(f)kl- e_ ))Pklrs(_rs22 - _rs22) (2.1.11b)

The overbar has been dropped from el and e2 to be consistent with equations (2.1.1)-(2.1.7).

Equations (2.1.1 la) and (2.1.1 lb) are solved by determining Pklrsfrom equation (2.1.9). The

Literature Review 10



componentsofS areobtainedfrom expressions for the effective mechanical properties given by

Hashin(231. Equations (2.1.1 la) and (2.1.1 1b) were expanded and simplified to a form more suit-

able for routine computations in Appendix A. To the author's best knowledge, this is the first time

that a fully expanded version of equations (2.1.1 la) and (2.1.1 113)has appeared in the open liter-

ature. No comparisons between measured and predicted values using equations (2.1.1 la) and

(2.1.1 1b) could be found in the literature. This may be partly due to the complexity of the expres-

sions relative to some of the other previously discussed derivations.

Exact methods employing the assumption of a regular periodic array of fibers, from which a re-

peating unit cell may be extracted, have also been used to predict CTE's. A discussion of these

methods will be given in the section on stress analysis formulations.

As described above, numerous expressions have been derived, with varying degrees of complex-

ity, for explicitly computing the effective CTE's of unidirectional composites, based on the elastic

properties and CTE's of the constituents. However, a systematic comparison of these different

formulations with each other, and with a broad range of experimental data has not been reported.

This type of comparative study is essential for determining the applicability of each formulation,

and will be one of the major thrusts of this dissertation.

2.2 Thermal Stress Analysis

The prediction of thermally induced damage and comparisons with experimental data have, for the

most part, been limit,- _':._ the macro or laminate level (9- lo). However, numerous papers have been

p_b!ist_rJ on predicting the mechanical stress-strain behavior of unidirectional composites using

micromechanics analyses. The three most common approaches fit into the three categories listed

in Section 2.1 as exact, self consistent, and strength of materials formulations. Representative

papers from all three categories are discussed below.

Llterature Revlew 11



Exactformulations usually assume that the fibers occur in a regular periodic array. This allows the

analyses to be performed on a repeating unit cell rather than the whole array of fibers, thus greatly

reducing the size and complexity of the problem. The influence of adjacent fibers is incorporated

through the boundary conditions on the unit cell. Many of the exact formulations have employed

the finite element method. Adams et. al.(24-27) have published extensively in this area using a

generalized plane strain formulation, with constant strain triangular (CST) elements, to model cir-

cular fibers in a square array surrounded by matrix material. This analysis was used to examine the

effects of matrix material nonlinearity and temperature dependence on graphite/epoxy composite

stress- strain behavior for various load conditions. All of the thermal load conditions were for room

temperature and above. Foye(2s)and Dvorak et. al. (29)have also used finite element analyses with

CST elements to predict nonlinear stress-strain behavior of unidirectional composites subjected to

thermomechanical loading. These papers were primarily aimed at predicting matrix yielding in

metal matrix composites subjected to mechanical loading.

Aboudi (3°-32) has alsoused an exact formulation. The Aboudi model assumes a triply periodic

array of parallelepiped fibers embedded in an infinite matrix region. The representative cell for this

model is a single parallelepiped fiber subcell surounded by three parallelepiped matrix subcells.

This general geometry can be used to model particulate reinforcements, short fibers, continuous

fibers, and 3D woven fabrics. A first order displacement expansion is employed in each subcell,

which leads to average constant stresses and strains in each subcell. Imposition of continuity

of tractions and displacements across the boundaries of the individual subcells leads to closed

form expressions relating the applied stress to the average stresses and strains in each subcell.

This model has had very good success in predicting the global effective properties and stress-

strain behavior of metal matrix composites (33). However, the assumption of parallelepiped fibers,

and constant subcell stresses and strains, raises concerns about the accuracy of this model for

predicting the local stress fields in the vicinity of the fibers.

Literature Review 12



Severalstressanalyseshave been formulated using variations of the self- consistent model. All

of the s_,'f,-consistentmodels assume that the real composite can be replaced by a representative

cell embedded in a homogeneous medium whose properties are equivalent to the effective proper-

ties of the composite. These models neglect certain microstructural details, such as the influence

of adjacent fibers, and are usually best suited for prediction of global behavior. One of the most

widely used self-consistent models is the composite cylinder assemblage (CCA) formulation of

Hashin(34). The representaive cell in this formulation is a composite cylinder (i.e circular fiber em-

bedded in a cylindrical region of matrix) and can be solved as an elasticity boundary value problem.

A thorough description of this formulation will be given in Section 3.3.2. Avery and Herakovich (3s)

have used this method to examine the effects of fiber anisotropy on the thermomechanical stresses

in unidirectional composites, Mikata and Taya(36) have also used this method to examine the ef-

facts of fiber coatings on thermomechanical stresses. Both of these analyses were linear elastic

with temperature independent material properties, and did not consider thermal loads below room

temperature or the initiation of thermally induced damage.

Another variation of the serf-consistent model is the "solid mixture" formulation of Min (37). This is

a plane stress elastic-plastic analysis with uniform stresses in the fiber and matrix phases. This

analysis was used to study the elastic-plastic mechanical response of metal matrix composites.

Dvorak et. al (38)have derived a "vanishing fiber diameter" formulation which is also a variation of

the self-consistent model. The composite is modeled as a continuum reinforced by cylinddcel fibers

of vanishingly small diameters that occupy a finite volume fraction of the composite. This leads to

uniform local stres._ __:,d strain fields in the constituents, but greatly simplifies the computation of

t_ . _,al composite stress-strain behavior. The authors do state that this formulation neglects

certain interactions between phases in the transverse direction, and therefore has questionable

accuracy for predicting composite response in that direction. This analysis was also used to study

the elastic-plastic mechanical behavior of metal matrix composites.
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Chamis(3g)hasuseda strengthof materialsapproachto derivesimpleexpressionsfor fiber and

matrix stresses using constituent properties, effective unidirectional lamina properties, and applied

lamina stresses. Fiber stresses are assumed to be uniform, and there are two regions of uniform

matrix stresses. This formulation is consistent with the formulation given by Chamis (19)for predict-

ing effective properties.

Analyses that fall under the category of exact, as described at the beginning of this section, give

more accurate descriptions of the local variations in the stress and strain fields of the constituents

by virtue of their formulation. Analyses based on variations of the self-consistent model have been

shown to be well suited for predicting global properties and response, but lack the microstructural

details to predict localized phenomenon. If the unidirectional composite response is needed as

input to a laminate model, then a global response might be adequate and even desirable due

to its usually simpler computational scheme. However, accurate predictions of thermally induced

damage require detailed information about local variations in the stress field, and thus require

analyses that fall within the exact category. None of the micromechanics studies found in the

literature, and described above, investigated the initiation of thermally induced damage in polymer

matrix composites. An analytical investigation of this problem will be one of the main thrusts of this

study. The results of an exact formulation based on a finite element analysis will be compared to a

serf-consistent scheme based on the composite cylinder model.
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3.0 Theoretical Development

3.1 Approach

The theoretical thrust of this dissertation is divided intotwo areas. The first deals with the prediction

of effective CTE's of unidirectional composites. Four formulations for explicitly predicting effective

CTE's were presented in Section 2.1, and a discussion of these formulations will not be repeated

in this chapter. Those expressions assumed temperature independent constituent properties. A

method for correctly incorporating the effects of temperature dependent constituent properties will

be developed and presented in this chapter.

The second area of theoretical investigation deals with the prediction of thermally induced stresses

in the constituents of unidirectional composites. Two formulations will be presented in this chapter;

a finite element analysis, and an elasticity solution of the composite cylinder problem discussed

in Section 2.2. The_" t_,,oformulations will be presented for temperature independent constituent

p._ Js lirst. A general method for incorporating the effects of temperature dependent con-

stituents will then be presented. A brief discussion on the use of classical laminated plate theory

(LP'r) for predicting laminate thermal response, and a simple global/local formulation combining

LPT with micromechanics will also be presented.
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ThegeneralproblemgeometryunderconsiderationwasshowninFigure4.Theassumptionsthat

arecommonto allofthetheoreticalworkofthisstudyarelistedbelow.

1. The fibers are circular in cross-section and infinitelylong in the 1-direction.

2. All of the constituents are linear elastic.

3. The displacements are continuous across the fiber/matrix interface.

4. The temperature distribution is uniform throughout the body.

These assumptions are the same as those used in the derivations for predicting effective CTE's

discussed in Section 2.1, with the exception that the constituent properties may now be functions

of temperature.

3.2 Effective Coefficients of Thermal Expansion

The expressions for predicting effective CTE's presented in Section 2.1 were derived assuming

temperature independent constituent properties. Ifthe constituent properties vary with temperature

the expressions are no longer valid, and must be modified. The appropriate modification consists

of replacing all of the _'s (effective, fiber, and matrix) with thermal strains, _, given by

_T T1
_(T) = e(r)dT (3.2.1)

SF"r

where TSFT and T1 are the stress free temperature and analysis temperature, respectively. The

TSFT is usually assumed to be the temperature at which the composite is fabricated, and as the

name implies, is the temperature where the composite and its constituents are all stress free.
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Conversely,bydefinition(x is given by

e(T) = d_(T) (3.2.2)
err

Therefore, the instantaneous effective CTE of the composite at T1 is obtained from the derivative

of the expression for the effective thermal strain of the composite evaluated at TI.

The above procedure is best illustrated by considering a specific example. The expression for the

effective longitudinal thermal strain is obtained from equation 2.1.1 and may be written as

Vf + Em 'V"
_1 = EflVf + Emvm (3.2.3)

where all of the constituent properties may now be functions of temperature.

The effective longitudinal CTE is now computed from equation (3.2,2) and is wdtten as

( +_
  +EmVm )

(3.2.4)

Now, if the moduli, Eft and Em, are not functions of temperature, then equation (3.2.4) simplifies to

the form of equation (2.1.1), written as

f f Em_mv m
E1_1Vf + (3.2.5)

or1 = Eft1Vf + EmVm

where o_ and a m are the CTE's of the constituents evaluated at the temperature of interest, T1.

However, if th_ _,_,mstituentmoduli are functions of temperature, then equation (3.2.4) becomes

1 ( f f f Emvmc_m f,,fdEfl EmvmdEm )_1 = _V f+EmVm E1Vel + +qv-_-+ -_-

- + Emvm)[ (E_vf,, + EmVm,m/ (V'-_ + vm d_-_m)] (3.2.6)
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Equation (3.2.6) is rather lengthy, and its evaluation at a particular temperature may be very cum-

bersome. This is especially true if the functional form of the constituent property variation with

temperature is not known. The development of explicit expressions for the temperature depen-

dent transverse CTE becomes even more lengthy and complicated.

An alternate approach to determining explicit expressions for the temperature dependent effective

CTE's, as outlined above, is to first compute effective thermal strains, and then numerically evalu-

ate the derivative of equation (3.2.2). The effective thermal strains are computed by substituting the

constituent thermal strains (defined by equation (3.2.1)) for the constituent CTE's into the expres-

sions presented in Section 2.1. An example of this substitution was shown in equation (3.2.3).

This computation requires that the constituent elastic properties be known only at the analysis

temperature. The functional form of their variation with temperature is not required. However, the

path dependence of the constituent CTE's with temperature is required for evaluation of equation

(3.2.1).

The numerical approach used in this study for evaluating equation (3.2.2) was to f'_ a second order

interpolating polynomial to three discrete effective thermal strain values. The three temperatures

selected were the analysis temperature, T1, and temperatures T1:1:5 ° F. The expression for the

derivative of the effective thermal strain evaluated at T1 may then be written as(40)

d_ 1
= dT - 10 (_(T1 + 5) - _(T1 - 5)) (3.2.7)

The above expression was used for both the longitudinal and transverse CTE's at each temperature

of interest.
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3.3 Thermal Stress Analysis

3.3.1 Finite Element Model

A finite element (FE) model was used to determine the thermally induced stresses and deformations

in unidirectional composites. The FE analysis of the unidirectional composite geometry, shown

earlier inFigure 4, was greatly simplified by assuming the fibers are arranged in some type of regular

and periodic array. This allows the analysis to be performed on a representative unit cell rather

than the entire composite, and greatly reduces the size and complexity of the analysis. Additional

simplificationsto the unit cell can be obtained by utilizingthe symmetry of its geometry and applied

loads. The two fiber an-ay geometries assumed for this study were square and hexagonal. The

simplified unit cells, boundary conditions for a uniform thermal load, and coordinate systems for

these two array geometries are shown in Figure 5. The (1,2,3) principal material coordinates of

Figure 4 are coincident with the (x,y,z) cartesian coordinates of Figure 5.

A condition of generalized plane strain was assumed to exist in the composite. The displacement

field for this condition may be written as

0u = U(y,z) + (x "x

v = V(y,z) (3.3.1.1)

w = w(y, z)

where U, V, and W _,e unknown functions of the spatial coordinates y and z, and _x° is a uniform

_:_;:, (_.e. constant in the yz plane) in the x coordinate direction. The term _x° may be a known

applied strain or treated as an unknown for a uniformly applied force, F° in the x direction. For

thermal loading only, the uniform axial applied force is zero and _o is the unkown thermal strain in

the x direction.
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_ FiberMatrix

_ W = V[tan (13)]\ along

__M /-- V = cOnstant
a atrix / along boundary

/Z/W= 0 along boundary

13= 30 deg for hexagonal array, 45 deg for square array

Figure 5. Finite element micromechanics model geometry and boundary conditions.

A linear elastic displacement formulation was used to solve for the above unknowns, using eight

node isoparametric quadratic elements. The FE mesh used in this study is shown in Figure 6.

This final mesh geometry was derived from a mesh refinement study to determine the minimum

number of degrees of freedom (DOF's) that would provide convergence of the solution for the

displacements. Details of displacement based FE formulations are found readily in the literature (41).

A description of the formulation is given in Appendix B. This description covers the solution for the

nodal displacements as well as the computation of the element stresses and strains from these

displacements.

Several unique features, specifically required for this study, were incorporated into the formulation

presented in Appendix B. First, the inclusion of an unkown t° is carried throughout the formulation,

and its effect on the global system of equations is highlighted. A detailed treatment of this type

could not be found in the literature. A method to account for material cylindrical orthotropy is also

included in the formulation. This type of orthotropy caused the material stiffness matrix to vary
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8-nodequadraticisoparametricelements
158 nodes,45 elements

Fiber/matrixinterface

Flgure6. Mlcromechanlcsflnlteelementmesh.

withina givenelement.Thevariationwasincludedin theformulation by evaluating the stiffness

matrix at each of the integration points used in the numerical integration scheme for an element.

Finally, a special solution algorithm was developed for efficiently sloving the global system of linear

equations for the case of an unknown t °. This was necessary because the inclusion of an unkown

_x° destroys the bandedness of the global system of equations. The specially developed algorithm

allowed the banded nature of the system to be retained, thus greatly increasing solution efficiency.

The formulation described above and in Appendix B was imp;emented in a computer program

called FECAP (Finite Element Composite Analysis Program),and was written to run interactively on

a desktop microcomputer (I 1) FECAP was written in Hewlett Packard BASIC 3.0, and can run on

any ";__Jett Packard 9000 Series microcomputer with a BASIC 3.0 or compatible operating system.

Nodal coordinate and element connectivity data are read from a user generated file, A very simple

mesh generation program was written to produce the data files used in this study, The output from

FECAP (i.e displacements, stresses, and strains) was written to a file for further post-processing
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and plotting.

3.3.2 Composite Cylinder Model

The other analysis used for predicting thermally induced stress fields was the solution to the com-

posite cylinder (CC) boundary-value problem. The CC model, which consists of a circular fiber

embedded in a cylindrical region of matrix, is shown in Figure 7, along with the coordinate sys-

tem and boundary conditions. The use of the CC model for providing the solution to a composite

consisting of many fibers (Figure 4) is based on the composite cylinder assemblage (CCA) for-

mulation of Hashin(3°). This formulation, a variation of the self-consistent approach, assumes that

a composite can be modeled as a collection of composite cylinders of varying size, all of which

have the same ratio of fiber radius to matrix radius (i.e fiber volume fraction). A single composite

cylinder becomes representative of the entire composite by requiring that, for a given load state,

the stored strain energy in this single composite cylinder is equal to the strain energy in a cylinder

of homogeneous material with the same "effective" thermoelastic properties. Consequently, the

stresses and strains in a single composite cylinder represent only the average stresses and strains

in the "real" composite.

The CC model is most easily solved using the cylindrical coordinate system shown in Figure 7. The

terms u, v, and w in the following formulation refer to displacements in the x, 0, and r directions,

respectively. Due to the axial symmetry of the geometry and load, for a uniform change in tem-

perature, the v displacement will be zero and the solution will be axisymmetric (i.e independent of

the e coordinate). Conditions of generalized plane strain may also be assumed for this problem,

leading to a displacement field which has the functional form of

u = u(r)+ x

v=O (3.3.2.1)

w = w(r)
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_-Fiber

Flgure 7. Composlte cyllnder model geometry and boundary condltlons.

where u(r) and w(r) represent the functional form of the u and v displacements, respectively, and

_o is an unknown uniform strain in the x direction. The strain-displacement relations can be written

as

Ou Ow w
,,=-,

ox or r

oqu

"/re -- 0, ")'#x = 0, 3'xr -- _)_"

(3.3.2.2)

The nonvanishing equilibrium equations for this problem are

O_ffr 1
_--_-+ 7(Or - o0) = 0 (3.3.2.3)

--_v_'x__._,+ _'x__i = 0 (3.3.2.4)
Or r

Substituting the strain-displacement relations (equation (3.3.2.2)) into the appropriate matedal con-

stitutive relations, and then substituting the resulting relations into equation (3.3.2.3) yields the
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governing differential equation for the w displacement written as

1 1

Crr I cgr-_--+ 1-_]- C0e_22 = r(Cex - Crx)Cx° + r(Cri - C0i)(_iAT (3.3.2.5)

where the Cij and o(i are the stiffness and CTE coefficients, respectively, and are defined in Ap-

pendix D. The repeated subscript i in equation (3.3.2.5) is summed over x, r, and 0. The general

solution to equation (3.3.2.5) has been given by Cohen and Hyer (42) for an orthotropic tube, and

by Avery and Herakovich (31) for a fiber/matrix composite, and is repeated in Appendix D for com-

pleteness.

The solution of equation (3.3.2.4) may be written down by inspection as

K
"rxr = - (3.3.2.6_

r

where K is a constant that can be determined form the boundary condition on Txr at the outer

surface of the cylinder. For thermal loading only, the outer surface is stress free and therefore K

must equal zero. This implies that there are no shear stresses or strains for the case of thermal

loading only. Also, the functional form of u given in equation (3.3.2.1) may be simplified to

O
u = _x "x (3.3.2.7)

where the displacement u is no longer a function of r.

The solution to equation (3.3.2.5) and the subsequent expressions for the stresses in the fiber and

matrix presented in Appendix D were coded into a computer program for ease of computation.

This program was also written to run on a Hewlett Packard 9000 Series microcomputer.
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3.3.3 Global/Local Model

The boundary conditions for the FE model shown in Figure 5 are for a unidirectional composite

with no externally applied loads except for a uniform change in temperature. These boundary

conditions must be modified to model an array of fibers and matrix in a laminated composite, in

order to account for the constraints imposed on the individual laminae. These constraints arise from

the mismatch in CTE (el and e2) between plies with different fiber orientations when the laminate

is subjected to change in temperature. The theory governing this behavior inthin laminates, where

conditions of plane stress may be assumed, is known as laminated plate theory (LPT) and is found

readily in the literature (43). In a symmetric laminate subjected to a uniform change in temperature

the strains in each ply are equal, and may be written as

{,o}c_ = [A]-1 [Q]k{(*}ktk ,dT (3.3.3.1)

where {O_}k iS the CTE matrix of the k'th ply, tk iS the thickness of the k'th ply, and [A] and [Q]k

are the stiffness matrices of the laminate and k'th ply, respectively. The summation is over the total

number of plies, n. Definitions of the above terms can be found in the LPT reference cited earlier.

The strains in equation (3.3.3.1) are referenced to the (x,y,z) laminate coordinate system shown in

Figure 8, and must be transformed to the (1,2,3) principal material coordinate system (Figure 4) for

use with the FE analysis. This is accomplished through a simple transformation equation written

as

{2

712 k
cos0sn,}sin20 cos20 - cosSsin8 _

-2cosSsin8 2cosSsinO cos20-sin20 k "7_

where 8 is the angle measured from the x-axis to the 1-axis for the k'th ply.

(3.3.3.2)
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Thethrough-the-thickness(3orz direction) thermal strain of a given ply is also constrained in a

multidirectional laminate. The expression for this strain is derived directly from Hooke's Law, and

is written for the k'th ply as(44)

_3 = a2 z3T- ('v'2 _ "1 - (_2a _ _2
\El } \E2)

(3.3.3.3)

The above equation assumes that the lamina or ply properties are transversely isotropic (2-3 plane

of isotropy). The terms _12 and v23 are the lamina Poisson's ratios, E1 and E2 are the lamina

moduli, and e2 is the unconstrained lamina CTE. The terms o-1 and o-2are the thermally induced

lamina stresses in the principal material coordinates. These stresses are determined from LPT, and

are written as

{Ol}o-2 = [T]k[(_]k({_ °} -- {_}kz3T)

T12 k

where {_o} is defined by equation (3.3.3.1), and [T]k is a transformation matrix given by

(3.3.3.4)

COS29 sin20 2cosOsin# ]
[T]k = sin20 cos2e -2cos_sin0

-cosOsin8 cosOsin8 cos2O-sirr?-O k
(3.3.3.5)

The method for imposing the laminate induced constraints on a fiber/matrix unit cell is shown

schematically in Figure 8. The thermally induced laminate strains, Cl, E2,and ")'12,and the through-

the-thickness lamina strain, <3, were determined from equations (3.3.3.1) through (3.3.3.5), for a

given AT, and ply. These strains were then used as displacement boundary conditions on the FE

model of a single fiber and surrounding matrix exposed to the same ,ST. The FE model shown
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Figure 8. Finite element model for global/local formulation.

in Figure 5 could not be used for this formulation because of a difference in symmetry conditions.

Instead, the "quarter-symmetry" model (i.e. modeling of a quarter of a fiber) shown in Figure 8

was used. The axial strain condition was imposed by setting the uniform applied axial strain, _x°

of equation (3.3.1.1) from the FE formulation, equal to cl. The transverse strain condition was

imposed by setting the V displacement along the y=l edge equal to (2. The V displacement along

y=O was set equal to zero. The shear strain condition was imposed by setting the U displacement

along y=O to zero, and the U displacement along y=l to "Y12.Finally, the W displacement along

z=O was set equal to zero, and the W displacement along z=l was set equal to _3.

3.3.4 "r--mperature Dependent Constituents

The CC and FE models described above were presented for the case of temperature independent

constituent properties. However, both models were implemented with the capability to allow for

temperature dependent constituent material properties. The formulations were modified by follow-
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ingtheproceduredescribedinSection3.2.

strainsgivenby

whichis identicalto equation (3.2.1).

form as

Terms containing o_AT were replaced with thermal

_TT1_(T) = e(r)dr (3.3.4.1)
SFT

The stresses in the constituents may be wdtten in generic

_Ts I
{o-(rl) } = H(T1) G(7-)dT

FT

(3.3.4.2)

where H(T 1) issome function of the constituent elastic properties evaluated at T1, end G(r) is some

function of the constituent CTE's.

This formulation is refered to in the literature as a "total strain theory"(45). As discussed in Section

3.2, the elastic moduli end Poisson's ratios are only required at the analysis temperature. Their path

dependence with temperature is not required. This formulation is only valid for elastic constituent

material properties (i.e. properties not a function of stress). When the properties are inelastic, an

incremental approach must be used.
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4.0 Experimental Methods

A brief description of the experimental method used to determine the thermal strain behavior of

composites will be presented first. This will be followed by a discussion of the method used to

observe and characterize thermally induced damage in a high modulus graphite/epoxy composite.

4.1 Measurement of Thermal Strains

Thermal strain data were determined for a number of different continuous fiber reinforced unidirec-

tional composite systems. These data will be presented in Section 5.2. All of the measurements

were made using a laser interferometric dilatometer at NASA-LaRC. This equipment has a strain

resolution of approximately lx10 -8 and a temperature range of - 250 °F to +300 °F. The specimen

length is approximately 3 inches, and the strain is determined over the full length of the specimen.

All of the resin matrix composites were vacuum dried to a constant mass before testing, and all

of the specimens were tested in a dry N2 environment. Details of the experimental technique are

given in the literature(46).

V,_ues of Q1 and o_2 were obtained by fitting a least-squares polynomial (usually 3rd order) to

the thermal strain-temperature curves and then evaluating the derivative of this polynomial at the

desired temperature. A typical axial thermal strain-temperature curve for unidirectional T300/5208,

along with the least-squares polynomial fit, is shown in Figure 9.
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Figure 9. Axial thermal strain curve for unidirectional T300/5208.

4.2 Damage Observation and Characterization

The formation and growth of thermally induced damage was observed and characterized in a high

modulus P75/9,34 graphite/epoxy composite system. A description of the constituent properties

of this particular system will be given in Section 5.1. Unidirectional and cross-ply panels were

fabricated from prepreg tape according to the manufacturer's standard cure cycle. The maximum

temperature in this cure cycle was 350 oF, which was the assumed stress-free-temperature in the

thermal stress analysis to be presented in Section 5.3. The panels were ultrasonically C-scanned

after fabrication, and exhibited no significant voids or delaminations. Both panels had an average

fiber volume fraction of 0.50.

Specimens from unidirectional and cross-ply laminates were observed after fabrication, and af-

ter various numbers of thermal cycles between ±250 oF, for the presence of thermally induced

damage. The observations consisted of examining the polished edges of the specimens with an
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optical microscope at magnifications of 400x. The specimen dimensions were 3(L) by I(W) by

O.04(T) inches. All of the specimens were dried prior to observation and were kept dry through-

out the thermal cycling process. The effects of thermal cycling induced damage on the modulus

and CTE of these specimens, as well as the details of the experimental procedure, have been re-

ported elsewhere (1°). The present study will focus on the initiation and morphology of the damage

observed in these specimens.
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5.0 Results and Discussion

The discussion of the analytical results will be divided into four main sections. The first section will

discuss the constituent property data that was used as input for all of the analytical predictions.

The second section will discuss the various methods for predicting effective CTE's of unidirectional

composites, and their comparisons with experimental data. The third section will describe the

results of the thermal stress predictions, and the final section will discuss the formation of thermally

induced damage.

5.1 Constituent Properties

As discussed in Section 2.1, carbon fibers are not isotropic, but are commonly assumed to

be transversely isotropic with the plane of isotropy being the 2-3 plane of Figure 4. How-

ever, studies (47-51) of carbon fiber morphology suggest that the fibers may posses a combi-

nation of a cylindrically orthotropic (i.e different properties in the x, r, and e directions of Fig-

ure 7) sheath near the outer surface of the fiber, and a transversely isotropic core as shown in

Figure 10. The type of cylindrical orthotropy (i.e. radial or circumferential) depends upon the fiber

fabrication process. Carbon fibers made with a PAN (polyacronitrile) precursor typically have a

circumferentially orthotropic sheath and those made from a pitch precursor typically have a radi-

ally orthotropic sheath. A thorough investigation of the effects of fiber morphology on composite
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Figure 10, Carbon fiber morphology.

effective properties and stresses has been given by Knott(s2), Spec_ic results from that study will

be discussed in subsequent sections.

The majority of results for the present study were generated with the assumption of transversely

isotropic fibers.

written as

This reduces the number of independent elastic constants for the fiber to five,

with the transverse shear modulus related to the other properties by

(5.11)

(5.1.2)

Allof the matrix materials were assumed to behave isotropically with two independent elastic

constants written as

Em, _,m (5.1.3)
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andtheshearmodulusdefined by

Gm = Ern/2(1 + v rn) (5.1.4)

E, v, and G in the above expressions represent the Young's moduli, Poisson's ratios, and shear

moduli, respectively. The subscripts refer to the material coordinates of Figure 4, and the super-

scripts f and m refer to fiber and matrix, respectively. In addition to the elastic constants, there are

two independent CTE's for a transversely isotropic fiber, e_ and o,f, and one for an isotropic matrix,

_ITI

Fiber property data, especially as a function of temperature, are very difficult to find in the literature

due to the extreme difficulty of generating these values experimentally. The carbon fiber properties

used in the present study were assumed to be temperature independent. This assumption is

thought to be valid due to the relatively small temperature range used for the analyses (-150 °F

to +250°F ) compared to the large useful operating temperature range of carbon fibers, and the

large distance of the analysis temperature range from the fabrication temperatures of the fibers.

The axial CTE of PAN based carbon fibers has been shown to be independent of temperature over

this range (s3). The elastic constants and CTE's for the various carbon fibers used in the analyses

are given in Table 1. The T300, C6000, and HMS fibers are PAN based, and are manufactured

by Amoco, BASF, and Hercules, respectively. P75 and P100 are high modulus pitch based fibers

manufactured by Amoco. The data in Table 1 come from various literature sources, including

both research papers and manufacturers product data sheets (54-$7). Experimentally measured

values from the literature were used when available. However, the transverse fiber properties

represent values from the literature that were back-calculated from composite properties using

micromechanics theories for predicting effective composite properties (23).
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Table1. CarbonFiberPropertiesat 75°F.

E1 E2 G12 G(,(21) Ul2 P23 a 1 or2
Fiber (Ms0 (Msi) (Ms0 (Msi) (10-S/°F) (10-S/°F)
T300 33.8 3.35 1.30 1.20 0.20 0.40 -0.30 5.60
C6000 (2) 33.8 3.35 1.30 1.20 0.20 0.40 -0.30 5.60
HMS 55.0 0.90 1.10 0.32 0.20 0.40 -0.55 3.80
P75 79.8 1.38 1.00 0.49 0.20 0.40 -0.75 3.80
P100 115.5 1.05 1.00 0.38 0.20 0.40 -0.78 3.80

(1) G23 = E2/2(1 + u23)

(2) C6000 assumed to have same properties as T300

A wide range of matrix materials was used for the effective CTE predictions. The properties of these

materials are listed in Table 2. The elastic and CTE properties for the aluminum and glass matrices

were assumed to be temperature independent over the temperature range of interest, and were

taken from the literature(sa). The polyimide properties(19) were also assumed to be temperature

independent due to a lack of temperature dependent data. The epoxy properties are those of

Fiberite Corp. 934, a widely used 350 oF cure aerospace epoxy matrix. This was the matrix material

used for the majority of the stress analysis predictions. The other epoxies in Table 2 (Narrnco 5208,

Fiberite 930, and Ferro CE339) were all assumed to have the same room temperature properties

as 934, except am for CE339 which is a rubber-toughened epoxy and has a higher CTE(27). The

934 matrix properties were assumed to be temperature dependent. Experimental values of Emand

um, at room temperature (RT) and +250°F, were given by Fox et.al. (59). The elastic properties

at -250 °F were back-calculated for this study, from T300/934 unidirectional lamina properties (s°)

at -250 °F usinn the CCA formulation of Hashin for predicting effective elastic composite proper-

',i .-,_'_ . The temperature dependent values of (_m for 934 were back-calculated at -250°F, FIT,

and +250 °F from T300/934 unidirectional lamina CTE data, using the Rosen and Hashin analysis

discussed in Appendix A.
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Table2. MatrixPropertiesat75°F.

E G(1) v

Matrix (Ms_ (asi) (10-6/°F )
934 epoxy(2) 0.67 0.25 0.36 23.0
5208 epoxy(2) 0.67 0.25 0.36 23.0
930 epoxy(2) 0.67 0.25 0.36 23.0
CE339 epoxy(2) 0.67 0.25 0.36 35.2 (3)
PMR15 polyimide 0.50 0.19 0.35 20.0
2024 aluminum 10,60 4,00 0,33 12,9
Borosilicate glass 9,10 3,80 0,20 1,8

(I)G = E/2(1 + _,)

(2) All epoxies were assumed to have the same properties unless noted

(3) Value for a similar rubber-toughened epoxy

Second order polynomial representations of the dependence of the 934 properties with tempera-

ture are given in Table 3. These polynomials were used in the analyses for computing the matrix

properties at discrete temperatures between -150 °F and +250 °F,

Table 3. Functional Form of Temperature Dependent 934 Epoxy Properties.

Property=Ao+A1T+A2 T2, (T=°F)

Property Ao A1 A2
E (Ms_ 0.7743x10 ° -0.1422x10 -2 0.1123x10 -5
G (Msi) 0.2832x10 ° -0.5160x10 -3 0.4448x10 -6
_, 0.3677X10 ° -0.4400X10 -4 _0.2514x10 -6

(10-6/°F ) 0.1975x102 0.4500X10 -1 - 0.1700x10 -4

5.2 Effective Coefficients of Thermal Expansion

Predictions of effective CTE's from the four explicit formulations presented in Section 2.1, and

from the finite element analysis, developed for this study and presented in Section 3.1.1, will be
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comparedwitheachotherandwithexperimentaldata.Thesefive analyses will be referred to by

the following abbreviations: Shapery (SH), Chamberlain (CB), Chamis (CH), Rosen and Hashin

(RH), and finite element (FE). The Hex and Sq designations for the CB and FE predictions refer to

hexagonal and square fiber arrays.

The specific material systems examined are given in Table 4, along with their experimentally

determined values of el and e2 at RE.Some of these values were measured specifically for this

study, while others were taken from previous studies(61-62). All of the data were obtained from the

interferometric dilatometer system described in SecUon 4.1. These material systems have axial

fiber to matrix stiffness ratios of Eft/E m ranging from 6 to 140, and axial fiber to matrix CTE ratios of

_/o, m ranging from -0.01 to -0.30, and thus cover a wide range of fiber/matrix combinations. The

RT fiber and matrix properties needed as input to the analyses were given in Tables 2 and 3.

Predictions and comparisons with experimental data for the axial CTE will be discussed first,

followed by a discussion of transverse CTE predictions and comparisons. These predictions will

assume temperature independent constituent property behavior. The sensitivity of effective CTE's

to constituent properties, the effects of temperature dependent constituent properties, and the

effects of fiber orthotropy will be discussed in seperate sections.

Table 4. Experimentally Determined CTE Values at 75 °F.

Material System Vf _1 o_2
_Fiber/Matrix) (%) (10-6/°F ) (10-6/°F )
T300/5208 68 -0.063 14.02
T300/934 57 -0.001 16.13
P75/934 48 -0.584 19.18
P751930 65 -0.598 17.62
P75/CE339 54 -0.567 26.34
C6000/PM R15 63 -0.118 12.46
HMS/Borosilicate 47 -0.230 2.10
P100/2024 40 0.800 14.51
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5.2.1 Axial Coefficient of Thermal Expansion

Figures 11-14 show a comparison of el as a function of Vf predicted from the different analyses for

four of the material systems: T300/934, P75/934, HMS/Borosilcate, and P100/2024. Experimental

data are also shown on these figures. Predicted and measured values of el for all of the materials

studied are given in Table 5. The SH, CB, and CH analyses all used equation (2.1.1) for predicting

_1 and are labeled SH in the figures and Table. As shown in the figures, the differences between

the RH and FE results were negligible and there were only small differences between these and

the SH results. All of the analyses were in good agreement with the experimental data. The largest

deviation between any of the predicted and experimental values was only 0.1 x 10-S/°F, and in

most cases the deviation was on the order of about 0.05x lO-S/°F. Although the magnitudes of

oq differed for the different material systems, the general response was the same (i.e. decreasing

el with increasing Vf). This implies that the relative magnitudes of the fiber/matrix stiffness and

CTE ratios did not significantly affect the general trend in oq as a function of Vf, This was not true

for e2, as will be discussed subsequently.

Table 5. Comparison of Experimental end Predicted Values of the Axial CTE at 75 °F.

_rI (10-6/°F)
Material FE

System Exp SH RH Hex Sq
T300/5208 -0.063 -0.083 -0.051 -0.050 -0.041
T300/934 -0.001 0.045 0.089 0.089 0.093
P75/934 -0.584 -0.535 -0.511 -0.512 -0.511
P75/930 -0,598 -0.642 -0.627 -0.627 -0.623
P75/CE339 -0.567 -0.493 -0.460 -0.461 -0.460
C6000/PMR15 -0.118 -0.125 -0.104 -0.104 -0.099
HMS/Borosilicate -0,230 -0,180 -0.180 -0.181 -0.181
P100/2024 0.800 0.875 0.907 0.906 0.905
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5.2.2 Transverse Coefficient of Thermal Expansion

Figures 15-18 show the response of _2 as a function of V f for the same four matedal systems shown

in figures 10-13. Experimental data are also shown on these figures, as well as in Table 6, where

predicted and experimental values are compared for all of the material systems. The SH results

were computed with the modified version for transversely isotropic fibers (equation (2.1.3)).

There were large differences between the predicted values of all of the analyses, except for the

RH and FE analyses. Results from these two analyses were in excellent agreement with each

other, including both array geometries of the FE model. Significant differences between the CH

and FE analyses for prediciting e2 have been previously documented in the literature (2°). These

differences were attributed to Poisson restraining effects not included in equation (2.1.6). The

neglection of this type of three dimensional effect was also thought to be responsible for the large

difference between the CB and FE results. Figures 15-18 and Table 6 also demonstrate that the RH

and FE results for _2 were consistently in much better agreement with the experimental data than

were the other analyses. The SH results were in slightly better agreement with the experimental data

for the P75/930 and P75/CE339 systems. However, it should be noted that the matrix mechanical

properties for these two systems were assumed to be the same as the other epoxy matrices, which

is probably not an accurate assumption, and therefore the better agreement with the experimental

data is believed to be fortuitous. It should also be remembered that the modification of the SH

analysis for transversely isotropic fibers was not based on any mathematical derivation, and was

included for comparisor_ purposes only. Agreement between experimental values and RH and FE

_._,,c_edvalues were usually within about 15 percent. Predictions from the other analyses differed

with the experimental data by as much as 50 percent.
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Table 6. Comparison of Experimental and Predicted Values of the Transverse CTE at 75 °F.

'  2(10_ /OF)
Material CB FE

System Exp SH Hex Sq CH RH Hex Sq
T300/5208 14.02 14.60 8.85 7.28 10.10 13.00 12.99 12.72
T300/934 16.13 17.30 10.60 9.20 11.90 15.60 15.69 15.59
P75/934 19.18 18.60 11.10 9.63 12.20 17.90 18.05 18.03
P75/930 17.62 14.10 7.89 6.20 9.13 13.20 13.37 13.33
P75/CE339 26.34 24.70 13.80 11.30 15.50 23.60 23.94 23.88
C6000/PMR15 12.46 14.30 8.92 7.67 10.00 12.40 12.56 12.63
HMS/Borosilicate 2.10 3.32 3.04 3.18 3.27 2.49 2.46 2.47
P100/2024 14.51 11.90 8.08 7.47 8.52 15.00 15.15 15.13

Unlike the results for _1, the response of e2 as a function of Vf was affected by the fiber/matrix

property ratios. 1"300/934 and P75/934 had similar fiber/matrix property ratios, and exhibited a

similar response (Figures 15-16). The P100/2024 system (Figure 18) had CTE fiber/matrix property

ratios similar to 1"3001934 and P75/934, but had much smaller moduli ratios. This difference in

moduli ratios resulted in a different response of _r2 as a function of Vf as predicted from the RH and

FE analyses (i.e. increasing (x2 with increasing V_ for small values of VI). The HMS/Borosilicate

system (Figure 17) had moduU ratios similar to P100/2024 A! but had much larger CTE property

ratios. This difference caused a significantly different response in _2 as a function of Vf compared

to the trends exhibited in Figures 15-16 and 18 (i.e. increasing _2 with increasing Vf for all values

of Vf).

The results presented above and from Section 5.2.1 show that both simple and rigorous analyses

accurately predict the axial CTE of carbon fiber unidirectional composites. These results also

demonstrate that plane stress (CB analysis) and strength of materials (CH analysis) formulations

do not accurately predict the transverse CTE of these same composites. The more rigorous RH

analysis does accurately predict the transverse CTE and can be used in lieu of a detailed FE

analysis for such predictions.
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5.2.3 Sensitivity to Constituent Properties

As stated earlier, the analytical predictions discussed in the previous section used constituent

property data compiled from various literature sources. Some of the values were measured directly,

some were back-calculated from composite data, and some were only estimates. A parametric

study was conducted using the RH analysis to determine the sensitivity of _1 and <x2 of P75/934

to the constituent properties. Each of the independent thermoelastic fiber and matrix properties

were individually reduced 20 percent, while holding the other properties constant. The resulting

changes in el and _2 are given in Table 7.

As would be expected, el was most sensitive to E_ and ._. Fortunately, these are the easiest fiber

properties to measure, and therefore usually the most reliable. The prediction of el was insensitive

to the transverse fiber properties and matrix properties. The prediction of a2 was most sensitive

to matrix properties. Matrix properties are relatively easy to obtain experimentally, however there

are concerns as to whether the chemistry of resin matrices is the same in bulk form as it is in the

composite. The sensitivity of Q'2to transverse fiber properties was less than expected. This is again

fortunate because transverse fiber properties are the most difficult to obtain, and therefore usually

the most unreliable.

The sensitivity analysis presented above demonstrates that the good agreement between the RH

and FE analyses and the experimental data was not fortuitous. The constituent properties with the

most uncertainty (transverse fiber properties) have only a small effect on the prediction of c_1 and

Q'2"

The sensitivities of _1 and o2 to Vf for all of the material systems studied have been illustrated in

Figures 11-18. Predicted values of _r1 were very sensitive to small changes in Vf for values of V f

less than 30 percent. This sensitivity decreased for large values of V f. The sensitivity of e2 to V f is

much less, from a percentage standpoint, than that of o_1.
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Table7. SensitivityAnalysisfor P75/934CTE'a(vf=0.60).

20PercentReductionin
Percent Change in0)

el (_2

-6.2 -0.6

i!_ +0.2 +5.8

0.0 0.0
0.0 -5.2

-0.7 0.0

-24.9 -0.6

;_ 0.0 -3.2+ 5.0 -10.4
urn +1.5 -7.1
Crm +5.0 -16.9

(1) Calculations based on Rosen and Hashin Analysis

5.2.4 Effects of Temperature Dependent Constituent Properties

As discussed in Section 5.1, the 934 epoxy matrix properties are not temperature independent.

The method for properly incorporating the effects of temperature dependent constituent properties

in the prediction of effective CTE's was described in Section 3.2. This method was applied to the

RH analysis, and the results will be presented in this section. The RH analysis was selected due to

its consistenth/better agreement with expedrnental data than the other closed-form analyses, and

because of its computational simplicity compared to the FE analysis.

Figures 19-21 show temperature dependent CTE predictions, labeled exact, compared with ex-

perimental data for T300/934, "1"300/5208,and P75/934. Also shown in each figure are predictions

from the RH analysis using an approximate method for incorporating temperature dependent matrix

am at temperature T, rather than the J'-_rsnerndT). The exactproperties (i.e. using analysis predic-

tions were in better agreement with the experimental values of e2 than the approximate analysis

for all three material systems. The excellent agreement between predicted values and experimen-

tal data for e2 of T300/934 (Figure 19) were expected, due to the fact that the T300/934 data was

Results and Discussion 46



25
x 10 6 0

Exact 1, Analysis
Approximate J
Exp. data

CTE (° FI)

20

15

10

5

0

-5
-300

(l 2

............ _ (11

i i i i i i

-200 -100 0 100 200 300

Temperature, o F

Figure 19. Temperature dependent CTE of unidirectional T300/934 (vf=o.57).

25

Exact 1, Analysis
....... ApproximateJ

x 10 "6 O Exp. data

20

15

CTE (°FI) 10

5

0

-5
-300

O

__ O

.......... _ (11

I I I I I I

-200 -100 0 100 200 300

Temperature, o F

Figure 20. Temperature dependent CTE of unidirectional T300/S208 (Vf =0.68).

Results end Discussion 47



CTE ( o F-l)

25

20

15

10

5

0

-5
-300

Exact %.Analysis
....... Approximate J

x 10 -6 © Exp. data

O

s

(x 1

I I I I I J

-200 -100 0 100 200 300

Temperature, o F

Figure 21. Temperature dependent CTE of unidirectional P75/934 (V f =0.48).

used to back-calculate the temperature dependent properties of the 934 matrix. These figures do

demonstrate the error introduced with the approximate analysis. The agreement between predicted

and experimental temperature dependent values of el was also good.

The above results demonstrate that the CTE's of carbon fiber reinforced epoxies do vary with

temperature, and accurate predictions of these values require accurate data on the temperature

dependence of the constituent properties.

5.2.5 Effects of Fiber Orthotropy

As mentioned previously, Knott (52) conducted an extensive analytical study of the effects of carbon

fiber orthotropy on the effective properties and stresses in unidirectional composites, using the

CC model discussed in Section 3.3.2. The effective CTE's predicted with the assumption of

transversely isotropic (TI) fibers were compared to those obtained by assuming two types of
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cylindrical fiber orthotropy; circumferential, where E0 > Er, and radial, where Er > Ee. For

transversely isotropic fibers, E0 = Er. Large differences in the effective CTE's were predicted

for the three types of fiber orthotropy. However, the fiber properties used in that study represent

extreme degrees of cylindrical orthotropy. For the circumferentially orthotroplc (CO) case E0 and

D0 were set equal to Ex and _x, respectively, while Er and _r were maintained at their transversely

isotropic values. For the radially orthotropic (RO) case Er and Dr were set equal to Ex and Dx,

respectively, while E0 and D0 were maintained at their transversely isotropic values. No data in the

literature could be found to verify that this degree of cylindrical orthotropy actually exists in carbon

fibers. As mentioned earlier, and as pointed out by Knott, the experimental data suggests that

carbon fibers contain a transversely isotropic core, and therefore the effective degree of cylindrical

orthotropy for the entire fiber would be much less than values described above.

The effects of a less severe degree of cylindrical orthotropy were considered for the present study.

The fiber properties for T300 and P75, given earlier in Table 1, were modified according to the

relations shown in Table 8 to account for cylindrical orthotropy. The CC model was used to

compute the effective CTE's for the three types of fiber orthotropy shown in Table 8. As described

in Section 3.3.2, this model is formulated on the basis of cylindrical material orthotropy, where

transverse isotropy is a special case of the more general condition. The results for the CTE's of

T300/934 (Vf = .57) are shown in Figure 22, and the results for the CTE's of P75/934 (Vf = .48)

are shown in Figure 23. Also shown on these figures are predictions from the RH analysis for

transversely isotropic fibers. There are two main points demonstrated by these figures. First, the

R;-_=,,alysis and the CC model predict very similar values for the case of transversely isotropic

fibers. This implies that the CC model is another formulation, in addtion to the RH and FE

discussed in Sections 5.2.1 and 5.2.2, that can be used to accurately predict the effective CTE's

of unidirectional composites. Secondly, the degree of cylindrical orthotropy shown in Table 8
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producesonlysmalldifferences,in absolutemagnitudes,in predictedCTE'scomparedto the

assumption of transversely isotropic fibers.

Table 8. Cylindrically Orthotroplc Carbon Fiber Properties.

Property Circumferential Radial Transverse(_)
Orthotropy Orthotropy Isotropy

Ef Ere = 2Err Efr= 2Ere E_ = Efe

Gf Gfxe = 2G_r Gfr = 2Gfxe Gfxr= Gfxe

V' VfxO = .5Vxfr Vfxr = .5Vfx8 Vfxr = Vfx8

(1) x, r, and 0 directions are equivalent to the 1, 2, and 3 directions, respectively.

Based on the above results, carbon fiber transverse isotropy is a reasonable and simplfying

assumption for predicting effective CTE's of unidirectional carbon fiber reinforced composites. This

is especially true given the lack of quantitative experimental data on fiber mechanical and thermal

properties.

5.3 Thermally Induced Stresses

The majority of thermal stress analysis results are presented for P75/934. This is a high modulus

composite system with many potential applications on stiffness and dimensionally critical space-

craft structures. These results were generated with the composite cylinder (CC) and finite element

(FE) models described in Section 3.3, and used the fiber properties from Table 1 and the tem-

perature dependent 934 matrix properties from Table 3. In the analyses, the principal material

coordinates (1,2,3) of Figure 4 correspond to the FE cartesian (x,y,z) coordinate system of Figure

5, and the CC cylindrical (x,r,O)coordinate system of Figure 7. Stress components are presented in
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terms of the cylindrical coordinate system (i.e. C_x,err, cr0 , and Tre). The thermal load used, unless

otherwise noted, was a uniform ,ST of -500°F. This AT corresponds to a stress- free-temperature

(SFT) of +350°F, which is the cure temperature for 934 epoxy, and a use temperature of -150°F,

a typical spacecraft operating environment. Results for unidirectional laminates will be presented

first, followed by results from the global]local formulation for predicting stresses in multidirectional

laminates.

5.3.1 Unidirectional Laminates

5.3.1.1 Comparison of Analyses. Thermal stress results from the CC and FE analyses

are presented for unidirectional P75/934, with a fiber volume fraction, Vf, of 0.60, in Figures 24-29.

The matrix stresses at the fiber/matrix interface as a function of the circumferential position around

the fiber (0 is measured from the y axis of Figure 5) are shown in Figures 24 and 25. The maximum

values of _x (16.2 Ksi) and c_e(15.2 Ksi) occurred on this interface at the circumferential locations

shown in the figures. Both the CC and FE analyses predict approximately the same magnitude and

distribution for ¢x • The FE results for c_edo exhibit a small dependence on O,and differ in magnitude

from the CC results. For all cases, the FE results using the hexagonal fiber array geometry were in

closer agreement with the CC results than those using the square array. This was expected, due

to the fact that the hexagonal array more closely resembles an axisymmetdc geometry.

The largest differences between the analyses are exhibited in the Cr and _'recomponents at the

interface. As shown in Figure 24, the _r component varied from approximately -7 Ksi at 0 = 0°,

to a maximum tensile value of 0.60 Ksi at approximately 0 ---37° for the square array FE results.

The CC results predicted a constant value of -3.3 Ksi. There was also a significant Tre component

(Figure 25) in the square array FE results that was nonexsistent in the CC results. The maximum

value of 7-rewas 5 Ksi (not shown on Figure 25), which occurred at 0 = 22.5 °, not on the interface

but at r/rf = 12, where rf is the fiber radius.
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Figures 26 and 27 show the stresses along a radial line of maximum distance between fibers. The

circumferential position of this line is either 8 = 30 °, or 45° depending on whether the results are

for the hexagonal or square array, respectively. The radial coordinate was normalized with respect

to the fiber radius. The CC results are the same for all radial lines due to its axisymmetric solution.

There is no rr0 predicted along this radial line with the FE analysis because it is a line of symmetry.

Both the CC and FE analyses predict similar magnitudes and distributions for the fiber stresses. All

three components are compressive, with a maximum value of approximately -11 Ksi for (rx. Both

analyses also predict approximately the same magnitude and ditribution for the Cx matrix stress.

There are significant differences between the predicted values of _rrand o0 in the matrix from the

two analyses. The ¢_ component predicted from the FE analysis is significantly smaller than Ce

from the CC analysis (Figure 26). The other major difference between the two analyses is exhibited

in the Cr component along this radial line (Figure 27). The CC analysis predicts a (rr stress that

is compressive at the interface and decreases to zero at the outer boundary of the CC model, as

required by the free surface boundary conditions. The FE analysis also predicts a compressive _rr

at the interface, but this component reaches a tensile value of 5.3 Ksi at the boundary of the FE

model (i.e the midpoint of maximum fiber spacing). This is because the FE model does not treat

the fiber and surrounding matrix as an isolated problem with stress free boundaries, but rather

takes into account the influence of adjacent fibers.

Figures 28 and 29 show the stresses along the radial line of minimum distance between fibers

(i.e. 0 = 0°). The trends are similar to those exhibited in Figures 26 and 27. The CC results are

identical to those shown in Figures 26 and 27 due to the axisymmetric nature of its solution. Again,

/
the shear stress along this line is zero, and the fiber stresses are compressive. The most significant

differences between the stresses along this line and those along the line of maximum fiber spacing

occur in the matrix cr0 and (_rcomponents from the FE analysis. The interfacial value of the cre
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component (Figure 28) is significantly larger at this location (15 Ks_ compared to the interracial

value at the maximum distance between fibers (11 Ksi, Figure 26). Also, the cr component (Figure

29) remains compressive in the matrix with a magnitude similar to that of the fiber cr component.

The above results show that FE analysis predicts higher localized matrix stresses than the CC

analysis. This is because the FE analysis takes into account the influence of adjacent fibers, rather

than treating a single isolated fiber as in the CC analysis. The effects of these localized higher

stress regions on the initiation of damage will be discussed in a subsequent section.

5.3.1.2 Effects of Constituent Properties. A comparison of the stress distributions for

P75/934 and T300/934 are shown in Figure 30. The normal stresses at the interface are compared

for the FE square array analysis at a Vf = .60. The differences in the stresses are relatively small

compared to the large differences in fiber moduli and CTE (Table 1). This may be explained by

examining a simple one-dimensional strength of materials formulation for predicting axial thermally

induced stresses. Assuming temperature independent properties, the axial stress in the fiber and

matrix may be written as(63)

_f = vmEmE_ \Vf_ +--V-_-Em) ,ST
(5.3.1 21)

( .m )cm = _VfEmE_ _V'_ +--V'_--Em /_3T
(5.3.1.2.2)

where Vm = (1 -vf). In polymer matrixcomposites reinforced with graphite fibers, where _ >> Em,

VfE_ + VinEm may be approximated by Vf_. This approximation results in less than a 2% error
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Figure 30. Effects of fiber modulus on Interfaclal matrix stresses.

for Vf's greater than .50. The term (era _ _) may also be approximated by c_rn without introducing

greater than a 3% error. This is because _m >> _.

These two approximations result in simplified forms of equations (5.3.1.2.1) and (5.3.1.2.2) written

as

af = (Vm/Vf)Em,,rn,sT (5.3.1.2.3)

and

o.m = _Emern_T (5.3.1 2.4)

The fiber properties do not appear at all in equations (5.3.1.2.3) and (5.3.1.2.4). Although the above

simplified analysis is based only on the axial stress component, the same trend is exhibited by the

other components, as evidenced by Figure 30. It is also interesting to note that Vf does not appear
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in equation (5.3.1.2.4), implying that the axial matrix stresses are not a strong function of Vf for Vf's

greater than .50.

In order to significantly reduce the magnitudes of thermal stresses for a fixed .aT, the term Ern_x m

must be reduced. Unfortunately, there exsists an inverse proportionality between Em and ern for

a wide range of polymer systems (64), as shown in Figure 31. The product, Eme rn, ranges from a

high of 17.7 to a low of 12 psi/°F for the polymers shown in the figure. The 934 epoxy has a value

of 15.4 psi/°F. Therefore, for a given ,ST, the matrix stresses in a 934 system could be reduced

by approximately 22% by using one of the other polymers shown in the figure (i.e. polyphenylene)

as the matrix. However, it is not known whether all of these other polymers would make suitable

matrix materials for graphite reinforced composites. Large reductions in the level of residual thermal

stresses in graphite reinforced composites are obtained by lowering the applied AT during use.

This could be accomplished from a materials standpoint by lowering the SFT through processing

and/or chemistry modifications.

The importance of matrix properties on thermally induced stresses was demonstrated above.

Figure 32 shows the importance of properly accounting for the temperature dependence of these

properties. Matrix stresses at the fiber/matrix interface were compared for the cases of temperature

independent matrix properties and temperature dependent matrix properties. The RT values of

934 epoxy shown in Table 2 were used for the temperature independent case. These results

were generated with the FE analysis assuming a square array of fibers. As shown in the figure,

the temperature independeqt property results exhibit stresses that are significantly smaller than

the t_'_ _..rature dependent property results for _x and _0 by as much as 38%. This is due to

the stiffening of the 934 epoxy matrix at low temperatures which is neglected when temperature

independent properties are assumed.

Based on the results presented above, the effects of fiber orthotropy on thermally induced stresses
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wouldbe expected to be small. This was proven to be true, as evidenced by the results presented

in Table 9. These results were generated with the CC analysis, and used the cylindrically orthotropic

properties shown in Table 8. Only small differences in the maximum matrix stresses were predicted

for the three types of fiber orthotropy; transversely isotropic (TI), radially orthotropic (RO), and

circumferentially orthotropic (CO). The RO fiber had the largest predicted deviation from the TI

case, with an approximately 11% larger <re stress component.

Table 9. Effects of Fiber Orthotropy on P75/934 Thermal Stresses (Vf=0.60, ,dT=-5OO°F ).

Maximum Matrix Stress (1) (Ksi)

Type of Orthotropy <rx <rr <re
TI 15.96 -3.33 13.31

RO 16.36 -3.70 14.80

CO 15.99 -3.36 13.43

(1) Calculations based on CC Analysis

5.3.1.3 Effects of Fiber Volume Fraction. The effects of Vf on the stress distributions in

unidirectional P75/934 were also determined for each analysis. The <rx, <rr, and ce matrix stress

components, at the fiber/matrix interface, are shown as a function of Vf in Figures 33, 34, and

35, respectively. These results were generated with the FE analysis assuming a square array of

fibers. The results for the hexagonal array show similar trends. In general, the FE analysis pre-

dicted increases in the absolute value of all of the stress components with increasing Vf. The only

exception to this was the _r component at O = 45 °, which changed from a compressive -5.7 Ksi

at Vf = .10 to a tensile value of 2.8 Ksi at Vf = .75. The behavior of the matrix crr component was

also the major G,,_erence between the stresses as a function V f from the CC and FE analyses. The

,.3v analysis predicted a steadily decreasing compressive value of err towards zero with increasing

V f. One of the most significant features of these data is the presence of large matrix stresses even

at very low values of Vf. This is especially true for <rx, where the maximum matrix stress at Vf = 10
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is only 30% less than the maximum value of 17.6 Ksi at Vf = .75. These results support the trends

exhibited by the simple one-dimensional analysis presented in the preceding section, where Vf

does not appear in the expression for Crxrn (equation (5.3.1.2.4)).

The array geometries used in the FE analysis have upper bounds on V f for contiguous fibers. These

upper bounds are Vf = .785 and V f = .907 for the square and hexagonal arrays, respectively.

The upper bound on V f for the CC analysis is 1.0, or no matrix phase, for which case the matrix

stresses are obviously zero. The matrix stresses at the fiber/matrix interface for Vf's of .75, .85, and

.99, corresponding to the FE square array, FE hexagonal array, and CC analyses, respectively, are

shown in Figure 36 and 37. Values of .75 and .85 were used as upper limits on Vf for the square

_..,d tlexagonal array FE analyses, respectively, due to difficulties in modeling a contiguous fiber

array with the type of elements used in the analysis. An upper limit of V f = .99 was used for the

CC analysis to represent the presence of a small, but measurable matrix phase. It is interesting to

note that, for the Cx and Ce components, there are only small differences in the maximum tensile
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values for the three different values of V f.

A real composite does not have fibers arranged in regular periodic arrays, as assumed in the FE

analysis, nor consists of cylinders of fiber and matrix with varying diameters, as assumed in the

CC analysis. A photomicrograph of the structure of a real composite is shown in Figure 38. One of

the most striking features revealed by this figure is the wide range of Vf's present in the specimen.

Even though this specimen has an average or global Vf of .50, there are localized regions with

much smaller and much larger Vi's.

An attempt at modeling localized regions of high Vf in a global Vf region of 0.60 was made using

a global/local FE scheme, similar to the one described in Section 3.3.3. The procedure is shown

schematically in Figure 39. The FE model for Vf = .75 in the square array was constrained by

three different sets of global boundary conditions as follows: Case 1, _x and _y from Vf = .60,

Case 2, _x from Vf = .60 and (y unconstrained, and Case 3, _xfrom Vf = .60 and _y from Vf = .75.

The results from this procedure, for the matrix stress components at the fiber/matrix interface, are

shown in Figures 40 and 41. Cases 2 and 3 gave nearly identical results and therefore are labled

as one curve in the figures. For comparison purposes, the stresses for actual cases of Vf = .60

and Vf = .75 are also shown in the figures.

As can be seen in the figures, cases 2 and 3 gave results very similar to the actual Vf = .75 case.

Case 1 predicted stresses lower than those of the actual Vf = .60 case. It should be noted that

cases 1, 2, and 3 all predicted tensile Oxfiber stresses. This is opposite of the compressive Cx fiber

stresses predi,_.'_.d in all of the earlier results (Figures 26-29), and is due to the imposition of the

v" = 60 Cxboundary condition. The Vf = .75 model normally contracts more in the axial direction

than is allowed by this boundary condition, and thus tensile axial stresses are set up in both the fiber

and matrix. Although none of the three cases accurately represent the real boundary conditions,

cases 2 and 3 seem more plausible since they maintain a uniform axial strain consistent with the
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global Vf, but allow the transverse strains to be consistent with the local V f. Case 1 seems overly

constrained by forcing the transverse strains to be consistent with the global Vf over a distance of

one fiber radius. The real boundary conditions probably lie somewhere between cases 2 and 3, and

case 1. Based on these results, it appears that a resonable conservative first approximation to the

matrix stresses in localized regions of high Vf can be predicted from the actual (i.e unconstrained)

model of that region.

5.3.2 Muitidirectional Laminates

The global/local formulation, described in Section 3.3.3, was used to determine the thermally

induced matrix stresses in multidirectional P75/934 laminates. The class of laminates selected for

investigation were the [02/+ O]s family, with Ohaving values of 0, 15, 30, 45, 60, 75, and 90 degrees.

This class of laminates includes both the minimum amount of ply property mismatch (0 = 0 °, or

unidirectional), and the maximum amount of ply property mismatch (0 = 90°), or "worst case".

Lamina strains in the principal material coordinate directions were determined for these laminates

using equations (3.3.3.1) through (3.3.3.5). The lamina elastic properties used in these calculations

were determined from the CCA model of Hashin (23) using the fiber and matrix properties given in

Tables 1 and 3. The calculated lamina strains for a AT of -500°F are shown in Table 10. These

values were used as boundary conditions for the FE micromechanics analysis.

A comparison of unidirectional and [02/± O]s matrix stresses in the +0 plies at the fiber/matrix

interface are shown in Figures 42-44. The _rx, _r, _0 , and rr0 components (Figures 42-43) all

increase in magnitude with increasing ply angle up to an angle of i60 °. For angles greater than

+60 ° the magnitudes of the stresses remained nearly constant. These layups are labeled as one

curve in the figures. The most significant difference between the unidirectional and [02/+ e]s

response is the presence of a large tensile value of Cr at the fiber/matrix interface. The _rr

Results and Discussion 68



component reaches a maximum interracial tensile value of 7 Ksi in the [02/902]s laminate at a

circumferential position of approximately 30 °. The overall maximum tensile value of the matrix Cr

component occurs at this circumferential position, but at the midpoint between fibers. The other

major difference between the unidirectional and [02/4- 0]s response is the presence of out-of-

plane shear stresses rex and Txr. The maximum matrix values of these components occurred at

the fiber/matrix interface, and are shown in Figure 44. Except for the presence of these out-of-

plane shear components, the magnitudes and trends of the matrix stresses in the 0° plies were

very similar.

Table 10. Lamina Strains in [02/-I-#]s P75/934 Laminates (vf=0.60, _T=-5OO°F ).

Laminate 0° Ply Strains (1) (10 -6) i8 Ply Strains (1) (10 -6)
Orientation (1 _2 3'12 (3 _1 _2 3'12 _3

[0] 261 -7673 0 -7800 na na na na
[02/+ 15]s 488 -7180 0 -8200 -26 -6670 -3830 -8200
[02/+30]s 654 -3730 0 -10000 -442 -2640 -3800 - 10000
[02/-1- 45]s 358 -991 0 -11100 -316 -316 -1350 - 11100
[02/-{- 60]s 132 -214 0 -11400 -128 45 -300 - 11400
[02/Jr- 75]s 28 -34 0 -11400 -,30 24 -31 - 11400
[02/902] s --_ 0 _.-0 0 -11400 _ 0 --. 0 0 -11400

(1) Calculations based on LPT

There were also differences in the fiber stresses between the [02/+0]s and unidirectional laminates.

The largest difference was observed in the _rx component. The [02/Jr 15]s, [02/Jr 30]s, and

[02/Jr 45]s laminates all had predicted tensile values of the fiber rrx component in the 0° plies, The

', ,Ljest of these was 74 Ksi in the [02/Jr 30Is laminate. This was in contrast to the compressive

value of approximately -10 Ksi predicted for the unidirectional laminate. The other major difference

was the -100 Ksi (rx fiber stress in the +15 ° plies of the [02/± 15]s laminate. This value was an

order of magnitude larger than the value predicted in the unidirectional laminate.
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Table 11 shows a comparison of the maximum stresses predicted from the micromechanics FE

analysis with those predicted from LPT for the [02/902]s laminate. Both the maximum tensile and

compressive values are shown, when present, for the FE predictions. LPT assumes that a state

of plane stress exists in the laminate, with C,x, Cy, and _-xyas the only nonzero stress compo-

nents. These stresses are computed for individual lamina, which are modeled as homogeneous

orthotropic layers. The micromechanics FE analysis models the fiber and matrix as distinct indi-

vidual phases, and the stresses predicted from this analysis refer to these individual phases. As

shown in Table 11, the micromechanics FE analysis predicts a three-dimensional state of stress

in the fiber and matrix, with stress levels much larger than the lamina components predicted from

LPT. Th_r?. dilferences have a significant influence on the prediction of thermally induced damage,

as will be discussed in the next section.
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Table 11. Maximum stresses in [02/902]e P75/934 (Vf=0.60, AT=-S00°F ).

LPT FE
Lamina Fiber Matrix

Stresses Stresses Stresses
(Ksi) (Ksi) (KsO

Crx= --9.95 _x = --30.3 Cx = 19.9

C_y= 9.95 O'r = 7.3, -8.9 O'r = 12.1,-8.0
Vxy = 0.00 _e = 9.9, -4.5 _e = 23.4

rre = 1.41 -7.6 rre = 2.67 -9.3

5.4 Thermally Induced Damage

Thermally induced damage, in the form of matrix cracks, is well documented for polymer matrix

composites exposed to temperatures far below their cure temperature (s-7,9,1o). The thermal stress

analysis presented in the preceding sections will be used to predict the initiation temperature

and location of this type of damage. These predictions will be compared to expedmentai data

generated for this study on unidirectional and [02/902]s P75/934 composites, and with literature

data on T300/934 and T300/5208 composites.

In addition to thermal stress field information, damage initiation predcitions also require failure

strength data, and a failure criterion that relates the induced stresses to the failure strength. As

stated earlier, the majority of experimental data suggests that thermally induced failures in polymer

matrix composites take the form of matrix cracks. However, data on the failure strength of the neat

matrix material is very limited. Elevated (+250°F) and RT tensile data on 934 epoxy are reported

in the literature by Fox et. al. (59), but no data for temperatures below RT could be found. The

m = 10.30 Ksi at RTm = 853 Ksi and C,uN934 ultimate strengths reported by Fox et. al. were _u_

and +250 °F, respectively. Fox et. al. also reported proportional limits, defined as the stress at

m = 2.44 Ksi at RTrn = 3.42 Ksi and _plwhich the stress-strain curve departs from linearity, of _rpl
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and+250°F, respectively.Thesedata were obtained during static tension tests to failure (i.e. no

unloading and reloading), and therefore it is not known whether this proportional limit corresponds

to a material yield point.

A maximum stress failure criterion, using the square array FE results, was used as the initial model

to predict thermally induced failures in P75/934 laminates. This criterion predicts failure when

any of the principal stresses first exceeds the ultimate strength of the material. For the case of

failures in the 934 matrix, the maximum calculated tensile principal stress, 0-1, was compared to the

ultimate tensile strength of the matrix, O_un.mThe principal stresses were calculated at temperatures

of 250, 150, 75, -50, and -150°F which correspond to applied ,ST's of-100, -200, -275,-400, and

-500°F, respectively. The results for a [0] and [02/902] s laminate at a Vf = .50 are shown in

Figure 45, The Vf = .50 is consistent with the experimental P75/934 data (1°). The first failure in

the [0] laminate was predicted at approximately 40°F. The maximum #1 stress for this laminate

always occured in the axial (x) direction on the fiber/matrix interface at the circumferential location

shown on the figure. First failure in the [02i/902]s laminate was predicted at 95°F. The direction

of o-1 was in the transverse, or y direction, and again occured at the fiber/matrix interface at a

circumferential location shown on the figure. Based on the results described in Section 5.3.1.2

and shown on Figure 30, failures inT300/934 composites would be predicted at approximately the

same temperatures and locations.

The results presented in Figure 45 do not agree with experimentally observed failures. First,

no thermally induced failures have been observed in either P75/934, or T300]934 [0] laminates

.,jected to repeated thermal cycling between ±250 °F (4,1o). Secondly, thermally induced failures

inT300/934 and T300/5208 [02/902] s laminates have only been observed in specimens exposed to

temperatures below -200 oF (4,9).T300/5208 is very similar in response and properties to 1"300/934.

Thirdly, although P75/934 [02/902] slaminates do exhibit thermally induced failures at temperatures
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above RT (m), the mode of failure appears to be due to a combination of a transverse component

and a radial normal component at the interface. A photomicrograph of a typical thermally induced

failure in a P75/934 [02/902] 8 laminate is shown in Figure 46.

Two possible explanations for the discrepencies between the experimental data and the results

of Figure 45 are as follows. First, the FE stress analysis assumed linear elastic matrix behavior.

However, as noted above, Fox et. al, reported a RT proportional limit of 3.42 Ksi in the stress-strain

behavior of 934 epoxy. Avon Mises yield criterion was used to predict the temperature at which

this proportional limit would be reached. The von Mises criterion predicts yielding when

where

roct= v_0.yp/3 (5.4.1)

_(0" 1 -- 0"2)2 -F (0"2 -- 0.3) 2 + (0.3 -- 0.1 )2

ro_ = 3 (5.4.2)
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Figure 46. Photomicrograph of typical thermally induced failure In a [02/902]e P75/934
lamlnMe.

and the components <'1,w2,and w3 are the principal stresses. The results predicted by substituting

the RT value of o-_ for O-ypin equation (5.4.1) are shown in Figure 47. As shown in the figure, matrix

yielding was predicted to begin at approximately 240 and 260 °F for the [0] and [02/902]= P75/934

laminates, respectively. Forthe [0] laminate, the maximum value of _'ootoccurred on the fiber/matrix

interface at a circumferential location close to the y axis. For the [02/902]= laminate, the maximum

value of _'octoccured a short distance away from the interface at a circumferential location close to

the z axis. The inclusion of this nonlinear matrix behavior in the analysis would have lowered the

predicted stresses, and changed the predicted first failure loads.

The second, and more conclusive explanation of the discrepancies between the experimentally

obse: .._, thermal matrix failures, and the predicted failure loads and modes, is that the matrix

ultimate strength, _uR,mis not representative of the actual in-situ strength of the matrix. This claim is

supported by the large differences observed between experimental values of o'un_, given above, and

values of the transverse tensile strength (YT) measured for unidirectional P75/934, at NASA-LaRC,
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Figure 47. Predicted thermally Induced matrix yielding using a von Mises yield criterion.

and T300/934(6°). These values are given in Table 12. The difference in YT for the two composite

systems suggests a difference in the interfacial bond characteristics of the two composites. These

data show that T300 fibers form a much stronger bond than P75 fibers with the 934 epoxy. The

m at RT for the T300/934 composite is not understood,slightly larger value of YT compared to CuR

but may be within the scatter of the experimental data. One possible cause for this difference in

YT'S is the difference in morphologies (Section 5.1) of these two fibers due to differences in their

processing. Differences in YT for composites with different modulus carbon fibers (AS4, 30 Msi

fibers, and P75) have also been measured in thermoplastic PEEK matrix composites (65).

Table 12. Comparison of Neat Matrix and Transverse Lamina Ultimate Tensile Strengths.

Temperature 934 Epoxy P75/934 T300/934

(°F ) cru_ YT YT

(Ksi) (Ksi) (Ksi)
250 10.30 3.20 6.76

75 8.53 3.50 9.37
-250 NA 1.00 4.56
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Figure 48. Comparison of radial Interracial matrix stress with measured transverse
lamina strength.

The maximum predicted matrix _r interfacial stress as a function of temperature, for [0] and

[02/902]s P75/934 laminates, is compared to the experimental values of YT in Figure 48. As

discussed earlier, predicted Cr values for T300/934 and T300/5208 laminates would be very similar

in magnitude to those presented in Figure 48 for the P75/934 laminates. Assuming YT tO be

representative of the interfacial bond strength, failure (i.e. fiber/matrix disbonding) would be

predicted when c_r exceeded YT. Based on this criterion and the results of Figure 48, failures

were predicted in [02/902]s P75/934 and 7"300/934 laminates at approximately 75 oF and -150 °F,

respectively. No failures are predicted in [0] laminates of either system. These failure predictions

are in excellent agreement with the experimental data cited earlier.

The results presented in this section show that neat matrix strength is not a good measure of

composite failure strength under thermal loading conditions. A failure criterion based on interracial

bond strength was much more successful in predicting thermally induced failures in the two

composite systems studied. The lamina transverse strength, YT, appears to be a good first
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approximation of the interfacial bond strength. However, more research is needed to accurately

quantify this strength.
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6.0 Concluding Remarks

The objective of this research study was to analyze the deformations and stresses, induced by

thermal loading, in continuous fiber reinforced composites using the properties and behavior of the

constitutents (i.e. fiber and matrix). The study focused on two primary areas. First, available explicit

expressions for predicting the effective coefficients of thermal expansion (CTE's) for a composite

were compared with each other, and with a finite element (FE) analysis that was developed as part

of this study. Comparisons were made for a wide range of fiber/matrix systems to determine the

influence of the constituent properties. All of the predictions were compared with experimental

data to assess the validity and shortcomings of the individual analyses. The major conclusions

from this portion of the study may be stated as follows.

• All of the analyses investigated predicted nearly indentical values of the axial CTE, el, for a given

material system, and all of the predictions were in good agreement with the experimental data.

This implies that simple strength-of-materials (SOM) formulations are adequate for accurately

predicting values of (_1.

• Results from the FE analysis, and those from the solution of a generalized plane strain boundary

value problem, were in excellent agreement with each other, and with the experimental data for

the transverse CTE, (Y2. The less rigorous plane stress and strength-of-materials formulations

were in poor agreement with the experimental data for all of the material systems studied.
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• As was expected, predicted values of _1 were most sensitive to the axial properties of the fiber,

and the predicted values of +_2were most sensitive to matrix properties. The sensitivity of _2 to

transverse fiber properties was less than expected.

• Moderate amounts of cylindrical fiber orthotropy (i.e. Er = 2Ee or vice versa) had a negligible

effect on the predicted values of c_1 and _2. This degree of cylindrical fiber orthotropy is justified

based on the excellent aggreement observed between predicted and experimental values of el

and _2 when transversely isotropic fiber behavior was assumed.

The second portion of this study focused on the determination of thermally induced stress fields

in the individual constituents. Stresses predicted from a FE analysis were compared to those

predicted from the closed-form Composite Cylinder (CC) analysis for unidirectional laminates. The

thermal load was representative of cooling from an elevated temperture cure (350°F) to a typical

cold (-150 °F ) spacecraft environment. The constituent properties and microstructure that control

the behavior were identified and material modifications to improve the behavior were suggested.

A simple global/local FE formulation was used to asses the influence of local variations in fiber

volume fraction, Vf, and multiple ply laminate constraints on the constituent stresses. Thermal

stress calculations were used to predict probable damage initiation locations, and the results were

compared to experimentally observed damage in several epoxy matrix composites. The major

conclusions from this portion of the study may be stated as follows.

• The type of analysis (i.e. CC or FE) significantly affected the distributions and magnitudes of

the predicted thermally induced stresses. The most notable difference was the absence of any

tensile values of the radial matrix stress component, and the absence of any in-plane shear

stresses. These differences are due to the fact that the CC analysis does not account for the

influence of adjacent fibers.
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• Thermally induced matrix stresses were not a strong function of fiber properties. Consequently,

moderate amounts of fiber orthotopy had negligible effects on the matrix stresses. The two most

promising methods to significantly lower the magnitudes of thermally induced matrix stresses

are reducing the product of the matrix modulus and CTE (EMc_m),and reducing the applied tem-

perature change. For a fixed operating temperature, this implies lowering the cure temperature.

• Matrix stresses increased in absolute value with increasing Vf. Global/local analyses showed

that stresses in local regions of high Vf, constrained by a lower global Vf, can be approximated

by an unconstrained analysis of the high V f region.

• Multidirectional [02/i 6]s laminates had larger predicted matrix stresses than unidirectional ([0])

laminates. The stresses increased with increasing lamination angle 0, up to 8 = 260 °. The

magnitudes of matrix stresses remained approximately constant for e > 60° up to 0 = 90°. The

most significant differences from the [0] laminate response were the presence of a large tensile

radial matrix stress component, Cr, at the interface, and the existence of non-zero out-of-plane

matrix shear stresses, 7-exand _'xr.

• Thermally induced matrix failure predictions, using a maximum stress failure criterion and the

ultimate tensile strength of the matrix, Cu_m,were in very poor agreement with experimental data

The two reasons postulated for these discrepancies were non-linear matrix behavior, and rncrult,a

neat matrix property, not being representative of the in-situ matrix strength. The second reason

was supported by experimental observations of matrix damage, and measured values of trans-

ver_ !amina strength, ym. A failure criterion based on the radial interracial stress component

and yT, was in excellent agreement with experimental data.

In summary, a micromechanics analysis was developed, and used for predicting the thermally in-

duced deformations and stresses in a composite exposed to a typical spacecraft environment.

Concluding Remarks 81



Predicted deformations of the composite were in good agreement with experimental data. Cal-

culated matrix stresses were used to predict thermally induced matrix failures, and were in good

agreement with the experimental data when representative values of the in-situ matrix strength

were used in the failure criterion. Future research should focus on more accurate modeling of

matrix behavior (i.e. nonlinear behavior), and a more thorough understanding of interfacial bond

characteristics.
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Appendix A. Rosen and Hashin Analysis

Due to the transverse isotropy of the constituents and the unidirectional composite, the only non-

zero components in the material property tensors of equations (2.1.8) and (2.1.9) are given by (23)

'qr11 = Or(l), CY22 = _t33 "= _(2)

$1111 = 1/E(1), $2222 = $3333 = 1/'E(2)

$1122 = $1133 = -_,(12)/E(1), $2233 = -v(23)/E(2)

S1212 = S1313 = 1/4G(12), $2233 = 1/4G(23)

(A.1)

These relations are true for the effective property (superscript - ), the volume average property

(superscript _ ), and the constituent property (superscripts f,m) tensors. The subscripts on the

engineering constants refer to the material property coordinates of Figure 4, and are enclosed in

parentheses to distinguish them from tensor indices.

Using _,ntracted tensor notation(es) (subscripts a,b = 1,2,3,4,5,6), equation (A.1) may be rewritten

as

_1 = 'qr(1), _r2 = (_3 = _r(2)
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$11 = 1/E(1), S22 = $33 = 1/E(2)

$12 = S13 = -v(12)/E(1), $23 = -_'(23)/E(2)

$66 = $55 = 1/4G(12), S44 = 1/4G(23)

(A.2)

Now, equations (2.1.1 la) and (2.1.11 b) may be rewritten using contracted notation as

(A.3)

o2 = ,;2 + (-_ -,,c-m))P,b(_= - _b2) (A.4)

Equations (A.3) and (A.4) may be expanded and simplified by keeping only the nonzero terms and

noting that Sab is symmetric and therefore Pab iS symmetric. The following relations can also be

shown for Pab

P22 = P33, P12 = P13, P55 = P66 (A.5)

Equations (A.3) and (A.4) may now be written as

-, = ,;1+ (_,1-_11)[(_I_--Im))pll + (-_- ._%2P_2]

+ ($12-$12)[(eI_-_Irn))2P,2+ (n'(2_-"(2m))2(P22+P23)] (A.6)
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+(s_-_){(_I_-,_l_))P,_+(_(_-_(_)l(P_+P_)l

+ (s23- s23)[(_I_ -(,I_))P,2+ (_(2_ - _,(_))(P23+ P33)] (A.7)

where Pab is determined from equation (2.1.9) which may be rewritten in contracted form as

Pab(S(f)c (m)- Sbc ) = I,c (A.8)

The solution of equation (A.8) gives the elements of Pab appearing in equations (A.6) and (A.7),

and may be written as

P11 = (A22A22 - A23A23)/Det A

P12 = (A12A23 - A22A12)/Det A

P22 = (ALIA22 - A12A12)/Det A

P23 = (A12A12 - AllA23)/Det A

(A.9)

where Aab is defined as ,(S (f)ab-- $(r_)), and Det A is given by

Det A = [At1(A22A22 - A23A23) + 2AI2(AI2A23 - A22A12)] (A._0)
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Appendix B. Finite Element Formulation

As stated in Section 3.4, 8-node quadratic isoparametric elements were used for the FE analysis.

The global and local coordinate systems for this element are shown in Figure B1. The relationship

between the global and local coordinates can be written as

8

y = _ NiYi
i=1

(B1)

8

Z = _ Niz i
i=1

(B2)

where the interpolation polynomials Ni are functions of the local nodal coordinates (_, r/), and Yi

and zi are the global coordinates of the i'th node.

The interpolation polynomials for the 8-node elements are quadratic, and defined as

Ni= _(1+_o)(1+,1o)(_o+,1o-1), i=1,3,5,7 (B.3)

Ni= 1(1-_2)(1+'1o), _i=0, i=2,6 (B.4)

Ni= 2(1 +_o)(1-,12), qi =0, i=4,8 (B.5)
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Figure B1. Element local and global coordinate systems.

where (o = 4(i, r/o = T/r/i, and ( and r/range from - 1 to + 1 at the corners.

Isoparametric elements use the same interpolation functions for the geometry and the nodal vari-

Therefore, the unknown displacement functions of equation (3.4.1)ables (i.e. displacements).

may be written as

U(y, z) = _ Niu i
i=1

8

V(y, Z) = _ Nivi
i=1

(B.6)

8

W(y, z) = _ Niw i
i=1

where ui, vi, and W i are the unknown displacements at the nodes.

A displacement based FE formulation requires the minimization of the total potential energy, PE, for

each element with respect to the unknown variables. This procedure leads to a set of linear simul-
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taneous equations relating the unknown nodal displacements to the applied loads. The equations

for each element are assembled into a global system, the boundary conditions are applied, and

the system is solved for the nodal displacements. A detailed description of this procedure may

be found in the literature(41). An abbreviated description of this general procedure, and special

modifications for the specific problem under consideration, follows.

The total PE of an element is the sum of the strain energy, Us, and the work of the external loads,

WL. The strain energy for an element is written as

1 Lol{_r} {rM}dVO IUs = _ (B.7)

where {_} and {CM} are the element stresses and mechanical strains, respectively, and have the

form

=  -yz, -zx, (S.8)

{_M} T = {(x, (y, _'Z, _yz, "fzx, 3xy} (B.9)

The work of the external loads is written as

WE _{q}{f}T o o-- Cx F x

where {q} are the nodal displacements, {f} are the applied nodal loads, and F° is the uniform

average axial force (i.e. a scalar quantity).

The total strain for a linear elastic system is written as the sum of the mechanical strain and the free

thermal strain, or

{_} = _'M} + {_T} (B.11)

Rearranging to solve for the mechanical strain leads to

{_'M} = [e} - ((T} (B.12)
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Minimization of the total PE with respect to the nodal displacements requires that {(_} and {(AI }

in equation (B.7) be expressed in terms of the displacements, and is accomplished by using the

strain-displacement relationships of linear strain theory. These relationships are written in matrix

form as

{_}= {L]{u} (B._3)

where {u} is the vector of total displacements, and the matrix [L] is defined as

alax o l
o a/ay
0 0 O/_z

0 O/Oz O/OyJ
a/az o o xjo1_ OlOx

(B.14)

Note that engineering shear strain has been used in the above relationships.

Combining equations (3.4.1) and (B.6) and substituting into equation (B.13) leads to an expression

for strain in terms of the nodal displacements written as

{(} = [B]{q}+ {(_} (B.15)

where

{q}T= {Ul,Vl,WI,...U8,V8,W8} (B.16)

and

{o}T= (,xO,O,0,0, O,O} (B.17)

The matrix [B] (6 x 24) is defined as the matrix product of [L] and a partitioned matrix involving the

interpolation polynomials (equations (B.3- B.4)) written as

IB] = (It-I)([I](N1)III](N2)I... [l](Na)) (B18)
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where I is a 3)<3 identity matrix. Substitution of equation (B.15) into equation (B.12) leads to an

expression for the mechanical strains in terms of the displacements, written as

{(M} = [B]{q} + {_x°} - {(T} (B.19)

where the free thermal strain vector is defined as

{_T} = {e}AT (B.20)

and

{_}T = {_x, _V, '_z, eyz, _zx, oxy} (B.21)

and _3T is a uniform change in tempertaure.

The stresses are expressed in terms of the displacements through the material constitutive equa-

tions, written in general form as

{o'} = [(_]{(M} (B.22)

The specific form of [(_] depends upon the relative orientation of the material principal axes with

respect to the global (x,y,z) axes. The elements of [5] for an orthotropic material (i.e. a material with

3 principal planes of symmetry) with two different orientations (coincident, and a rotation about the

x-axis) are given in Appendix C. For rotations about the x-axis, the angle of rotation, e, varies with

position in the yz plane, and therefore varies within a given element. This variation is included in

the analysis by computing 0 from the global coordinates at each of the Gauss points used for the

numerical integration in equations (B.26-B.27) and equations (B.30-B.32). The matrix {e}, defined

in equation (B.21), also depends upon the relative orientation of the principal material axes with

respect to the global axes. The elements of {_} for the two orientations described above are also

given in Appendix C.
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Equations (B. 19) and (B.22) are substituted into equation (B.7) to write an expression for the strain

energy in terms of the displacements as

^ . ^f

Us = 2 Jv/ol{B}T[C]{B}dv°I

where

{!_} = ([Bl{q} + {_x°} - {CT})

(B.23)

(B.24)

Two cases must be considered for the minimization of the total PE (equations (B.IO) and (B.23))

with respect to the unknowns. First, for the case of a known _o, the PE is minimized with respect

to only the nodal displacements, {q}. This minimization results in an expression written as

where

[K](q} = (F} (B.25)

and

[K] = _vol [BIT [_;] [B]dvol

{F} =-_v [BIT[C]({'°}- {CT})dvol+ {f}ol

(B.26)

(B 27)

The case of an unknown c° requires that the PE be minimized with respect to both the nodal

displacements,{q}, and (x°. This formulation is specific to the case of generalized plane strain with

an applied uniform axial force, Fx°, and does not appear in the reference (41) cited previously. The

minimization of the PE for this case results in an expression of the general form

[K']{q"} = {F" } (B.28)

which may be expanded and written as

,Kx ,I/ t (B.29)
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where[K], {q}, {F}, and F° have the same definitions as previously given, and

{Kx} = 1'st column of ./v [B]T[C]dv°l
ol

K° = _vo1[(_11]dvol

and

Fx = 1'st element of _vol[C]{_T}dVOI

(B.30)

(B.31)

(B.32)

Two steps are required to compute the elements of [K], [K'], {F}, and {F ° }. First, the derivatives of

the interpolation polynomials, Ni, with respect to the global coordinates, (y,z), must be evaluated

for terms involving [B]. However, the shape functions are in terms of the local element coordinates,

(_, 7/). The derivative evaluation is acomplished by use of the Jacobian matrix in an expression

written as

{ ONi/o_Y 0Ni/#)_0Ni/Oz } = [J]-' { }ONi/ _%

where the Jacobian matrix is defined as

(B.33)

[J] = LON1/0,/ ... 0Ns/O_J (B.34)

The second step is to numerically evaluate the integrals in equations (B.26- B.32). This is accom-

plished by first transforming the integral into the (_, r/) coordinate system noting that

dvol = IJl(d_)(dr/) (B.35)

where IJI is the determinate of the Jacobian matrix. The limits of integration become -1 to + 1 on

both _ and r/. Gauss quadrature is used for the integration and all of the integrals can be written in

the form

n n

v GdvoI = _ _ HiHjG(_ci, ,Ij)lJI (B.36)
ol i=I j=1
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where Hi and Hj are the weight functions and G(_i, _) is the function to be integrated. A 2x2 (n=2)

Gauss quadrature rule was used for the integration. The weight functions and coordinates of the

Gauss points are given in the FE reference text cited earlier(41).

Equations (B.25) and (B.29) represent a system of linear simultaneous equations for one element,

These element equations are assembled into a global system of equations by requiring continuity

of the displacements at the nodes of adjoining elements. The prescribed boundary conditions

are imposed and the resulting system of simultaneous linear equations is solved for the unknown

nodal dispalcements, and if necessary _x°. The element strains and stresses are computed from

the nodal displacements by using equations (B.13) and (B.?.2).

Resultant internal nodal forces are computed from

{P} = _ol[B]T{a}dvol (8.37)

where P is the vector of resultant nodal forces for an element. The integration in equation (B.37) is

evaluated numerically by rewriting it in the form of equation (B.35). The summation of these nodal

forces in the x, y, and z directions, respectively, must equal zero for static equilibrium, and can be

used as a check on the validity of the solution.

It should be noted that the formulation presented above (i.e. minimization of the total potential

energy) insures that [K] and [K ° ] will be symmetric and positive definite, after the imposition of

boundary conditions which prohibit rigid-body motion. Therefore the inverse of [K] and/or [K*]

exists n___a solution can be found.

The three types of boundary conditions allowed in the displacement formulation presented above

are prescribed nodal displacements, applied nodal forces, and constrained nodal displacements.

The first two involve standard procedures for appropriately modifying the global stiffness matrix
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([K]or [K*]) and load vector ({F} or {F'}), and are well documented in texts on finite element

analysis(41). The application of constrained nodal displacements is not as well documented and

requires further explanation. Constrained nodal displacements refer to a series of nodes whose

displacements are proportional to one another but whose absolute values are unknown (e.g. vl =

v3 = 4v6). This effectivelyreduces the total number of unknowns inthe system. The global stiffness

matrix and load vector are modified by combining the contributions of the affected nodes into a

single row and/or column. These modifications do not destroy the symmetry of the stiffness matrix,

but can increase the bandwidth (to be discussed subsequently). The specifics of the procedure

for modifying the stiffness matrix and load vector are given by Adams and Crane (2s).

The solution of equations (B.25) or (B.29) involves solving a system of simultaneous linear alge-

braic equations. As stated earlier, [K] and [K° ] will be symmetric and positive definite, and therefore

an inverse will exist, and a solution is possible. The matrix [K] will also be banded due to the as-

sembly procedure in which a nodal displacement affects only those elements adjoining that node.

However, [K" ] is not banded due to the fact that every element contributes to (x°. This type of ma-

trix is sometimes refered to as an "arrowhead" matirx. Both matrices are shown schematically in

Figure B2. Numerous solution algorithms exist for banded symmetric systems. These algorithms

require storage of only the terms that lie on or above the diagonal and within the band, thus greatly

reducing the amount of computer memory and time needed for the solution. A special solution

algorithm was developed for this study that allows a banded storage scheme to be used for [K']

also. This was accomplished by storing the terms of [K" ] which contribute to Cx° as a separate vec-

tor. A standard [L][U] decomposition was then used to solve the banded system for the unknowns,

with terms from this separate vector used when needed.
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Appendix C. Finite Element Constitutive Equations

The material stiffness matrix, [C] is a 4'th order symmetric tensor. Following the contracted tensor

notation used in Appendix A, [C] can be written as a 6x6 symmetric matrix as

Cll C_2 C13 0 0 i 1

012 022 023 0 0
C13 023 033 0 0
0 0 0 044 0
0 0 0 0 C55 O
0 o o 0 0 C6eJ

(c.1)

where the elements of [C] are given by

1 -- _'23v32 012 _'12 + v32t"13 C13 /"13 + r'12v23Cll - - -
E2E3_ E1E3z_ E1E2A

C22 _ 1 -/J13t)31 I)23 + v21_'13 1 - _,12v21 (C.2)
E1E3J C23 - E1E2,5 033 = E1E2/--1

C44 =G23 C55=G31 C66 =G12

and

j = 1 - _12tJ21 - i)23u32 - u13u31 - 2t,21 tt32_,13 (0.3)
E1 E2E3

The terms Ei, Gij, and vii in the above equations refer to the Young's moduli, shear moduli, and

Poisson's ratios, respectively, in the material principal coordinates.
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When the material principal (1,2,3) axes are coincident with the global (x,y,z) axes, then the [(_]

matrix appearing in Appendix B is equal to the [C] matrix defined above. This will be the case for

most of the micromechanics problems analyzed in this study.

However, materials that possess cylindrical orthotropy (circumferential or radial) in the (2,3) plane

require a transformation of the [C] matrix to [C]. The appropriate transformation involves a rotation

about the global x axis, and is shown schematically in Figure C1. The elements of [C;] are deter-

mined using a standard 4'th order tensor transformation law (66), and can be written in contracted

notation as

011 = Cll

Cll = Cll

C12 = m2C12 + n2C13

(_13 = n2C12 + m2C13

(_14= mn(C12 - C13)

C22 = m4C22 + m2n2(2C-z3 + 4C44) + n4C33

C23 = m2n2(C22 - 4C44 + 033) + (m4 + n4)C23

C24 = m3n(C22 - C23 - 2C44) + mn3(C23 + 2044 - C33)

(_33 = m4C33 + m2r_(2C23 + 4C44) + n4C2-2

(_34 = m3n(C23 + 2(344 - C33) + mn3(C22-- C23 - 2(344)

(_44 = m4044 + m2n2(022 - 2C23 - 2044 + 033) + n4C44

(_55 = m2055 + n2066

(_r_ = mn(Ces - Css)

066 = m2066 + n2055

where all other Cij = 0, and m = cos 0 and n = sin 0.

(C.4)
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Figure C1. Cylindrical material transformation geometry.

The elements of {e} used in Appendix B, for orientations where the material principal axes are

coincident with the global axes, are defined as

(3rx ----"(¥11 ey = e2_ Orz= _3,

C_yz= O, azx = O, exy = 0

where _1, a2, and o3 are the CTE's in the material principal directions.

(C.5)

The elements of {e} for a rotation about the global x axis are given by

(_X = (1rl

_y = m2_2 4- n2or3

(_z = n2(_2 + m2¢_3

Oyz = 2mn(o2 - _3)

_Jrzx= 0

exy =0

(C.6)
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The above transformation for {(x} is based on the use of engineering shear strain in the FE formu-

lation, as opposed to tensor shear strain.
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Appendix D. Composite Cylinder Solution

The orthotropic constitutive relations in terms of the cylindrical coordinate system of Figure 7 may

be written as

Oo /O'r |C12 C22 C23 0 0 (r-Ot2AT
0"0 /C13 3 C33 0 0 (8 - a3AT

rex 0 0 5 3'eX
Txr 0 0 0 CSSJ "Yxr

(D.I)

where the [C] matrix has the same definition as given in Appendix C, except that the material

principal coordinates 1,2, and 3 are coincident with the x, r,and 0 directions, respectively, of Figure

,

The solution to equation (3.3.2.5), presented by Avery and Herakovich (35), has two forms depend-

ing upon whether the material is cylindrically orthotropic (i.e. properties in r and # directions are

not equal), or transversely isotropic (i.e. properties in r and 0 directions are equal). If the fiber is

cylindrically orthotropic the displacements in the fiber are given by

wf(r) = A_r_ +/_r_ + L_x°r + _.4T (D.2)

where

L_ = C13 - C12 (D.3)
C22 - C33
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and

= (Cir - C_)-i
C22 - C33 (0.4)

If the fiber is transversely isotropic the displacements in the fiber are given by a much simpler

equation written as

wf(r) = A_rX_+ Afr_ (D.5)

The term ,_1,2,in both of the above displacement fields, is given by

(0.6)

The displacements in the matrix, assuming isotropic material behavior, take the same form as

equation (D.5) and are written as

win(r) = A_rX_ + A_r_ (0.7)

where ,_1,2 is given by equation (D.6) using the stiffness coefficients of the matrix phase. For

isotropic or transversely isotropic phases the values of ,_are given by ,_1,2= +1.

The stresses in each phase are obtained by substituting the the expressions for the radial dis-

placemts, equations (D.2,D.5,D.7), into the first equilibrium equation of Section 3.3.2 (equation

(3.3.2.3)), and the results into equation (D.1). The resulting expressions for the stresses in each

phase are given by

O'_ f f .Lt'tf_f_,rX,-1 f f _f_f_r,_2--1 f O N[.1T= A1 (Cio - vir,,ll. +/_(Ci# - Vir,,2/. + Mi_ x + (0.8)

with

MI= +q (cl,+cl,) (0 9)
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f

and

N]= L_(C"+C_,)-C_..,,._'J I

for a cylindrically orthotropic fiber, and

(D.IO)

1 , o C[je[z_T_,'=A;(c_,+cb +A_(C_,- C[,);_+C=_, (D.11)

for a transversely isotropic fiber, and

(tin m m m m m m 1 m o CT(_[n_T= A_(Ci_+ Ci_)+ A_ (Ci_- Ci_)_ + C_x - (D.12)

for an isotropic matrix.

The five constants in the above equations, A_, A_z, A_n, A_, and _x° are determined from the following

boundary and continuity conditions.

1. The radial displacement w must be zero at r = O. This in conjunction with the fact that Af < 0

requires that A_ be equal to zero.

2. The radial displacement must be continuous across the fiber/matrix interface, wf(a) = w m(a).

3. The radial component of stress, Or, must be continuous across the fiber matrix interface,

_,_(a)= (,?(a).

4. There are no tractions applied on the outer boundary of the matrix for pure thermal loading,

therfore .-'_. j = O. The condition that rx_(b) = 0 was already used to determine the constant

of integration arising from the solution of the second equilibrium equation (Section 3.3.2).

5. The net axial force on the composite must be zero for pure thermal loading, or

2;r fob c_xrdr= O.
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Conditions 2-4 result in 4 equations that can be sowed simultaneously for the remaining unkowns,

A_, A_, A_, and _x°.
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