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CHAPTER 1

INTRODUCTION

L

In the past two decades, the measurement of S (Scattering) parameters has

become progressively more important. This importance stems both from the ease of

the basic measurement, particularly over a broad frequency range, and the usefulness

of this parameter set in the design process. Measurements have been made to below

1 MHz and are slowly being extended into the millimeter wave spectrum (though

measurements in this range are almost by necessity done in an S-parameter format).

We, not unsurprisingly, find the calibration process and standards at the heart of

such a measurement system.

To calibrate such a system for reflection and transmission measurements,

Hewlett-Packard Company (HP) provides a set of standards (originally from Maury

Microwave) and related data for calibration. Using the HP procedures, several

researchers have found anomalies in the resultant data. A not uncommon phenomena

is an air-line with a reflection that shows gain. _ Admittedly, this gain exceeds unity

by less than one percent. However, somewhat by accident, researchers have used

slightly different calibration data to represent the standards and found substantially

improved results for the airlines.

The purpose of this report is to investigate the full calibration process for the

existing HP measurement system. We will begin by reviewing the basic calibration

process and measurement system. The approach taken by Hewlett-Packard will be



discussedas the methods are developed. A full model for the system will also be

developed. This model may be used to develop full system calibration, including the

calibration of the HP "open" circuit reference. This approach has the additional

advantage of not requiring the "open" for the calibration, a fact critical to certain

measurement environments such as the measurement of dielectric and conductive

material samples. In such instances, the calibration must often be done using some

alternate procedure such as that presented in this report. More importantly, the

basic formalism of the modeling enables a user to develop a calibration procedure

tailored to a specific need where the HP procedure is inadequate. Our premise is to

improve the HP calibration data and then use the fundamental HP procedure when

possible. This will provide a high degreeof accuracy if the correct calibration data

is available, usually in excessof the accuracy specifications of the HP 8510 network

analyzer system.

Sample results will be presented which validate the method and demonstrate

the potential errors using HP's process and data. This will include the effects of

both fixed terminations and sliding loads on the choice of calibration data used to

represent the HP "open" standard. Limitations of the approach will be discussedin

addition to assumptions built into the calibration and accuracy process. Associated

effects of the assumptions about switching networks have led to alternate procedures

requiring a system modification (Speciale, 1977b). Since this latter work is not

directly related to the report objective, no consideration will be given to this

alternate procedure at this time.
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CHAPTER 2

DEVELOPMENT OF 8--PORT MODEL

AND DESCRIBING EQUATIONS

The measurement of the S parameters of a device under test (DUT) is to be

performed using a HP network analyzer system. The development to be presented is

applicable to both the HP8410 and HP8510 series systems, excluding the new TRL

calibration technique. The basic variations in the measurements are due in part to

each of the following in addition to some other minor factors:

1. Imperfections in coaxial switches used in the system, particularly

causing variations between switching periods;

2. System noise;

3. Generator noise;

4. Frequency stability (improved with phase lock);

5. Nonlinearity in detectors (particularly phase detection near the

limits);

6. Signal leveling;

7. Quantization errors (in A-to-D conversion).

The basic system is shown in Fig. 1 as used for measurement of sI1 and s21.

To measure s22 and Sl2, either the DUT may be reversed or the source may be

switched to the right end of the system. The latter is used for the HP systems and

is a random source of error, which may be avoided only with a system modification.

3
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The modification (Spcciale, 1977a) will not be considered in this report. We will

find later that the calibration may be done for the system as shown and repeated

independently for the system with the source switched to the output. The basic

procedures for the two sets of measurements do not interact.

Though Fig. l represents the fundamental layout, tile actual measurement

process is complicated somewhat by possible crosstalk between channels of the

network analyzer. A complete 8-port model of the 2-port measurement system with

the DUT connected is shown in flow-graph form in Fig. 2. If we observe the details

of the measurement system in Fig. 1, we find 8 ports to the outside world: the two

source connections, the DUT connections, and the 4 network analyzer terms. The

latter have been referred to as terms since they may actually represent voltages

internal to the network analyzer which are processed by tile network analyzer for the

S--parameter estimation.

The network of Fig. 2 may be substantially simplified using either of two

basic observations. Since the terminations on the network analyzer ports and source

ports (neglecting switching errors) are to be constant at a given frequency (not

necessarily zero), they may be imbedded in the S-parameters of a simpler system

description. This is a common practice when an n-port is to be used as an

(n-m)-port with the extra m ports terminated in fixed loads. The computation

requires a bit of matrix algebra. To demonstrate this effect, let us assume the

parameters of the 8-port are described by s:. and port k is terminated in F k. Thenz3

the modified ssj_ are given by

"8"F
S ik k3 k

s s. = " (la)

zj sij + I - S'kk rk



®

@

®

Figure 2. Flow---graph for the system 8-port model.



and

or

S p

s kj
ski -

I - S'kk Pk

(lb)

1
8 s

ik = (lc)
I - s" F.

kk

These formulas may be used for each port k which has a constant termination until

the full system has been simplified.

An alternative is to note that a similar result may be obtained by using the

general form of S-parameters and defining the normalization impedance at each of

the constant termination ports to be the constant termination. This approach results

in the same form. The actual numbers obtained from the original are unimportant

since the true numbers are not known. In fact, the desired result is the form

obtained and not the actual numerical relationship of the final model numbers to the

original. This form for the 8-port system which describes the HP network analyzer

systems is given by the simplified flow graph of Fig. 3. For this form, the final

s
system S-parameters will be denoted by s ij , and the relationship to Fig. 2 will be

ignored. In this simplified system, only 24 parameters are nonzero. Indeed, if all of

the parameters existed, they would have been found to combine in the calibration

process to result in another set of 24 terms.

Before we consider the full calibration problem, we will consider the

fundamental problem of reflection coefficient measurement of a one-port. In this

case only si1 of the DUT is nonzero. We will denote this value simply by s. For

this measurement, we may set bs2 (the second source) to zero and consider only the

ratio P = (t I / il). In an ideal system, F would be equal to s. Our job is to



®

®

®

/ ,

I ,

\ _..

\ -/
/

\ -" .
!

\

/

/

I'

i

-/ t .| \

, .....f---I"Itl

/-

_,/.--- .-'\

/" I

Y

\

\
%

\-,.

",.\_

/
/ .r ,_I

l ... "" •"2,
/ / ..,/-

_°

/

....,-::._-_-:-

• _-T

LI

®

Figure 3. Simplified flow-graph of system 8-port model.
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determine the F and s relationship so that s may be computed from a measured

value of r.

In terms of the system S-parameters and s, the measured I' displayed by the

network analyzer will have the value

or equivalently

s (sss s ss31 + 4 s41 - s_ s31 ) s
8 8 8

a 0 + a 1 s

F = 1 + bl s ' (2)

where the s_j are constants and the numerator and denominator have bcen divided

s which represents the incident coupling to the incident sample port. Sinceby s21

only the ratio F is desired, we may simply normalize all signal paths departing the

source by the level of coupling to the incident sample port if desired and reduce the

number of unknown coefficients by one.

As already suggested, we need to determine the coefficients of (2) in order to

compute s from the measured F. If we assume that ideal terminations are available,

then a 0 is the I' obtained with a perfect terminating load attached.

short and open given by Ps and I' o respectively, then

For the r's of a

and

(r o + r s) a 0 - 2 r o r s

al - ro - Ps

2 a o - r o - r s
bI -

r o - r s

With these terms, then s is simply computed as

(3)
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Thus the basic process for a reflection coefficient s is rather straightforward.

The problem arises when we realize that the only near-perfect termination is the

short circuit. The load and open are essentially impossible to construct as perfect

terminations. This means that a procedure must either be developed which pursues

another process of calibration, or the load and open terminations must be made

known in some manner. These processes will be the discussion of latter chapters of

this report. We stop at this point of the simple reflection problem and begin the

more general problem and the necessary calibration procedures in the next chapter.

The full development, of the next chapter requires to use of the basic equations

for the model of Figure 2. These equations are given by

8
s $ 8 bs2

s
s38 bs2

= s s b$ +i I S$l bsl + s_4 b I + s25

s b2 +t I sS31 bsl + ss24 b 1 + s35

and

i 2 = ssTl bsl + sS74 b I + sS75 b2 + sS78 b s2

t2 = sS61 bsl + sS64 bI + s65s b2 + sS68 bs 2

s b_ + sa I = s_i bsl + s_4 bl + s45 s48 bs,

= s b_ + sS58 bs_

b 1 = Sll a I + s12 a_

b 2 = s2i a I + s22 a 2.

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(49)

(4h)

These equations are combined in the next chapter to obtain a complete description of

the measured S-parameters.
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CHAPTER 3

CALIBRATION USING IDEAL STANDARDS

As described in the previous chapter, a rigorous development of the system

model and resultant equations is easily done. We shall complete the equation

development in this chapter and begin the consideration of full system calibration

with the use of perfect calibration standards. This development will be extended in

later chapters.

3.1 Describing Equations

As shown in the previous chapter, the simplified eight-port model of the

network analyzer has eight describing equations. These equations may be combined

to obtain equations for only the four measured terms ii, t 1, i2, and t 2. It is

convenient to define (zt-_[bsu_0) , (_lbs_ :0)' (_[bsl =0 )' and (_lbsl:0)' denoted

s11'm s21'm s12'm and s22m respectively (the m denoting measured) to represent the four

ratios are measured directly by the network analyzer, to obtain

M / $ $ - S S S ,S 8 8SlI = .sS31 + (s34s$1-s3IS$4) SlI + (s34s5i-s31s54) sI2

8 8 8 8 5 8 8 8

+ (s35s41-s31s45) s21 + (s35s51-s31s55) s22

+ [s_4 s s s s s s s s s(s51s45-s41s55) + s35 (s41s54-s51s44)

S 8 $ 8 S 8 8 8 8 :

+ sam (s,,s55-S,sS54)] As } / {S_l + (s24Sjl-S21sj4) 811

11



S S S B S S S S

+ (s24s5I-S21S54) s12 + (s25s4I-S21S/s 5) s21

$ S 8 B S 8 S S S

+ (s_5s51-s21s55) s22 + [s24 (s5Isv5-SdlS55)

(5a)

s21 8 8 8 8 S S S S= ss61 + (s64s_1-s61s44) Sll + (s64s51-s61s54) s12

8 S S S S S S 8

+ (s65sil-S61S45) s21 + (s65Ssl-s61s55) s22

(s5iSvs_S41S55) + sS65 , s s s s ,[s41s5g-s51s44)

+ sS61 s s s s s s s s(sV4s55-s45s54)] As } / [sS2i + (s24s4i-s2is44) Sll

B B B 8 18 ,_ 8 S\

+ (s24s5i-s21s54) s12 +. ts25s41-s21s45) s21

S S 8, S iS 8 ,6 Sx

+ (s25s51-s21s55) s22 + [s24 tsSlS45-s41s55 )

(Sb)

and

S S S S 8 iS 8 S S,,m = s38 +s12 (s34s48--s38s44) Sll + (s34s58-s38s54) s12

5 S $ 8 8 S S S

+ (S$sS48-s38s45) s21 + (s35s58-s38s55) s22

+ [88 8 8 S S i S S S S '_s,¢ (SssS45-s48s55) + sss5 tsZ8s54-Ss8S44_

(s44sss-s45s54)]As / s78+ (s74s48-s78s44)Sll

8 8 $ 8 8 S 8 S

+ (STvS58-s78s54) Sl 2 + (s75svS--s78s¢5) s21

8 8 B $
+ (s75s58-sT_55)s22 + [s_ s s s s(s58s45-sv8355)

+ 8_ 5 8 S S S(s48s54_ss 44)+ s 78 s s s s( 44 55- 45 54)1 }

8 8 8 8 8 8 S 8s_ = SS_s+ (sa4s4s-S_sS44) s_i + (sa4Sss-S68s54) si_

8 8 8 8 8 S S 8

+ (SaaS48-SasS45) s M + (s65s58-s68s55) s22

(5c)

12



+ ( 58 45- $8 55)+ ( $8 54- 58 44)

(s44s55-s45s54)] As / s78 + ts74s48-s78s44J Sll

,5 S 8 8 S S S '3

+ (s74358-s78s54) s12 + (s75s4s-s78% )321
8 8 8 3 8 8 8 8 8

+ (s75s58-s78355) s22 + [s U (358s45-s48s55)

(5d)

The denominators and and numerators of these equations all have the form (a I +

o_ Sli + a 3 s12 + a 4 s21 + a_ s22 + a 6 As). In addition, Eqs. (5a and b) have

the same denominators as do Eqs. (5c and d). This last fact is useful in that the

forward and reverse parameter sets may be calibrated and measured independently.

In fact if the system user desires to perform the calibration only once, the first two

equations may be used for the entire measurement process of a two-port by simply

reversing the DUT in the measurement system. To summarize the equations for

which the coefficients must be determined, we simply normalize the numerators and

8

denominators of (5) by sS21 and s78 as appropriate to obtain

and

m ao + a1 Sll + a2 s12 + a3 32I + a4 s22 + a 5 a s

sI1 = I + b I si1 + b 2 s12 + b3 s21 + b4 s22 + b 5 h s

co + Cl Sll + c2 s12 + c3 s21 + c 4 322 + c5 As

sin21 = 1 + b I Sll + b 2 si2 + b 3 s21 -_- b4 s22 + b 5 As

m do + dl Sll + d2 s12 + d3 s21 + d4 s22 + d5 as

s12 = I + e I Sll + e 2 s12 + e 3 s21 + e4 s22 + e 5 As

sin22 fo + fl Sll + f$ s12 + f3 sp,1 + f4 s22 + f5 AS
= 1 + e I Sll + e2 s12 + e3 s21 + e$ s22 + e5 As"

(7a)

(7b)

(7c)

(7d)

13



In a perfect system, these four ratios are precisely equal to Sll, s21 , s12 , and .s_ 2

respectively. Thus, in a perfect system coefficients ai, c3, d2, and f4 would be

unity and all other coefficients would be zero.

In a practical system, three nonideal effects appear. First, there may be both

physical and electrical differences between the reference and test channels, resulting in

values of al, c3, d2, and f4 unequal to unity. Various user controls (e.g. amplitude

and phase controls and line stretcher_) are provided in a typical system to

compensate for these differences, but the compensation can be made exact for only

one frequency and one measured S parameter at a time. Thus, the use of

swept-frequency measurements and S parameter test sets sacrifices accuracy for

convenience. It is important to note, however, that accurate measurements require

oaly that al, c3, d2, and f4 be kaow as ftmctioas of frequeacy, not that they be

set to unity a priori.

The second non-ideal effect that may appear is the presence of constant offsets

in the measurements (non---zero ao, Co, do, fo ). These offsets may also be

characterized during system calibration and their effects removed to produce accurate

measurements. There are usually no user-accessible controls on the equipment to

zero them out, although on a polar phase-magnitude (Smith Chart) display the

centering adjustments effectively perform this function.

The third non-ideal effect that may appear is crosstalk between parts of the

network analyzer due to the finite directivity of the directional couplers and direct

radiation (leakage) within the instrument. The mathematical result of this crosstalk

is that any or all of the coefficients in the four describing equations may be

non-zero. Once again, the values of these coefficients can be found during

calibration; now, however, the four equations become coupled with respect to the

unknown S parameters of the device, and numerical computation is required to find

14



the S parameters. (Further, the equations are nonlinear in the S parameters.) It

must be borne in mind, however, that the effects of the crosstalk are small in a

high-quality system, so that the al, c3, d2, and f4 terms are still the dominant

terms in their respective equations.

Calibrating the network analyzer system consists of computing the values of the

coefficients in the describing equations, based on measurements of known devices.

Possible approaches to doing this calibration are discussed in this chapter and the

next, starting here with the simplest case -- that of using "perfect" standards.

3.2 Sample Calibration Using Ideal Standards

Assume that the following standard components are available to be measured by

two short-circuited transmission lines having reflection

coefficients p = -1 + jO.

Perfect opens: two open-circuited transmission lines having p = I + jO.

Perfect loads: two terminated transmission lines having p = 0.

Perfect through line: a transmission line having no loss, no discontinuities, and

zero electrical length.

Perfect half-wave through line: a transmission line having no loss, no

discontinuities, and an electrical length of a half wavelength.

the network analyzer:

1) Perfect shorts:

2)

3)

4)

The calibration procedure will be illustrated here by find the ai, bi, and ci,

,n and ,n These two equations arei = [0,...,5], in the describing equations for s11 s21.

decoupled from the remaining two describing equations with respect to the

coefficients; hence, the two sets can be solved independently for the coefficients.

(This statement is not immediately apparent, since the coefficients all depend on the

15



same set of S parameters {sij; I <_ (i, j) <_ 8}. The proof will be by

construction; i.e., by developing a procedure.)

For reference, the two describing equations whose coefficients are to be found

are repeated here:

and

m ao + al Sll + a2 s12 + a3 s2I + a_ s22 + a 5 As

Sll = 1 + b I si1 + b 2 s12 + b3 s2i + b4 s22 + b 5 As

m c0 + Cl Sll + c2 s12 + c3 s21 + c_ s22 + c 5 As

s21 = 1 + b I Sll + b2 si2 + b 3 s2i + b 4 s22 + b 5 As •

(7a)

(7b)

3.2.1

Then

and

Step 1

Connect perfect loads to ports 1 and 2 so that

m

Sll = a 0

S_l = cO.

(8)

(9a)

(9b)

3.2.2

a)

Step 2

Connect a perfect open to port 1 and a perfect load to port 2.

so that

and.

m ao + al

S11a = 1 + b I

m Co + Cl

S*la = I + bI "

Then

(10)

(lla)

(11b)

16
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b) Connect a perfect short to port 1 and a perfect load to port 2.

so that

Then

(12)

and

m ao - al

Sllb = I b I (13a)

m Co - Cl

S21b = 1 b I (13b)

After some algebra, the simultaneous solution of Eqs. (lla) and (13a) is found to be

(recall that a 0 is known)

and

a 1 =

81_ /Y $ m
ao ( 11a + S11b) - 2 Sll a s11 b

m m
s - s.._

lla 11o

(14a)

/// ///

2 a 0 - (si1 a + Sllb) (14b)
b l = sm rn

Ila - s I lb

Similar expressions result for c I and b I after solving (llb) and (13b) simultaneously.

The two equations for calculating bI should give identical results, thus providing a

check on measurement and computational techniques. Bear in mind, however, that

(S21a) and (S_ib) will be very small compared with (Slla) and (Sllb);

consequently, values of b I computed using (Slla) and (Sllb) will be less corrupted

by measurement noise.

3.2.3 Step 3

a) Connect a perfect load to port 1 and a perfect open to port 2. Then

(15)

17



so that

and

s m ao + a 4

lla = 1 + b4

b)

m Co + c4
S21a = 1 + b 4

Connect a perfect load to port 1 and a perfect short to port 2. Then

so that

[00]S = 0-I

and

m ao - a4
Sllb = 1 b 4

Solving simultaneously again yields

and

8tR lit m m
aO ( IIa + Sllb) - 2 SlI a Sll b

m m
s - s...

lla 110

_ sm m
12 a 0 ( lla + Sllb)

b4 = m m

Sli a - s I lb

m

with similar expressions for c4 and b4 in terms of (S21a)
m

and (SMb).

(16a)

(16b)

(17)

(18a)

(18b)

(19a)

(19b)

3.2.4

a)

Step 4

Connect perfect opens to ports 1 and 2. Then

so that

m I_ 0 + a 1 + :4)+ a5 = a+ a 5
Sll a = + b 1 + 4) + b 5

(20)

(21a)

18



and

m (CO+ cI + c4) + c5
sel a =

(1 + b I + 54) + b s

Note that a, ]J and 7 are known.

7+c 5

= /t + b 5 (21b)

b) Connect a perfect short in place of the open at port 2. Then

so that

and

1 0 ] (22)S = 0-I

m I_0 + a I -_)-a5 = a"- a 5
Sll b = + bI 4) b5 /1, b5 (23a)

m IclO+ Q-c4)-c5 = 7"-c 5
s2I b : + bl b4) b5 /1, _ b5 (23b)

Eqs. (21a) and (23a) can be solved simultaneously for a 5 and b 5 as

and

a" m m m m
Sll a + a si1 b - (fl" + fl) Sll a Sli b

(24a)
a5 -" 8fil m

lla - Sll b

a + a"-_ sm -_" sm
lla llb

b5 = s m m (24b)
lla - SI1b

Similar equations for c 5 and b5 result from solving (21b) and (23b)

simultaneously.

3.2.5

a)

Step 5

Connect ports 1 and 2 with a perfect through line having zero phase shift. Then

so that

m ao + (a2 + a3) - a5 a + (a 2 + a3)
- (26a)

S11a = 1 + (b2 + b3) - b 5 /t + (b2 + b3)

19



and

b)

so that

and

c o + (c 2+ c 3)-c 5 _ "r + (c 2+ c3)

S_Ia = I + (b 2 + b3)- b5 - /t + (b 2 + b3)

Connect ports 1 and 2 with a perfect through line have 180 ° phase shift.

0 -I ]S = -I 0

m ao - (a2 + a3) - a5 a" - (a 2 + as)

S11b = 1 - (b 2 + b3) - b5 - /J" - (b 2 + b3)

171 Co - (ce + c3) - c5 = 7"

S21b = 1 - (b 2 + 03) - b5 /1"

(26b)

Then

(27)

(28a)

- (c 2 + c3)

_ (b 2 + b3 ) (28b)

Solving (26a) and (28a) simultaneously for (a e + a3) and (b e + b3) gives

and

Or" lit /71 1/71 17171Sll a + a Sll b - (3" + ]3) Ila Sllb

ag + aS = st" m (29a)
1Ia - SI1b

171 _ [_, 171a + a" - 3 Sll a Sll b
be + b3 -- m m (29b)

Sll a - Sll b

Similar equations for (c 2 + c3) and (b 2 + b3) result from solving (26b) and (29b)

simultaneously. Resolving a2 and a3, b2 and b3, and c 2 and c3 from their

respective sums requires some computation, and is discussed next.

3.3 Solution for at, a$, b_, b3, ¢Ig" and c$

The calibration measurements of the previous section yield values for the

following coefficients and sums: aO, al, (a 2 + a3) , a4, a5, hi, (b 2 + b3) , b4,

b5, c o, Cl, (c 2 + c3), c4, and c 5. The goal of this section is to express a2, a3,

b2, b3, c2, and c3 in terms of these known quantities.
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We begin by returning to the definitions of the a i, b i, and c i in terms of the

network analyzer model [Eqns. (6) and (7)]. Since each of the coefficients of (6)

s
may be divided by either Sel or s378 to obtain the form of (7), we will simply let

s (or sS78 )s_l and sS78 be given by unity in (6). In effect, we are normalizing to s21

for every path leading away from port 1 (or port 8) of the network analyzer model.

For convenience, the coefficient definitions are repeated here, incorporating the

normalization discussed above:

8

a 0 = s31

B 8

as = 3_s 34i - 3_I 34s

3 S Ba4 = s 5 a51 - 331 355
3 8 S $ S

3 S 3 3-4, ÷ ÷
b 0 = I

s2 3 sb e - s 4 351 - 354

3

8

b_ = "'es"sl - "_s
3 B S

3 3 8 8 3 "8 3 3- 354 345 + 345 s 4 351 + 341 354 325

8

c 0 = 361

8 3

cI = 3_4341- 3_134_
B B

3 8 B

c$ = s365 341 - s61 s45

8 3 B S

c4 = 365 351 - 361 355

(3oa)

(30b)

(3oc)

(30d)

(3oe)

(3Of)

(31a)

(31b)

(31c)

(31d)

(31e)

(31f)

(32a)

(32b)

(32c)

(32d)

(32e)
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and

_ 8 8 S S 8 8 8 S Sea - s I s44 sas - ssa s6, s41 - s4_ Ss1 s65
8 S 8 8 8

At first it may not appear to be possible to solve for the subscripted constants s..
z)

separately. However, the complete solution may be considered a possibility since we

have already obtained 14 measured quantities on which the 14 coefficients depend. If

S

we look even further, we see that we may also set s41 to unity if desired since it

always appears in product with other terms and may be absorbed.

To consider the solution for the additional coefficients, we begin by combining

gq8. (30) - (32) to obtain

a9 a3 = a I a4 - ao a5 (33a)

be b$ = b t b 4- b5 (33b)

and

with

and

c2 c 3 = c 1 c4 - c o c 5 (33c)

a 2 + a$ = 7a (34a)

b 2 + b3 = 7 b (34b)

c2 + c3 = 7c.

Since c2 and c$

(33c) and (34c), we may solve for them as quadratic forms as

?c 2 + _

and

"To 2 + _ )cs = T- ( * 4clc4 4COC5•

Similar forms occur for a2, a3, b2, and b3.

(34c)

(and similarly, a2, " b2, a3, and b3) are the only unknowns in

(35a)

(35b)
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The resolution of the (±) is based on the application of physical requirements

m is dominated by the actual s21 of the calibrationfor the system, specifically that s21

standard. To this end we may equate c 3 with the larger of the roots in (35) and

c 2 with the smaller. The remaining coefficients require a bit more work.

by rewriting combinations of (30) through (32) as

a I - bla 0 = s41 (s34 - s2430) (363)

a4 - b4a 0 = s51 (s35 - s2530 ) (36b)

c 1 - blC 0 = s41 (s64 - s24c0) (36c)

and

c4 - b4c 0 = s51 (s65- s25c0) •

We may also combine (34a-c) to obtain

7 a -7ha 0 = s51 (s34- s2430) + s41 (s35-s25a0 )

and

7 c- 7ha 0 = s51 (s64- s24c0) + s41 (s65- s25c0)

into which we may substitute (36) to obtain

Ss1 s4I

7 a- 7ha 0 - s41 (31 - blao) + s51 (34- b4ao)

We begin

(36d)

(373)

s51
7 c - 7bC 0 - s41 (Cl - blCo) + s51 (c4 - b4co).

Eqs. (37) provide two forms for s51/s41 given by

s51 = (73 - 7baO)(C 4 - b4co) - (7 c - 7bco)(a 4 - b4ao)

s41 (a I - blao)(C 4 -_ b4co) - (c I - blCo)(a 4 - b$ao)

and

s5__.J.1 = (al - blao)(C 4 - b4c0) - (c I - blCo)(a 4 - b4a O)

s$1 (a I blao)(7 c 7bC O) (c 1 blCo)(7 a 7baO)"

(37b)

(383)

(38b)
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If we now substitute (32a and b) into 32(c) we obtain

= (s51) (s51
c2 "_ C1 + c0 - • (39)s4I s44 s54)

Only the last term of this expression is unknown at this stage and we may write it

as

(SSl c2
s41 s44 - s54) = co

and similarly for the c 3 term

(La
s51 s55 - s45 )

Forms for the unknown coefficients a2,

written and (40a and b) used to obtain

and

s51 c 1
..... (40a)

s4I c o

c3 s4/ ---_. (40b)
c o s51 co

a 3, b2, and b 3 similar to (39) may be

= ao s51ae (s5--2)a1 + _ ci)
s41 c o (c2 s41

= ao S_las (_41)a4 +
s51 --_0 (c3 s51 c4)

be = (s51)bl + 1 s51
s41 -_0 (ce Cl)s41

(41a)

(41b)

(41c)

b3 = (s41)b4 + 1 s41
s51 -_0 (c3 - s51 c _).

This completes the solution for the coefficients of (30) to (32).

procedure may be used for the coefficients with an input at port 8.

(41d)

An analogous

3.4 Calibration Using Imperfect Standards

The ideal standards envisioned in Section 3.2 do not exist in practice. To the

extent that the actual standards differ from the ideal, the task of calibrating the

network analyzer becomes more difficult.
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The simplest non-ideal case occurs when some or all of the non-zero entries in

the S matrix differ from their ideal values of +1 or -1. An example is a standard

whose electrical length is incorrect, resulting in a phase angle other than 0 ° or

_-180 °. Mathematically, this case causes little difficulty: the equations relating the

measurements [(Smila ) a_d (STIb) ] or [(S_ia) and (sm2ib)] to the coefficients a i

and b i or c i and b i generalize to the form

and

a + _z (42a)s a = _ + y

_ a" + x (42b)'b - z' +

where a, fl, 7, _, a', fl', 7', and g' are known and z and y are unknown. These

equations have the simultaneous solution

a" sa - a ---5- Sb - (_" - --6- fl) Sa Sb
z = b" (43a)

- 7" s a + _ 7 s b

1 7" a" 7" -_""b-- [- a + 7 + Z s a 7 s b]
Y = b" (435)

-7" Sa +--b-7s b

It is easy to check that the equations of Steps 1 through 5 in Section 3.2 are special

cases of (42a)-(43b).

Sa -- 8//IIla'

and in Step 2b

s b - SI1b,

For example, in Step 2a we can identify

a = ao, 7 = 1, x = al,

= I, _ = 1, y = bl,

a" = ao, z = al,

_" = -I,_'=I, y=b
1"
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The next level of difficulty occurs if the formerly zero entries of S are allowed

to be nonzero. One example is the use of an imperfect load having a nonzero

reflection coefficient; another example is a through line with discontinuities that

make $11 or $22 nonzero. In this case, the procedures of Section 3.2 are no longer

applicable. Instead, the nine test conditions 1 through 5b yield nine simultaneous

equations in a i and bi, and another nine equations in c i and b i. Solution for the

unknown a i and hi, or for the unknown c i and bi, requires solution of a ninth

order system of equations. Still, apart from the extra computation there is little

difficulty in dealing with this case. The underlying (and perhaps dubious)

assumption is, of course, that the S-parameters of the standards are accurately

known.

The highest level of difficulty comes about when the characteristics of some or

all of the standards are not completely known. An open, for example, might

reasonably be expected to have a reflection coefficient of magnitude one (implying no

loss), but its phase angle might well be nonzero due to fringing of the electric field

at the end of the transmission line. Our proposed techniques for dealing with this

last situation are described in the next chapter.
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CHAPTER 4

FULL CALIBRATION

The previous chapter discussed ways of calibrating the network analyzer when

known standards are available, whether or not those standards are "perfect." This

chapter takes up a more difficult problem--how to calibrate the system when the

characteristics of the standards are not completely known. We wish to emphasize at

the outset that this statement does not imply that the network analyzer can be

calibrated accurately using inferior or damaged standard components. Certain

assumptions based on their physical properties must be made in order for our

proposed method to work. Nevertheless, this method represents a significant

theoretical advance over that previously recommended by tlewlett-Packard.

4.1 Standards

We begin by discussing the standards that will be required for this calibration

procedure. These standards are all sold by Hewlett-Packard for calibration and

verification of their network analyzers. Some of them are not supplied as part of the

"basic" calibration kits, however. Thus, implementation of our recommendations

might require purchase of additional components that are, admittedly, not

inexpensive.

Fortunately, the full procedure described here is necessary only when the

standards are not completely known. Once the standards are completely
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characterized, the abbreviated calibration procedure of Chapter 3 is adequate provided

the standards do not change in their characteristics.

The processcan be carried one step further (in face wc recommend doing so)

by using the full calibration procedureand a set of prime standards to characterizea

second set of working standards, to be used for day-to--day calibration with the

abbreviated procedure. Thus, one set of prime standards can be maintained for an

entire organization employing many network analyzers. An additional advantage is

that the prime standards will receive infrequent use, hence will tend to remain in

much better physical condition.

To illustrate our calibration scheme, we assume for the remainder of this

chapter that the goal is to characterize a set of prime reflection standards and in the

process calibrate the network analyzer for reflection measurements at port 1. Using

reflection measurements, the working standards can then be characterized.

The required prime standards are as follows:

1. Perfect short: As before, we specify that the component have reflection

coefficient F = -I + jO. The phase of 180 ° is an arbitrary choice to provide

a phase reference for the system; in effect this choice locates the reference

plane precisely at the shorted end of the transmission line. Since there is no

fringing of the TEM wave on a transmission line in the vicinity of a short,

there should be no frequency--dependent beliavior. The unity magnitude of the

reflection coefficient is based on an assumption of losslessness in the component

(including its connector). A worn, damaged, or dirty connector will render this

assumption invalid. Further, there is no direct way to test the short, since it

is being used to calibrate the network analyzer in the first place. For this

reason, Hewlett-Packard recommends that all of its precision microwave
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°

standards be verified using sophisticated physical, rather than electrical

measurements.

Since some loss, however small, is inevitable in a real-world connector,

there may be a legitimate concern about the lossless assumption. The best

justification for this assumption is that no better one can be made unless the

short is modeled with the material properties used in a skin-depth formulation.

This modeling would be based on documented estimates of the material

conductivity obtained from cavity resonance measurements. Further, if the

physical quality of the standards is very high, it seems reasonable to assume

that the loss associated with each mated connector pair is about the same.

Under this assumption, the loss of one connector pair can be absorbed into the
J

network analyzer model, so that it is the component beyond the connector that

is being characterized.

Losalesa open: We assume that the open has a reflection coefficient close to

unity which is consistent with the existing closed region. Because of field

fringing near the discontinuity, the precise electrical location of the open end is

not known in advance and it exhibits a frequency-dependent behavior. As with

the short, the unity magnitude of the reflection coefficient is a consequence of

its assumed losslessness.

Two lossless transmission lines of different electrical lengths: Once again, the

lossless property is assumed. There is no need to know the exact lengths of

the lines; it is only necessary that they be significantly different.

Sliding load: This component consists of a transmission line terminated by a

block of resistive material. The termination may be slid up and down the

transmission line to change its distance from the input connector. Assuming

that the termination is of good quality and that it maintains good contact
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with the transmission line, the reflection coefficient seen at the input of the line

will have a constant magnitude. Its phase, however,will vary with the position

of the terminator (load). Thus the input reflection coefficient of the line will

be located on a circle in the complex plane.

4.2 Reflection Calibration

Using the precision standards just described, the network analyzer is to be

calibrated for reflection (s11) measurements. We assume that port 2 is terminated

with a good matched load so that s12 = s2i = s22 = 0 (Strictly speaking, this

termination is not a requirement, as non-zero s12, s21, and s22 may be absorbed in

the constants as long as they do not change.) The describing equation of interest is

(6a), which reduces to

m ao + al sI1 (44)
si1 = I + b I si1"

4.2.1. Shorted line measurements

With the short connected to port 1,

and

Sll = -I

m aO - al

Sli = I - b I = Fs. (45).

If the short is

transmission lines, the input of the transmission line must have Sll of the form

Sli = 1 e jg,

now connected to port 1 through either of the two lossless

(46)

that is, a reflection coefficient of unity magnitude (because of the lossless nature of

the line) but nonzero phase shifts (because of the nonzero lengths of the lines).
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Obviously, the short alone is a special caseof (46) having

°1The measured S l l short

_ _ 0.

m [ m ] satisfy the equation' Sll shortl' sll short2

m aO + ale3_i

Sli i -
1 + bleJ_i

47)

for each i.

si1 maps circles into circles;

then

where

m

It is possible to show that the bilinear transformation relating Sll to

specifically, if

sI1 = IF] e jO, 0 < 0 < 2T (48)

Sllm = C + il e3a (49)

a I
I

al --_1

C - _1 + (50a)-Ibt[ Irl s

[a 0 b I - al.] Irl
8 = .... (50b)

I- ]b112 I1'15

Thus, connecting the short through various lengths of lossless line produces

measurement points that lie on the circle given by (49)-(50) with [I' I = I. A

minimum of three points is needed to determine the circle uniquely. These points,

as discussed above, can be found by measuring the short alone, and the short with

two different lengths of lossless line. (As an alternative and improvement, the short,

the open, and both the sho_'t and the open on a lossless line can be used for

determining the above circle. This approach circumvents some of the problems which

arise due to toss in the line extensions.)

m plane that results from these measurements will beThe circle in the Sli
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denoted

with

and

a) = C + II e 3 as
Slls s s

a 1

aI ao - -_I

Vs = -_1 + 1-1b112

a 0 - a I b;

1-15ii 2

(51)

(52a)

la0 b 1 - a 1 [

lls = 1- lb112 (52b)

4.2.2. Sliding load measurements

At the input of the sliding load

m ej_g
Sll = ( (53)

where 0 < e < I. Measuring the sliding load for various positions of the

m satisfyingtermination gives values of Sll

m ao + al e eJ_g

Sli =
I + b I e eJ_g (54)

for all tot's. Applying (48) - (50)gives the center and radius of the measurement

m plane ascircle in the s11

it - ce + 1re esae (55)

with

_ * _2a 0 aI b1
ve = (56a)

I- [bl[2 ¢2

32

I I



and

[a 0 b I - ai[ ¢
Re = . (56b)

I- [bl]_ e 2

Again, at least three measurements (three positions of the termination) are required

to determine 6'_ and Re.

4.2.3. Solution for unknown coefficients

Eqs. (45), (52), and (56) involve the unknown coefficients ao, al, and bl, the

unknown sliding load reflection magnitude c, and the known measurement quantities

rs' Cs ' Rs ' Ce' and Rg. We note that there are eight real equations--two each

for the complex-valued equations involving Fs, Cs, and Cg, and two real-valued

equations involving Rs and Re. Since there are only seven real unknowns (one for e

and two each for ao, al, and bl) , one equation is redundant. The equations used

for the solution enforce a) the short to be on the unity circle (an assumed lossless

condition), b) the computed reactance circle to be a circle of unity radius centered at

zero, and c) the load circle to be centered at zero.

exactly to obtain

and

These equations may be solved

/ [e (ce - cs)*L (57a)

b1 = (co - ao) (r - ao) / (e_o + (r - co) (co- ao)) (57b)

a I = -(R_o - co (co - ao)) (r - a0)

/ (R_+ (r - Co)(co- _o)) (57c)
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with

e = (a 0 b I - al) Rg / ((b I Q - al)2 - b_ Ill). (58)

4.2.4. Determining radius and center for the reflection circles

The short and sliding load measurements of the previous sections determine two

circles in the complex Sll plane,

and

respectively.

centers.

m _-s 1 ls "Cs + Rs e3as

m

S l It C! + Re e j°e

Here we investigate the mathematics of computing the radii and

Suppose first that we have three measurements s 1, s 2, and s3, and wish to

compute R. and C for the circle on which they lie. We begin by drawing two chords

joining these points, say chord L12 joining s I and s2, and chord L23 joining s 2 and

s 3. The midpoints of these chords, say P12 and P23 respectively, are

s 1 + s 2 s I + s 2
P12 - 2 cad P12 - 2 (59)

The perpendicular bisectors of l;12 and L23 say B12 and B23 respectively, pass

through Pl2 and P23 and intersect at the center. We thus need to find the

equations of B12 and B23 to determine where they intersect. These bisectors are given

by

B12 = P12 + a12 J(Sl - s2) (60a)

and

B23

where al_ and a23 are real numbers.

= P23 + a23 J(s2 - s3) (60b)

If we equate BI2 and B23, the a's may be
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determined to give the center (' as

c- [sI(Isa12-1s212) + se(IsIl -Is31 ) + ss(Ise12-1s112)] (61)
[SlS 2 - SlS 2 + ses 3- s2s ;+ s3s I - s3si]

The radius is then given by Is I - gl. The best numerical conditioning results when

the three points si, s2, and s 3 are nearly equally-spaced around the circumference

of the circle. This conclusion is true for two reasons: 1) with (st-s2) or (se-s3)

small, the denominator of (61) becomes small, leading to possible roundoff error. 2)

with (Sl-S2) or (s2-s3) small, R and 6' become very sensitive to small errors in the

measurements (due, for example, to noise in the system).

If the measurements s i are noisy, or are suspect for any reason such as lossy

connectors, it is preferable to use more than three points to define the circles. In

this case, a best-fit procedure, rather than Eq. (61), is needed. One possible best-fit

approach is described in the next section.

4.2.5. Least-squares circle fitting

Our problem is to find the circle that "best" fits a collection of measurements

{s i I 1 _< i _< k, k > 3}, in some sense of the word "best." A common measure of

the goodness of fit, and the one that will be employed here, is least squares (the

curve, in this case the circle, is chosen to minimize the mean square error in radius

over the data points).

Once again, the measured points in the complex Sll plane will be denoted

Sl, se,..., s. The desired representation is a circle

= C + IIe j_.
Sll

The error between measured point s i and the best-fit circle is

ei = I(Isi - el) - RI"

(62)

(63)
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Possible phase errors in s i (that is, errors that displace s i around the circle but not

away from it) do not influence the best-fit choice of 6, and R. Thus the

least--squares problem reduces to that of choosing 6, and R for minimum error.

Using the error representation of (63), the mean square error is given by

F(6,,il) = mean square error

5

= _ (Is i - 6'1 - R)2. (64)

i=I

To determine the minimum of /', we differentiate with respect to R, Re(_, and

Ira(C) and set each derivative to zero.

and

Thus we have

N
OF
Yll = -e _ (Is i-6'1 -R) = 0 (65a)

i=I
3/

Re(COF
alg-(g] e y_(Is/ - 6,1 - R) Si) 0 (65b)

- IC- sil =
i=I

IV
OF h.(C - s i)

= -e_(Is i- 6'1 -R) It;'- sil
i=I

Eq. (65a) is easily solved for R.to obtain

5
1

R - --_-_, Isi-Cl,
i=I

while Eqs. (65b) and (65c) may be combined to Obtain the function

5
I

f = C -. T_(Si + R

i=I

In general, (66) must be solved iteratively.

= O. (65c)

(66a)

C-s i

sil) = O. (66b)It;'

We have implemented a secant

optimization routine which performs well for most cases of interest. On occasions,

the center will tend to infinity, which also offers a zero to f., This tendency is

associated with clustering of the data points with a related inability to. fit a circle
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properly. This problem specifically occurs at 10.7 Gltz for the sliding load used in

the HP system with the spacingsdesignated on the sliding load body. Even tIP

recommendsadditional sliding load data points to alleviate this problem.

To help avoid the potential infinities, F was modified to include an additional

R2 multiplier as

5

F = _ (Is i - UI - 17)2 R 2. (67)

i=I

To simplify the process, R was taken to satisfy (66a) rather than tile new equation

obtained by differentiating F with respect to R.

function of the form

This choice gives an optimizing

5
C-s.

f- [C I z R2
----5-y_ (s i + R 16'-si])]

i=I

5 5
(;',-s i

+ 2 R 1--2- y_(Is i- 6'I -t/)2 y_ (16,_ sil) __ 0. (68)
ha i=1 i=I

Again, (68) is solved iteratively for 6' using (66a) to define //. This equation has

resulted in excellent results for the computed circles. IIewlett-Packard has suggested

a modified procedure for finding the circles which minimizes the mean-squared error

of the squared radius. A definite advantage of this procedure is the existence of a

closed-form solution requiring no iteration. This approach has been modified to

include the reactance circle form 'to be presented in Sec. 4.2.6. The resulting

equations have been implemented for the calibration process and has been found to

give excellent results. An alternate form has been developed which minimizes the

least square error of the center from the bisectors of all point sets. This latter

technique may be solved in closed form and gives excellent results as shown in Fig. 4

for the phase of the HP '*open". The figure also includes the
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Figure 4. a) Calibration of the HP "open" phase based on the modified HP

circle fitting procedure and the bisector form. b) The effects of the

sliding load and a fixed load on varied line lengths are also shown.
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effects of using the sliding load versus fixed terminations mounted on the ends of

airlines, to be discussedin more detail in the next chapter. The modified IIP form

is currently being used for the curve-fit procedure.

4.2.6 Center and radius of reactancecircles

The reactance circles provide for a modification in tile circle fitting procedure.

First, we assume that the short is ideal and the circle must go through this point.

As a result it is simple to estimate the radius as

II = Is I - 6']. (69)

In addition, we assume that the "open" is an ideal reactance. In other words, it has

a reflection coefficient of unity "magnitude. Thus tile center of the reactance circle

must lie on the curve defined by

C = (sI-_22 + j z (s I - s2) (70)

with x the only unknown.

If we now differentiate (67), after the substitution of (69) and (70), with

respect to x and set the result to zero we obtain

OF il2 I II
f - _ - 2 Z, 1(1 - is" _ C[ ) lle[(C- Sn) (j (s I - s2))* ]

+ [(I- J-_n--Y_) 2 + (I- [sn--_)] Is I -s212 z} = 0. (71)

With this form, the algorithm uses a short circuit reference, and a collection of

additional reactance references (not necessarily of known reactance). The open circuit

is used as a preferred first unknown reactance on which the line defining the circle

center is based. This is primarily used due to tile probability of additional loss in

the other references. The remaining reactances are obtained by using several airlines,
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preferably with nonharmonic related lengths, terminated in both a short circuit and

an open circuit. The used of both the short and open is to counteract the errors in

the circle determination arising due to loss in the airlines. The short and open

combinations tend to average out the loss effect by appearing on opposite sides of

the reflection coefficient plane. As with the load curve--fit, the reactance circle

routine has been modified to use both the bisector and the liP approaches rather

than the minimization of (67). These approaches have given improved results and

the modified HP form is currently in use.

Detailed discussions of the calibration process and the measurements of

component standards are provided in the next chapter. In addition, models are

developed for the actual open circuit references and terminations. Consideration is

also given to the possible imperfections in the short circuit reference.
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CHAPTER 5

RESULTS OF REFLECTION MEASUREMENTS

This chapter presents the results of the calibration procedures developed in the

previous chapter for reflection measurement. This procedure requires no source or

test port switching and thus does not have any errors associated with such switching.

The errors which occur are thus fundamental errors in calibration or system errors

associated with the network analyzer sweep circuits, frequency sweep, or

discretization. The data was taken on an HP 8510 network analyzer system with an

Hp 85080A, 7mm, calibration kit. Initially, we will consider the basic measurement

and associated calibration. We will then consider the modeling of both the "open"

standard and the fixed termination.

5.1 Basic Measurement and Calibration

In the tIP system, two termination standards are provided for use. An

excellent fixed termination is provided for use below 2 GIIz and a sliding load is

provided for use above 2 GHz. TO avoid problems with imperfections in the fixed

termination, it was used at the end of a series of 50 ohm, beaded, precision airlines

to provide a load circle similar to the sliding load. This approach to the

termination problem gives good results over the entire frequency range as shown in

Figure 5. However, the fixed load does have an oscillatory error. In the realm

above 2.0 GHz, the sliding load provides excellent results. In fact, the sliding load
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works well down to 0.5 GHz. The reactance calibration was obtained with both

short and open referencesand both the short and open terminating the same airlines.

The open was treated only as an unknown reactancewhile the short was considered

perfect. The data calibration is an improvement over the simple calibration using

the termination references,the HP open, and a short. The full calibration required

the determination of circles which best fit the calibration data discussed in

Chapter 4.

5.2 Modeling the Open Calibration Standard

To address the full calibration process, we are interested in determining a

model for the HP open. We have three different models for the open as a frequency

dependent capacitor readily available. A modified form of the 2-term data for the

tip open #2 is provided by Innovative Software. This model is a two term power

series given by

C = 0.0905 + 0.0000785 f2 pF (72)

for st in GHz, with a phase error for the resultant phase calibration as shown in

Figure 6. As in all the plots.to follow, the calibration has been done using the

short reference, airlines terminated in both a short and a open for the reactance

circles, and either the sliding load or a fixed termination on a series of airlines for

the 50 ohm reference. The estimated phase in Figure 6 was determined by using the

6' of (72) to model the open.

Similar results are shown in Figures 7 and 8 for three and four term power

series approximations to the capacitance given by Hewlett-Packard. These series are

respectively

C = 0.09285 + 0.0000072 _ + 0.0000043 ./'3 pF (73)
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and

6' -- 0.0872 + 0.001695 f - 0.00015 f2 + 0.0000089 f3 pF .

(74)

The initial goal of this work has been to develop a model for the capacitor.

This improved model may then be used for future calibration. Tile process used to

calibrate the open may also be used in situations when the open may not be used

directly. To model the open, the calibrated phase (or effective capacitance) was fit

to a corresponding model of the open. This curve fit was forced to minimize the

phase errors between tile measured data and tile model. Four basic models were

chosen for consideration: a two term series like (72); a three term series like (73);

a three term series (denoted fon nula) with the series forced to tile capacitance of the

IIP three term series at 40 Gllz; and an inductor in series with a capacitor to

represent the delay inherent in the open circuit connection. The results are

indistinguishable in plot form as shown in Figure 9 for the inductive expansion and

the first 3-term series.

To obtain the results of Figure 9, the phase of the open reference was

matched to that of the model used for the open. The results for the inductive

termination model are shown in Figure 10. This model shows an improvement over

the fits of the HP 3-term model and the Innovative Solutions model shown in

Figures 6-7. A similar improvement is also found if the calibrated capacitance of

the open is compared to the estimates based on the other two circuit models.

Figures 11 and 12 depict the calibrated capacitance using the reactance circle

approach as compared to the HP 3-term model and the inductive model. In

particular, the capacitance is over estimated for the HP model. The low frequency

error arises due to the inability to fit a circle to the load points adequately.
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The importance of the calibration standard modeling is emphasized in a plot of

the reflection coefficient of a 30 cm shorted airline. This is the classic l)roblem

which has made researchers suspicious of the ItP calibration system. If the

standard models are in error, the resl)onse for the 30 cm airline shows an oscillatory

behavior which may even give the false concept of an airline with power gain. Such

data is presented in Figures 13 through 17 using data collected on an HP 8510

computer-based network analyzer system." The HP 3-term and 4-term series are out

of phase with those of the Innovative Software data at the high frequency end and

represents an apparent underestimating of the capacitance of the open standard for

the Innovative Software data. The Virginia Tech calibrations using a 3-term series

and an inductive model both fit the data with large excursions. Though there was

and excellent fit to the open data, there appears to be an error in the Virginia Tech

capacitance estimate of the open. However, this data was taken for a 30 cm beaded

airline which may have some resonances due to the beads. To cheek our results, we

should view the 30 cm line terminated in a short circuit using the sliding load data

of Fig. 18. This data used the collection of airlines for calibration rather than the

open model. This data is compared with the 3-term VA Tech model and the

4-term HP model in Figs. 19 and 20 respectively.

5.3 Modeling the Fixed Termination Standard

In many instances, we would expect the calibration effects of the termination

reference also to become important. To develop a model for the termination, we

may consider the amplitude and phase plots of Figure 21. Though there is a fair

amount of noise on the data due to the resolution which is approaching the

discretization of the system used, it is apparent that the termination may be modeled
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Figure 13. Calibration of a 30 cm beaded airline using the HP 4-term

capacitance model.
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Figure 15. Calibration of a 30 cm beaded airline using the Innovative

Software capacitance model.
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Figure 18. Calibration of a 30 cm beaded airline on a HP 8510 using the

multiple airline calibration technique.
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reasonably well by a fixed resistor at the end of a length of line. The actual length

is difficult to estimate, though it appears to be between 3 to 4 cm. A description of

the actual termination is shown in Figure 22, with the appearance of a thin film

resistor 0.8785 inches from the connector face. Using a HP 4192A low frequency

impedance analyzer at 1000 Hz, the resistance is found to be 49.30 ohms at ---0.12 °.

This measurement gives a reflection coefficient of ---0.007 which differs from the

-0.002 reflection coefficient below 2 GHz of Fig. 22a, though within reasonable limits

in absolute resistance. This latter corresponds to 49.9 ohms at low frequcncies. If

we estimate the length to the resistance to be the 0.8785 in distance to the

connector face, the one half to account for its distributed nature, we obtain an

effective length of 2.231 cm. The data for ,19.8 ohms located 2.231 cm from, the

connector face has been plotted in Figure 21. The result is about twice that needed

to fit the data. The error results from the capacitive washer which effectively

shortens the line.

The effect of this termination model is not always critical as is seen in the

reflection amplitude of the open standard. These results shown in Fig. 23 were

obtained assuming the termination was a perfect 50 ohm termination. The

calibration of tile open circuit reference using tile 50 ohm assumption has excellent

results below about 5 GHz.
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5.4 The Effect of a Nonideal Short Circuit Reference

Before we complete this chapter, we should consider the last calibration

assumption used in commercial systems in addition to the calibration steps above. If

you have not already considered the possibility, the short circuit standard does not

necessarily have a reflection magnitude of unity. We now address this last concern,

but we will not complete the implementation necessary to incorporate the nonideal

short effect into the calibration in this report.

We assume that the electromagnetic fields in the vicinity of the short circuit

reference form a TEM mode in the transmission line. At the short we will

determine the relection in a plancwave sense from a conducting wall with a finite

conductivity. In tile l)lanewave problem, tile characteristic iml)edance of copper is

_/c = a + j we

For copper ./_ is 4_r ,, 107 II/m, c is approximately

(75)

I
,( 10-o F/m, and a is

5.8 × 10 7 S/Ill. l)eterminfing the r(!flecti(_ik (:(_effici(,n_t of qc with xesl)(_(:t to 71,, for

free space we obtain

1-,s = _ -- _a + jwe (76)
+ _ a + jwe

which at 10 GHz is ( 0.99986 /179.99 ° ). At 40 GHz this becomes

( 0.99945 /179.97 ° ). Thus we find that the effect of the loss in a copper short

circuit standard should only cause a variation on the order of 0.05 %. If the system

is to be taken to the limit for a precision of 0.01%, then this correction would

become critical. In the applications for which systems are currently used, this

correction is not necessary and is not considered further here.

We have seen in this chapter, the importance of proper modeling of the

standards used in the calibration of a network analyzer system. If such corrections
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are not used, the resultant data can not attain the accuracy limits of the system in

use. This is even true for an HP8410 network analyzer system under computer

control. With the increased system stability and smaller discretization error, the

limits of the HP8510 network analyzer system require even tighter constraints.
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

This report has presented the fundamental principles and necessary calibration

procedures for the accurate measurement of S (Scattering) parameters. These

important parameters require a series of steps to properly calibrate a system used to

measure the parameters. This is particularly true for measurements made over a

broad frequency range for which the usefulness of this parameter set in the design

process is ideal. Measurements may be made from below 1 MHz to the millimeter

wave spectrum. We have shown the calibration process and standards to be at the

heart of such a measurement system.

We have investigated the calibration procedures used by ttewlett-Packard and

have found the same anomalies in the resultant data as have other researchers. The

purpose of this report has been to investigate the full calibration process for the

existing HP measurement system. We begin by reviewing the basic calibration

process and measurement system. The approach taken by Hewlett-Packard was

discussed as the methods were developed. A full model for the system was also

developed. The model was used to develop a full system calibration, including the

calibration of the HP "open" circuit reference. This approach has the additional

advantage of not requiring the "open" for tile calibration, a fact critical to certain

measurement environments. In such instances, the calibration must often be done

using some alternate procedure such as that presented in this report. More
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importantly, the basic formalism of the modeling enables a user to develop a

calibration procedure tailored to a specific need where the liP procedure is

inadequate. Our premise has been to improve the lip calibration data and then use

the fundamental tIP procedure when possible. This latter procedure provides a high

degree of accuracy if the correct calibration data is available, usually in excess of the

accuracy specifications of the IIP 8510 network analyzer system.

Sample results have been presented wt_ich validate the method and

demonstrate the potential errors using tiP's process and data. These results have

included the effects of both fixed terminations and sliding loads on the choice of

calibration data used to represent the HP "open" standard. Limitations of the

approach were discussed in addition to assumptions built into the calibration and

accuracy process. The final results provide the fundamentals of an accurate

calibration process for network analyzer systems. Two basic open reference models

were found to g!ve good results. The first model was a 3-term approximation to the

open capacitance given by (0.09183 + 0.000006 ]2 + 0.0000046 fl) pF. There should

be no linear term as used in the newest of the HP models (in fact no odd terms) to

meet with proper synthesis theory which would indicate such terms would represent

loss, not capacitance. The 3-order term accounts for neglecting higher order terms.

The second model consists of a 0.09135 pF capacitor in series with a 0.000205 #tt

inductor representing the transmission line effect. These models work well and are

recommended.

Additional work is needed to implement of the full calibration process on a

Hewlett-Packard or other computer system. Also, no actual work has been done in

implementation of the full 2-port calibration process. An obvious extension of this

work is to the new measurement environment provided with the tiP 8510B network

analyzer system. This latter system has incorporated the new process mentioned in
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the introduction which avoids difficulties with tile source switching. IIowever, the

current implementations are known to provide certain fundamental limitations, due to

imposed assumptions for simplifying the calibration process. These limitations and

the ultimate effects on the calibration of the data require further investigation.
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