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NAVIER-STOKES ANALYSIS of TURBINE BLADE HEAT TRANSFER

R. J. Boyle

NASA Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

Comparisons with experimental heat transfer and

surface pressures were made for seven turbine vane and

blade geometries using a quasi-three-dimensional thin-

layer Navier-Stokes analysis. Comparisons are made for

cases with both separated and unseparated flow over

a range of Reynolds numbers and freestream turbu-
lence intensities. The analysis used a modified Baldwin-

Lomax turbulent eddy viscosity model. Modifications

were made to account for the effects of: 1) freestream

turbulence on both transition and leading edge heat

transfer; 2) strong favorable pressure gradients on re-

laminarization; and 3} variable turbulent Prandtl num-

ber on heat transfer. In addition, the effect on heat

transfer of the near-wall model of Deissler is compared
with the Van Driest model.

Nomenclature

A Area

A +- Damping coefficient
C - Chord

C/- Friction factor

Cp - Specific heat at constant pressure
k Thermal conductivity

I - Length scale
m - Meridional direction

P - Pressure

P+- Pressure gradient, (uV3e/p)(Cl/2)3/2c3P/c3s
Pr- Prandtl number

Q - Dynamic head, pU2/2
Re - Unit Reynolds number, subscript gives length
r Radius

s Surface distance

s +- Normalized surface distance, (sUe/v,)X/-_/2

St- Stanton no., k[OT/aylw/[(pU)tNCv(T[s - Tw)]

T - Temperature

Tu- Turbulence intensity

U - Inviscid velocity

v Velocity in flow solution
x Axial direction

Y - Pressure coefficient, Y -- {P_N -- P)/QIN

y Perpendicular distance from surface

y+- Normalized surface distance, (yUe/v)v/-C_

7t - Intermittency factor

6 Full boundary layer thickness

eM- Eddy viscosity

Direction outward from blade
6 - Momentum thickness

t; - Von Karman's constant, tc = 0.4

A Momentum thicknesspressuregradient

parameter

/_ Dynamic viscosity

u Kinematic viscosity

Direction around blade

p Density

¢ Ratio of axial velocity to mean blade speed

w Vorticity, c3v/c3y
Subscripts

e Edge of boundary layer

_x- Exit

! End of transition
i Start of transition

IN- Inlet

m Meridional
s Distance along blade

t Turbulent
- Axial

w - Wall

0 Tangential direction or
Momentum thickness

Superscript
i Total conditions

INTRODUCTION

Accurate predictions of turbine blade heat trans-

fer are important, especially as turbine inlet tempera-

ture increases. One approach to predicting blade heat

transfer is to use a boundary layer analysis such as the
STAN5 analysis of Crawford and KaysN). However, this

approach cannot be used to predict heat transfer beyond

the point of separation. Also, because of the necessity

of specifying a starting condition with boundary layer

analyses, the heat transfer predictions in the leading

edge region may be in error. An alternate approach to
predicting turbine blade heat transfer, especially useful

when separation occurs, is the use of Navier-Stokes anal-

yses. Both two- and three-dimensional Navier-Stokes



analyses have been developed(2-6). The emphasis in

these analyses has been on obtaining accurate aerody-
namic results. This paper discusses the results of tur-

bine blade heat transfer predictions using the quasi-

three-dimensional, thin-layer Navier-Stokes analysis de-

veloped by Chima (2). The modifications described by
Chima, Turkel, and Schaffer(7) were used.

The analysis developed by Chiton incorporated the
Baldwin and Lomax (s) turbulence model. This model

has several attractive features from a computational
standpoint. However, the model does not account for
several factors known to influence turbine blade heat

transfer. Among these factors are: (I) the effect of
freestream turbulence on leading edge heat transfer and

on the location of transition, (2) the effect of bound-

ary layer relaminarization on heat transfer, and (3} the
effect of a variable turbulent Prandtl number. The tur-
bulence model was modified to include models for these

various effects. Also, the near-wall damping model of

Deissler (9) was compared with Van Driest's model.

The solution procedure for Navier-Stokes analyses

differ from boundary layer analyses in several respects.

Before alternate models can be evaluated, it is neces-
sary to verify that other factors do not cloud the com-

parisons. In boundary layer analyses all of the solution

domain is confined to the boundary layer region. For
Navier-Stokes analyses, however, only a small fraction

of the blade-to-blade grid may be within the boundary

layer regions. Also, boundary layer analyses are march-

ing type analyses, while Navier-Stokes analyses require
the solution of the entire flow field in an iterative man-

ner. One purpose of this paper is to show results for
different grid and iteration parameters to demonstrate

the values needed so that comparisons are independent
of these parameters.

The appropriateness of the heat transfer models are

shown by comparisons with experimental data. Com-

parisons were made for each of the three blade rows in

the stage-and-a-half data of Drlng, Blair, Joslyn, Power,

and Verdon (1°-13), the two stators of Hylton, Mihelc,

Turner, Nealy, and York (14), as well as the stator and

rotor data of Hippensteele, Russell, and Torres(15-16).

These sources of data result in comparisons over a wide

range of Reynolds numbers and turbulence intensities.

The Navier-Stokes analyses have the ability to calculate

heat transfer when there is separation. Therefore, com-
parisons are made for cases with attached flows and for

cases with separated flows. With respect to the thermal

modeling there are three objectives. The first is to show

that the accepted models for boundary layer analyses

are appropriate for Navier-Stekes analyses as well. The

second is to choose a model which gives reasonably good

agreement for the cases examined. Since improved mod-

els for turbine blade heat transfer are continually being

developed, it is not the purpose of this paper to demon-

strate that a particular model gives good agreement with

data for every case. However, to demonstrate the as-
pects of the Navier-Stokes heat transfer predictions it is

necessary to choose a reasonably accurate model. The

third objective is to show the effects of various assump-

tions on turbine blade heat transfer. Since, some of these

assumptions show better agreement than the base-case

model, a recommendation is made for the appropriate

prediction methodology.

DESCRIPTION of ANALYSIS

Basic flow analysis. The analysis used the flow
solver developed by Chima(2). The solver is for either

inviscid or viscous quasi-three-dimensional flow, wherein
the variation of the stream sheet thickness is accounted

for. The variation in stream sheet thickness is deter-

mined from a hub-to-shroud flow analysis using a pro-
gram such as MERIDL of Katsanis (17). The viscous

analysis of reference 2 employs the thin-layer Navier-

Stokes assumptions, wherein the streamwise derivatives
of the viscous terms are neglected. A four-stage Runge-

Kutta algorithm with residual smoothing and variable

time steps is used. The equations used are given in ref-

erence 2. The heat transfer predictions are dependent

on an effective viscosity, pelt, and an effective Prandtl

number, Ptef_. These quantities are given by:

//eft =//laminar -I-/_turbulent = P(_' -t- eM) (1)

Pr_ft = 1/Pr + (_)/Prt (2)

The following description focuses on the calculation of

//turbulent, and the turbulent Prandtl number, Prt.
Baldwin-Lomax turbulence model. This model is a

two-layer algebraic eddy viscosity model. The eddy vis-

cosity is found from:

(/_)|nner if y _< Ycro.sover (3)
]_t : (//t)outer if Y > Ycrossover

where {/crossover is given by the minimum value of y for

which (//t)inner = (#,)out_r. The inner and outer values
are"

(//t)inner = P(lCy(1--e-Y+ /A+)) 2lw I (4)

(/lt)oute r ---- CouterpFWAKEFKLEB (5)

A + = 26, and Cout_r = 0.0269. FWAKE is given by:

FWAKE = rnir_(YmaxFmax , 0-25ffmsxv_IF/Fmax) (6)

The quantities Ymax and Fm_ axe found from:

r(y) = yl l (1- (7)



Ymax is the y value for which F(y) is a maximum. FKLEB

is given by:

CKM = 30.2 for P+ < 0.0, otherwise CKM = 20.6. The

Cebeci-Smith model gives:

--[i+'-'IO-',/,m-->°]-' C')
The term IPDI F is given by:

t)DI F = (_ + _2)2n)m. x --(V_e 2 -_- t)2rn)min (9)

Except for wakes, the second term is zero.

When (_t)MAX IS PROFmE/_oo >-- 14, transition

occurs. _oo is the freestream molecular viscosity. The

turbulent Prandtl number, Prt = 0.9.

Turbulent Prandtl numb_o_el. As an alterna-
tive to the constant Prt used in the Balwin-Lomax

model Crawford and Kays(1) give Prt as a function of
the distance from the wall. This model is referred to as

the Kays and Moffat model, and expresses Prt as:

[P'-P-'_t_ 0.2eM PrPrt = 0.5 + v PvFP-_t_

-0.O4(-----_)-"'MPrx2(1.0-e-(vJPri°°/eu/Pr) ] -1 (8)

The recommended value for Press is 0.86. Figure
1 shows the variation of Prt with distance from the
wan,y+, for a flat plate boundary layer. Pai and
Whitelaw( 1st used a linear variation in Pri with a value
of 1.7S at the wall and decreasing to 0.S at the edge of
the boundary layer. The model of Kays and Moffat was
used because Prt smoothly varied into the commonly
used freestream value.

F_ldv viscosity model. In the near wall region the
most commonly used eddy viscosity model is the Van
Driest model. This model is incorporated into the
Baldwin-Lomax model, and is given by equation 4.
Other models have been proposed for the near-wall re-
gion, White09). One of these is Deissler's (9), where the

eddy viscosity is given as:

(11)

where n -- 0.124. The form of equations 4 and 11 is

very different. Away from the wall, the eddy viscosity

becomes proportional to yalwl in the VanDriest model.

In Deissler's model the ratio of eddy to molecular vis-

cosity is proportional to the Reynolds number based on

distance from the wall. Figure 2 shows the similarity of

the two models for a flat plate boundary layer.

Near wall damping model. In the Baldwin-Lomax
model A + = 26, while in both the Kays and Moffat (2°)

and the Cebeci-Smith {21) turbulent boundary layer

models A + is a function of the freestream pressure gra-

dient, P+. The Kays and Moffatt model gives:

A + -- 25/(CKMP + + 1) (12)

A + = 26/v/(ll.8P + + 1) (13)

Figure 3 gives the damping coefficient as a function of

the pressure gradient for the three models. The great-

est differences among the models occur for favorable
pressure gradients. When A + ---* so, the boundary

layer completely relaminarizes. The Kays and Mof-

fatt model shows complete relaminarization occuring

at lower favorable pressure gradients than the Cebeci-
Smith model.

Crawford and Kays (1) recommend that a lag equa-

tion be used for the pressure gradient value used to de-

termine the damping coefficient. They recommend the
form suggested by Jones and Launder( 22}.

dP+/ds + = -{P+ - P+)/C (14)

Here P+ is equilibrium value for the pressure gradient,
and C has a recommended value of 4000. The stream-

wise distance between nodes in a Navier-Stokes analysis

is much greater than the marching distance used in a

boundaJ T layer analysis. This can result in large point-
to-point variations in the pressure gradient. The lag

equation smooths out these variations) and was always

used when A + was allowed to vary.

Freestream turbulence model. The strong favorable

freestream pressure gradients near the leading edge re-

sults in laminar flow, even with high freestream turbu-
lence. The freestream turbulence increases the laminar

heat transfer. The model of Smith and Kuethe (23) was

incorporated into the analysis to account for this effect.

The equation for the turbulent viscosity is:

eM = O. 164yTuoo Uoo (15}

This equation was developed for the heat transfer anal-

ysis of cylinders in crossflow, and here Uco refers to

the upstream velocity. One difficulty with applying this

model in a computational scheme is that the eddy vis-

cosity continually increases with the distance from the
blade. The model of Forrest (24) can be used to overcome

this difficulty. This model gives:

eM --'--CF_.TuooUoo (16)

where the mixing length, l, is defined as

l = rnin(tcy, 0.0866) (17)

Since one of the attractive features of the Baldwin-

Lomax turbulence model is that boundary layer param-

eters are not calculated, the model of Forrest was imple-

mented by calculating the mixing length, l in the same
manner as in the Baldwin-Lomax model. This was done



bylettingl = _y when the Baldwin-Lomax eddy viscos-
ity was calculated from the inner formulation. When the

outer formulation was used, the mixing length in For-
rest's model was either held constant at the crossover

value or set to sero. The coefficient CF is found from:

CF = min(0.a8751Ai/(0.25{Al +0.01), 0.75) (a8)

where
02 dU_

- (i0)
v ds

The calculation of eM due to freestream turbulence was

modified from the original form in that it was applied
only when the flow was laminar. Otherwise, the analysis

would give significantly increased heat transfer due to

freestream turbulence even for fully turbulent flow.

The momentum thickness is not calculated directly.

Rather, Twaites' method, as given by White(tg), is used.

The momentum thickness at a distance Sl along the

blade surface is given by:

0.45u fo _I (20)

The origin in this calculation is taken as the geometric

stagnation point ......
Transition model. In the Baldwin-Lomax model

stagnation occurs other than at the geometric stagna-

tion point, U_ will _ 0 and 0 will -+ oo. Consequently,

transition would occur at this point. To prevent this,
transition was not allowed to occur within a small frac-

tion, {about 10%}, of the the surface distance from the

stagnation point.

Transition length is determ ned from Dhawan and
Narashima (2s} model. The end c f transition is given by:.

Res_ : Resi + cResi "s (23)

The coefficient, c, has a value of 5.0 for a transition

length between 25% and 75% intermittency. For the full

intermittency range between 0 and 99 %, the coefficient,

c, increases by a factor of 3.36. The intermittency factor
"Tt of Abu-Ghannam and Shaw (27) is used:

( )'--4.65 (Res--Rest)/(Resf-Resj}

"_t -- I - e (24)

CALCULATION PROCEDURE

The GRAPE code of Sorenson (2s) was used to gen-

erate C-grids for the analysis. The locations of the inter-

section of grid lines with the inner and outer boundaries

was controlled to give minimum shear in regions of in-

transition occurs when the pressure gradient does not terest. For example, it was often desired to have near
effect transition, except insofar as it affects the vortic- normal grids on the rearward portion of the sUcti0n sur-

ity. Perhaps more importantly, the effect of freestream
turbulence is also not accounted for. The choice of tran-

sition models to be included in the calculation procedure

was limited to those which explicitly accounted for the

effects of both freestream turbulence and pressure gradi-
ent. The model of Dunham (25} was chosen. This model

gives the start of transition Reol as :

R o, = (0.27 D)) (21)

with D given as a function of the pressure gradient pa-
rameter A:

D = -  OOT , 0.75) (22)

Where A is given by equation 19. Comparisons for a
range of A and Tu values showed Dunham's model tc

give lower Re0i values than the model of Seyb (26}. Dun-

ham's model gave nearly the same values when com-
pared with the model of Abu-Ghannam and Shaw (27}.

Dunham's model was chosen for implementation over

the other models because the pressure gradient enters in

a linear fashion, and is less likely to result in oscillations

in the transition location as the calculations progress.

Even the approximate calculation of the momen-
tum thicknessescan cause difficulties,especiallynear

the stagnationpoint.The edge velocity,De, iscalculated

from the localstaticand freestreamtotalpressures.If

face. However, because of the large amount of turning,

a near-normal grid could not be generated over the en-

tire blade surface and still maintain grid-line periodicity

on the outer boundary. Fortunately, the presence of

sheared grid lines did not appear to adversely affect the
flow solutions.

The thick trailing edges made it necessary to use

trailing edge cusps. Without a cusp, there was a large

loss in total pressure in the trailing edge region, even
for the inviscid calculations. Inviscid calculations were

used to determine the shape of the cusp. The cusp shape

was adjusted to give no net loading over the cusp region

beyond the physical end of the turbine blade.
After the Euler solution was obtained, the Navier-

Stokes solution was calculated for the same blade ge-

ometry, but with a y+ _ 1 for the first node from the

wall, For the Euler calculation the first node spacing

wall increased about an order of magnitude to avoid an

unacceptably large total pressure loss.
Steady state was reached in 3000 to 5000 time cy-

cles. Residuals were reduced at least two orders of mag-

nitude. Figure 4 shows the convergence history as well

as pressure distributions and heat transfer results for

a typical case. Reductions in residuals by two orders

of magnitude were needed for converged heat transfer

results, but fewer cycles were needed for pressure.
Figure 5 shows converged results for three differ-

ent grids. Grids of 145X46, 284X46, and 145X31 were

.p



used. The coarser grid in the _ direction, 145X46, gave

satisfactory agreement with the finer grid, 284X46, in

this direction. However, the results were sensitive to

the number of grid lines in the 17direction. The number

of grid lines in the _ direction was determined by the de-

sire to resolve the surface pressure distribution. When
strong surface pressure gradients were encountered, a

large number of _ grid lines were used.

Figure 6 shows heat transfer results as a func-

tion of the distance of the first node from the wall,

y+, expressed in terms of YREF'+ This value is calcu-

lated prior to the viscous calculation, where gREF+ ----

(Yl Ue/v) v/-C-_. The value of C! is obtained from a fiat

plate correlation: C!/2 = O.02S7(sUe/v) -°'2, to give:

= o., Ty,Re°°ls°I (2s)
The largest value of the unit Reynolds mlmber, typically

the one based on exit conditions, gives the largest value

for YREF'+ This, in turn, gives a conservative estimate

of Y+. YREF+ is only slightly affected by the choice of s,

and s can be taken as the chord. When s ---* 0, near the

stagnation point, so does Ue, and y+ remains finite.REF

Figure 6 shows that y+ values approximately equal to

one are sufficient. Since y+ is related to the normalized

temperature by the Prandtl number, sensitivity to y+

reflects the sensitivity to normalized temperature.

The Napier-Stokes and Euhr solutions took approx-

imately 250 and 200 seconds on a Cray X-MP for 3000

time cycles using a 145 by 46 grid.

Predictions were made with a specified wall tem-

perature approximately equal to the average of the ex-
perimental wall temperatures. Varying the wall tem-

perature showed no change in the heat transfer as long

as the analytic gas-to-wall temperature difference was

equal to or greater than the experimental one. It was

felt that it was appropriate to compare heat transfer

calculated assuming constant wall temperature with ex-

perimental data generated from nominally constant heat
flux conditions. In the experiments there was some lat-

eral conduction within the blade surface, whi :h changes

the boundary condition from one of constant flux to one

with more slowly varying temperature. If calculations

are made using specified wall flux, comparisons of heat

transfer coefficients may not adequately verify a code's

ability to predict heat transfer. If the Reynolds num-

ber is sufficiently high, and the specified heat flux suf-

ficiently low, the gas temperatures adjacent to the wall

will not significantly change from the no heat flux case.

Under these conditions, comparisons of heat transfer co-

efficients will show good agreement, independent of how

far the first grid point is from the wall.
The temperature gradient at the wall accounted for

the non-orthonality of the grid lines, and was evaluated

using a three point formula:

a_T_T= _mvTo/r - _,n_o/r (-3T1 + 4T2 - T3) (26)

COMPARISONS with DATA

In the comparisons that follow, a prediction which

gave good agreement for a number of cases is given

by the solid curve. This model incorporates Dunham's

transition model, and the Smith and Kuethe freestream

turbulence augmentation effect. In addition to this

curve, other curves are shown in each figure to illus-

trate the effects of various parameters on blade heat

transfer. A further discussion of the appropriate heat
transfer model will occur after the results for all of the

comparisons have been presented. Conclusions based on

one set of data may not be appropriate for another set,

and the appropriate model is a best fit model to all of
the data.

Stator results

Low speed cascade tests. Figure 7 compares pre-

dicted and experimental results for the stator of Dring

et al. Figure 7a shows reasonably good agreement be-
tween the analysis and the experimental pressure distri-

bution. The pressures are slightly higher on the rear-

ward portion of the suction surface. The pressure gradi-

ent, though, is accurately predicted. The pressure gra-

dient is more important than the small differences in

levels in predicting the heat transfer.

Figure 7b shows heat transfer comparisons at de-

sign Reynolds number, and low freestream turbulence.
The transition model is very sensitive to the freestream
turbulence at low turbulence intensities. This can be

seen by comparing the prediction at a turbulence level

of 1.5 _ with the prediction of no freestream turbulence.

The Baldwin-Lomax transition model gave a reasonably

accurate prediction of suction surface transition for this

case. It was observed that this model predicted tran-
sition when the suction surface pressure gradient be-

came positive, and was somewhat accurate only when
the freestream turbulence level was low.

Figure 7c shows the effect of a variation in the
freestream turbulence on the transition location for the

same Reynolds number as in figure 7b, but at higher
freestream turbulence. One curve assumes Tu = Tuoo,

and the other assumes Tu = TuooUoo/Ue. Since the suc-
tion surface pressure is near a minimum at transition,

the second assumption results in transition occuring fur-

ther back on the suction surface. Dunham sugested that

the turbulence intensity be taken as the aw_rage of two

values, which are closely approximated by these two val-

ues. Consequently, these two curves reprent the range
of turbulence intensities for use in the transition model.

Also shown in this figure is a fully turbulent prediction.

Stanton numbers at an intermediate Reynolds num-

ber for two Tuoo values are shown in parts d and e. Fig-
ure 7d shows that the shorter transition length agrees

better with the rapid rise in heat transfer. Part e shows
the effect of a variable Prt to be relatively small, even



though figure 1 shows Prt to be twice as large at the
wail for the variable Prt assumption. Part f shows that
the effects of both Deissler's near wall turbulence model

and the Cebeci-Smith relaminarization model are also

relatively small for the lowest Reynolds number with an

upstream turbulence grid.

Transonic cascade tests, Figure 8 gives comparisons

for the Mark II stator of Hylton et al. Figure 8a shows

that because of the rapid rise in suction surface pressure
near midchord, a grid with 271 circumferential lines was

needed to accurately predict surface pressures. Due to

the large adverse suction surface pressure gradient the

flow separated, and boundary layer analyses could not

be used downstream of the separation. Figure 8b shows

heat transfer comparisons for the two grid densities and

for a case where the measured wall temperatures were

used for the boundary conditions. This case, which used

the 271 x 53 grid, shows that the variation in wall tem-

perature did not account for the overshoot in predicted

heat transfer. Even though the overshoot was large, it

was very narrow. It appears that the thermal modeling

is incorrect immediately after separation, or perhaps,
there was some smoothing of the experimental data due

to conduction. The 146 x 53 grid gives results in better

agreement with the heat transfer data, though not With

the surface pressure data.

Figure 8c shows that Baldwin-Lomax transition cri-

terion is less satisfactory than Dunham's model for pres-

sure surface transition using the 146 x 53 grid. Figure

8d shows that neglecting the effect of freestream tur-

bulence at Tu = 8.3_ underpredicts the heat transfer

in the leading edge region. Figure 8e shows that us-

ing a variable Prt increased the predicted heat transfer

slightly, and did not agree better with the data for ei-

ther pressure or suction surfaces. Figures 8b through 8e

show reasonably good agreement between the predicted
and experimental suction surface heat transfer down-

stream of separation. This shows the usefulness of the

Navier-Stokes approach for turbine blade heat transfer.

Comparisons are shown in figure 9 for similar condi-

tions as shown in figure 8 for the Mark II stator. Figure

9a shows good agreement in surface pressures for the

C3X stator of Hylton et al. There is no indication of

separation for the higher soI[dityC3X stator. Figure 9b

shows an accurate heat transfer prediction for the case

with low Re and pressure ratio of 0.582, except on the

rear portion of the pressure surface. This figure also
shows that the effects of Deissler's near wall turbulence

model is relatively small. A prediction with Tuoo re-

duced to 5% is also shown, and is in somewhat better

agreement with the data. This is shown because t_le tur-

bulence may have decayed somewhat between the mea-

suring station and the leading edge of the blade. Figure

9c gives comparisons at high Re, where freestream tur-
bulence effects on heat transfer are expected to be large.

Forrest's model for freestream turbulence effects is very

close to the data in the leading edge region. This model
agrees with the data better than the Smith and Kuethe

model. Calculations with Forrest's model showed only
small changes in heat transfer when the turbulent vis-

cosity was calculated with a mixing length limited to the

crossover value, or even neglected in the outer region.
Figure 9d shows good agreement with the heat

transfer data at the low Re and pressure ratio of 0.490.

The figure also shows that the A + model had little effect

on the heat transfer. Figure 9e shows a fully turbulent

calculation to agree better with the data than a model

with transition for the high Re and low pressure ratio

case. The improved agreement occurs in the leading
edge region, and just prior to suction surface transition.

Linear cascade tests. Figure 10a compares surface

pressures for the vane data of Hippensteele et al. Figure

10b compares heat transfer results at design Reynolds

number and low turbulence intensity for two transition
lengths and for the Baldwin-Lomax transition criteria.

In contrast to figure 7d, the longer transition length

agrees better with the data. However, either transi-
tion length in Dunham's model agrees better than the

Baldwin-Lomax criterion. Figure 10c shows that the

freestream turbulence model of Forrest agrees with the
heat transfer databetter than the model of Smith and

Kuethe at high Tu. Figures 10d shows a longer transi-

tion length than the data for the !ow Re- low Tu case.

Since even the suction surface transitioned near the rear

of the vane, any turbulence generated within the passage

would move transition forward. Increasing Tu to 3% in

the prediction gave the correct suction surface transi-

tion. Figure 10e shows that, even with high Tu, suction

surface transition is delayed to the near midchord as a

result of the low Reynolds number.

Rotor results

Large scale rotor. Figure 11 compares pressure dis-
tributions and heat transfer results for three different

values of flow coefficient, ¢. Changing ¢ changes the

inlet flow angle. There is good agreement in pressure

distributions between the analysis and data for all three

¢ values. Changing inlet flow angle gives different pres-

sure distributions, with different boundary layer growth
rates, which in _urnaffect the blade heat transfer. When

_b ---- 0.68, the flow is more tangential, resulting in a

greater adverse pressure gradient along the pressure sur-
face. When ¢ = 0.96, the flow angle is reduced from the

design case. This in turn gives a less favorable gradient

along the suction surface.

Heat transfer comparisons are shown for three ¢

values at design Reynolds number, and for ¢ = 0.78 at

a low Re. Since the test occurred in a rotating rig, the
rotor, being behind the stator, was always in a high tur-

bulence environment. The effect of augmenting the vis-

cosity to account for freestream turbulence is shown in

figure llb. Figure lld shows that a constant value of A +



gives the best prediction on the suction surface. It was

observed that for high Tu cases neglecting relaminar-

ization often gave the best agreement with the data for

the pressure surface. Since high freestream turbulence

causes laminar boundary layers to become turbulent, it

may also inhibit relaminarization of turbulent boundary

layers. Figure llf shows that a fully turbulent bound-

ary layer calculation gives a reasonably accurate predic-
tion for the entire blade surface. However, because this
model does not account for the level of freestream tur-

bulence, the leading edge region heat transfer may in

some cases be in error. The heat transfer prediction for

the low Reynolds number case in figure 11g is accurate,

except for the prediction of transition. The underpre-
diction of pressure surface heat transfer again suggests

that relaminarization is not appropriate in a high Tu
environment.

Large s¢_|¢ exit vane. The exit vane of the tests of

Dring et al. had a shape similar to the rotor. Therefore,
comparisons for this blade row are included with other

rotor results. Figure 12 compares surface pressure and

heat transfer predictions. The analysis underpredicts

the heat transfer even for the turbulent assumption on

the rearward portion of the suction surface. While only

one prediction is shown in figure 12, several other cases

were run with other assumptions for Pr¢, A +, and the

near wall damping model. No case gave heat transfer

results that agreed with the data on the rear portion of

the suction surface. It appears that the thermal mod-

eling is in error, or perhaps there are three-dimensional

flow effects. The fully turbulent boundary layer predic-

tion shown by Dring et al. also nnderpredicted this heat
transfer.

Linear cascade rotor. The rotor tested by Hippen-

steele, Russell, and Torres showed pressure surface sep-
aration. Figure 13a gives comparisons of surface pres-

sures. While there is good reasonably good agreement

between the analysis and experimental surface pres-

sures, the analysis shows a more stronger suction surface

adverse pressure gradient than might be inferred from
the data.

The tests were done in a low freestream turbu-

lence environment. Consequently, transition occurred
towards the rear of the blade on the suction surface.

Figure 13b shows an early prediction of suction surface

transition at the highest Reynolds number. This was
probably the result of an overly strong suction surface

adverse pressure gradient. At the lower Reynolds num-

bers, figures 13b and c, Rea was not large enough to

initiate transition at this point on the blade. This figure

shows only a small effect on suction surface transition

when the freestream turbulence is assumed to vary with

the local freestream velocity,

On the pressure surface separation occurred near

the leading edge. At all Reynolds numbers the pres-

sure surface heat transfer reached a second peak as a

result of separation. Because this occurred close to the
leading edge, 0, calculated from equation 20, was too

small to initiate transition in this region. Best agree-

ment with the pressure surface data was achieved when

the Navier-Stokes analysis was used to indicate transi-

tion. Once a negative wall friction was calculated, the

flow was assumed to be fully turbulent. This assump-

tion gave the location of a transition like increase in heat

transfer only slightly downstream of separation. The

higher heat transfer along most of the pressure surface

compared with the suction surface was predicted. The

analysis predicted an increase in heat transfer at separa-
tion. The increase was from a lower laminar level, and,

in contrast to the experimental data, the heat transfer

did not reach the leading edge level. The results in figure

8 showed that a denser grid changed the heat transfer

predictions at separation. For the rotor case, however,
the heat transfer did not change with a denser grid.

Choice of Heat Transfer Mo,tel

The results in figures 7 through 13 s:_ow that the

choice of heat transfer model is somewhat dependent on
the flow field environment. When both the Reynolds

number and Tu are high, a fully turbulent model gives

accurate predictions. When the Reynolds number is low,

even if Tu is high, transition must be accounted for.
Dunham's transition model gives accurate predictions,

and the actual level of freestream turbulence, even if it

is low, should be used. When the turbulence level is

low, but not known, a value of at least 2% should be

used. When the turbulence level is low, and especially

if the Reynolds number is also low, a negative skin fric-
tion should be used to switch to fully turbulent flow.

This should not be done in the immediate region of tie

stagnation point so as to avoid spurious transition. At

stagnation the sign of the shear stress is indeterminate.
The transition criterion in the Baldwin-Loma.x model is

less accurate, principally because it fails to account for

freestream turbulence. The data comparisons did not

indicate a strong preference for either the 0 to 99% in-

termittency model or the 25_ and 75_ one. Both gave

reasonably accurate results.
The choice of relaminarization model also was

dependent on the freestream turbulence environment.

With high Tu it did not appear appropriate to in-
crease A + when the pressure gradient was strongly fa-

vorable. Since high freestream turbulence causes a lam-

inar boundary to become turbulent, it also may inhibit
relaminarization of a turbulent bounary layer. Other-

wise the Kays and Moffat model appeared slightly fa-

vorable, perhaps only from a computational standpoint,
to the Cebeci-Smith model.

Not only did Deissler's near wall turbulence model

give similar results to the widely used VanDriest model

for a flat plate boundary layer, the results were nearly
the same for the heat transfer after separation occurred.

7



Using a variationinPrt insteadofa constantvalue

did not resultinsignificantlydifferentheat transferre-

sults.However, therewas some indicationthat at low

Reynolds numbers a variablePrt would givehigherheat
transferrates.

The model of Forrestforthe heat transferaugmen-

tationin laminar flowwas in betteragreement with the

data. Ifthe model of Smith and Kuethe isused, best

agreement with the data is achieved when the coeffi-

cientused in theirmodel isreduced by about 50%. A

reduction of thismagnitude isconsistentwith the ob-

servationsmade by O'Brien and VanFossen (3°).

CONCLUSIONS

Comparisons with experimentaldata showed good

agreement in terms of surfacepressuresfor the several

differentturbine blades. When the surface pressure

changed abruptly,gridsof high densitywere required.

Otherwise, a gridsizeof 145 × 46 was adequate.

Reductions in residualsof at leasttwo orders of

magnitude were required in order to achieveconverged

heat transferpredictions.Convergence was slower for

the pressure surfaceheat transferthan for the suction

surfaceheat transfer.Use of the GRAPE code to gen-

erategridsproved satisfactory.

The abilityofthe thin-layerNavier-Stokesanalysis

to accuratelypredictturbineblade heat transferdown-

stream of separationsdemonstrates the utilityof this

approach. After separation,a fullyturbulent predic-

tionagreeswellwith the data. The degree ofagreement

between the analysisand the experimental data ispri-

marily determined by the choiceofmodel fortransition.

The Navier-Stokesresultsshould be used to change the

calculationprocedure from laminar to turbulent when

separationisindicated.
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