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PRINCIPALNOTATION

SYMBOLS

Unless specified otherwise, all variables are nondimensional.

Symbol Definition

a

A,B,C

A', B', C'

cr c,

E,F

Er

Ev, Fv

Ev, Fv

^ ^

Ev2, Fv_

hr

H, Hv

i,j

J

k

kt, k,

L,

U.,

Nl, N2

P

Pr,

Prl, Pr,

q. q,

Speed of sound.

Coefficient submatrices in block tridiagonal system of equations.

Coefficient submatrices for boundary conditions.

Specific heats at constant pressure and volume.

Inviscid flux vectors in the Cartesian or cylindrical coordinate form of the govern-

ing equations.

lnviscid flux vectors in the computational coordinate form of the governing

equations.

Total energy per unit volume.

Viscous flux vectors in the Cartesian or cylindrical coordinate form of the govern-

ing equations.

Viscous flux vectors in the computational coordinate form of the governing

equations.

Non-cross derivative viscous flux vectors in the computational coordinate form of

the governing equations.

Cross derivative viscous flux vectors in the computational coordinate form of the

governing equations.

Stagnation enthalpy per unit mass.

Non-derivative inviscid and viscous terms in the Cartesian coordinate form of the

governing equations for axisymmetric flow.

Non-derivative inviscid and viscous terms in the computational coordinate form

of the governing equations for axisymmetric flow.

Grid indices in the _ and r/directions.

Jacobian matrix of the general_ed grid transformation.

Effective thermal conductivity coefficient.

Laminar and turbulent thermal conductivity coefficient.

Dimensional reference length.

Number of governing equations being solved.

Number of grid points in the _ and rt directions.

Static pressure.

Reference Prandtl number.

Laminar and turbulent Prandtl number.

Heat fluxes in the cylindrical x and r directions.
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Symbol

Q

R

Re,

S

S'

l

T

lg, V, W

x, r

x, y

Ot

y

6

A,V

5!

c?), _t4), etc.

01, 02, 03

K 2, K 4

2

21, 2t

/at, /at

It

P

O"

l"

Txx , Txy , etc.

Definition

tleat fluxes in the Cartesian x and y directions.

Vector of dependent variables in the Cartesian or cylindrical coordinate form of the
governing equations.

Vector of dependent variables in the computational coordinate form of the gov-
erning equations.

Gas constant.

Reference Reynolds number.

Source term subvector in block tridiagonal system of equations.

Source term subvector for boundary conditions.

Physical time.

Static temperature.

Velocities in the Cartesian x and y directions.

Velocities in the cylindrical x_ r, and swirl directions.

Cylindrical axial and radial coordinates.

Cartesian coordinates.

Centering parameter in differencing formula for spatial first derivatives.

Ratio of specific heats, q,/c,.

Difference operator.

First-order forward and backward difference operators.

Second- and fourth-order explicit artificial viscosity coefficients in constant coeffi-
cient model.

Implicit artificial viscosity coefficient.

Second- and fourth-order artificial viscosity coefficients in nonlinear coefficient
model.

Parameters determining type of time differencing used.

Constants in nonlinear coefficient artificial viscosity model.

Effective second coefficient of viscosity.

Laminar and turbulent second coefficient of viscosity.

Effective viscosity coefficient.

laminar and turbulent viscosity coefficient.

Laminar kinematic viscosity.

Computational coordinate directions.

Static density.

Pressure gradient scaling parameter in nonlinear coefficient artificial viscosity
model.

Computational time.

Elements of shear stress tensor.

Spectral radius in nonlinear coefficient artificial viscosity model.
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SUBSCRIPTS

Subscript

i,j

r

t

x, r

x, y

_,rt

"C

SUPERSCRIPTS

Superscript

n

I)cfinition

Denotes grid location in _ and _/directions.

Denotes dimension,'d rcfcrence condition.

l)cnotes diffcrcntiation with respect to physical time.

1)cnotes differentiation with respect to cylindrical coordinate directions.

Denotes differentiation with respect to Cartcsian coordinate directions,

Dcnotes differentiation with respect to computational coordinate directions,

Denotes differentiation with respect to computational time.

Definition

Denotes time level.

Denotes solution after first ADI sweep.
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NAVIER-STOKESCOMPUTER CODE - VERSION 1.0

Volume ! - Analysis Description

Charles E. Towne, John R. Schwab, Thomas J. Benson
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Ambady Suresh

Sverdrup Technology, Inc.
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Cleveland, Ohio

SUMMARY

A new computer code, called PROTEUS, has been developed to solve the two-dimensional planar or
axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokesequations in strong conservation
law form. The objective in this effort has been to develop a code for aerospace propulsion applications that
is easy to use and easy to modify. Code readability, modularity, and documentation have been emphas_ed.

The governing equations are written in Cartesian coordinates and transformed into general_ed
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansiofis. Turbulence is modeled using an algebraic eddy viscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated internally by the program. More complex geometries
require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in PROTEUS. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User's Guide, and contains information needed to run the program. It describes the program's
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the
program, and several test cases. Volume 3 is the Programmer's Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.
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1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available nonproprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending do anything more than run standard test cascs with it. The user's
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The PROTEUS two-dimensional Navier-Stokes computer program is a user-oriented and easily-
modifiable flow analysis program for aerospace propulsion applications. Readability, modularity, and
documentation were primary objectives during its development. The entire program was specified, de-
signed, and implemented in a controlled, systematic manner. Strict programming standards were enforced
by immediate peer review of code modules; Kernighan and Plauger (1978) provided many useful ideas about
consistent programming style. Every subroutine contains an extensive comment section describing the
purpose, input variables, output variables, and calling sequence of the subroutine. With just two clearly-
defined exceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A
master version of the program is maintained and periodically updated with corrections, as well as extensions
of general interest (e.g., turbulence models.)

The PROTEUS program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes
equations in strong conservation law form. The governing equations are written in Cartesian coordinates
and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in
time using a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space dif-
ferencing (Briley and McDonald, 1977; Beam and Warming, 1978). The current turbulence model is based
upon the algebraic eddy-viscosity model of Baldwin and Lomax (1978). All tcrms, including the diffusion
terms, are linearized using second-order Taylor series expansions. The boundary conditions are treated
implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or a,,dsymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navicr-Stokes equations. The energy equation may be criminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external grid
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in PROTEUS. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the

time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User's Guide, and contains information needed to run the program. It describes the program's
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the

PROTEUS 2-D Analysis Description Introduction 9
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program, and several test cases. Volume 3 is the Programmer's Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

The authors would like to acknowledge the significant contributions made by three co-workers in the
development of the PROTEUS program. Simon Chert did the original coding of the Baldwin-Lomax tur-
bulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original coding for computing the metrics of the generalized nonorthogonal
grid transformation. Frank Molls made many debugging and verification runs, particularly for spatially
periodic and unsteady flows.
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2.0 GOVERNING EQUATIONS

2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES

The basic governing equations are the two-dimensional compressible Navier-Stokes equations. These
equations may be found in several standard references (e.g., Hughes and Gaylord, 1964; Schlichting, 1968;
White, 1974; Anderson, Tannehill, and Pletchcr, 1984.) In Cartesian coordinates, the two-dimensional
planar equations t can be written in strong conservation law form using vector notation as

OQ dE OF _ OEv OFv (2.1)
o--i-+ -ff + oy x +

where

Q=[p pu pv Er] r (2.2a)

E_

pld

pu 2 +p

puv

(E r + p)u

(Zeb)

F_

pY

puv

pv 2 + p

(E r + p)v

(2.2c)

1

Ev= -_e r

0

TXX

Txy
1

UZxx+VXxy p_ qx

(2.2d)

0

Txy

1

UXxy + vxyy pr r qy

(2.22)

Equation (2.1) thus represents, in order, the continuity, x-momentum, y-momentum, and energy equations,
with dependent variables p, pu, pv, and Er.

PROTEUS can be used for both two-dimensional planar or axisymmetric flow. However, the axisymmetric
equations have some additional terms that complicate the analysis somewhat. For the sake of clarity, the main
body of this report describes the two-dimensional planar analysis, and the axisymmetric analysis is described in
Appendix B.
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The shear stresses and heat fluxes are given by

Ou ( Ou + Ov )

& (Ou Ov)_yy = 2U-_y + ,a- -_-x + _y

"rxy = IZ + -_x (2.3)

OT
qx = -k Ox

In these equations, t represents time; x and y represent the Cartesian coordinate directions; u and v are
the velocities in the x and y directions; p, p, and T are the static density, pressure, and temperature; E r is
the total energy per unit volume; and #, 2, and k are the coefficient of viscosity, second coefficient of
viscosity, and coefficient of thermal conductivity.

All of the above equations have been nondimensionalized using appropriate normalizing conditions.
Lengths have been nondimensionalized by L,, velocities by u,, density by p,, temperature by T,, viscosity
by _,, thermal conductivity by k,, pressure and total energy by p,u 2, , and time by L,/u,. The reference
Reynolds and Prandtl numbers are thus defined as Re, = p,u,L,/#, and Pr, = _,uT/k,T,. 2

Turbulence is modeled using the Boussinesq approach (Schlichting, 1968). The equations presented in
this section are thus used for both laminar and turbulent flow. For turbulent flow they represent the
Reynolds time-averaged form of the Navier-Stokes equations, with density fluctuations neglected. They
may also be interpreted as the Favre or mass-weighted time-averaged form of the equations. With Favre
time averaging, however, the velocities and thermal variables represent mass-averaged quantities defined by

= _-h/_, etc., where the overbar represents a conventional Reynolds time-averaged quantity. Details on
Reynolds and Favre time-averaging procedures may be found in Cebeci and Smith (1974), and in Anderson,
Tannehill, and Pletcher (1984). In either case, t_, 2, and k represent effective coefficients. For example, in
turbulent flow g = t_t +/_,, where _ and #t are the laminar and turbulent viscosity coefficients, and _, comes
from some appropriate turbulence model. The model currently used in the PROTEUS code is the algebraic
eddy viscosity model of Baldwin and Lomax (1978), implemented as described in Section 3.0.

2.2 EQUATION OF STATE

In addition to the equations presented above, an equation of state is required to relate pressure to the
dependent variables. Any appropriate equation, or even table, could be used. The equation currently built
into the PROTEUS code is the equation of state for thermally perfect gases, p = pRT, where R is the gas
constant. For calorically perfect gases, this carl be rewritten as

1 p(u 2 + v2)] (2.4)p = (_, - 1)[E r - -_-

where ?, is the ratio of specific heats, cflc,. Here the gas constant and specific heats have been
nondimensionalized by u2,lT,.

If the flow is such that we can assume a perfect gas with constant stagnation enthalpy, the energy
equation may be eliminated. This assumption is reasonable, for example, in inviscid regions, and in

2 Note that this Prandtl number does not have a physically meaningful value, but is merely defined by a combination
of the normalizing conditions for cp, I_, and k that appear when the equations are nondimensionalized.
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adiabatic wall boundary layers if the Prandtl number is near 1 (Briley and McDonald,

nation enthalpy is defined as

1
hr = cpT + -_ (u2 + v2)

1977). The stag-

(2.5)

Here the stagnation enthalpy is nondimensionalized by uT. The temperature is thus

T-! 1 (u 2+v2)]- cp [hr--_ (2.6)

and the equation of state becomes

p - y p h r- -_(u + v 2) (2.7)

This equation of state does not require the total energy E r, and the energy equation need not be solved.
The total energy may be computed from

E T = ph T- p (2.8)

2.3 GENERALIZED GRID TRANSFORMATION

Because the governing equations in the previous section are written in Cartesian coordinates, they are
not well suited for general geometric configurations. For most applications a body-fitted coordinate system

is desired. This greatly simplifies the application of boundary conditions and the bookkeeping in the nu-
merical method used to solve the equations. The following generalized grid transformation, which can be

orthogonal or nonorthogonal, is therefore used to transform the governing equations from physical (x, y, t)

coordinates to rectangular orthogonal computational (_, J/, T) coordinates.

= ¢(x, y, t)

n = n(x, y, t)
T=I

(2.9)

In PROTEUS, the spatial computational domain is square, with _ and rt each running from 0 to 1. Using

the chain rule for partial differentiation, the derivatives in the Cartesian form of the governing equations can

be replaced using the following expressions.

0 0

O

Oz

(2.10)

In the above equations, and in those to follow, subscripts x and y, or ¢ and r/, denote partial differentiation
in that coordinate direction. The only task remaining, then, is to develop expressions for the metric coef-

ficients G, r/x, etc. In differential form we can write

d_ = _xdx + _ydy + _tdt

dvI = vlxdx + rlydy 4- rltdt

dz = dt

In matrix form this becomes

I'ROTEUS 2-D Analysis Description Governing Equations 13



Similarly,

Therefore,

Aftertakingtheinverse,

a, 0 ljtatj

dy = Y0" IJL&Jdt

o o

_Ty = J - x¢ -
0 nlt 0 _ Y_x'II/_Yz]0

where J is the Jacobian of the transformation,

J= -_Y-)= fix fly

J = _x_ty - _y_x

This can be evaluated from the known physical (x, y) coordinates by noting J = 1]J -_ and

j-l_ O(x_)=[x_ xn[
0(¢, ,7) y_ y.

J-_ = xCy,7 - x_¢

The metric coefficients themselves are

_x = JY_

_y = -Jxrt

'Ix= -JY_

rty = Jx_

¢_= - x3x - Y3y

tit = -- Xzrlx - Yzqy

(2.11)

(2.12)

(2.13)
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Unless the physical coordinates (x, y) axe defined analytically as functions of the computational coordinates
(_, 7), the metric coefficients must be computed numerically.

2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES

Applying the generalized grid transformation of the previous section to equation (2.1) yields

QT + Q_t + Q,_nr + E_x + E,7_x + F_y + F_y - Ev_ x - Ev_x - Fv_y - Fv_y = 0 (2.14)

This equation is in chain-rule, or weakly conservative form. I.e., the conservation flow variables are used,
but the metrics appear as coefficients of the derivatives instead of inside the derivatives. Following Vinokur
(1974), the strong conservation law form can be recovered by first dividing by the Jacobian then adding and

subtracting like terms. For example, the E_, term becomes

Doing this for "all the terms, and rearranging, results in

(2.15)

The last three terms, in braces, are called the metric invariant terms. By using the expressions for the metric
coefficients, given by equations (2.13), one can show that the metric invariants are identically zero. In two
dimensions, this is also true when derivatives are approximated by the finite difference formulas of Section
6.0. 3 With the metric invariant terms eliminated, no metrics or flow variables appear as coefficients, and the
strong conservation law form of the governing equations has been recovered.

Equation (2.15) can be rewritten as

A A A A

____OQ OE 8F _ aEv + aFv (2.16)
O_+0_ + 0,1 O_ 0.

where

6=R
J

A l
E = 7 (EG + FCy+ QCt)

- T (Er/x + F_,y + Qr/t)

3 This is not necessarily true in three dimensions, however.
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& 1
Ev= 7

^ l
Fv = 7 (Ev_x+ Fv,lr)

[)sing equations (2.2a) through (2.2e) these can be expanded as

1
_=7[p p_ p_ Er]r (2.17a)

I

.ucx + .% + pC, ]
(P U2 + P) ¢x + P//V_y + p U_t !

puV?'x + (pv2 + P)_Y + pV_t I

(Er + p)U_x + (Er + p)v_y + E r _tJ

(2.17b)

ptl_l x + pvrly + prl t ]

(P u2 + P)qx + PriVily + Plait I

pU_ x + (pV 2 + P)rly + pVrl t [

(Er + p)unx + (Er + p)vny + Er _tJ

(2.17c)

^ 1 1
Ev= j Re r

o 1
"_Y¢_+ "¢Y/
&¢_+ 6¢, J

(2.17d)

^ 1 1
F v= j Rer

o 1Xxx_l x + rxyrly

rxyff x + "tyyrly [

&,x +&_,j

(2.17e)

where

1
fx=Urxx+VXxy prr qx

1
fly = Urxy + v_yy pr r qy

In the viscous terms, the shear stresses and heat fluxes are defined exactly as in equations (2.3), except
the derivatives in the Cartesian coordinate directions must be evaluated using the chain rule. For example,

Ou Ou Ou= o--r_x+ _ ,,,,
c,rI

Note that _"and _'v have exactly the same form as i_ and i_v, but with ¢ replaced by q.
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3.0 TURBULENCE MODEL

As noted briefly in Section 2.0, for turbulent flow the Reynolds stress and turbulent heat flux terms are

modeled using the Boussinesq approach. An effective viscosity is thus defined as # = #/+ #, where #_ is
the laminar, or molecular, visco._ity coefficient, and #, is the turbulent viscosity coefficient. Similarly, an
effective second coefficient of viscosity is defined as 2 = ._ + 2,, and an effective thermal conductivity coef-
ficient is defined as k = k, + k,.

The turbulent coefficients must be computed using a turbulence model appropriate for the flow being
computed. In version 1.0 of PROTEUS, a generalized version of the algebraic eddy viscosity model of
Baldwin and Lomax (1978) is used to compute #,. For wall bounded flows, (i.e., boundary layers), the
Baldwin-Lomax turbulence model is a two-layer model, with

#t = _ (#t)inner
fory n <--Yb

_(#t)outer for y, > yb
(3.1)

where y_ is the normal distance from the wall, and 3'_ is the smallest value ofy, at which the values of#, from
the inner and outer region formulas are equal. For free turbulent flows (i.e., mixing layers, jets, and wakes),
#, = (#3 ..... - In the inner region, in addition to the BMdwin-Lomax model, an alternate expression first
presented by Spalding (1961), and later by Kleinstein (1967), is also available.

In a simple boundary layer analysis, with only one solid surface, the procedure for computing #, is rel-
atively straightforward. In a general Navicr-Stokes analysis, however, any or all of the boundaries may be
solid surfaces• If both boundaries in a given coordinate direction are solid surfaces, the turbulence model

is applied separately for each surface. An averaging procedure is used to combine the resulting two #,
profiles into one. If neither boundary, in a given direction is a solid surface, the formulation for free turbulent

flows is used. In addition, values of #, are computed separately for both the _ and r/directions. This results
in two complete turbulent viscosity fields. Another averaging procedure is then used to compute a single
value of #, at each point in the flow. 4

3.1 OUTER REGION MOI)EL

The outer region turbulent viscosity at a given { or rt station is computed from

(#t).ut,'r : KCcpPFKlebf_,ake (3.2)

where K is the Clauscr constant, taken as (}.0168, C_ is a constant taken as 1.6, and p is the static density.

The parameter/;'_oa, is computed from

t:_.ak e = mm < y|/" r,"2 -,"max
[ "wk " diff l_max

(3.3)

where C_k is a constant taken as 0.25, and

4 This discussion is for the most general situation• When the flow is expected to be predominantly in one direction,
input parameters in the PROIt!LS code should be used to specify that direction.
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where V is the total velocity vector, t:or wall bounded flows, I V["" is taken as 0. The parameter F_,,x in

equation (3.3) is the maximum value of

 y.t l (1-e-y*/A+) for wall bounded flows (3.4)

F(Yn) = _Yn _2 for free turbulent flows

and Y,,ax is the value of y, corresponding to F_o_. For wall bounded flows, y, is the normal distance from
the wall. For free turbulent flows, two values of Fm°_ and Y,,ox are computed - one using the location of

I as an origin for y_, and one using the location of I The origin giving the smaller value of

y,,_, is the one fmally used for computing y,, F,,,_, and y_,o,. In equation (3.4), 161is the magnitude of the

total vorticity, defined for two-dimensional planar flow as

[ Ov Ou I (3.5)

The parameter A ÷ is the "van Driest dampmg constant, taken as 26.0. The coordinate y + is defined as

+ p wu, Yn _wP% (3.6)
Y -- ktw -- /a_ Yn

where u_ = _/%/p_ is the friction velocity, T is the shear stress, and the subscript w indicates a wall value.

In PROTEUS, T, is set equal to/z_ [_1_"

The function FK_,b in equation (3.2) is the Klebanoff intermittency factor, given by

t'Kleb II+B( CKlebYn )61--1= Y,,ax (3.7)

where B and Cr_,_, are constants taken as 5.5 and 0.3, respectively. This factor accounts for the exper-

imentally observed fact that, as the free stream is approached, the fraction of time the flow is turbulent de-
creases.

3.2 IN,_ER REGION MODEL

3.2.1 Bahlwin-Lomax Model

The inner region turbulent viscosity in the Baldwin-Lomax model is

(m)/_ = pl 2 (3.8)

where l is the mixing length, normally given by

l= Kyn(1--e -y+ IA +) (3.9)

and K is the Von Karman constant, taken as 0.4.

A modified form of equation (3.9), proposed by Launder and Priddin (1973), may also be used. This
formula is most useful for flows with steep negative gradients of shear stress normal to the wall, such as

accelerated flows or flows with suction. Their modified formula for I is
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1= Kyn(l--e -y+(r+)"I'4+) (3.10)

where

+ r #t] _ ]

and n is a constant taken as 1.7.

312.2 Spahling-Kleinstein Model

The inner region turbulent viscosity in the Spalding-Kleinstein model is

[ + 1 )](I.tt)inner = #lr, e -_ce e xu -- 1 -- _cu+ ---_ (_cu + 2 (3.11)

where

Again, in PROTEUS, % is set equal to ..lfil..
3.3 AVERAGING PROCEDURES FOR MULTIPLE BOL_DARIES

As noted earlier, if both boundaries in a given coordinate direction are solid surfaces, the turbulence
model equations are applied separately at each surface. It is assumed that the two inner regions do not
overlap. The outer regions, of course, do overlap, and an averaging procedure is used to combine the two
outer region #, profiles into one. For example, if the _/= 0 and q = 1 boundaries are both sofid surfaces, s
the two values of F,o,, at a particular _ station are combined using the following averaging formula:

(Fwake) l fl + (Fwake)2f2

Fwake= fl +]'2 (3.12)

ttere (F._,,)_ and (F.,,,)2 are the separate values computed for the _ = 0 and _ = 1 surfaces using equation
(3.3). The parameters f and £ are defined by

where n is a constant taken as 2.0, (Y.)t and (y,)2 are the normal distances to the _/= 0 and q = 1 surfaces,

and D l and D 2 are the normal distances from the two q surfaces to the location of } VI _,,_- Inrespectively,
m

addition, the y.ly_°_ value needed in equation (3.7) for Fm, n is computed for both r/surfaces, and the mini-
mum is used. These values of F.,,, and Fx_,_ are then used in equation (3.2) to compute (#,),,,,,.

The averaging procedure described above computes a single #, profile from the two profdes that are
computed when both boundaries in a given coordinate direction are solid surfaces. We still must average

s An analogous procedure is used for solid surfaces in the _ direction.
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the two v_dues that result from computing p, separately for both coordinate directions? Following Goldberg
and Chakravarthy (1987), this is done using the following formula:

(_t lYn)l + (ut lYn)2 (Yn)2(U,)l + (Yn)I(Ut)2

'11' '211/2 [(Yn)_ + (Yn)_] _/2 (3.13)

Ilere (_,)_ and (/a,)_ are the separate values computed due to the presence of boundaries at _ = 0 and _ = 1,
and at _ = 0 and _/= 1, respectively. If there is only one solid surface in the _ direction, (y,)_ is taken as the
normal distance to that surface. If both _ boundaries are solid surfaces, (I'_)t is taken as the normal distance
to the closest one. If there are no solid surfaces in the _ direction, (Y_)l is the normal distance to the location

of either 1V[_o_ or I l)l_,_, as described in Section 3.1. Analogous rules are used for (Y.)2-

3.4 TRANSITION MODEl.

After/z, has been computed using the procedure described in the previous sections, a transition inter-
mittency factor may be applied to simulate laminar-turbulent transition. The transition model is based on
one given by Cebeci and Bradshaw (1984) for boundary layer analyses, and assumes that a geometric leading
edge exists at either _ = 0 or r/= 0. They report that the model is valid for adiabatic flows at Mach numbers
less than 5. In this transition model,

j'0 for x <_Xfr
/at

err _t for x > Xtr

(3.t4)

where x is the distance from the leading edge, the subscript tr indicates a value at the start of the transition
region, and _,,, is a transition intermittency factor given by

_'tr = 1 - exp -G(x - Xtr ) _ dx
,r

(3.15)

In equation (3.15), u, is the velocity at the edge of the boundary layer. The factor G is given by

3
G = 8.33 x 10 -4 Ue Re -134

2 Xtr
Y

where Re,,. = (u, x/v),, and v is the laminar kinematic viscosity at the edge of the boundary layer.

If we assume that, through the transition region, u, "-- (u,), and v -.. v,, then equation (3.15) may be re-
written as

[ ;]10-4ReO.66[ x _ 1
_'tr = 1 - exp -8.33 x x,, \ xt---_" (3.16)

To implement equation (3.16) in PROTEUS, we replace x/x, with Re, IRe.,, where Re, is defined as

For flows predominantly in the ¢ direction, I I_l ,.o. is the maximum total velocity magnitude at the current

station, D is the distance from the point where [VI = ] VI,,o. to the leading edge at _ = 0, and v is eval-

6 As noted earlier, this discussion is for the most general situation. When the flow is expected to be predominantly
in one direction, input parameters in the PROTEUS code should be used to specify that direction.
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atthepointwhereI¢l = .... An analogous definition of Rex is used for flows predominantly inuated

the I'/direction.

3.5 TURBULENT VALUES OF 2 AND k

The turbulent second coefficient of viscosity is simply defined as

2
)-t= - 5-m (3.17)

The turbulent thermal conductivity coefficient is defined using Reynolds analogy as

k t - pr t (3.18)

where cp is the specific heat at constant pressure, and Pr, is tile turbulent Pr:mdtl mlmber. In PROTEUS,
the turbulent Prandtl number may be treated as constant, or as a variable using,,, the following formula
(Wassel and Catton, 1973):

l ,p(c r4)
Cpr 3 #t/lal

- (3.19)

Prt Cpr I Prl ( Cpr 2 )1 -- exp pr 1 lat/la l

tlere Ce,,, Cp,2, Cp,3, and Cp,4 are constants taken as 0.21, 5.25, 0.20 and 5.0, respectively, and t'r_ = Gt_l/k _
is the laminar Prandtl number.
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4.0 TIME DIFFERENCING

The governing equations are solved by marctfing in time from some known set of initial conditions using
a finite difference technique. The time differencing scheme currently used in PROTEUS is the generalized
scheme of Beam and Wanning (1978). The time derivative term in equation (2.16) is written as

_ - + +
Or Ar 1+02 Or 1+02 Or 1+02 Ar

or,

O1Az 0(AQ ) 02
a6n + A n-IQ + O 01 T 02 (A')2 + (A')a (4.1)AQn - 1+02 O'r + 1At+02 c?r 1+ 0-----_

where AQ_= @+1_ @. The superscripts n and n + 1 denote the known and unknown time levels, re-

spectively.

The parameters 0t and 02 determine the type of time differencing scheme used. Some of the methods
available with the above formula are given in the following table.

01 02 Method Truncation Error

0
0
l

I/2
1

0

-i/2
0
0

1i2

Euler explicit
I ,eapfrog explicit
Eulcr implicit
Trapezoidal implicit
3-point backward implicit

O(AT)2
O(A'ry
O(Az)2
O(A-r)s
O(A'@

Note that even though the generalized time differencing formula includes explicit methods, the PROTEUS
code assumes an implicit method is being used. Note also that the truncation error listed in the table is the

error in the expression tor A@. The overall numerical method used in modelling the differential equations

requires A0"/Ar, so the order of the overall method is this truncation error divided by At.

Solving equation (2.16) for c?()./O-r and substituting the result into equation (4.1) for O(A0")/OT and

f A n A t

0_A, O(AE ) O(at_)
A{_" - 1 + 02 0_ + (?_

i A n A 1+ 1 + 02 c?_ + On
+

t_

OQ_/Oz yields

l+0 \ +-NC

A.r OE v OF v

02AQn-' I( 1 ) ] (4.2)+ 1 + 0---_ + O 01 - T - 02 (Az)2 + (A*)]
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5.0 LINEARIZATIONI)ROCEI)URE

5.1 INVISCII) TERMS

,', ^ ^ ,x

Equation (4.2) is nonlinear, since, for example, AE" = E "*' - E _ and the unknown E _÷_ is a nonlinear
function of the dependent variables and of the metric coefficients resulting from the gencralized grid trans-
formation. The cquations must therefore be linearized to be solved by the tinite difference procedure used
in PROTEUS. This is done by expanding each nonlinear expression in a Taylor series in time about the
known time level n. I.cuing G rcprescnt any nonlinear expression,

{ oa "_a,+ o(a,) 2 (5.1)
Gn+I=Gn + \ Or ./

where

OG OG Op OG O(pu) OG O(pv) OG OET
-- + + +

Or Op Or O(pu) Or O(pv) & OE T Or

Note that for linearization purposes only the metric scale coefficients have been assumed to be locally inde-
pendent of time. Note also that for this linearization procedure to be second-order accurate, OG/Or (and
therefore Op/Or, 8(pu)/Or, etc.) need only be first-order accurate. Using forward differences, then, so that

Op n p _ p
- AT + O(Ar)

Ap n
-- Ar +O(Ar)

etc., equation (5.1) becomes

{ eG ) + aG a(pu)" + aG a(pv)" + OG 5E_-+ O(ar) 2
Gn+I = Gn + k ap / O(pu) 3(pv)

(5.2)

As an example the O(puv_y)/O_ term from the x-momentum equation (part of the second element of

0E/O_) will bc used. The nonlinear part of this term is (puv) "*l. Rewriting this in terms of the dependent
variables,

(puv)n+l=I (Pu)(pv) ln+lp

Using equation (5.2), this is linearized as

(puv)n+l = (puv)n _ (uv)_(p_+l _ pn) + vnE(pu)n+l _ (pu)n] + UnE(pV)n+l _ (pV)n] + O(Ar)2

which can be rewritten as

a(puv)" = - (uv)"ap" + v'A(pu) _ + u"a(pv)" + O(ar) 2

^

This linearization procedure, when applied to the entire AE" term in the vector equation (4.2), can be
written as
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\aQj
(5.3)

^ ^

where (aE/dQ)" is a Jacobian coefficient matrix (not to be confused with the Jacobian J of the generalized
^

grid transformation.) A similar equation can be written for AF".

Each term in each element of !_ and 1:, given by equations (2.17b) and (2.17c), is linearized using the

above procedure to generate the elements of the Jacobian coefficient matrices al_/O(_ and a_'/J). (Note

that dl_/O(_ = JOEIaQ.) When this is done dE/dQ can be written as

A

0E
A

aQ

Op

-fl - °p

_x _y 0

ap Op Op

V_X + _ _y _t + fl + VCy + _y BE T _y

Op f2,y+_ Op ,t+_(l + Op )AG + a(pu) o(pv)

(5.4)

where f_ = u¢, + re, and f2 = (Er + P)Ip. The Jacobian matrix a}:'/aQ has the same form as aE/8¢), but
with _ replaced by r/.

The linearized pressure terms have deliberately been left in terms of Op/Op, Op/O(pu), etc. Tile ex-
pressions to be used for these derivatives depend on the equation of state. Those currently built into the

PROTEUS code, for a perfect gas, are presented in Section 5.3.

5.2 VISCOUS TERMS

^ ^

The nonlinear viscous terms in equation (4.2), involving AE_r and AF% must also be linearized. To do

this, the elements of f_v and fry, given in equations (2.17d) and (2.17e), must first be rewritten in terms of

the dependent variables, and with derivatives in the Cartesian directions transformed to derivatives in the

computational directions using the chain rule. When the resulting expressions axe substituted into equation

(4.2), mixed second derivatives appear as well as second derivatives in a single coordinate direction. The
mixed, or cross, derivative terms would lead to considerable complications in the hnplicit numeric',d solution

algorithm if they were linearized using the procedure presented in Section 5.1. The two types of second
^ ^

derivatives are thus treated differently, and E v and Fv are written as

A A A

E v = Ev_ + Ev 2
A A A

F v = Fv_ + Fw2

(5.5)

where Ev t and fzvt only contain derivatives in the _ and r/directions, respectively, and f_'2 and _'2 contain

derivatives in the other direction. The fully expanded expressions for f_v_, F2v2, etc., are fairly long, and

therefore are presented in Appendix A.

26 Linearization PROTEUS 2-D Analysis Description



5.2.1 Non-Cross Derivatives

Examination of the elements of l_vl in equations (A.2a) through (A.2c), and (A.2e), shows that every
term has the form fg¢, where g is a function of the dependent variables, andfis a function of_, _, k, and/or
the mctric coefficients. Expanding in a Taylor series about time level n gives

(fg¢)n+l = (fgon + Ot Ar + O(Az) 2

For linearization purposes only, we will assume fis locally independent of time. We can thus write

(fgon+l =(fg_)n + fn--_[ Og ] nAr + O(AT) 2

where

Og Og Op Og O(pu)
- + +.-.

Or Op Or O(pu) Or

Therefore

(fg¢)n+l =(fgon+fn_I Og Og in;xp+ _ a(p_) + ... + o(A_)2

^

As with the inviscid terms, the linearization procedure for the entire AET,L viscous term in equation (4.2) can
be written as

(5.6)

^

A similar equation may be written for AI:_I. The Jacobian coefficient matrix OEvJOQ is

A

c?Ev_ 1

A Re rc_Q

0 0 0 0

(A)" 1 0 1

0F.Q, 21 axx-_"_ (-fi- ) °¢xy-'_- (-p- t 0

" 0 1 0 1

°_Q1 3_ %,y-_ T _yy-_- T o

0 l OEvl 0"1 0 OT

- _ _o--_
OQ 41 OQ 42 OQ 43

(5.7)

where

C_xx (2/a + 2 2= )-)_x + _y
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_2 _2
ayy = _x + (21_ + )-)sy

0_0 = -_ r

0 , 0 u 0 v

0 O u O

() () ()
0 O" 3 OT

OQ 42 OQ 21

.... +o(
43 31

Like the pressure terms discussed earlier, the form of the temperature terms will depend on the equation
of state being used. Those currently built into the PROTEUS code, for a perfect gas, are presented in
Section 5.3.

^ ^

Note that in equation (5.6) the derivatives appearing in tile Jacobian coefficient matrix OEvt/O Q are also

to be applied to the A_ appearing outside the parentheses. For example, the element in the second row

and second column of OEvllOQ, which corresponds to the A(pu) term in the x-momentum equation, is
a_,O(1]p)/O¢. For this term, the notation used in equation (5.6) means

()_ ^n n O 1 n
0 _ AQ2 = axx --_ -fi- A(pulJ) n
OQ 22

,, o(A(pul.l)")__

^ ^

The Jacobian coefficient matrix for the remaining non-cross derivative viscous terms, 8Fvl/OQ, has the
^ ^

same form as OEv_[OQ, but with _ replaced by _.

5.2.2 Cross Derivatives

As stated earlier, lineafizing the cross derivative viscous terms in the same way as the remaining terms
is very complicated within the framework of the implicit numerical solution algorithm used in PROTEUS.

They are therefore simply lagged (i.e., evaluated at the known thne level n and treated as source terms.)
As noted by Beam and Warming (1978), this does not lead to a formal accuracy loss since
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An A_n--IAEv 2=,-,% + O(AT) 2

AF v2 = v2 + O(AT) 2

(5.81

5.3 EQUATION OF STATE

The expressions to be used for dp/dp, aT/Op, etc., which arise from the linearization procedure, depend
on the equation of state. The equation currently built into PROTEUS is for perfect gases, and can be
written as

l p(u2+v2)]p = (_ - l)[gr- _- (5.9)

or, in terms of temperature, as

T=I_ I ET 1 v2)] (5.10)cv P 2 (u2 +

With this equation of state, then, the appropriate derivatives are

(u 2 + v 2)
Op y-I

Op 2

op
O(pu)

Op

O(pv)

- (_,- 1)u

(5.1 l a)

(5.1 lb)

= - (r - 0v (5.1 lc)

@
OEr - _ - 1 (5.1 ld)

0T= 11ET 1 +v2)] (5.12a)Op cv p2 P (u2

OT u
- (5.12b)

O(pu) Cvp

OT v
- (5.12c)

O(pv) c_p

aT _ l (5.12d)
dE r Cvp

If constant stagnation enthalpy is assumed, as discussed in Section 2.2, the appropriate equation of state
is

p= _ P hr--_ (u 2+v 2) (5.13)

and the temperature becomes

T=+[hr - l-_-(u2+ v2)] (5.14)

With these equations, the derivatives of p and T with respect to the dependent variables are
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Op

Op

0t7 y-1

O(pu)

@ _-i

hT 1 z + v2)]+ -2 (_

u

p
O(pv) Y

OT 1 (u 2 + v 2)
Op cpp

OT u

o(pu) Cpp

OT v

O(pv) Cpp

(5.15a)

(5.15b)

(5.15c)

(5.16a)

(5.16b)

(s.16c)

5.4 LINEARIZED GOVERNING EQUATION

The linearized form of equation (4.2) can now be written as

OIAz AQn + --

A6n + 1+0-------_ < L\ oO -_ 06

1 nAsn =o .6 +
1 + 02 OQ

+ 1+0 2 _+---0_ I +0 2 _k O_ +_--)I

+ 1 +0---_
(5.17)

There are a couple of things that should be mentioned about this equation. First, this equation is in

so-called "delta" form. We will actually be solving this equation for A0 _ and recovering 0 _+_ from

(_p+l = k(_ + 0" • And second, in the coefficients of the cross derivative viscous terms the time differencing
parameter 01 has been replaced by 03. For second-order time differencing (i.e., if 01 = 02 + 1/2), 03 should
be set equal to 01. For first-order time differencing, however, 03 can be set equal to zero without losing

accuracy.
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6.0 SPACE DIFFERENCING

To solve equation (5.17) an evenly spaced grid is defined in the computational (4, r/) coordinate system.

Spatial derivatives are then approximated by finite difference formulas. First derivatives in the _ direction

are approximated using the following variably centered formula.

) 1 - (6.1)-_Of i,y _ 6_f/,y = A---_-[(1 - cz)_+l,y + (2a - 1)f/,j af/-l,y]

where a = 0 for first-order forward differencing, a = 1/2 for second-order central differencing, and a = 1 for

first-order backward differencing. All of the PROTEUS cases run to date have used central differencing.

The subscripts i and j represent grid point indices in the _ and r/directions. The computational grid spacing

A¢ is constant, and equal to I/(N_ - 1), where N_ is the number of grid points in the _ direction. A similar
formula is used for first derivatives in the _ direction.

The non-cross derivative viscous terms in the _ direction in equation (5.17) all have the form

where Q represents one of the elements'of Q. Using central differences this is approximated by

0

1
- A_ {f/+112,y6¢(gAQ)i+l/2,y - fi-l/Lyr_(gAQ)i-1/2,y}

_ 1 {fi+l/Ly[(gAQ)i+_,)_ (gAQ)i,y ]
(aO 2

- f-1/2,y[(gAO)i,y - (gAO)i-1,y]}

_ 1 {(f/,y + f/+l j)[(gAQ)i+I,j - (gAO)i,y]
2(6¢)2

- (f_,j + f___,j)[(gAQ)_,j - (gaQ)__l,j]}

_ I {(f,.__,j + d,-,j)(gAQh__,j
2(A_)2

- (_-l,j + 2f_,j + ___,i)(gaOh,j

+ (f,.,j+ f,.+_,j)(gAO)_+_,;}

A similar formula is used for second derivatives in the r/direction.

Cross derivative viscous terms are evaluated using the following central difference formula.

(6.2)
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gt f"

_" [bl , t. j

1 [£ ,,!,s,,r)_ -/; ,,_ ,,2A_ +I. +J,j - -l,:, ,_.e)z-l,j]

l

.IA_Aff [-[i+l,j(gi+l,j+l - ,_'i4 1,j-l)

-- f-T.;(._i-_,j+l - &-l,;-1)] (6.3)

Note that thi_ formula i_ only needed for the somce tcmas, since the viscous cross dcri;'ativc terms art:
lagged.

When first derivatives :ire needed normal to a computalimlal boundar3', such as for Neumann boundary
conditions, cilhcr tirst- or scctmd-tnder one-sided diffclcncing is used. "ihc first-order tbrmula at the { = 0

bout:dary is

01 ?'_1 j 1 _• , --- -S_- (A,; Ji,;) (6.4)

and at the _ := 1 boundary,

Of) ~ 1-_ N,,j- A¢ (fN,,j- fN,--1,j) (6.5)

The second-order formula at the _ = 0 boundary is

,t,j- 2A¢ ( -3fI 'j + 4f2,j -- f3,j)
(6.6)

and at the { = I boundary.,

| (fv, -2,j-- 4fv, -1,./+ 3fN t j)
2A_

(6.7)

Similar formulas arc used at the _l _ 0 mad _7- 1 bmmdaries.
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7.0 BOUNDARYCONDITIONS

Choosing boundary conditions is perhaps the most important step in solving a flow problem with
PROTEUS. Since the equations being solved at interior points are the same for every problem, the
boundary conditions are what determines the final flow field for steady flows.

With the difference formulas presented in Section 6.0, N,q boundary conditions are required at each
computational boundary, where N,q is the number of equations being solved. Note, however, that this is
a numerical requirement, not a mathematical one. For example, for one-dimensional Fuler flow A_q = 3.
However, characteristic theory shows that, mathematically, only two conditions may be specified at a sub-
sonic inhow i,,,,::::_::_ , :,q,l ,,_)]_ _>nc at a subsonic outflow boundary (t)ulfi_u_l, 19S6a). Some sort of ex-
trapolation is typically used for ihe additional numerical boundary conditions.

A variety of boundary conditions are built into the PROTEUS code, including: (1) specified values
and/or gradients of Cartesian velocities u and v, normal and tangential velocities 11",and V,, pressure p,
temperature T, and density p; (2) specified values of total pressure Pr, total temperature T r, and flow angle;
(3) linear extrapolation; and (4) spatial periodicity. Another useful boundary condition is a "no change from
initial condition" option for u, v, p, T, p, Pr, and/or T r. Provision is also made for user-written boundary
conditions. The boundary conditions may be steady, unsteady, or time-periodic. The exact combination
of boundary conditions to be used will depend on the problem being run.

The boundary conditions in PROTEUS are treated implicitly. They may be viewed simply as additional
equations to be solved by the ADI solution algorithm. And, in general, they involve nonlinear functions
of the dependent variables. They must therefore be linearized using the procedure described in Section 5.0.
The following sections describe this linearization for the general types of boundary conditions currently built
into PROTEUS.

7.1 NO CHANGE FROM INITIAL CONDITIONS_ Ag= 0

This boundary condition simply sets the boundary value of the function g equal to its initial condition
value. It can be written as

Agn = gn+l_ gn = 0 (7.1)

In general, g can be a nonlinear combination of the dependent variables (). Linearizing g using the proce-

dure described in Section 5.0, we get

( )hAgn+l = gn + _OOQ- AQn + O(Ar)2
(7.2)

Neglecting the O(Az) 2 linearization error, the linearized form of equation (7.1) can thus be written as

(7.3)

7.2 SPECIFIED FUNCTION, g =.f

A specified function at a boundary can be written simply as

gn+l = f (7.4)
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whereg is the function being specified and fis the value being specified. Note that fcan var3_ along tile
boundary, and can be time-dependent. Using equation (7.2) and neglecting the lincarization error, the

Imearized boundary condition becomes

( O--_gA_nA_n=f-gnOQ,/ (7.5)

7.3 SPECIFIEI) COORDINATE DIRECTION GRADIENT_ dg/d _ =f

A specified gradient of a function in a coordinate direction can be written as

(Og) n+l--_ =f (7.6)

where g is the function whose gradient is being specified, f is the specified value, and 4' is the coordinate
direction _ or ft. Note that fcan vary along the boundary, and can be time-dependent.

The linearized form of g is given by equation (7.2). The linearized form of equation (7.6) can thus be
written as

( Og _n O AQ n =f+ O(Ar) 2 (7.7)
I +77

Replacing differentialoperators with differenceoperators and neglectingthe [inearizationerror,the

linearized boundary condition can be written as

6¢ --_- AQ n = f - 6_kgn (7.8)

where 6,b represents the one-sided difference operator to be used at the boundary. Options are available in
PROTEUS to use either first-order two-point or second-order three-point differencing.

Note that this boundary condition is a specified value of the derivative with respect to the computational
coordinate, not with respect to the physical distance in the direction of the computational coordinate.
Following Korn and Korn (1968), and using the properties of the generalized coordinate transformation, it
can be shown that for the _ direction the two derivatives are related by

ag j Og

Os_
_/rl-x + _ly

Similarly, for the r/direction,

Og j Og

If the value f= 0, of course, the two derivatives are equivalent.

7.4 SPECIFIED NORMAL DIRECTION GRADIENT_ Ve', n =f

A specified gradient of a function normal to the boundary can be written as

Vg n+l • n =f (7.9)

where g is the function whose gradicnt is being specified, fis the specified value, and n represents the unit
vector normal to the boundary. Note that fcan vary along the boundary, and can be time-dependent.
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l:or illustrative purposes, assume we are specifying a gradient normal to a constant _ boundary. ]'hen

n- v_ IG7 + 1 Cyj
IV_i - m -N-

where

m=,2+4
Equation (7.9) can then be written as

l : n+l n+l
._- t_, G + & _y) =f (7.1o)

Using the chain rule to expand g7*l and g]+l,

gn+l n+l_ . n+l, =g_ gx +gq Vtx

g)n + 1 n+l,. n+l=g_ gy + g,_ r/y

Substituting into equation (7.10) and rearranging,

g_n+l (_2x + _2y)+ g,Tn+l(?,x,tx + _yr/y)= mf

SoMng for &7"l,

(c3g) n+l f 1 (c?g) n+l- m m ? (_xr/x+ {yr/y) _ (7.11)

Now, in order to incorporate this equation into the ADI solution procedure used in PROTEUS, the
@/Or/term in equation (7.11) is lagged one level, and evaluated at time level n instead of n + 1. Strictly
speaking, this introduces an O(Az) error into the solution. In practice, however, the actual error will depend
on the degree of nonorthogonality of the coordinates near the boundary. For orthogonal coordinates no
error is introduced.

Using equation (7.2), and introducing difference operators and neglecting the linearization error, we can
now write the linearized boundary condition as

0g A_ n f 1
6_ _{?Q - m m2 (_xr/x + {yr/y)a,,g n - 6_g n (7.12a)

where 6_ represents the one-sided difference operator to be used at the boundary. Options are available in
PP, OTI.;US to use either first-order two-point or second-order three-point differencing.

Specifying a gradient normal to a constant r/boundary is done in an exactly analogous manner. The
resulting equation is

6,, 06 Arn _ 1 n (7.12b)
-- -- 2 (r/x_x + r/yCy)6¢g -- 6rig

m

where

2m = N + r/Y

7.5 LINEAR EXTRAI'OI_ATION

I.ihcar extrapolation from the two adjacent interior points is also available as a boundary condition.
At the { = 0 boundary', where i= 1, this can be written as
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gn+l .) n+l n+l• -'-gi+l +gi+2 =0 (7.13)

Note that this is equivalent to setting (02g[0_2),_ = 0. Using equation (7.2), we can write the linearized
boundary, condition as

Og AAn A n Og "_n An
i Qi -- 2 AQi+ 1 + = n n _ n (7.14)i+2AQi+2 -gi + 2gi+l gi+2

Analogous extrapolation boundary conditions can easily be written for the remaining boundaries.
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8.0 SOLUTION PROCEI)ISRE

8.1 AIM AI.GOR1THM

The governing equations, presented in linearized matrix form as equation (5.17), are solved by an alter-

nating direction implicit (ADI) method. The form of the AI)I splitting is tile same as used by Briley and

McI)onald (1977), and by Beam and Warming (1978). Although the split equations can be developed in

more than one way, in this discussion the approximate factorization approach is used.

Letting 1 11S(5.17) represent the left hand side of equation (5.17), we can wriw

Olaf Or2 Ev, 0 O aFv_ a6 _
LHS(5.17) = I+ 1 +0------2- 06 06 + _- 3Q 06

(8.1)

where I represents the identity matrix. Note that in this equation, using the O/O_ term as an example, the
notation used is meant to imply

l | A

0Q 0Q 0Q

The term in braces in equation (8.1) can be factored to give

[ ( ( tj01Az 0 01"] 0 OlAz 0 OI: OF
-' I+ 4' AQ n

L11S(5.17)= 1+ 1+02 O_ 0(_ 0Q 14 02 0rt OQ 3Q

_x , , kx

^

The last term represents the splitting error. Note that, since AQ_= O(Ar), this term can bc nc_ectcd

without Mfccting the overaU time accuracy of the algorithm, even when second-order time differencing is
used.
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Equation (5.17) can thus be rewritten in spatially' factored form, and, neglecting the temporal truncation
and splitting error terms, becomes

I ( )IE t^ 01At 0 OF O'l A6n
OlAz 0 OE^ O 1 I+ 1+8 2 O)1 -£ =

I+ 1+82 O_ OQ OQ OQ

& A A A

,+o2 \ o_+W + t--7-ff_\ _ + _--_.) + i+o2 \ ,-Tz(-_+--:_.
A A

o3a_ ( aEv, arn _"-' o2 _6,,__
1+o2\ o¢ +--_--./ + l+O---T

Equation (8.3) can be split into the following two-sweep sequence.

Sweep 1 (¢ direction)

(8.3)

+

01At O 0E _6Q* 0_ar 0 OF " o,
1+8 2 0¢ O---_ 1+8 2 0_ 0Q' AQ =

,x A

1+o2 -_-+W + 1+o---S\--_+_-.
A A A A

1+8 2 --'-_+ 1+8 2 _ 0¢ + ?_--_ + 1+0--_
A6 n-I (8.4a)

Sweep 2 (q direction)

^ n 3Fv_
0jAr 0 A_ n 0,At 0 - AQ n :z_6' (8.4b)

A(_n+ 1+0 l 0_1 0Q J __] I +0 2 0rl OQ

In the above equations, represents an intermediate solution to the governing equations? It should be

noted that in PROTEUS, physical (i.e, n + 1 level) boundary conditions arc used during the first AI)I

sweep. This introduces an O(Ar) error in 0Q/0r on the boundary for unsteady flows, but no error for steady

flows. This point is discussed in detail by Brilcy and Mcl)onald (1980).

t, ^ ^

7 The notation here is somewhat inconsistent. The quantity AQ" = 6 "÷' - O _, but AQ" = 0' - Q_, not O "+' - Q'-
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Applying the spatial differencing formulas of Section 6.0 results in

Sweep 1 (¢ direction)

E( r ()i () 1^' 01At Ari*_, + (2. -- l) 0E Ar_ + (l -- a) 0E n A.

AQi + (1 + 02)A_ --a 0Q ./i-! 07 e7 i+IAQi+I

?l _ AI l'l r[ AI

01At [(_-t + f) gi-lAQi-I - (f/-I + 2fi +f_+t) & AQi
(1 + 092(A¢):

AT /2+ AT A ,, ,,l+02 l+02

(1 + 03)AT A ^ n 03AT A A ,n--I 02 A6n_ 1
+ 1 + 0 2 ('5"*Ev2 + 5nFv2) 1 + 0 2 (6_Ev2 + 6'1rv2) + 1 + 0---'--_

1] n A,

+ (f/+ £+1) &+IAQi+I] =

(8.5a)

Sweep 2 (_l direction)

-oc -- AQ__,+(2_-I) AQ 7+(l-a) -- AQ)+]
(l+02)A_ 0Q 7-1 \ OQ 0(_ j+l

Art

n n An - 2fj+fj+,)ngAh; + fj+l) gj+,AQ)+l]0,At [(fj_, + fj)gy_,AQ)_I (fj_, + (fj + n n =
(1 + o2)2(an) 2

(8.5b)

The subscripts i and j represent grid point indices in the _ and _/directions. For notational convenience,

terms without an explicitly written i or j subscript are understood to be at i or j. In the viscous terms on

the left hand side, f is the coefficient of 0/0{ (or 0/0r/, depending on the sweep) in the OEvL/O _ (or

O_'vJOQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following O/O_ (or 0/Orl)

in the Oliv_/OQ (or Ol"v_/OQ) Jacobian coefficient matrix. Equations (8.5a) and (8.5b) represent the two-

sweep alternating direction implicit (ADI) algorithm used to advance the solution from time level
nton+l.

8.2 ,MATRIX INWERSION PROCEDURE

8.2.1 Non-Periodic Boundary Conditions

The complete set of algebraic equations for the fuTst ADI sweep with non-periodic boundary conditions
can be written in the following block matrix form#

8 Although this discussion is written for the first ADI sweep, an exactly analogous procedure is followed for the
second sweep.
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F
i ,
!B]

A2 B2 C2

A3 B3 C 3

A Nl _2 BNt -2 CN I -2

AN 1-1 BN_-I CN_-!

Iii
[ AQ_, -1

[ AQN l

°

$3

SN l -2

SN_ -1

S_v,

(8.6)

These equations result from the application of equation (8.5a) for i = 2 to N_ - 1, with boundary conditions

added at i = 1 and i = N v The parameter A0' is the N,q-element vector containing the unknown dependent

variables; A, B, and C are the N,_xN,_ coefficient submatrices at i - 1, i, and i + 1, respectively; and S is the

N,q-element subvector containing the explicit source terms. Also, A', B', and C' are the coefficient sub-
matrices and S' the source term subvector for the boundary conditions. A variety of boundary conditions

may be used. They are described briefly in Section 7.0, and in greater detail in Volumes 2 and 3.

Note that the equations at the boundaries may contain coefficients at the boundary point and the two
adjacent interior points. This occurs, for example, when extrapolation or second-order gradient boundary

conditions are specified. As written, therefore, the coefficient matrix in equation (8.6) is not block

tridiagonal, tlowever, A'_ can be eliminatcd by multiplying the second row of the matrix by A] Ci I and

subtracting from the first row. C' can be eliminated in a similar manner. Doing this, we define
NI

B t = B_ - A] C2IA2

C l = C] - A] C21B2 (8.7)

and

S 1 =S_ -- A_ C21S2

ANI = A'N, --C'NtA -lNj -IBN1 -I

B,v I = B'N, -- C'.,','I A,-VI-ICN , -1 (8.8)

S' C' A -1
SN I = " N I -- -,V 1 N 1 -ISNI-1
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The set of algebraic equations solved during the first ADI sweep can now be written as

B1 CI

A2 B2 C2

A2 B3 C 3

BN_ -2 CN 1 -2

AN I -1 BN t -1 CN t -1

AN t BN t

A,

AQ1
A,

AQ2
A,

AQ3

A,

AQ_fi, -1

AQN 1

81

$2

$3

= •

SN l -_

SN l - 1

SN l

(8.9)

Since the coefficient matrix is now block tridiagonal, the equations can be solved using the block matrix
version of the Thomas algorithm (e.g., see Anderson, Tannehill, and Pletcher, 1984). The procedure can
be summarized as follows:

1. DefineD l=B I.

^

2. Compute E l = Di-lCl and AQ'I = Di-ISl.

. For i = 2 to Nl, compute

D i = Bi - AiEi_ 1

E i = D_ 1Ci

A I A

AQi = D[-1(Si- AiAQ__ 1 )

(Actually, E, is only needed for i = 2 to Nl -- 1).

^4. Then, set A _¢l= AQ%t"

^ ^ ^

5. Finally, for i = N l - 1 to 1, compute AQ, = AQI - E, AQ,+I.

In the PROTEUS code, in step 2 E l
^

D_AQ'_ = SI using LU decomposition of D.
3.

8.2.2 Spatially Periodic Bounda_' Conditions

and A0'l are actually obtained by solving DIEt = Ct and
^

A similar procedure is used to compute E, and AQ_ in step

In computational coordinates a spatially periodic boundary condition in the ¢ direction may be repres-
ented as shown in Figure 8.1. 9

9 As in Section 8.2.1, this discussion is written for the first ADI sweep, but an exactly analogous procedure is followed
for spatially periodic boundary conditions in the second sweep.
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Nz--1

\

[] 0 o
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2

j=l

o 0 []

o _ 0 []

Figure 8.1 - Spatially periodic boundary condition.

The grid points along the i = 1 and i = N, lines are "similar" in the geometric sense, and have the same
^ ^

flow solution. Therefore, for a spatially periodic boundary condition in the _ direction, Q, = Qt¢,.

To implement this boundary condition, an additional set of points is added at i = N, + 1, setting
^ ^

Qt¢, +, = Q2. This allows us to use central differencing in the _ direction at i = N,, computing the coefficients
in the same way as at the interior points.
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The resulting set of algebraic equations will consist of Nt - 1 equations (for i = 2 to Nt), with N, + 1

unknowns. The block coefficient matrix thus has Nt - 1 rows and N_ + 1 columns, as follows:

A2 B2 C2

A3 B3 C3

A4 134 C4

AN t -2 BAq-2 CNt-2

AN t-I BN,-1 CNt-I

AN L BN t CN t

A,

AQt
A,

AQ2
A,

AQ3
A,

AQ4

A,

AQNI * -I

AQN l
A,

AQ,% +1

S2

$3

S4

SN t -

SN t -

SN 1

(8.1o)

These equations result from the application of equation (8.5a) for i = 2 to N1. As in the previous section,

the parameter AQ' is the N,q-element vector containing the unknown dependent variables; A, B, and C are

the N,qxN,q coefficient submatrices at i- 1, i, and i + 1, respectively; and S is the N,q-element subvector
containing the explicit source terms.

^ ^ ,_ ^

Since Qt = Qu I and Q2 = Q,v t +t, equation (8.10) can be rewritten with Nt - 1 urLk_rlowns as:

B2 C2

A3 B3 C3

A4 B4 C4

C Nl

AN l -2 BN l -2 CN t -2

AN t -1 BN l --I

A ,%

A,

A2 AQ2
A,

AQ3
A,

AQ4

A,

AQN1-2

Cu -i AQN1-1

BNt ][ AQNt

5 2

$3

$4

SN t --_

SN t - l

SN t

(8.11)

An efficient algorithm to solve this system can be derived that is similar to the Thomas algorithm for

block tridiagonal systems. The procedure can be summarized as follows:

1. Define I) 2 = B 2 and F 2 = Cal.

^

2. Compute E2 = D_-IC2, G 2 = D_tA2, and AQ_ = Di1S2.
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. For i= 3 to N_ - 1, compute

D i = Bi - AiEi_ 1

Ei = D_-I Ci

F i = _ Fi_IEi_ 1

G i = - Di- IAiGi -

A A e

±Q_ = Df_(S_-A_AQ,.__)

4. Compute

=D -1
GN 1 -1 N 1 -I(CNI--I -- AN 1 -1GNI-2)

FN l --1 = A,v L-- FN, -2EN,-2

N 1 - 1

DNI = BNI - E FiGi

i=2

i=2 J

5. Then, set A ul =AQ'M"

A t ^

6. Compute Al_,q-I = z_QN 1 -i - GN 1 -IAQNI •

7. Finally, for i= N,- 2 to 2, compute A0, = A(_: -- E,A(_,_L- G,A(_u ''

In the PROTEUS code, in step 2 E2, Ga, and A(_ are actually obtained by solving D2E = = C2,
^

DaG2 = A2, and D2AQ_ = S 2 using LU decomposition of D. A similar procedure is used to compute E,,

G,, and A(_ in step 3, and G_q _, and A(_ l in step 4.

8.3 UPDATING BOU_NDARY VALUES

8.3.1 Non-Periodic Boundary Conditions

With the ADI algorithm described in Section 8.1, if gradient or extrapolation boundary conditions are

used for the first sweep, the boundary values from the first sweep must be updated after the second sweep.

This point is easiest to illustrate by looking at the following figure.
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0 0 0 A

0 0 0 ' "---
i ,t

Figure 8.2 - Updating boundary values for non-periodic
bounda_' conditions.

In Figure 8.2, a 5x5 grid is shown in computational space. The triangles represent grid points at which

the intermediate values Q' are computed during the fust ADI sweep. These include the boundary poLnts

at _ = 0 and _ = 1. "Ihe circles represent grid points at which the final values Q,+Z are computed during the
second AD[ sweep, including the boundary points at '7 = 0 and '7 = I. If gradient or extrapolation boundary
conditions are used during the first sweep, so that the boundary values depend on the interior values, then
the intermediate values at _ = 0 and _ = 1 must be updated after the second sweep to be consistent with tile
final values at the interior points.

To do this, ,after the second sweep the boundary condition equations are rewritten and solved at tile
boundaries. At the _ = 0 boundary,

B]nA67 + C]nAQ_^ + AI,nAQ3An: Sin (s.12)

The subscripts refer to the value of i, the index in the _ direction. This equation is applied for
j = 2 to A"2- i in the _ direction. For notational convenience, however, the subscript j has been omitted.

^

All the terms in equation (8.12) are known except AQT. Solving,

A /1 -- t.--,tnAA/'l ,,/1 A tl
AQI = (Bln)-l(S_ n "-'1 '_-,r2 - AI AQ3) (8.13)

At the _ = 1 boundary,

CS_ A/A_ ,'/ ,r/ A e/ i/'_ A /7 n.,_

N__,e% -2 + A% AQx_ -l + BN_ AQ% = SNI (8.14)
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I 1 [,. Nt --,._NIAQNt_2-- _NIAQNi_I) (8.15)

Finally, note from Figure 8.2 that new comer point values are never computed in the solution algorithm.
To make the comer values consistent with the rest of the flow field, in PROTEUS the comer values of

density p and tot',.flenergy Er are arbitrarily defined by linearly extrapolating from the two adjacent points
in both the ¢ and _ directions, and averaging the two results. The comer values of the velocities are updated
by doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity whose
absolute value is lower is used. Tiffs was done to maintain no-slip conditions at duct inlets and exits.

8.3.2 Spatially Periodic lkmndarv Conditions

Updating boundary values from-the first sweep is complicated somewhat when spatially periodic
boundary" conditions are used.

/7

1 0 0 0 0

O O O O

O O O O

O O O O

%.../ U 'k../

o 1

Figure 8.3 - Updating boundary values for periodic
boundary conditions in the _ direction only.

The situation for a periodic boundary condition in the _ direction but not in the _ direction is shown
in Figure 8.3. The triangles again represent grid poh_ts at which intermediate values are computed, and the
circles represent grid points at which final values are computed. As can be seen from the figure, the inter-
mediate values at _ = 0 must be updated after the second sweep to be consistent with the final values at the

^

points. This is easily done by setting Q_ = 0_t forj = 1 to N2.interior
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1" O O O "_"

" O O O

O O O zx

O O O A

0 0 0 0 l
0 1 _:

Figure 8.4 - Updating boundary values for periodic
boundary conditions in the _ direction only.

The situation for a periodic boundary condition in the _/direction but not in the $ direction is shown
in Figure 8.4. In this case, the intermediate values at _ = 0 and at _ = l must be updated after the second
sweep. To do this, the same procedure described in Section 8.3.1 for non-periodic boundary conditions is

used, but for j= 2 to N2 instead of N2-I. Then, for the lower comer values, 01: = (_l,N2 and
^ ^

Q_¢l,l = QNL,_2
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1' O O O 0

0 O 0 O

O 0 0 O

O 0 0 O

0 0 0 0 0 ,'--
0 1

Figure 8.5 - Updating boundary values for periodic
boundary conditions in both the { and _/directions.

And finally, the situation for periodic boundary conditions in both the _ and _/directions is shown in
Figure 8.5. Like the case with periodic boundary conditions only in the _ direction, the intermediate values

at _ = 0 must be updated after the second sweep. This is again done by setting 0_ = 0.,fl forj = 1 to N2.
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9.0 ARTIFICIAL VISCOSITY

With the numerical algorithm of Section 8.0, high frequency nonlinear instabilities can appear as the
solution develops. For example, in high Reynolds number flows oscillations can result from the odd-even
decoupling inherent in the use of second-order central differencing for the inviscid terms. In addition,
physical phenomcna such as shock waves can cause instabilities when they are captured by the finite dif-
ference algorithm. Artificial viscosity, or smoothing, is normally added to the solution algorithm to suppress
these high frequcncy instabilities. Two artificial viscosity models are currently available in the PROTEUS
computer code - a constant coefficient model used by Steger (1978), and the nonlinear coefficient model
of Jameson, Schmidt, and Turkel (1981). The implementation of these models in generalized
nonorthogonal coordinates is described by PuUiam (1986b).

9.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The
standard explicit smoothing uses fourth-order differences, and damps the high frequency nonlinear insta-
bilities. Second-order explicit smoothing, while not used by Steger or Pulliam, is also available in
PROTEUS. It provides more smoothing than the fourth-order smoothing but introduces a larger error,
and is therefore not used as often. The implicit smoothing is second order and is intended to extend the
linear stability bound of the fourth-order explicit smoothing.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms
to the right hand side of equation (8.5a) (i.e., the source term for the first ADI sweep.)

_(_)Ar (V_A_Q + V,_A,;Q) _(_)Arj j [(VCAI)2Q + (V,TA,7)2Q] (9.1)

where _) and e_) are the second- and fourth-order explicit artificial viscosity coefficients. The symbols V
and A are backward and forward first difference operators. Thus,

VcQi =Qi-

AcQi =Qi+I

VCA_Qi = Qi+I

(V_A_)2Qi =Qi+2

Qi-1

-Qi

- 2Qi +Qi-1

- 4Qi+I + 6Qi- 4Qi_ 1 + Qi-2

Equivalent formulas are uscd for differences in the ,1 direction.

A few details should be noted at this point. First, the sign in front of the artificial viscosity term being
added to equation (8.5a) depends on the sign of the "i" term in the difference formula. For damping, that

term must be negative when added to the right hand side of the equations (i.e., explicit artificial viscosity),
and positive when added to the left hand side (i.e., implicit artificial viscosity.) See Anderson, TannehiU,
and Pletcher (1984) for details. Second, the terms being added are differences only, and not finite difference

approximations to derivatives. They are therefore not divided by A_, etc. Third, the variables being dif-

ferenced are Q, not 0. As noted by Pulliam (1986b), scaling the artificial viscosity terms by l/J makes them

consistent with the form of the remaining terms in the equations. Fourth, the terms are also scaled by AT.
This makes the steady state solution independent of the time step size (Pulliam, 1986b). And finally, note

that the fourth-order difference formula cannot be used at grid points adjacent to boundaries. At these
points, therefore, the appropriate fourth-order term in expression (9.1) is replaced by a second-order term.

Thus, for points adjacent to the _ = 0 and _ = 1 boundaries, - c_)Az[(V_A_)2Q]/J is replaced by
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_(_)A_

+ ---f-- VIA_Q (9.2)

A similar expression is used at points adjacent to the _ = 0 and _ = 1 boundaries.

The implicit artificial viscosity is implemented by adding the following terms to the left hand side of the
equations specified.

_lA'r ^.
j [VCA¢(JAQ )]

elAr ,-,
j [V,TA,_(JAQn)]

to equation (8.5a)

to equation (8.5b)

(9.3)

Note that the addition of the artificial viscosity terms, in effect, changes the original governing partial
differential equations. At steady state, the difference equations with the artificial viscosity terms added ac-
tually correspond to the following differential equations, t°

63¢ + a_? - 63¢ + _ + -7 (A¢)2 632(jQ_.___))+ (A_/)2 632(jQ._......____))
63¢2 (9,12

J (A_)4 04(jQ) + (A_) 4 04(JQ)
0_4 634

^

The implicit terms do not appear, since they difference AQ, and in the steady form of the equations
^

AQ = 0. The artificial viscosity terms do not represent anything physical. The coefficients should therefore
be as small as possible, but still large enough to damp any instabilities. Although optimum values will vary
from problem to problem, recommended levels are ,_) = O(l) and _1= 2c_) (Pulliam, 1986b). The recom-
mended level for _), when used, is _)= O(1).

9.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by
Pulliam (1986b), but in the current notation, the following terms are added to the right hand side of
equation (8.5a).

+V,t([(-_-)j+ +(_-)j](e:2'A,TQ-g:4)AnV,TA,_Q)j) (9.4)

The difference operation A_V¢AcQ is given by

ACVCA_Qi = Qi+2 - 3Qi+I + 3Qi- Qi-1

In the expression (9.4), _k is defined as

= ¢'x + Sy (9.5)

to These equations represent the use of the constant coefficient artificial viscosity model presented in this section. The
nonlinear coefficient model to be presented in Section 9.2 is more complicated, but the same principle applies.
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where _k_and _b_are spectral radii defined by tt

Aq

(9.6)

I lere U and V are the contravariant velocities without metric normalization, defined by

and a = ._yRT , the speed of sound.

U = _t + _x u + _yV (9.7)
V = tit + rlxU + rlyV

The parameters ,<2)and _o) are the second- and fourth-order artificial viscosity coefficients. Instead of
being specified directly by the user, as they are in the constant coefficient model, in the nonlinear coefficient
model they are a function of the pressure field. For the coefficients of the _ direction differences,

(_2))i= K2Armax(ai+l ' ai, °i-1 ) (9.8a)

(_4))i = max[0, K4AT --(_2)),] (9.8b)

where

o i -_-

Pi+l - 2pi + Pi-i

Pi+l + 2pi+ Pi-i
(9.9)

Similar formulas are used for the coefficients of the 11direction differences.

The parameter a is a pressure gradient scaling parameter that increases the amount of second-order
smoothing relative to fourth-order smoothing near shock waves. The logic used to compute _t*) switches
off the fourth-order smoothing when the second-order smoothing term is large.

The parameters x2 and x4 are user-specified constants. Like the coefficients in the constant coefficient

model, the optimum values will be problem-dependent, and are best chosen through experience. Cases have
been run with values of K2 ranging from from 0.01 for flows without shocks to 0. i for flows with shocks,
and K, ranging from 0.0002 for flows computed with spatially constant second-order time differencing to
0.005 for flows computed with spatially varying first-order time differencing. PuUiam (1986b) gives

x2 = 0.25 and x4 = 0.01 as typical values for an Euler analysis.

Like the constant coefficient artificial viscosity model, the nonlinear coefficient model requires special

formulas near boundaries. To apply (9.4) at i = 2, _2) is needed at i = 1. It is det'med as

(_2))1 = x2AT max(er2, a 1)

With the above definition, applying (9.4) at i = 2 and i = N_ - 1 requires a at i = 1 and i = N v They are
defined as

It should be noted thet the grid increments A¢ and Art in these definitions do not appear in the corresponding for-
mulas presented by Pulliam (1986b). This is because the grids used by Pulliam are constructed such that
A_ = AJ7 = 1, while in PROTEUS A_ = I/(N l - 1) and Art = I/(N 2 - 1). The definitions used here for _k_and qt_
result in an artificial viscosity level equivalent to that described by Pulliam.
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O'N|

-P4 + 4p3 - 5/2 + 2pl

P4 + 4/2 + 5/2 + 2pl

--PN, -3 + 4PN 2 -2 -- 5PN I -1 + 2PN l

PN 1 -3 At- 4PN 2 -2 + 5PN 1 --1 "+" 2PNI

And, finally, applying (9.4) at i = 2 and i = N_ - 1 requires A_VCA_Q at i= 1 and i = Nj - 1.
numerous formulas that could be used. The ones currently in the PROTEUS code are

z_{VcA,_Qt = -Q5 + 5Q4 - 9Q3 + 7Q2 - 2Ql

z_¢V_A_Q,v I -1 = QN l -4 - 5Q,v I -3 + 9QN x-2 - 7QN l -1 + 2Q,vl

There are
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APPENDIXA - EXPANSIONOFVISCOUS TERMS

In Section 5.2, the viscous terms in the governing equations are linearized. To do this, the elements of

Ev and Fv, given in equations (2.17d) and (2.17e) must first be rewritten in terms of the dependent variables,
and with derivatives in the Cartesian directions transformed to derivatives in the computational directions

using the chain rule. The non-cross derivative terms, involving Err and _'rl, are then linearized using Taylor
^a

series expansion. The cross derivative terms, involving E r and Fv, are simply lagged one time level. This
• .2 . 2 . . .

Appendix presents the fully expanded viscous terms requtred m the hneanzatlon procedure.

^

The viscous term Ev is given by equation (2.17d), which is repeated here.

[ ° 1^ 1 1 Txx_x + rxy_y

E V- j Re r IrxyCx+ryy_y[

where

rxx = 2uu x + 2(u x + Vy)

"ryy = 2/avy + ).(ux + vy)

_-v = _(uy + vA

fix = btT xx "[- VT xy -- --

_y = _:,y + v,yy- --

qx = -kTx

qe= -s,r 

1

pr r qx

1

Pr_ qY

(A.I)

The chain rule is used to transform derivatives in the Cartesian directions into derivatives in the com-

putational directions, resulting in

"rxx = (2_ + Jl)(_xU _ + ,lxu,7) + 2(_yV¢ + rtyVn)

Zyy = (2_ + 2)(_yV¢ + r/yvn) + 2(_xu ¢ + rlxUn)

• xy= U(_yU_+ ny% + L,v¢ + ,b,v_)

_ = (2u + ._)(Guu¢ + .l_.uu,) + a(_yUV¢+ nyuv,7)
k

+ Iz(¢yvu¢ + _lyvun + CxVV¢+ _IxW,7) + _ (¢xT¢ + nxr,7)

G = (2u + 2)(¢y_¢ + ,Ty_,.)+ 2(G_u¢ + nxvu,?
k

+ IZ(¢yUU¢ + rlyUUrt+ CxUV¢+ tlxUVtt) + _ (¢yT¢ + qyT,7)
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Tile above expressions for the rs and fls are next substituted into equation (A. 1). The _ derivative terms

become clements of Ev_, and the ,7 derivative terms become elements of Ev2. The resulting four elements

of l';v_ (excluding the 1/JRe, coefficient) are

A

(Ev_)l = 0 (A.2a)

(_2vl)2 = 2ta_2xu¢ + 2_x(_xU ¢ + _yv_) + _y(_yu_ + _xV_) (A.2b)

(f';v,)3 = 21a¢2yv¢+ )-_y(_xU¢ + _yv¢) + tL_x(_yU ¢ + _xv¢) (a.2c)

A 2 ¢2W¢ ) "t'- Cyt.,q'¢) -I'- "t'- _yV'V¢)(El/t) 4 = 2#(_xUU ¢ + + )._x(_xUU¢ A_y(_xVU_

k (¢2x + ¢2)T ¢ (A.2d)

For linearization it is convenient to rewrite the last element as

(Ev.)4 - (2u + ,_) {¢_(u2)¢+ _2yt,v2,)O_ + (u + _.)GCy(_)_2

U 2 2 ¢2,u2, _ k (_2 + _2)T ¢ (A.2e)+ 5- EGO' )_+ _,.t _,J +

The elements of Fv_ have exactly the same form as those of _2v_,but with _ replaced by r/.

^

The four elements of Eva (again excluding the l[JRe, coefficient) are

A

(Ev2)l = 0 (A.3a)

&

(Ev2)? = 2U_xrtxU,7 + 2_x(r/xu _ + _lyv,7) + St_y(rlyu,7 + rlxv,7) (A.3b)

A

(Ev2)3 = 2U_y_lyvn + 2¢y(rlxun + rlyV,_)+ iz_x(rtyU n + rtxv,7) (A.3c)

A

(Ev_)4 = 21a(_xrlxUUrt + _yrlyVVr l) + )_x(rlxUUrt + rlyUVr l) + )t_y(rlxVUrl + rlyW_ 1)

k

+ uG(nyvu, + n_v, r) + My(,_yuu, + ,7_,uv,)+ _ (G'_ + Cy,_,)'r, (A.3d)

The elements of _'v_ have exactly the same form as those of _.2v_,but with ¢ replaced by _; and r/replaced
by _.
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APi'ENI)IX13 - AXISY.MMETRIC ANALYSIS

]'he analysis used in I}P, OTI_US for axisymmetric flow is essentially the same as t0r two-dimensional
planar flow, described in the main body of this report, l lowever, there are some additional terms in the
axisymmctric equations that complicate things somewhat. For that reason, the axisymmctric analysis is
described separately in this appendix.

B.I GOVERNING I'QUATIONS

In cylindrical coordinates, the governing equations for axisymmetric flow, with swirl, can be written
using vector notation as

a(r Q) O(r E) O(r F) O(r Ev) a(r Fv)
Ot + Ox t- _ + H- Ox + Or + HV (B.1)

whcre

Q=[p pu pv pw ET] r (B.2a)

E

pIl

pu 2 + P

puv

p u_v

(E r + p) u

(B.2b)

F=

pV

p _

pv 2 + p

pvw

(E r + p)v

(B.2c)

0

0

n -= --p -- pW 2

pvw

0

(B.2d)

TXX

Txr

TxO
1

U_xx + Vrxr+WZxO---_rrq x

(B.2e)
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Txr

Trr

fro
1

ffTx r -I- VTrr "1- WTrO _ _ qr
rr r

(I_.20

Equation (B. 1) thus represents, in order, the continuity, x-momentum, r-momentum, 0-momentum (swirl),
and energy equations, with dependent variables p, pu, pv, pw, and Er. Note that the additional terms in
these axisymmetric equations destroy the strong conservation law form of the two.dimensional planar
equations presented in Section 2.1. Unfortunately, the axisymmetrie form of the equations cannot be put
into strong conservation law form (Vinokur, 1974.)

The shear stresses and heat fluxes are given by

"r= 2"-_'r + Zk "_-x +-F" dr ]J

. Eo.r°°=2u-7-+) "_'x +'7-\ Or

(B.3)

Ow w)fro = P dr r

In these equations, x, r, and 0 represent the axial, radial, and circumferential directions, respectively; and
u, v, and w represent the velocities in those directions. The remaining symbols are the same as those in the
two-dimensional equations described in Section 2.1.

For turbulent flow, _., 2, and k represent effective coefficients. The turbulence model is described in

Section 3.0. The only modification to the model for axisymmetric flow is the definition of I 1,the mag-
nitude of the total vorticity. For axisymmetric flow,
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=Lk_-fFr+7 + -_x + &

When the generalized grid transformation of Section 2.3 (with y replaced by r), is applied to equation
(B. 1) the result is

(r Q)r + (r Q){_t + (r O),/'h + (r E)_ x + (r E)r/r/x + (r F){{ r + (r f)q_/r + H

- (r Ev)_ x - (r Ev)_lx - (r Fv)_ r - (r Fv),7_/r - H V = 0 (B.4)

Although this axisymmctric equation cannot be put into exact strong conservation law form, the pro-
cedure used to do so for the two-dimensional equation, described in Section 2.4, is nonetheless applied to
equation (B.4). The result is

a(r 6) 3(r E) _(r _') i_I 0(r [iv) a(r Fv) ^
az 4 a{ 4 &1 + - a{ + a_ + Hv

(B.5)

where

Q
6= 7

I (EG + FG + QG)i:: 7

1
: 7 (r:.,Tx+ r,_, + Q,7,)

J

EV = (Ev _x + Fv _r)

F v : (F v r/x + Fv r/r)

A It v
tlv =-- 7 -

Using equations (B.2a) through (B.2g) these can be expanded as

1
_:7[ p pu pv ew Er] r (B.6a)

PU_x + PV_r + P_t

(P u2 + P)_x + PUrer + PU_t

PU3"_x + (P v2 + P)_r + pv_t

pttW_ x + pvw_ r + pW_ t

(Er + P)uG + (ET + P)vG + Er {t

(B.6b)

PUrlx + PVrlr + Pqt

(pU 2 + p)rtx + pUVrl r + purl t

puvq x + (pv 2 + p)rl r + pvrl t

puwrl x + pvwrl r + pwrl t

(ET+ p)U_x + (Er+ p)V,_r+ Ernt

(n.6e)
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0

0

-p - pw 2

p VW

0

(B.6d)

El/=
1 1

J Re r

0

rx_x + ZxAr

rxr_ x + "Crr_ r

"rxO_ x -Jr- "rrO_r

&L, + L¢_

(n.6e)

" 1 1

F V- j Re r

0

rxxqx +

rxrqx +

rxOrlx +

fl x_tx +

r xr_l r

Trr_r

r rOrlr

fl r_l r

(B.6f)

,x 1 1

Iiv= j Re r

01

° I--ZOO

TrO

0

(B.6g)

where

1
_, = Urx_ + vr_ + Wr_o - _ qx

I

1
fir = Urxr + Vrrr + WXr 0 -- _ qr

,r r

(B.7)

B.2 I.INEARIZATION

^

Solving equation (B.5) for OQ/0-r (assuming r is not a fimction of time) and substituting the result into the

time differencing scheme of Beam and Warming, given by equation (4.1), for 0(A(_)/0r and O(_'[Oz yields

OIAz I O(rAEn) O(rAFn) A-r I O(rE ) O(rl ,'n)

A6"= I + O_ ; O_ + o_-U- / 1+ o_ _ o¢ + o. + fi"

01At 1 O(rAE_,) O(rAF_) ^n Ar 1 O(r Ev) O(rFnv) "n

+ 1+0 2 r O_ -t O_t +AHv + 1+0 2 r 0_ + Or/ +H
/

[( , ) ]+ t + o---T + o o, - T - 02 (_-02 + (,x.03 (B.8)

This equation must be linearizcd using the procedure described in Section 5.0.
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B.2.1 lnviscid Terms

^ ^

For the inviscid tcrms the Jacobian coefficient matrix OEIOQ is

_t

Op

Jr

-wA

--fl(f2-- Op

¢x _, 0 0

¢, + A + uCx+ _, u_, + _, a(pw) ¢" ae--7_

Op 3p _ 3p

w_ we, Ct +fl 0

Op Op Op [Op_

(B.9)

where f = u_ + v_, and f2 = (Er + P)lp. The Jacobian matrix 0f:/0(_ has the same form as Oi_/OQ, but with

rcplaced by i,/.

^

For the additional term tl, the linearization procedure gives

aft
A

0Q

0 0 0 0

0 0 0 0

,_p 2 op Op Op
- _ + w -O(pu) O(pv) O(pw)

-vw 0 w v

0 0 0 0

0

0

2w dP (B. 10)
aE r

0

0

B.2.2 Vinous Terms

To linearize the viscous terms, Ev_,l_v2, etc., must first be rewritten in tern3.sof the.dependent variables:
and with derivatives in the cylindrical coordinate directions transformed to denvattves m the computatmnal
directions using the chain rule. The shear stress and heat flux terms, given by equations (B.3) and (B.7),
become

2
-_ = (2# + )0(Gu¢+ n_u,_)+ 7 [_,(rv)_+ nArv)n]

2
"rrr : 2_(_rv _ + nrV_l) + _t(¢xu _ + rlxUrl) + "7 [_r(rV)¢ + r/r(rV) n]

2
_oo= 2_.-_ + _(Gu¢ + .lx%)+ 7- [_r(r_)¢+ n.(_),]

"rxr = t.t(_rU¢ + ffrUrl + _xV¢ + _]xVrt)

ZxO= la(_xw_ + _xwn)
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W

Tm= _t(Gw_ + _bw_) -/_ T-

G = (2_,+ ,0(Guu_ + ,_:,uu,)+ r [Gu(B')¢+ ,_u(r0,]
+ ,tt(¢rVU _ + rlrVUrl + CxVV_ + t[Kvvrl) + _t(_xWW _ + _lxB'W_7)

k _ •

+ tT/7(_7_ + ,7if,)

2
fir = 2l'(_r_'_ + rlr_W,7) + 7 [¢rV(rv)_ + V/rV(rv)r/]

+ la(_rZlU_ + tlrHUrl + _xZ_'¢ + 11xt&'rl ) + ll(_rWW¢ + _lrWWrl)

2. w k
-}- A(¢xl,'li ¢ + r/xk'/,/r/) -- /2 -'_ + _ (¢r'['_ + rlrTrl )

q'he above expressions for the shear stress and heat flux terms are substituted into equations (B.6e)
through (B.6g). As in the two-dimensional planar case, the cross derivative terms are separated from the
non-cross derivative terms. In addition, for the axisymmetric case the non-derivative terms are included
with the cross derivatives.

The resulting five elements of EI/1 (excluding the liJRe, coefficient) are

A

(EvI)I = 0 (B. 1la)

(Evi)2 - 2,u_2u_ + )szx _xu¢ + T- _r(rV)¢ + "USr(grU_ + _xV¢ ) (13.1lb)

(B. 1It)

A 2 2

(Ev_)a = _&w¢ + i_Gw , (I3.1 ld)

^ ,_ 2 [ 1 ] [ 1 ](EvI)5 = "t-t(_xlgli{ + _2VI"_) + )'¢x _xblli{ + 7 _rlg(t'k'){ + iCr _xVbl_ + W _rV(n')_

k (d * d)q+ uG(Gvu_ + G,w¢ + Gww 0 + uG(Guu_ + G, uv_ + Lww 0 +

l;or linearization it is convenient to rewrite the last clement as

(B. 1le)

(2u + )_) ¢2.u2. q (Gv2+ Guy)

;' [d(_2+ w2)_+ d(. 2+ w_)d+ _ (d + $)7?+T {B.ll0

The clemcnts of l"v) have exactly the same form as those of l_:v_,but with ¢ replaced by 't-

^

The five elements of Ev= (again excluding the llJRe, coefficient) are

A

(E@l = 0 (B. 12a)

A [ , ](Eva)2 = 2#{xqxUr_ + )t{x _IxU?+ --_ _Ir(rV)r_ + la{r(rlrtlrl -t- rlxVrl ) {B. 12b)
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A

(F'v2)3 = 2_'_,'1_v,7 + "_r '1,,% + 7-

^ l 2_rI_Ixvu,l+! V/rV(rv)rt]

4- l_x(qrVZtrl + _'IxVVrl4- l/xlCWr/) 4- p_r(_lrUUq 4- _lxktVrl4- _IrWWrl)
2

W k

- u6 7- + + 6 D'r,7

The last element can be rewritten as

(B.12c)

(B.12d)

(B.12e)

A y
(Ev2)5 = 2/-t(_x'Txuuq 4- _r_Ir_Vq) 4- )'_x(_Ixt'tz_q4- rlrl&'_)4- )'_r(_IxVUrl 4- _IrW_) + )t'lr T (_xU 4- _rV)r_

+ #_x(qrvun + _x_W,7+ _tx_W,7) + _{rOlrUU. + ,lxUvn + _r_W.)

2 k

- #_r-wF - + -_rr({x,x + _r'lr)T,_ (B.12f)

The elements of leva have exactly the same lorm as those of _]v2, but with { replaced by _ and _/ replaced

by {.

(B.13a)

(B.13b)

(B. 13c)

(B.13d)

The five elements of l_Iv are

A

(Hv) _ = 0

&

(llv) _ = 0

^ v ).
(Ov) 3 -- -2# 7 - _(_xug + OxU_) + -7 [_r(rV)_ + V/r(rV)rt]

^ W

(Hv) 4 = #(_rw_ + _Irw_) - I_ -y-

(llv) s = 0 (B.13e)
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^ ^

Performing thc linearization, the Jacobian cocfficicnt matrix ¢?l':,vdSQ is

whci-c

^

OE vl 1
_=

OQ Re,

0 0 0 {} 0

( OEvl _ a

\ d_ -=

a 0 1 1,,o_-(_)+_,7', o o

_(,)

a(l) oo :_=_-_ 7-

aI"tq

aQ

_2 _2
Ctrr = ll_x + (211 + )-)_r

, 2

, 2 2
°_rr = -7- _r

k 2
= -V;i_ + _)O_0

(') (t0Ev, a u 0 v v

aQ 2_

81- , :_ u ? v , v

\ aQ _

?Q 41

--51 = --°_xx'-_g 7 --arr (--_ 7 --¢_zzT_- P-

) _, ,2 ,., 2_'. )
o ,.,, .,, o { o:,

- %,-_ t,-7- - -_r_T- - 7 q + _o_ \ ap

(n.14)
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=- OT
OE_v_ _F_ + % O(pu)
OQ 52 OQ 21

8". d_ v OT

1 = -- l 3C O_'rr -_ r_ -]- Ol0 O(DV )

O@ 53 OQ 31

' = - ' + _o _-_ O(ow)
.s4 OQ 41

^ ,,,

The Jacobian coefficient matrix for the remaining non-cross dcrivative viscous terms, OFvJOQ, has the

same form as OEvt/OQ, but with _ rcplaced by r/.

And finally, linc;wizing t_tv, the Jacobian coefficient matrix O_lv/SQ is

A

OHv 1

r)6 Rer

0 0 0 0 0

0 0 0 0 0

OH v OH v 0 _v 0 0

_Q 31 OQ 32 _Q 3s

x 0 0 0
OQ 41 0 6 44

0 0 0 0 0

(B.15)

whcrc

(A)Oil v 0

v4- [2p. -F _.( ¢rr: 4- rlrrrl) ] + 7 4- _(rlr _

(A)OHv I 0 1

_TQ 32

( A ) 0-_( 1 ) l 1
L3l_V = -- _¢r -- [2,u + ).(¢rr¢ + _lr%)] r p

c_Q 33
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A) ( )
?lit, _ 0 w

-J'_-5£ W +-----
O0 41

(') ()
an_ a i

OQ 4._
r p +_I,--@t 1

B.2.3 Eqt, ation Of St:lie

The equation of state given in Section 5.3 must be moditied sli_ltly to add the swirl velocity w. Thus,

1 p(u 2 + v 2 W2)] (I1.16)P=0'-- 1)[ET--_- +

or, in terms of temperature,

1 [ ET l (u2 +v2 +w2)] (13.17)7"= _ P 2

The derivatives arising from the linearization are the same as those presented in Section 5.3, except for

@ ), - 1
-- (u2 + v 2 + w 2) (B. 18a)

8p 2

@
8(pw)- = - (y - I)w (B.18b)

07"0p- c_l[ ETt,2 pl (u2 + v2 -4-w2)] (B. 18c)

07" w

O0,w) - %0 (B.18d)

If constant stagnation enthalpy can be assumed, the appropriate equation of state is

?-1 I 1 (u2+v2 1p- y P hr- y + w 2)

and the temperature becomes

(B.19)

l'=_-pl [hT-_- 1 (u2+v2+w2)] (B.20)

Again, the derivatives arising from the ]inearization are the same as in Section 5.3, except for

0p y-l[ l(u2+v2 ]Op "7 hr + -_ + w 2) (B.21a)

Op y - 1
- w (B.21b)O(pw) r

OT _ 1 (u 2 + v 2
Op Cpp + w 2) (B.21e)

OT w

O(pw) - cpp (B.2 ld)
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B.2.4 Linearized Governing Equalion

The lincarizcd form of equation (B.8) can now be written as

01Ar 1
AQ n +

1+02 r

+

01At

1+0 2

1 c? 0Fvl 0 c3 n OH v

AT

1 +02

(l + 03)At

1+02

A

a(r Fvl ) _ )nc_ + HV

l ) a(r F) A_ 1 Off E v_)

r 4 Oq + + 1 + 02 r _ 4

A A A

r 3_ + O_l 1 + 02 r O_

4 1+02 +0 01-_-02 (At) 2,(03-0x)(Ar) 2,(At) 3 (B.22)

B.3 SOIAJTION PROCEDURE

l_ctting LttS(B.22) represent the left hand side of equation (B.22), we can write

o,a.,, 1 a_ " a_ aft att/., a6 ° o3.23)
I,ITS(B.22)= 1+ i+0_--_- 7 r_Q -r OQ + r--7--rOQ OQ J + OQ OQ-

where I represents the identity matrix. The term in braces in equation (B.23) can be factored to give

I.tIS(B.22) =
01Ae 1 0 OF. I "_ 01A'r

r--7" - r-"--T-- ) +I + I +02 r O_ OO OQ ] + 02

Ol t2_ | 63 63F a}"P 1

r r _6 n"-"2--- "-'--Z'-
i+ I +02 r OrI OQ OQ

- t _: r_L _ OQ OQ/ W " 0--_-- OQ)_1

( 0,_, ]_ o;i o._ # ^-- r --S- -- r AQn (B.24)

The last two terms represent the splitting error.

Equation (B.22) can thus be rewritten in spatially factored form, and, neglecting the temporal truncation

and splitting error terms, becomes
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Equation

ca(rFv_) ^ca(r.o._Ev_)÷ _ + I!

I ( a{r Ev2 ) ca(r Fv2 ) n-I 02 AQ n-IY ca_ + ca_ +

(B.25) can be split into the following two-sweep sequence.

Sweep l (_

AI_" +

+

direction)

(B.26a)

Sweep 2 (+ direction)

AQ n +
1 +0 2 r CA_7 r AQ 1 +0 2 r b_?

bF_l a ^r -_Q A¢ =_' (B.26b)

Applying the spatial differencing formulas of Section 6.0 results in

Sweep l (_ direction)

^. O|AT 1 CaE "_ aE ^'
At_" AQ_ +(l --a) r

AQi+ (t+02)A{ • --a r---_j ,¢,._1+(22--1) r---_- --_-'/ _e_+l
aQ }+-_ aQ J+ OQ /_+t

^ ^+ ^* -_

OlA't I [ n n " n n n n
(I + 02)2(A_) 2 7" (ri I_- I + r,f,.) g, IAQ/_I - (•+-I_-I + 2rifi + ri+l_+t) g+ AQi + (rifi + rt+tft+l) g,+lAQ_+l

J

A't 1 ^ 6_(r F) + I1] + A't 1
+ 10'At+02 •I CAHCA(_0l.yc_Q 6:= I+02 ? [6¢(r E) + I+02 -_ [6t(rEvl)+6+(rl"Vl>+llv]

(I + 03)At 1 ^ (B.272)
+ I +(/2 "r [6t'(rEv2)+6'(r "v2)l 1 +02 "_-[6'(rEv2)+6+(rFv2)] +1---+-_2+--

Sweep 2 (_/direction)

[( ) ..^ O|Ax I CaF AQ_'_ 1 +(2m-I) • c3_" " ^" m) r 0F _n ^,_n l

At?+(,+02.. + -= 'ca-_ ,_, ca o+],+,++'+'

^ ^ ]Olaf ] [ a n A^n ,_ n

^" (B.27b)AQ

These equations are solved using the same matrix inversion procedure described in Section 8.2.
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