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SYMBOLS

PRINCIPAL NOTATION

Unless specified otherwise, all variables are nondimensional.

Symbol
a

A, B, C
AI’ Bl’ CI
¢ €,
E, F
E F
Er

EV: FV
l,\aVr I,:‘V
‘Vl’ F"l
Evza FV2
by

H H,
o H,
ij

J

k

k, k,
L,

N,

N, N,
p

Pr,

Pr, Pr,
/A

Definition

Speed of sound.

Coefficient submatrices in block tridiagonal system of equations.
Coefficient submatrices for boundary conditions.

Specific heats at constant pressure and volume.

Inviscid flux vectors in the Cartesian or cylindrical coordinate form of the govern-
ing equations.

Inviscid flux vectors in the computational coordinate form of the governing
equations.

Total energy per unit volume.

Viscous flux vectors in the Cartesian or cylindrical coordinate form of the govern-
ing equations.

Viscous flux vectors in the computational coordinate form of the governing
equations.

Non-cross derivative viscous flux vectors in the computational coordinate form of
the governing equations.

Cross derivative viscous flux vectors in the computational coordinate form of the
governing equations.

Stagnation enthalpy per unit mass.

Non-derivative inviscid and viscous terms in the Cartesian coordinate form of the
governing cquations for axisymmetric flow.

Non-derivative inviscid and viscous terms in the computational coordinate form
of the governing equations for axisymmetric flow.

Gnid indices in the ¢ and » directions.

Jacobian matrix of the generalized grid transformation.
Effective thermal conductivity coefficient.

Laminar and turbulent thermal conductivity coefficient.
Dimensional reference length.

Number of governing equations being solved.

Number of grid points in the ¢ and # directions.

Static pressure.

Reference Prandtl number.

Laminar and turbulent Prandtl number.

Heat fluxes in the cylindrical x and r directions.
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u, v, w
x,r

x, ¥

AV
@, £

€

P, e, etc.

01, 0, 0,
K2 Kq

A

A, A,

n

By M,

v

¢

T

Texr Ty etc.

4 Principal Notation

Definition

Heat fluxes in the Cartesian x and y directions.

Vector of dependent variables in the Cartesian or cylindrical coordinate form of the
governing equations.

Vector of dependent variables in the computational coordinate form of the gov-
erning equations.

Gas constant.

Reference Reynolds number.

Source term subvector in block tridiagonal system of equations.
Source term subvector for boundary conditions.

Physical time.

Static temperature.

Velocities in the Cartesian x and y directions.

Velocities in the cylindrical x, r, and swirl directions.
Cylindnical axial and radial coordinates.

Cartesian coordinates.

Centering parameter in differencing formula for spatial first derivatives.
Ratio of specific heats, ¢ /c,.

Difference operator.

First-order forward and backward difference operators.

Second- and fourth-order explicit artificial viscosity coefficients in constant coeffi-
cient model.

Implicit artificial viscosity coefficient.

Second- and fourth-order artificial viscosity coefficients in nonlinear coefficient
model.

Parameters determining type of time differencing used.
Constants in nonlinear coefficient artificial viscosity model.
Effective second coefficient of viscosity.

Laminar and turbulent second coefficient of viscosity.
Effective viscosity coefficient.

Laminar and turbulent viscosity coefficient.

Laminar kinematic viscosity.

Computational coordinate directions.

Static density.

Pressure gradient scaling parameter in nonlinear coefficient artificial viscosity
model.

Computational time.
Elements of shear stress tensor.

Spectral radius in nonlinear coefficient artificial viscosity model.
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SUBSCRIPTS

Subscript Definition

i,j Denotes grid location in ¢ and 7 dircctions.

r Denotes dimensional reference condition.

t Denotes differentiation with respect to physical time.

x, r Denotes differentiation with respect to cylindrical coordinate directions.
X,y Denotes differentiation with respect to Cartesian coordinate directions.
¢n Denotes differentiation with respect to computational coordinate directions.
T Denotes differentiation with respect to computational time.
SUPERSCRIPTS

Superscript Definition

n Denotes time level.

Denotes solution after first ADI sweep.
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NAVIER-STOKES COMPUTER CODE - VERSION 1.0

Volume 1 - Analysis Description

Charles E. Towne, John R. Schwab, Thomas J. Benson

National Acronautics and Space Administration
Lewis. Rescarch Center
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Ambady Suresh

Sverdrup Technology, Inc.
NASA Lewis Rescarch Center Group
Cleveland, Ohio

SUMMARY

A new computer code, called PROTEUS, has been developed to solve the two-dimensional planar or
axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation
law form. The objective in this effort has been to develop a code for aerospace propulsion applications that
is casy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

The govemning equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using an algebraic eddy viscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated internally by the program. More complex geomeltries
require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in PROTEUS. It descnbes in detail the
governing equations, the turbulence model, the lincarization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User’s Guide, and contains information needed to run the program. It describes the program’s
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requircments, the diagnostic messages that may be generated, the job control language used to run the
program, and several test cases. Volume 3 is the Programmer’s Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.
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1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available nonproprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or case of modification. The developers usually
intend to clean up and formally document the program, but the immediate nced to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending do anything more than run standard test cases with it. The user’s
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The PROTEUS two-dimensional Navier-Stokes computer program is a user-oriented and ecasily-
modifiable flow analysis program for acrospace propulsion applications. Readability, modularity, and
documentation were primary objectives dunng its development. The entire program was specified, de-
signed, and implemented in a controlled, systematic manner. Strict programming standards were enforced
by immediate peer review of code modules; Kernighan and Plauger (1978) provided many useful ideas about
consistent programming style. Every subroutine contains an extensive comment section describing the
purpose, input variables, output variables, and calling sequence of the subroutine. With just two clearly-
defined exceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A
master version of the program is maintained and periodically updated with corrections, as well as extensions
of general interest (e.g., turbulence models.)

The PROTEUS program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes
equations in strong conservation law form. The governing equations are written in Cartesian coordinates
and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in
time using a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space dif-
ferencing (Briley and McDonald, 1977; Becam and Warming, 1978). The current turbulence model is based
upon the algebraic eddy-viscosity model of Baldwin and Lomax (1978). All terms, including the diffusion
terms, are linearized using second-order Taylor series expansions. The boundary conditions are treated
implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be climinated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-cven decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Scveral time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external grid
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1, the current volume, is the Analysis De-
scription, and presents the equations and solution procedure used in PROTEUS. It describes in detail the
governing equations, the turbulence model, the linearization of the equations and boundary conditions, the
time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Vol-
ume 2 is the User’s Guide, and contains information needed to run the program. It describes the program’s
general features, the input and output, the procedure for setting up initial conditions, the computer resource
requirements, the diagnostic messages that may be generated, the job control language used to run the

PROTEUS 2-D Analysis Description Introduction 9

PRECEDING PAGE BLANK NOT FILMED



program, and several test cases. Volume 3 is the Programmer’s Reference, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored
in common blocks, and the details of each subprogram.

The authors would like to acknowledge the significant contributions made by three co-workers in the
development of the PROTEUS program. Simon Chen did the original coding of the Baldwin-Lomax tur-
bulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original coding for computing the metrics of the generalized nonorthogonal
grid transformation. Frank Molls made many debugging and verification runs, particularly for spatially
periodic and unsteady flows.
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2.0 GOVERNING EQUATIONS

2.1 GOVERNING EQUATIONS IN CARTESIAN COORDINATES

The basic governing equations are the two-dimensional compressible Navier-Stokes equations. These
equations may be found in several standard references (e.g., Hughes and Gaylord, 1964; Schlichting, 1968,
White, 1974; Anderson, Tannehill, and Pletcher, 1984.) In Cartesian coordinates, the two-dimensional
planar equations' can be written in strong conscrvation law form using vector notation as

5} JE dF
.__g + iE_ i = _V. + __l{.. - (21)
ot Ox dy Ox dy
where
Q=[p pu pv EA" (2.2a)
T
u2 +p
E=|" (2.2b)
puv
| (E7+ p)u ]
B 7
pv
- pw
F= pv2 +p (2.2¢)
[ (Er+p)v ]
0
E,= R‘ Fxx (2.2d)
e Tay

0
F,= R‘ Ty (2.2¢)
ér Tyy

1
uty, +v1y,, — P, q,

Equation (2.1) thus represents, in order, the continuity, x-momentum, y-momentum, and energy equations,
with dependent variables p, pu, pv, and E;.

1 PROTEUS can be used for both two-dimensional planar or axisymmetric flow. However, the axisymmetric
equations have some additional terms that complicate the analysis somewhat. For the sake of clarity, the main
body of this report describes the two-dimensional planar analysis, and the axisymmetric analysis is described in
Appendix B.

PROTEUS 2-D Analysis Description Governing Equations 11



The shear stresses and heat fluxes are given by

znzz,t%Jrz(a—era—;)
Tyy=2,1—%+z(%+a—;)
Txy=u(a—;‘+a~;) 2.3)
y__kg_z

In these equations, ¢ represents time; x and y represent the Cartesian coordinate directions; u and v are
the velocities in the x and y directions; p, p, and T are the static density, pressure, and temperature; Eris
the total energy per unit volume; and u, 4, and k are the coefficient of viscosity, second coefficient of
viscosity, and coefficient of thermal conductivity.

All of the above equations have been nondimensionalized using appropriate normalizing conditions.
Lengths have been nondimensionalized by L, velocities by u,, density by p,, temperature by T,, viscosity
by u,, thermal conductivity by k,, pressure and total energy by p,u? , and time by L /u. The reference
Reynolds and Prandt] numbers are thus defined as Re, = p,u L [u, and Pr, = u12/k, T2

Turbulence is modeled using the Boussinesq approach (Schlichting, 1968). The equations presented in
this scction are thus used for both laminar and turbulent flow. For turbulent flow they represent the
Reynolds time-averaged form of the Navier-Stokes equations, with density fluctuations neglected. They
may also be interpreted as the Favre or mass-weighted time-averaged form of the equations. With Favre
time averaging, however, the velocities and thermal variables represent mass-averaged quantities defined by
u = pufp, etc., where the overbar represents a conventional Reynolds time-averaged quantity. Details on
Reynolds and Favre time-averaging procedures may be found in Cebeci and Smith (1974), and in Anderson,
Tannehill, and Pletcher (1984). In either case, u, 4, and & represent effective coefficients. For example, in
turbulent flow u = u, + p,, where y, and p, are the laminar and turbulent viscosity coefficients, and u, comes
from some appropriate turbulence model. The model currently used in the PROTEUS code is the algebraic
cddy viscosity model of Baldwin and Lomax (1978), implemented as described in Section 3.0.

2.2 EQUATION OF STATE

In addition to the equations prescnted above, an equation of state is required to rclate pressure to the
dependent variables. Any appropriate cquation, or even table, could be used. The equation currently built
into the PROTEUS code is the equation of state for thermally perfect gases, p = pRT, where R is the gas
constant. For caloncally perfect gases, this can be rewritten as

== D[ Er—5 o+ (2.4

where y is the ratio of specific heats, c/c,. Here the gas constant and specific heats have been
nondimensionalized by «¥/T..

If the flow is such that we can assume a perfect gas with constant stagnation enthalpy, the energy
equation may be eliminated. This assumption is reasonable, for example, in inviscid regions, and in

2 Note that this Prandtl number does not have a physically meaningful value, but is merely defined by a combination
of the normalizing conditions for c,, y, and k that appear when the equations are nondimensionalized.
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adiabatic wall b(;undary layers if the Prandtl number is near 1 (Briley and McDonald, 1977). The stag-
nation enthalpy is defined as

1

: @ +v?) (2.5)

hT = CPT +
Here the stagnation enthalpy is nondimensionalized by 12. The temperature is thus

T= % I:hr— % o+ v2)] (2.6)

and the equation of state becomes
y—1 1
p=_y_.p[hr—7(u2 + v2)] 2.7)

This equation of state does not require the total energy E;, and the energy cquation nced not be solved.
The total energy may be computed from

Ep=phr—p (2.8)

2.3 GENERALIZED GRID TRANSFORMATION

Because the governing equations in the previous section are written in Cartesian coordinates, they are
not well suited for general geometric configurations. For most applications a body-fitted coordinate system
is desired. This greatly simplifies the application of boundary conditions and the bookkeeping in the nu-
merical method used to solve the equations. The following generalized grid transformation, which can be
orthogonal or nonorthogonal, is therefore used to transform the governing equations from physical (x, y, f)
coordinates to rectangular orthogonal computational (¢, n, 1) coordinates.

f = f(x,y, t)
n=n(x,»,1) (2.9)
T=1

In PROTEUS, the spatial computational domain is square, with ¢ and » each running from 0 to 1. Using
the chain rule for partial differentiation, the derivatives in the Cartesian form of the governing equations can
be replaced using the following expressions.

9 _, O 9

ax " xaE Ty

o _, 0., 2

S =t (2.10)
o _, 0., 8,2

o " e Ty Yo

In the above equations, and in those to follow, subscripts x and p, or ¢ and #, denote partial differentiation
in that coordinate direction. The only task remaining, then, is to develop expressions for the metric coef-
ficients &,, n,, etc. In differential form we can wrnite

df = &xdx + &y dy + &dt
dn = nedx + nydy + ndt
dr = dt

In matrix form this becomes

PROTEUS 2-D Analysis Description Governing Equations 13



d{ Cx gy 6[ dx
dn|=|nx n, nl|ldy
dr 0 0 1{ldt
Similarly,
dx Xg X, X dé
=y y, y|dn
dt 0 0 1] dr
Therefore,
& & [x % %]
Nx ny Nef = y{ yr, Ve
0 0 1 0 0 1
After taking the inverse,
fx éy é[ yq —xq xr}y‘t_yy’x‘t"]
M My n|=J Ve Xp YeXe — Xgp,
0 0 1 0 0 1/ J
where J 1s the Jacobian of the transformation,
_ A e g
a(xp) Nx Ny

This can be evaluated from the known physi

The metnic coefficients themselves are

14 Governing Equations

J= fx’7y - éy"x (2.11)

cal (x, y) coordinates by noting J = 1//-! and

_ Hxyp) _ X
J = Xghy = X,y (2.12)
Sx=Jy,
&y =—Jx,
Nx _JJ’; (2.13)
My = Jx;
fr == xréx _yréy

Ne=—XNx =Py
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Unless the physical coordinates (x, y) arc defined analytically as functions of the computational coordinates
(&, ), the metric cocflicients must be computed numerically.

2.4 GOVERNING EQUATIONS IN COMPUTATIONAL COORDINATES

Applying the generalized grid transformation of the previous section to equation (2.1) yields

Q.+ Qo+ Qi+ Egl+ it Frdy + Fny = By~ By = Fugy—Fyn,=0 (219

This equation is in chain-rule, or weakly conservative form. lLe., the conscrvation flow variables are used,
but the metrics appear as coefficients of the derivatives instead of inside the derivatives. Following Vinokur
(1974), the strong conservation law form can be recovered by first dividing by the Jacobian then adding and
subtracting likc terms. For example, the E, &, term becomes

ngx E¢, | ¢x
e[ 5] -+(F)
s 4

Doing this for all the terms, and rearranging, results in

Q E¢, + FE, + QE, En, + Fn, + Qn,
()=
T 14 n
\:P:V§X+FV€y] l:EV”x'*'FV’?y}
| ;_ —
s n
l él ’h ix nx
ORORCIRECIREY
. & My
—(F—Pv){<7>§+<—]—>n}=0 (2.15)

The last three terms, in braces, are called the metric invariant terms. By using the expressions for the metric
coefficients, given by equations (2.13), one can show that the metric invariants are identically zero. In two
dimensions, this is also true when derivatives are approximated by the finite difference formulas of Section
6.0.3 With the metric invariant terms eliminated, no metrics or flow variables appear as cocfficients, and the
strong conservation law form of the governing equations has been recovered.

Equation (2.15) can be rewnitten as

A A A A A
aQ oF oF OEy  OFy
oF _Tw TV 16
5 "ot Ton T ot T om (2.16)

where

s _Q
Q=7
E=LEe +Fe, + Q)

A
F=—(Eny+Fn,+Qn)

~|—

3 This is not necessarily true in three dimensions, however.
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A ) .
EV=7(EV5x+l‘V‘5y)

. 1
FV = 7 (Ey Mx + FV Vly)
Using equations (2.2a) through (2.2e) these can be expanded as

Q=<0 pu pv E (2.17a)

[ pusy + pvéy, + p¢,

(P“2 +p)ex+ Pw‘fy + puf,

17
P, + oV + p)E, + pve, @170)
| (Er+p)uds+ (Er+ pve, + Ep E:J

.
I

|-

- -

2punx + pvny, + oy,

u + + +
(pu” + p)ny +pumy + pim, 2.170)
pumx + (pv” + piny, + pvn,
| (Ex+ p)un + (E7+ pvm, + Ern

>
i
|-

[ 0 ]
1L frdet gl 2.17d
I Re | 1odit 1,8, @
| Bxlxt Byy |

[ o

L LTt Ty 2.17%)
J Rer 1'ch'lx"""yy'ly

Banx + By )

where
1
‘ Bx= utyy + VIxy = Pr, 9x
B, =ur,, +vr ~-L
y =y TV T Yy
In the viscous terms, the shear stresses and heat fluxes are defined exactly as in equations (2.3), except

the derivatives in the Cartesian coordinate directions must be evaluated using the chain rule. For example,

ou_ou,  ou
ax o xt 5, M

Note that F and F v have exactly the same form as E and fiy, but with ¢ replaced by ».
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3.0 TURBULENCE MODEL

As noted bricfly in Section 2.0, for turbulent flow the Reynolds stress and turbulent heat flux terms are
modeled using the Boussinesq approach.  An cffective viscosity is thus defined as p = u, + u,, where y, is
the laminar, or molccular, viscosity cocfficient, and y, is the turbulent viscosity coefficient. Similarly, an
effective second coefficicnt of viscosity is defined as 4 = 4, + 4,, and an effective thermal conductivity coef-
ficient is defined as & = &, + &,

The turbulent cocflicicnts must be computed using a turbulence model appropriate for the flow being
computed. In version 1.0 of PROTEUS, a generalized version of the algebraic eddy viscosity model of
Baldwin and Lomax (1978) is used to compute g, For wall bounded flows, (i.e., boundary layers), the
Baldwin-Lomax turbulence model is a two-layer model, with

(1 inner for In =W
o= (3.1
(“[)auter for Yn=>Yp

where y, 1s the normal distance from the wall, and y, is the smallest value of y, at which the values of g, from
the inner and outer region formulas arc equal. For free turbulent flows (i.e., mixing layers, jets, and wakes),
#e = (R)ouer- In the inner region, in addition to the Baldwin-Lomax model, an alternate expression first
presented by Spalding (1961), and later by Kleinstein (1967), is also available.

In a simple boundary layer analysis, with only one solid surface, the procedure for computing u, is rel-
atively straightforward. In a gencral Navier-Stokes analysis, however, any or all of the boundaries may be
solid surfaces. If both boundaries in a given coordinate direction are solid surfaces, the turbulence model
is applied separately for cach surface. An averaging procedure is used to combine the resulting two u,
profiles into one. If neither boundary in a given direction is a solid surface, the formulation for free turbulent
flows is used. In addition, values of p, are computed separately for both the ¢ and » directions. This results
in two complete turbulent viscosity ficlds. Another averaging procedure is then used to compute a single
value of u, at each point in the flow.?

3.1 OUTER REGION MODEL

The outer region turbulent viscosity at a given & or 5 station is computed from
() outer = KCcpp FKIewaake (3.2)
where K is the Clauser constant, taken as 0.0168, C,, is a constant taken as 1.6, and p is the static density.

The parameter F,,, is computed from

F

Ymaxt'max

Fyake = MIN s Vmax (3.3)
CorVay 5

max

where C,, ts a constant taken as 0.25, and

# 'This discussion is for the most general situation. When the flow is expected to be predominantly in one direction,
input parameters in the PROTEUS code should be used to specify that direction.
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Vdiffz lilmax_ I;Imm

where ¥ is the total velocity vector. For wall bounded flows, | Vv
equation (3.3) is the maximum value of

i 18 taken as 0. The parameter F,_, in

max

J/nial (1 _ e +) for wall bounded flows
Fya) = (3.4)

n ‘ Q | for free turbulent flows

and p,, is the valuce of y, corresponding to F,,,. For wall bounded flows, y, is the normal distance from
the wall. For free turbulent flows, two values of F,,, and y,,, are computed - one using the location of

|V
Vonax i the one finally uscd for computing p,, Frne., and y,.,. In equation (3.4), IQ‘ is the magnitude of the
total vorticity, defined for two-dimensional planar flow as

.. @s an origin for y,, and one using the location of | Vv ... The origin giving the smaller value of

(3.5)

The parameter 4 * is the Van Dricst damping constant, taken as 26.0. The coordinate y* is defined as

y+ _ Pwlen N TwPw

- [T - Ly yll

(3.6)

where u, = ./7,/p, is the friction velocity, 7 is the shear stress, and the subscript w indicates a wall value.
In PROTEUS, =, is sct equal to p,|Q]..

The function Fy,, in equation (3.2) is the Klebanoff intermittency factor, given by

C 6!
Fytep = [1 + B( —kieb I ) } 3.7)
yma.x

where B and Cy,, are constants taken as 5.5 and 0.3, respectively. This factor accounts for the exper-
imentally observed fact that, as the free stream is approached, the fraction of time the flow is turbulent de-
creases.

3.2 INNER REGION MODEL

3.2.1 Baldwin-Lomax Model

The inner region turbulent viscosity in the Baldwin-Lomax model is

(“l)inner =pl 2 | Q' (3.8)

where / is the mixing length, normally given by

+

I=rp(1—e M (3.9)
and « is the Von Karman constant, taken as 0.4.

A modified form of equation (3.9), proposed by Launder and Priddin (1973), may also be used. This
formula is most useful for flows with steep negative gradients of shear stress normal to the wall, such as
acceelerated flows or flows with suction. Their modified formula for /is
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+, 4\, ,t
I=xya(1-e” SR (3.10)
where

+ _ T _ “’Iﬁ|
T =TT
I»‘w‘glw
and nis a constant taken as 1.7.

3.2.2 Spalding-Klcinstein Model

The inner region turbulent viscosity in the Spalding-Kleinstein model is
(B Dinner = F‘lKe—KB[exu —l—xu’ - _é" (Ku+ )2] (3.11)

where

—_

NG
He VTulpw

Again, in PROTEUS, 1, is set equal to “wlﬁlw'

+
u

3.3 AVERAGING PROCEDURES FOR MULTIPLE BOUNDARIES

As noted earlier, if both boundaries in a given coordinate direction are solid surfaces, the turbulence
model equations are applied separately at each surface. It is assumed that the two inner regions do not
overlap. The outer regions, of course, do overlap, and an averaging procedure is used to combine the two
outer region u, profiles into one. For example, if the n =0 and n =1 boundaries are both solid surfaces,?
the two values of F,,,, at a particular ¢ station are combined using the following averaging formula:

F - (Fwake)lfl + (Fwake)zfz
wake fl +f2

Here (F,..), and (F,,,), are the separate values computed for the n =0 and n =1 surfaces using equation
(3.3). The parameters f, and f, are defined by

P ELRY
T\ Onh

(2D Y
f"(m»)

where n is a constant taken as 2.0, (y,), and (y,); are the normal distances to the n = 0 and n = 1 surfaces,
In

(3.12)

respectively, and D, and D, are the normal distances from the two » surfaces to the location of | V| max-

addition, the 3,/y,... value needed in equation (3.7) for Fy,, is computed for both n surfaces, and the mini-
mum is used. These values of F,,,, and Fy,,, are then used in equation (3.2) to compute (K)o

The averaging procedure described above computes a single u, profile from the two profiles that are
computed when both boundaries in a given coordinate direction are solid surfaces. We still must average

S An analogous procedure is used for solid surfaces in the ¢ direction.
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the two values that result from computing u, separately for both coordinate directions.$ Following Goldberg
and Chakravarthy (1987), this is done using the following formula;

e i + e lyn)s W)y + Gai (1)) (3.13)

M=
[T+ U] [0 + 00l

Here (u,), and (u,), are the separate values computed due to the presence of boundaries at ¢ = 0 and E=1,
and at n = 0 and 5 = |, respectively. If there is only one solid surface in the ¢ direction, (.), 1s taken as the
normal distance to that surface. If both ¢ boundaries are solid surfaces, (y,), is taken as the normal distance
to the closest one. If there are no solid surfaces in the ¢ direction, (p,), is the normal distance to the location

%

max OT | % m s described in Section 3.1. Analogous rules are used for W)z

of cither

3.4 TRANSITION MODEL

After p, has been computed using the procedure described in the previous sections, a transition inter-
mittency factor may be applied to simulate laminar-turbulent transition. The transition model is based on
one given by Cebeci and Bradshaw (1984) for boundary layer analyses, and assumes that a geometric leading
edge exists at cither ¢ = 0 or 5 = (. They report that the model is valid for adiabatic flows at Mach numbers
less than 5. In this transition model,

0 for x<x,
= (3.14)
You, forx>x,

where x is the distance from the leading edge, the subscript ¢ indicates a value at the start of the transition
region, and y,, is a transition intermittency factor given by

X

|
vr=1- exp’: —G(x — x,,)f o dx (3.15)

X, tr

In equation (3.15), , is the velocity at the edge of the boundary layer. The factor G is given by

3
U
G=2833x10"* = Re;j-“
v

where Re, = (4, x|v),, and v is the laminar kinematic viscosity at the edge of the boundary layer.

If we assume that, through the transition region, u, ~ (u,), and v ~ v, then equation (3.15) may be re-
written as
2
yp=1- exp[ ~8.33 x 10“‘Re2f6( .. 1) ] (3.16)

Xer

To implement cquation (3.16) in PROTEUS, we replace x/x, with Re,[Re, , where Re, is defined as

|V | max D
Rex‘_—%

mex 15 the maximum total velocity magnitude at the current

For flows predominantly in the ¢ direction, , v &
Vi=|v

max 10 the leading edge at £ = 0, and v is eval-

¢ station, D is the distance from the point where

& As noted earlier, this discussion is for the most general situation. When the flow is expected to be predominantly
in one direction, input parameters in the PROTEUS code should be used to specify that direction.

20 Turbulence Model PROTEUS 2-D Analysis Description



uated at the point where | V‘ = l 14 An analogous definition of Re, is used for flows predominantly in

the » direction.

max’

35 TURBULENT VALUES OF 2 AND &

The turbulent second coefficient of viscosity is simply defined as

2

}.1=——~§~;tl 3.17)

The turbulent thermal conductivity coefficient is defined using Reynolds analogy as

Cplt;
Pr,

k= (3.18)

where ¢, is the specific heat at constant pressure, and Pr, is the turbulent Prandtl number. In PROTELUS,
the turbulent Prandtl number may be treated as constant, or as a variable using the following formula

(Wassel and Catton, 1973):
CPm
c | —expl — -——/—
ol
Pr, . Pr3 !

"~ CpnPry | eef G \
P\ " Prudu

(3.19)

Here Cp,), Cp,y, Cp,y, and Cpy are constants taken as 0.21, 5.25, 0.20, and 5.0, respectively, and Pr, = c,u [k,
is the laminar Prandtl number.
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4.0 TIME DIFFERENCING

The governing equations are solved by marching in time from some known set of initial conditions using
a finite difference technique. The time differencing scheme currently used in PROTEUS is the generalized

scherne of Beam and Warming (1978). The time derivative term in cquation (2.16) is written as

I A0 Lt 6, AQ™!

ot At 1+0, ot + 1+8, ot 1+8, At

+ 0[(01 —1- oz)m + (Af)z]

A 0,Ar 3AQY)  Ar QT 0y A 1
n_ 71 T 2 n—1 4 2 3
i S s i ek FU R AQ" 0 (0] : 02)(A1) + (A7) @.1)

where A(A)" = (}”*‘ — 6" The superscripts n and 7+ 1 denote the known and unknown time levels, re-
spectively.

The parameters @, and 0, determine the type of time differencing scheme used. Some of the methods
available with the above formula are given in the following table.

0, 0, Method Truncation Error
0 0 Luler explicit O(AT)?

0 —1/2 I eapfrog explicit O(AT)?

1 0 Lzuler implicit O(A7)?
1/2 0 Trapezoidal implicit oAy

] 1/2 3-point backward implicit O(A7)?

Note that even though the genceralized time differencing formula includes explicit methods, the PROTEUS
code assumes an implicit method is being used. Note also that the truncation error listed in the table is the

error in the cxpression for AQ. The overall numerical method used in modelling the differential equations
requires AQ"/Ar, so the order of the overall method is this truncation error divided by Ar.

Solving equation (2.16) for 6(}/61— and substituting the result into equation (4.1) for 6(Aé")/61 and

oQr/a7 yiclds
A= A < OAEY) | oAF ) Ar ( o, oF" )

140, ¢ an T1+06,\ 3 T oy
0,ac [ AAE})  A(AF) A [ OEL  oF
trro,\ e T e JtTHe\ aE o
Y, \n—| 1 2 3
i AQ™ + 0[(01 -5 02>(A~:) + (A7) (4.2)
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5.0 LINEARIZATION PROCEDURE

5.1 _INVISCID TERMS

Equation (4.2) 1s nonlinear, since, for example, AE" = E™! — E* and the unknown E**! is a nonlinear
function of the dependent variables and of the metric coefficients resulting from the generalized grid trans-
formation. The equations must therefore be linearized to be solved by the finite difference procedure used
in PROTEUS. This is done by expanding each nonlinear expression in a Taylor series in time about the
known time level n. Letting G represent any nonlinear expression,

n+l _ ~n aG " 2
G =G+ or At + O(A7) (5.1)
T

where

oG _0G % _oG_O%eY oG e oG OEr
dr  dp Ot dpuw It O(pv) Ot oy Ot

Note that for linearization purposes only the metric scale coeflicients have been assumed to be locally inde-
pendent of time. Note also that for this linearization procedure to be second-order accurate, 4G/dr (and
therefore dp/dr, d(pw)/dt, ctc.) need only be first-order accurate. Using forward differences, then, so that

ap n pn+1 _pn
("a?) =Tar T o8

n

Ap
At

+ O(A7)

etc., equation (5.1) becomes

ntt _ o f G N\ n G \"\, n 3G ' oon o 3G \"\pn e
G"'=¢ +( o )Ap +( 3o ) Alp) +( 3] ) A(pv) +< 6ET> AET+ 0AT)  (5.2)

As an cxample the 3(pwv¢))/d¢ term from the x-momentum equation (part of the second element of
O0E/9¢&) will be used. The nonlinecar part of this term is (puv)™!. Rewriting this in terms of the dependent

variables,
n+1
oy [ 2200

Using equation (5.2), this is lineanized as
(o)™ = ()" = () "(e™" = o) + V" [(p)™" = ()" 1+ (W)™ — ("] + O(AT)®
which can be rewritten as

Alpw)" = — ()" Ap" + V' A(pw)" + 1" A(pv)" + O(AT)*

This linearization procedure, when applied to the entire AE* term in the vector equation (4.2), can be
written as
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AE" = (@) AQ” + O(A1)? (5.3)

Q

where (afz/a("))n is a Jacobian coefficient matrix (not to be confused with the Jacobian J of the gencralized

grid transformation.) A similar equation can be written for AF".

Each term in each element of E and F , given by equations (2.17b) and (2.17¢), is lincarized using the
above procedure to generate the elements of the Jacobian coefficient matrices BlAi/O(A) and ai‘/a(). (Note
that 9E/8Q = JOE/3Q.) When this is done E/3Q can be written as

¢ éx ¢, 0
ap ap ap ip_
of | 2 T STy gy o * (549
AT dp op op ap :
aQ —a—p—fy—-vfl fo+————a(Pu) éy ¢+ N +V§y+——‘a(pv) fy ﬁ.;‘fy
ap op ap ap
'ﬁ(&“g;) /Kx+ﬁ565‘ ﬁ%+¢k&;§ Q+ﬂ(l+5§;>

where f; = u¢, +v{, and f, = (E; + p)/p. The Jacobian matrix ai‘/a() has the same form as 6[:2/0(}, but
with ¢ replaced by #.

The linearized pressure terms have deliberately been left in terms of dp/dp, dp/d(pu), ctc. The ex-
pressions to be used for these derivatives depend on the equation of state. Thosc currently built into the
PROTEUS code, for a perfect gas, are presented in Section 5.3.

5.2 VISCOUS TERNMIS

The nonlinear viscous terms in equation (4.2), involving Al::’;, and AI’E";,, must also be lincarized. To do

this, the elements of E, and F,, given in equations (2.17d) and (2.17e), must first be rewritten in terms of
the dependent variables, and with derivatives in the Cartesian directions transformed to derivatives in the
computational directions using the chain rule. When the resulting cxpressions are substituted into equation
(4.2), mixed second derivatives appear as well as sccond derivatives in a single coordinate direction. The
mixed, or cross, derivative terms would lead to considerable complications in the implicit numerical solution
algorithm if they were linearized using the procedure presented in Section 5.1. The two types of second

derivatives are thus treated differently, and E, and F,, are written as

E,=E, +E,
Aon oAl (5.5)
Fy=F, +Fy,

where E, and F,, only contain derivatives in the ¢ and » directions, respectively, and E,, and F,, contain

derivatives in the other direction. The fully expanded expressions for fiyl, fiyz, etc., are fairly long, and
therefore are presented in Appendix A.
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5.2.1 Non-Cross Derivatives

Examination of the elements of fiyl in equations (A.2a) through (A.2c), and (A.2e), shows that every
term has the form fg,, where gis a function of the dependent variables, and fis a function of u, 4, k, and/or
the metric coefficients. Expanding in a Taylor series about time level 7 gives

o fgs) 1"
(fg)"" = ()" + [%fg—i} At + O(a)’

For linearization purposes only, we will assume fis locally independent of time. We can thus write

n n a §
o™ = Uz + /" 55 [—55 ] At + O(87)

where

Jg B dg 0Op dg  O(pu)
4t 8p 9t  dpw) Ot

Therefore

n n n 0 ag 6g n
(fg;) +l=(fg§) +/f a—é[EAp+WA(pu)+...j| +()(A1)2

As with the inviscid terms, the linearization procedure for the entire AE;, viscous term in equation (4.2) can
be written as

A

A Ey, \" A 5
AEy, = - AQ" + O(A7) (5.6)
0Q

A similar equation may be written for AIA"’;,X. The Jacobian coefficient matnix aﬁyl/a() is

0 0 0 0
A
S O T 2(L) - 2(4) 0
A A $34 Xy
ok, 1 aQ A AN 57
N Re o '
QT En ) 2(L) 2(4) 0
A Xy Yy
oQ /a A oF NP
N I A
OEy, Ky, Oky, 2 ( aT )
A A A % 2z \ A
0Q Ja 0Q /4 0Q /a3 0 \ Oy
L .

where
= Qu+ D+ g

XX
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2 2
ayy = nE+ Qu+ DY

ay, =+ )5,

k 2 2
a():[)—rr(ix"*_iy)

L) a2 (2) a2 ()
- XX X
66 21 g yog e
) ey (£) - (2)
xy
N P AT A Y
a/E\:V d u? y? d [ w a7
=—dyy— — })—a,, —( — 2x + —
o) e () o (5) e (50 (4)
aE,,l B 51':1/, . 3 ( o7 )
= A 0
66 42 Q 21 o d(pu)
Ey \ [ 9Ey 2 ( oT )
A == ~ 0 Ax
0Q Ja3 cQ /3 98 \ dpv)

Like the pressure terms discussed earlier, the form of the temperature terms will depend on the equation
of state being used. Those currently built into the PROTEUS code, for a perfect gas, are presented in
Section 5.3.

Note that in cquatnon (5.6) the denivatives appearing in the Jacobian coefficient matrix GLV /6Q are also
to be applied to the AQ" appea.rmg outside the parentheses. For example, the element in the second row

and second column of 6EV1/6Q, which corresponds to the A(pw) term in the x-momentum equation, is
a,,0(1/p)/0¢. For this term, the notation used in equation (5.6) means

oE, \" 5
= AQ Urx A(pulJy"
Q 22 t a‘f ( )

- Pu//)
XI a p

The Jacobian coefﬁment matrix for the remaining non-cross derivative viscous terms, GFV /OQ has the

same form as 6Ey /aQ but with ¢ replaced by ».

5.2.2 Cross Derivatives

As stated earlier, linearizing the cross derivative viscous terms in the same way as the remaining terms
is very complicated within the framework of the implicit numerical solution algorithm used in PROTEUS.
They are therefore simply lagged (i.e., evaluated at the known time level » and treated as source terms.)
As noted by Beam and Warming (1978), this does not lead to a formal accuracy loss since
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A

AE], = A" + 0(a7)?
M fn—1 2 (3:8)

AF, = AFY! + 0(ar)

53 EQUATION OF STATE

The expressions to be used for dp/dp, dT|dp, etc., which arise from the linearization procedure, depend
on the equation of state. The equation currently built into PROTEUS is for perfect gases, and can be
written as

p=tr— | Er= 5 (s ++)] (5:9)
or, in terms of temperature, as

T=C—l‘l[%——é—(u2+v2)] (5.10)

With this equation of state, then, the appropnate derivatives are
L L@ ) (5.11a)
58‘:’”) =—(—u (5.11b)
-a%%)—=—(y — 1w (5.11c)
% —y—1 (5.11d)
i}:-clv[i:zl——},—(u’wz)] (5.12a)
a?,I«) - (5.12b)
a(ap?;) - (5.120)
—6"-52- = Cvlp (5.12d)

If constant stagnation enthalpy is assumed, as discussed in Section 2.2, the appropriate equation of state
is

y—1 ,
p=15 p[hT——; iyt +v2)] (5.13)
and the temperature becomes
I 1, 2,2
T=—E;[hr-——2—(u +v )] (5.149)

With these equations, the derivatives of p and T with respect to the dependent vanables are
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P y-1
- [hr+—é—(u2+v2):l (5.15a)

dp 4
ap y—1
S =T (5.15b)
dp y — 1 .
Hov) e (5.15¢)
oT 1 2, .2
E—p_ = ———Cpp (" +v79) (5.16a)
aT u
(o) - —Cp—p‘ (5.16b)
T _ v
v | P (169
5.4 LINEARIZED GOVERNING EQUATION
The linearized form of equation (4.2) can now be written as
JAY 9 A r noA £ nooA
AQn + 187 _5_ GE AQn + _8_ af AQ”
oE, \» aF, \n
6 A V. A vV, n
i el L] aQ” 4+ 9 -] aQ” =
1+0, ) o 50 an 0
A A Ay 2 n
At g[i_*_ﬂ n+ At aE‘Vl " OPVl
1+0, ¢ on 1+0, a¢ on
LU +0)Ar [ OEy, N oFy \"  0,ar [ Ok, OFy A\
I+0, a2 on [+6, \ 2 ' on
0 A 1
o A ‘+0[(01 -4 - 0,)@89% 05 - 06 (Aﬂ (5.17)

There are a couple of things that should be mentioned about this cquation. First, this equation is in
so-called “delta” form. We will actually be solving this equation for AQ" and recovering Q™' from

6"*‘ = AQ” + é" . And sccond, in the coefficients of the cross derivative viscous terms the time differencing
parameter 0, has been replaced by 0;. For sccond-order time differencing (i.c., if 8, =0, + 1/2), 0, should
be st equal to 6,. For first-order time differencing, however, 8, can be set equal to zero without losing
accuracy.
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6.0 SPACE DIFFERENCING

To solve equation (5.17) an evenly spaced grid is defined in the computational (£, ) coordinate system.
Spatial derivatives are then approximated by finite difference formulas. First derivatives in the ¢ direction
are approximated using the following variably centered formula.

(755_ )i.j =8¢ f,;= 3 [ =0 i+ Ce= DS = afioy ;] (6.1)

where = 0 for first-order forward differencing, « = 1/2 for second-order central differencing, and « = 1 for
first-order backward differencing. All of the PROTEUS cases run to date have used central differencing.
The subscripts i and j represent grid point indices in the ¢ and » directions. The computational grid spacing
A¢ is constant, and equal to 1/(V, — 1), where N, is the number of grid points in the ¢ direction. A similar
formula is used for first derivatives in the » direction.

The non-cross derivative viscous terms in the ¢ direction in equation (5.17) all have the form
0 d
5 [ 3 (gAQ)]

where Q represents one of the elements’of 6 Using central differences this is approximated by

o [0 .
= _Al?z {fir1/2.9:@BDis112, — fim1/2, 0 (8BD)i 2, 1}

= i fEAD) ; — (82Q); /]

(A&
—f,-_llz,j[(gAQ)i,j - (gAQ)i—l,j]}
= 2(;‘:)2 {(-/;,j + f,:+]’j)[(gAQ)i+1,j - (gAQ)‘nJ]

— foj+ Jio, JUEAD) j— (8AD):1 1}
1
- —ZEAT)Z— {(fierj+ [, )BAD) i
—(fimj+ 2£ 5+ fim1, )(EAD);,
+ (St firr, )EBDisr, ) *2

A similar formula is used for second denivatives in the » direction.

Cross derivative viscous terms are evaluated using the following central difference formula.
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V(/" .,5' ) = 'ST"%/-'S’I ‘g);_’;
N S |

1 . . . .
TTae i A% 8y L 50 )

1

“IAZAR [‘/1:+1,j(gi+l.j+l _ng,j—])

Jea i e~ &imy 1))

(6.3)

Note that this formula is only needed for the source terms, since the viscous cross denivative terms are

lagged.

When first denvatives are needed normal to a computational boundary. such as for Neuvmann boundary

conditions, cither first- or second-order one-sided differencing is used. The first-order formula at the

boundary is

<

/ 1 .
( : )1,/2 Xé—(fz'j—f‘-/)

Q)

and at the ¢ = | boundary,

ar 1
(% >ij - _A? (f;\‘pj' B fN, —l,j)

The second-order formula at the ¢ = 0 boundary is
of 1
<§>1 j— Sar (T3 tANh - f)
and at the ¢ = | boundary,
of L,
( E3 )M ;7 2ag Usi—2i= -+ 3,

Similar formulas are used at the y - 0 and » — | boundaries.

¥

=10

(6.4)

(6.5)

(6.6)

6.7)
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7.0 BOUNDARY CONDITIONS

Choosing boundary conditions is perhaps the most important step in solving a flow problem with
PROTEUS. Since the equations being solved at interior points are the same for every problem, the
boundary conditions are what determines the final flow field for steady flows.

With the difference formulas presented in Section 6.0, N,, boundary conditions are required at each
computational boundary, where N, is the number of cquauons being solved. Note, however, that this is
a numerical requirement, not a mathematical one. For example, for one-dimensional Fuler ﬂow N,=3.
However, charactenstic theory shows that, mathematically, only two conditions may be specified at a  sub-
sonic intiow iadnr aad ooly one at a subsonic outflow boundary (Pulliam, 1986a). Some sort of ex-
trapolation is typically used for the additional numerical boundary conditions.

A variety of boundary conditions are built into the PROTEUS code, including: (1) specified values
and/or gradients of Cartesian velocities ¥ and v, normal and tangential velocities V, and V,, pressure p,
temperature T, and density p; (2) specified values of total pressure p;, total temperature 7, and flow angle;
(3) linear extrapolation; and (4) spatial periodicity. Another useful boundary condition is a “no change from
initial condition” option for u, v, p, T, p, py, and/or T,. Provision is also made for user-written boundary
conditions. The boundary conditions may be steady, unsteady, or time-periodic. The exact combination
of boundary conditions to be used will depend on the problem being run.

The boundary conditions in PROTEUS are treated implicitly. They may be viewed simply as additional
equations to be solved by the ADI solution algorithm. And, in general, they involve nonlinear functions
of the dependent variables. They must therefore be linearized using the procedure described in Section 5.0.
The following sections describe this linearization for the general types of boundary conditions currently built
into PROTEUS.

7.1 NO CHANGE FROM INITIAL CONDITIONS, Ag=0

This boundary condition simply sets the boundary value of the function g equal to its initial condition
value. It can be written as

—g"=0 (7.1

In general, g can be a nonlinear combination of the dependent vanables 6 Linearizing g using the proce-
dure descnibed in Section 5.0, we get

g
gt =g"+ ( > AQ" + o@an* (7.2)
2Q
Neglecting the O(At)? lineanzation error, the linearized form of equation (7.1) can thus be written as
a n
( 4 ) AQ" =0 (7.3)
9Q
7.2 SPECIFIED FUNCTION, g=f
A specified function at a boundary can be written simply as
gh=s (7.4)
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where g is the function being specified and f'is the value being specified. Note that fcan vary along the
boundary, and can be time-dependent. Using equation (7.2) and neglecting the lincarization error, the

linearized boundary condition becomes

ag \" »

( A ) AQ =f-¢" (7.5)
Q

7.3 SPECIFIED) COORDINATE DIRECTION GRADIENT, d¢/d¢ =f

A specified gradient of a function in a coordinate direction can be wnitten as

3 n+l1
(a_i_> —f (7.6)

where g is the function whose gradient is being specified, f'is the specified value, and ¢ is the coordinate
direction ¢ or ». Note that fcan vary along the boundary, and can be time-dependent.

The linearized form of g is given by equation (7.2). The linearized form of equation (7.6) can thus be

written as
og\" 2 og \" anl|_ 2
( 3 ) "3 [( 2Q ) a0 }H e Y

Replacing differential operators with difference operators and neglecting the linearization error, the
lineanized boundary condition can be wrntten as

og \" An n
S —— ] AQ =f—6,2 (7.8)
"[( 2Q > } i

where 8, represents the one-sided difference operator to be used at the boundary. Options are available in
PROTEUS to use either first-order two-point or second-order three-point differencing.

Note that this boundary condition is a specified value of the derivative with respect to the computational
coordinate, not with respect to the physical distance in the direction of the computational coordinate.
Following Korn and Korn (1968), and using the properties of the generalized coordinate transformation, it
can be shown that for the ¢ direction the two derivatives are related by

og J og

ds,  J Fr
¢ \,’11‘*”7}2: J

Similarly, for the » direction,

%8 J__ %

s,/ 19
5'1 éi"'f)z) n

If the valuc f= 0, of course, the two derivatives are equivalent.

7.4 SPECIFIED NORMAL DIRECTION GRADIENT, Vg.n=f

A specified gradient of a function normal to the boundary can be wntten as
vl =7 (7.9)
where g is the function whose gradient is being specified, fis the specified value, and n represents the unit
vector normal to the boundary. Note that f can vary along the boundary, and can be time-dependent.
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For illustrative purposes, assume we are specifying a gradient normal to a constant ¢ boundary. Then

\%
|V

')

- | - 1 =
n= =T xl Ty

e

m=\/§i+§§

where

Equation (7.9) can then be wntten as

Lt 1 gt =7 (7.10)

m

Using the chain rule to expand g7*' and g+,

x

+1 +1 n+1
g =g bt gy nMx

+1 +1 +1
g =gt g
Substituting into equation (7.10) and rearranging,

+1,,2 22 +1, .
g; (Ex+<+ g:; (Exnx + fy"’y) =mf

Solving for g;7°!,
ag n+l1 f 1 ag n+1
(0—5> _%__jn_{(éxnx_*_‘fyny) E (7.11)

Now, in order to incorporate this equation into the ADI solution procedure used in PROTEUS, the
dg/éy term in equation (7.11) is lagged one level, and evaluated at time level 2 instead of n+ 1. Strictly
speaking, this introduces an Q(Ar) error into the solution. In practice, however, the actual error will depend
on ihe degree of nonorthogonality of the coordinates near the boundary. For orthogonal coordinates no
error is introduced.

Using equation (7.2), and introducing difference operators and neglecting the lineanization error, we can
now write the lincanzed boundary condition as

3 " An n
5, < (f ) A" | =L - L En+ Enyog" — 858 (7,120
2Q m

where 8, represents the one-sided difference operator to be used at the boundary. Options are available in
PROTELS to use cither first-order two-point or sccond-order three-point differencing.

Specifying a gradient normal to a constant 5 boundary is done in an exactly analogous manner. The
resulting equation is

dg oA n / 1
6’1 ( " ) AQ =m T s+ rl‘yéy)éggn - 6r,gn (7.12b)
aQ m

where

/2 2
mz\nx+ny

7.5 LINEAR EXTRAPOLATION

Lincar extrapolation from the two adjacent interior points is also available as a boundary condition.
At the & = 0 boundary, where i = 1, this can be written as
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1 1 1
gt -2t v gl =0 (7.13)

Note that this is equivalent to setting (92g/0¢2),,, = 0. Using equation (7.2), we can writc the linearized
boundary condition as

og " oA N dg § N og " n n n n
A AQ; -2 A AQH»I + A AQ[+2 =—g + 2g,-+1 — 82 (7.14)
0Q /i aQ Ji+i 0Q Ji+2

Analogous extrapolation boundary conditions can easily be written for the remaining boundaries.
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8.0 SOLUTION PROCEDURE

8.1 ADIALGORITHM

The govemning equations, presented in linearized matrix form as equation (5.17), are solved by an alter-
nating direction implicit (ADI) method. The form of the ADI splitting is the same as used by Briley and
McDonald (1977), and by Beam and Warming (1978). Although the split cquations can be developed in
more than one way, in this discussion the approximate factorization approach is used.

Letting T HIS(5.17) represent the left hand side of equation (5.17), we can write
A Yy A A, n
0.8 | o [ o %y a [ aF Oty A
vl Bl Bl R md (s wir AQ" (81
2 Q  9Q

LHS(S5.17) =< I+

where I represents the identity matrix. Note that in this equation, using the 3/0¢ term as an example, the
notation used is meant to imply

N AN
A OE E oK
d JE v A d JE A A
Fa S u. AQ=—7| —AAQ- ~ 8Q
oQ  0Q oQ 0Q
The term in braces in equation (8.1) can be factored to give
Al n A k)
0,A g OEy 6,A F Fy
LS = | 14— 2 [ & _ P A ) et W Y WP
1+0, 9¢ 2Q 20 140, 0n 30 20
/ n N2 4 Oi} ; & 0% §
M o ek nm oY o [ oF T ) A (8.2)
( i+ HQ Oé J/\ A an A N
\ / 2 OQ \ OQ (J()

The last term represents the splitting error.  Note that, since AQ" = O(Ar), this term can be neglected
without affecting the overall time accuracy of the algorithm, even when second-order time differencing is

used.
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Equation (5.17) can thus be rewritten in spatially factored form, and, neglecting the temporal truncation
and splitting error terms, becomes

A n R A n

I+ 0,Ax Ka oF 3 ) %8 I 0,Ar 3 | or ok, A(/,\Q" B

I+ 02 6{ A A 1+ 62 a'l N A -

0Q 3Q aQ  4Q
AT aﬁ + ai:‘ n + AT OEVI 0FV1 n (1 + 03)AT 0[‘:!/2 al“V.’. n
T+6, \ a¢ ¥ oy [+6,\ oz "oy | Y Tive, 3z Ty
A A n—1
_ 03A’t 6EV2 " aFV2 n 62 A(l\)n_l (83)
T+6, \ 2 T oy [+0,

Equation (8.3) can be split into the following two-sweep sequence.

Sweep 1 (¢ direction)

A% OIAT a a/\‘ n A« OIAT 15) al‘:Vl § %
< A — Z —
AQ + 175 %2 (66 Q=715 ¢ 0 AQ

__Ar i+i n+ At aEVl + aFVl 8
1+6, ¢ Oon 1+6, a& on

A A A A
1 +8)A JE JoF noogoA JoF oF n—1 0
+ ( 3) T ( VZ + VZ _ 3 T :/2 + VZ + 2 A(A)n—l (843)

Sweep 2 (n direction)

AN
A 0 A T n 0 A aFV " A N x
AQ A O [ ) A | 5T 0 L) aQ" [=a0"  (3.4v)
1+86, oy 20 140, ony 20

In the above equations, Q represents an intcrmediate solution to the governing equations.” It should be
noted that in PROTEUS, physical (i.e, n+ | level) boundary conditions are used during the first ADI
sweep. This introduces an O(A) error in 3Q/dz on the boundary for unsteady flows, but no crror for stecady
flows. This point is discussed in detail by Briley and McDonald (1950).

A

7 The notation here is somewhat inconsistent. The quantity AQ" = Q™! — Q" but AQ" = Q' — Q", not Q7+ — Q.
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Applying the spatial differencing formulas of Section 6.0 results in

Sweep 1 (¢ direction)

A 0,At oF oE oE " As
I Lol S B A 2 — 1 A l—a AQ
8+ (aé ); QL +( )( aQ ) Qf +( >( aQ) Qi

O [ QL Uy 24 0 A+ k00 ] -
(1+0,)2(A0)
At At A AN
~ 1o (6§L+6 l~) e (8,Ey, +6,Fy)
(1 +0;)Ar AN 0,47 A A n—l 0, Al
Tro, ((5§EV2+6,,FV2) “Tro (8,Ey,+6,F,) + g, 80 (8.5a)

Sweep 2 (y direction)

O ¢ 0 ok ' oF oF A
/ -« x — A l—« AQ’
AQ/ + (I +0,)An ( 06 )j-— AQ} l+(2 ])( 6Q )j Qj + ( )( aQ )j+1 Qj+1
0,A1 A
0+ 9])2(/3,7)2 [ + 580 = ooy + 26+ )81 8Q) + (5 + [0 8418Q0 ] =
2
2Q’ (8.5b)

The subscripts i and j represent grid point indices in the ¢ and 5 directions. For notational convenience,
terms without an explicitly written i or j subscript are understood to be at i or j. In the viscous terms on

the left hand side, f is the coefficient of /3¢ (or d/dy, depending on the sweep) in the 6Ey /0Q (or
/6Q) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 3/3¢ (or 8/dn)

in the 6EV1/6Q (or oF v /6Q) Jacobian coefficient matrix. Equations (8.5a) and (8.5b) represent the two-
sweep alternating direction implicit (ADI) algorithm used to advance the solution from time level
nton+ 1.

8.2 MATRIX INVERSION PROCEDURE

8.2.1 Non-Periodic Boundary Conditions

The complete set of algebraic equations for the first ADI sweep with non-periodic boundary conditions
can be wntten in the following block matrix form.®

8 Although this discussion is written for the first ADI sweep, an exacly analogous procedure is followed for the
second sweep.
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A« .,

B, € A AQ, S)
~ A x

A, By G AQ, S,
JAg,

A; By G AQ; S;

. .= . (8.6)

. 5 .

Ay -2 By o Cy A?N, -2 Sw, -2

Ay, 1 By 1 Gy AQ//\V,;—I S, -1

Ch, Al vl AQw v,

These equations result from the application of equation (8.5a) for i = 2 to N, — 1, with boundary conditions

added at i =1 and i = N,. The parameter Aé' is the N, -clement vector containing the unknown dependent
variables; A, B, and C are the N, xN,, coefficicnt submatrices at i — 1, i, and i + 1, respectively; and S is the
N, element subvector containing the explicit source terms. Also, A’, B, and C’ are the coefficient sub-
matrices and S’ the source term subvector for the boundary conditions. A variety of boundary conditions
may be used. They are described briefly in Section 7.0, and in greater detail in Volumes 2 and 3.

Note that the equations at the boundaries may contain coefficients at the boundary point and the two
adjacent interior points. This occurs, for example, when extrapolation or second-order gradient boundary
conditions are specified. As wrtten, therefore, the coefficient matrix in equation (8.6) is not block

tridiagonal. However, A{ can be eliminated by multiplying the second row of the matrix by A| C;' and
subtracting from the first row. C’y can be eliminated in a similar manner. Doing this, we define

B, =B — A} C'A,
C,=C} — A1 (7B, (8.7)
S, =S8 —A1C3'S,
and
Ay, = AN, —Cy, AE:_1BN1 -
By, = By, — Cy, A% 1C, 1 (8.8)

Y < ’ —1
Sy, =S — Cv Ay <1Sn, 1
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The set of algebraic cquations solved during the first ADI sweep can now be written as

r - r -
Ax
B, C AQ, S,
A, B G AQ, S,
A%
A3 B3 C3 AQ3 S3
. S P (8.9)
Ay 2 By 5 Cy A?N, -2 Sy, 2
Ay o1 By Gy AQ,AVl -1 Sy, 1
Ay, By AQy, | Sy,

Since the coefficient matrix is now block tridiagonal, the equations can be solved using the block matrix
version of the Thomas algorithm (e.g., see Anderson, Tannehill, and Pletcher, 1984). The procedure can

be summarnized as follows:

1. Define D, = B,.

2. Compute E, = D;!'C, and Aéi = Dy'S,.

3. Fori=2to N,, compute
D;=B;— AE,_,

E,=D;'C
AQ: =D;'(S,— AAQ, )
(Actually, E, is only needed for i=2to N, — 1).
4. Then, set Aé)vl = Aé’Nl .
5. Finally, fori= N, — 1 to 1, compute AQ = Aé; — E‘A(A),H.

In the PROTEUS code, in step 2 E,; and A(A)’l are actually obtained by solving D\E, = C, and

D,Aé} = 8§, using LU decomposition of D. A similar procedure is used to compute E, and A(A),' in step
3.

8.2.2 Spatially Periodic Boundary Conditions

In computational coordinates a spatially periodic boundary condition in the ¢ direction may be repres-
ented as shown in Figure 8.1.°

9 As in Section 8.2.1, this discussion is written for the first ADI sweep, but an exactly analogous procedure is followed
for spatially periodic boundary conditions in the second sweep.
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Figure 8.1 - Spatially periodic boundary condition.

The grid points along the i = 1 and i = N, lincs are “similar” in the geometric sense, and have the same

flow solution. Thercfore, for a spatially periodic boundary condition in the ¢ direction, Q, Q,‘,l

To implcmcm this boundary condition, an additional set of points is added at i=N,+ 1, setting

QN’ = Q2 This allows us to use central differencing in the ¢ direction at i = N,, computing the coefficients
in the same way as at the interior points.
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The resulting sct of algebraic equations will consist of N, — 1 equations (for i=2to N, with N, + 1
unknowns. The block coefficient matrix thus has N, ~ 1 rows and N, + 1 columns, as follows:

_ s
i 1 aQ; _ -
A%
A B G A(A)z S
Ay By G AQ, S4
L] - = L] (810)
. /\: L]
Ay 2 By o Cy A?N, -2 S, -2
Ay -1 By 1 Cy AQ/[\V, -1 Sy, -1
Ay, By Cy AA?N, Sw,
- - AQNl-fl B N

These equations result from the application of equation (8.5a) for i=21to N,. As in the previous section,

the parameter AQ" is the N, -element vector containing the unknown dependent varables; A, B, and C are
the N, x,, coefficient submatrices at i—1, i, and i+ 1, respectively; and S is the N, -element subvector
containing the explicit source terms.

Since 61 = (A)Nl and 62 = (A),\,l .1, equation (8.10) can be rewritten with N, — 1 unknowns as:

- . -‘ — -
B, G Ay AQ, S,
N
Ay By G A(Ab S;
A; By C AQ; Ss
. A P 8.11)
L] A: -
Ay —2 By o Gy A?Nl -2 S, -2
Ay -1 By Gy AQ//:/, -1 Sy, -1
Cy, Ay, By || AQy Sy,
L | i |

An efficient algorithm to solve this system can be derived that is similar to the Thomas algorithm for
block tridiagonal systems. The procedure can be summarized as follows:

1. Define D,=B,and F,=C, .

2. Compute E, = D;IC,, G, = D;'A,, and AQ; = D;'S,.
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3. Fori=3to N,— I, computec

D; =B, - AE, ,
E =D;'C,
F;=- Fi—lEi—l
G;=-D'AG,,

A - A
AQ; =D; (S; - AAQ))
4. Compute
Gy 1= D;:_1(C,~l—1 Ay, Gy, 22)
FNl -17 f’hvl - FN, —ZEN, -2
Ny —1

v, =By — Z FG,

N -1

A , -1 N ,
AQy, =Dy | Sy, - Z FAQ;

5. Then, set Aé,.,l = Aé’,ﬁ.
6. Compute AQy, ., = AQ'Nl o Gy, 2AQy,.
7. Finally, for i= N, — 2 10 2, compute AQ = Aé,’ - E,A(A),,l — G,A(A}Nl.

In the PROTEUS code, in step 2 E,, G,, and A(A); are actually obtained by solving D,E, = C,,
D,G,=A,, and DZAf); =S, using LU decomposition of D. A similar procedure is used to compute E,
G, and A(:),’ in step 3, and Gy, _, and A(A)’Nlin step 4.

8.3 UPDATING BOUNDARY VALUES

8.3.1 Non-Periodic Boundarv Conditions

With the ADI algorithm described in Section 8.1, if gradient or extrapolation boundary conditions are
used for the first sweep, the boundary values from the first sweep must be updated after the second sweep.
This point is easiest to illustrate by looking at the following figure.
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Figure 8.2 - Updating boundary values for non-periodic
boundary conditions.

In Figure 8.2, a 5x5 grid is shown in computational space. The triangles represent grid points at which
the intermediate values Q' are computed during the first ADI sweep. These include the boundary points

at £ =0and &= 1. The circles represent grid points at which the final values Q! are computed during the
second ADI sweep, including the boundary pointsat n =0and n = 1. If gradient or extrapolation boundary
conditions are used during the first sweep, so that the boundary values depend on the interior values, then
the intermediate valucs at & = 0 and & = | must be updated after the sccond sweep to be consistent with the
final values at the interior points.

To do this, after the second sweep the boundary condition equations are rewritten and solved at the ¢
boundaries. At the ¢ = 0 boundary,

N N
BIAQT + C7AQ) + ATAQS = SY (8.12)

The subscripts refer to the value of 4 the index in the ¢ direction. This cquation is applied for
j=2to N,—linthey direction. For notational convenience, however, the subscript j has been omitted.

All the terms in equation (8.12) are known except A(A)’;. Solving,
AQT = B (ST — C7AQS — ATAQS) (8.13)
At the ¢ = 1 boundary,

N N A
Cy, AQ%, 2+ Ay, AQy _y + By AQ%, = Sy, (8.14)
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A _ - A s A
AQ, = (BY)'(SY, ~ €, Q% _, — A% AQY _)) (8.15)

Finally, note from Figure 8.2 that new corner point values are never computed in the solution algorithm,
To make the comner values consistent with the rest of the flow ficld, in PROTEUS the corner values of
density p and total energy £, are arbitrarily defined by linearly extrapolating from the two adjacent points
in both the ¢ and x directions, and averaging the two results. The corner values of the velocities are updated
by doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity whose
absolute value is lower is used. This was done to maintain no-slip conditions at duct inlets and exits.

8.3.2 Spatially Periodic Boundarv Conditions

Updating boundary values from the first sweep 1s complicated somewhat when spatially periodic
boundary conditions are used.

M
TF @) O O )
A o 2} o o
4 e 12 12 12
4 6 o 12 o
0, o 'S O o

Figure 8.3 - Updating boundary values for periodic
boundary conditions in the ¢ direction only.

The situation for a periodic boundary condition in the ¢ direction but not in the n direction is shown
in Figure 8.3. The triangles again represent grid points at which intermediate values are computed, and the
circles represent grid points at which final values are computed. As can be seen from the figure, the inter-
mediate values at ¢ = 0 must be updated after the second sweep to be consistent with the final values at the

interior points. This is easily done by setting 6, = 6”1 forj=11to N,
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Figure 8.4 - Updating boundary values for periodic
boundary conditions in the » direction only.

The situation for a periodic boundary condition in the % direction but not in the ¢ direction is shown
in Figure 8.4. In this case, the intermediate values at & = 0 and at ¢ = 1 must be updated after the second
sweep. To do this, the same procedure described in Secction 8.3.1 for non-periodic boundary conditions is

used, but for j=2 to N, instead of N,— 1. Then, for the lower comer values, (A)l_lz(h)l_,vz and

QN,,l = QNl,Nz .
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Figure 8.5 - Updating boundary values for periodic
boundary conditions in both the £ and » directions.

And finally, the situation for periodic boundary conditions in both the ¢ and » directions is shown in
Figure 8.5. Like the case with periodic boundary conditions only in the ¢ direction, the intermediate values

at { = 0 must be updated after the sccond sweep. This is again done by sctting Q, = Qy, for j=1to N,.

48 Solution Procedure PROTEUS 2-D Analysis Description



9.0 ARTIFICIAL VISCOSITY

With the numencal algorithm of Section 8.0, high frequency nonlinear instabilities can appear as the
solution develops. IFor example, in high Reynolds number flows oscillations can result from the odd-even
decoupling inherent in the use of second-order central differencing for the inviscid terms. In addition,
physical phenomena such as shock waves can cause instabilities when they are captured by the finite dif-
ference algorithm. Artificial viscosity, or smoothing, is normally added to the solution algorithm to suppress
these high frequency instabilities. Two artifictal viscosity models are currently available in the PROTEUS
computer code - a constant coefficient model used by Steger (1978), and the nonlinear coefficient model
of Jameson, Schmidt, and Turkel (1981). The implementation of these models in generalized
nonorthogonal coordinates 1s described by Pulliarmn (1986b).

9.1 CONSTANT COEFFICIENT ARTIFICIAL VISCOSITY

The constant coefficient model uses a combination of explicit and implicit artificial viscosity. The
standard explicit smoothing uses fourth-order differences, and damps the high frequency nonlinear insta-
bilities. Second-order explicit smoothing, while not used by Steger or Pulliam, is also available in
PROTEUS. It provides more smoothing than the fourth-order smoothing but introduces a larger error,
and 1s therefore not used as often. The implicit smoothing is second order and is intended to extend the
linear stability bound of the fourth-order explicit smoothing.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the following terms
to the right hand side of equation (8.5a) (i.e., the source term for the first ADI sweep.)

(2) 4)

ep At ep At 2 2
- (VA,Q +Y,4,Q) - - [(V,4,°Q +(V,4,)°Q] 0.1

where ¢ and @ are the second- and fourth-order explicit artificial viscosity coefficients. The symbols V
and A are backward and forward first difference operators. Thus,

VeQi=Q:-Q,
8,Q=Qi1 — Q@
Ve Q= Qi —2Qi + Qi
(V§A§)2Qi = Qi —4Qy +6Q,—4Q, + Qi

Equivalent formulas are used for differences in the 4 direction.

A few details should be noted at this point. First, the sign in front of the artificial viscosity term being
added to equation (8.5a) depends on the sign of the “i term in the difference formula. For damping, that
term must be negative when added to the nght hand side of the equations (1.e., explicit artificial viscosity),
and positive when added to the left hand side (i.e., implicit artificial viscosity.) See Anderson, Tannehill,
and Pletcher (1984) for details. Second, the terms being added are differences only, and not finite difference
approximations to derivatives. They are therefore not divided by A¢, etc. Third, the variables being dif-

ferenced are Q, not Q. As noted by Pulliam (1986b), scaling the artificial viscosity terms by 1// makes them
consistent with the form of the remaining terms in the equations. Fourth, the terms are also scaled by Ar.
This makes the steady state solution independent of the time step size (Pulliam, 1986b). And finally, note
that the fourth-order difference formula cannot be used at grid points adjacent to boundaries. At these
points, therefore, the appropriate fourth-order term in expression (9.1) is replaced by a second-order term.
Thus, for points adjacent to the £ = 0 and ¢ = 1 boundaries, — ePA[(V,A,)*Q]// is replaced by
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e(d)A

E T
+——V,8,Q (9.2)

A similar expression is used at points adjacent to the n = 0 and # = 1 boundaries.

The implicit artificial viscosity is implemented by adding the following terms to the left hand side of the
equations specified.

EIAT A= .
- [VCAE(JAQ )]  to cquation (8.5a)
(9.3)
SIAT n .
- [V,4,(/AQ7)] to equation (8.5b)

Note that the addition of the artificial viscosity terms, in effect, changes the original governing partial
differential equations. At steady state, the difference equations with the artificial viscosity terms added ac-
tually correspond to the following differential equations.!°

ok of O, oF, L[ ., 200Q 2 3JQ)
G Tan TTaE T | e e
@ *UQ 2*JQ
4 [(A# Q) | iyt 20
a¢ on

The implicit terms do not appear, since they difference Aé, and in the steady form of the equations

AQ = 0. The artificial viscosity terms do not represent anything physical. The cocfficients should therefore
be as small as possible, but still large enough to damp any instabilities. Although optimum values will vary
from problem to problem, reccommended levels are £ = O(1) and ¢, = 2¢{® (Pulliam, 1986b). The recom-
mended level for @, when used, is ¢ = O(1).

9.2 NONLINEAR COEFFICIENT ARTIFICIAL VISCOSITY

The nonlinear coefficient artificial viscosity model is strictly explicit. Using the model as described by
Pulliam (1986b), but in the current notation, the following terms are added to the right hand side of

equation (8.5a).
vl (L) + —"’—) (£4,Q — ££74,V,A,Q)
4 J i J J, ¢ = $ IR

+ V"{K ._l_l;— )j+1 + ( —Sj‘ )j_:](c(,;)A,,Q - an)AﬂV,,A,,Q) j} (9.4)

The difference operation A,V,A,Q is given by
AVeA Q= Qppy — 3Q, +3Q; - Qy
In the expression (9.4),  is defined as
v=y,t+y, 95

10 These equations represent the use of the constant coefficient artificial viscosity model presented in this section. The
nonlinear coefficient model to be presented in Section 9.2 is more complicated, but the same principle applies.
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where ¥, and ¥, are spectral radii defined by"

Ul + a8+ 8,

'l’x - Af
— 9.6)
[VI+a\/nx+ny,
ll/y - An
Here U and V are the contravariant velocities without metric normalization, defined by
U=¢§,+Eu+ &y
e 9.7

V=mn+nut+mny
and a = /yRT , the speed of sound.

The parameters ¢® and ¢ arc the second- and fourth-order artificial viscosity coefficients. Instead of
being specified directly by the user, as they are in the constant coefficient model, in the nonlinear coefficient
model they are a function of the pressure field. For the coefficients of the ¢ direction differences,

(8(52))i= KAt Max( 1, Oi %in1) (9-8a)
(s(;))i = max[0, x,At — (c(g))i] (9.8b)
where

(9.9)

g; =

P+ 20+ P

Pip1 — 201t Piy l

Similar formulas are used for the coefficients of the direction differences.

The parameter o is a pressure gradient scaling parameter that increases the amount of second-order
smoothing relative to fourth-order smoothing near shock waves. The logic used to compute £¥ switches
off the fourth-order smoothing when the second-order smoothing term is large.

The parameters x, and x, are user-specified constants. Like the coefficients in the constant coefficient
model, the optimum values will be problem-dependent, and are best chosen through experience. Cases have
been run with values of x, ranging from from 0.01 for flows without shocks to 0.1 for flows with shocks,
and x, ranging from 0.0002 for flows computed with spatially constant second-order time differencing to
0.005 for flows computed with spatially varying first-order time differencing. Pulliam (1986b) gives
x, = 0.25 and x, = 0.01 as typical values for an Euler analysis.

Like the constant coefficient artificial viscosity model, the nonlinear coefficient model requires special
formulas near boundarics. To apply (9.4) at i =2, ef is needed at i= 1. It is defined as

(5(52))1 = KzAT max(0'21 6])

With the above definition, applying (9.4) at i=2 and i = N, — 1 requires o at i=1 and i = N,. They are
defined as

11 |t should be noted thet the grid increments A¢ and An in these definitions do not appear in the corresponding for-
mulas presented by Pulliam (1986b). This is because the grids used by Pulliam are constructed such that
A¢ = Ay = 1, while in PROTEUS A¢ = 1[(N; — 1) and An = 1/(N, — 1). The definitions used here for ¥, and ¥,
result in an artificial viscosity level equivalent to that described by Pulliam.
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o — | ZPatP3—5py + 2p,
VU patdpy + p, ¥ 2,
PN =3+ 4P, 2 = Spy, o + 20y,
g 3 =
M Py -3 4Py, 2 + Spw, 1 + 2y,

And, finally, applying (9.4) at i=2and i= N, — 1 requires A VAQati=landi=N, - 1. There are
numerous formulas that could be used. The ones currently in tfle Pi{OT EUS code are
A§V§A§Ql = _QS + SQA - 9Q3 + 7Q2 - 201

BV Qy 1 =Qy 4~ 5Qy ;5 + 9Qu, 2 = 7Qu, ; +2Qy,
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APPENDIX A - EXPANSION OF VISCOUS TERMS

In Scction 5.2, the viscous terms in the governing cquations arc linearized. To do this, the elements of

F,, and FV, given in equations (2.17d) and (2.17¢) must first be rewritten in terms of the dependent vanables,
and with derivatives in the Cartesian directions transformed to dcmatl\ es in the computational directions

using the chain rule. The non-cross derivative terms, mvoh ing F , and F vy are then linearized using Taylor

serics cxpansion. The cross derivative terms, involving EV2 and FV , are simply lagged one time level. This
Appendix presents the fully expanded viscous terms required in thé linearization procedure.

The viscous term I:Z,, is given by equation (2.17d), which is repeated here.

0
1 Texéx t+ 1'xyéy
7 Re, | Tobfxt Tyly
Bxéx + ByEy

(A.1)

where
Tex = 20l + AUy +v))

T,y = 2uv, + Aux +v,)

= .u(uy + )

1
Brx=utyx+ VIgy — Pr, 9Ix

1
ﬂy = UTyy, + vy, — _Pr, 9y

9x = —ka
qy = —kTy

The chain rule is used to transform derivatives in the Cartesian directions into derivatives in the com-
putational directions, resulting in
T = (20 + D(Extty +ngit) + AE g+, ¥,)

Tyy = (2“ + }-)(éyvg + "yvﬂ) + 'l(éxug + ﬂx“n)
Tyy = u(fyug + nyu, + Exvy t+ nxvﬂ)
Bx=(2u+ 'l)(éxuug + ﬂxuu,,) + l(éyuvg + ’lyUVy,)

k
+ u(€yviuy + nypvu, + v + m, v + —}T (§xTs +nxTy)

B, = (2u + D& + mym,) + A& + o) )

+ p(Eyuus + nyuu, + &xuvs + 0y )+ (§YT§+ny "
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The above L\prcssxons for the s and Bs are next substituted into cquatlon (A.1). The ¢ denvative terms
bccomc clements of F, , and the » derivative terms become celements of F . The resulting four clements
of I‘,; (excluding the 1/J/Re, cocfficient) are

Ay

(EVI)I = 0 (1’\23.)
(PAZVl)z = 2u&iuy + A& (&t + Ev) + (S + Evy) (A.2b)
(ﬁv,)z = 2uEve + A8, (s + &) + uE(E s + &) (A.2¢)

(Ey)a = 20(E2uy + Ewvy) + AE(E gty + Eytvy) + /’-éy(é vty + Evv;)
+ Gyt + &) + HEy (Gt + &) + o (fx + T, (A.2d)

For lineanization 1t is convenient to rcwnte the last element as

A +
(Eyl)a—(—f‘——)[cx( ) + & );]+<u+/)¢x (1),

+ S [800); + §0D0 + —,; (&2 + T, (A.2€)

The elements of IAT,,l have exactly the same form as those of I'A:,,l, but with & replaced by 5

The four elements of lAEZVZ (again excluding the 1/JRe, coefficient) are

(Ep), =0 (A.3a)

(Ep)r = 2ugonyty, + A& Oty + myvy) + udy(myi, + nyvy (A.3b)
Jay

(Ey)s = 2udynyv, + 45,00, + nyvy) + w8 Omu, + nyv,) (A3c)

A
(Ep)s = 2u(Eonuu, + Enyw,) + A (nuuy, + nawv,) + 28,(nvu, + nyw,)

k .
+ ul v, +n,ov,) + ud (nuu, + ) + Pr. Cxnx + ST, (A.3d)

The elements of l'y have exactly the same form as those of luV , but with ¢ replaced by n and » replaced
by ¢.
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APPENDIX B - AXISYMMETRIC ANALYSIS

The analysis used in PROTEUS for axisymmetric flow 1s esscntially the same as for two-dimensional
planar flow, described in the main body of this report. However, there are some additional terms in the

axisymmetric cquations that complicate things somewhat. For that reason, the axisymmetric analysis 1s
deseribed separately in this appendix.

B.1 GOVERNING EQUATIONS

In cylindrical coordinates, the governing equations for axisymmetric flow, with swirl, can be wrtten
using vector notation as
orQ o(rE ANrF a(rE HrF
(rQ) (rE) ()+H(V)+(V)+

ot + 0x + or ox or

H, (B.1)

where

Q=[p pu pv pw Ef" (B.2a)

E=| pw (B.2b)

F=| p’+p (B.2¢)

H=|—p—pw? (B.2d)

) Txx
EV: Re, Txr (BzC)
Txo

qx

1
Lu‘[xx + VT, + W — Pr
T
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0

Txr

F,= T 1, (B.2f)
Tr9

1
utry, +vr, + Wt,9 — -——Pr q,
L r |

1
Hy = —— [~ (B.2g)
r

0

0

Equation (B.1) thus represents, in order, the continuity, x-momentum, r-momentum, 0-momentum (swirl),
and energy equations, with dependent variables p, pu, pv, pw, and E;. Note that the additional terms in
these axisymmetric equations destroy the strong conservation law form of the two-dimensional planar
equations presented in Section 2.1. Unfortunately, the axisymmetric form of the equations cannot be put
into strong conservation law form (Vinokur, 1974.)

The shear stresses and heat fluxes are given by

a v
Txr':l‘(—‘:""é;) (B.3)
_ . Ow
0= K ox

W=k
- or
qr = or

In these equations, x, r, and 8 represent the axial, radial, and circumferential directions, respectively; and
u, v, and w represent the velocities in those directions. The remaining symbols are the same as those in the
two-dimensional equations described in Section 2.1.

For turbulent flow, u, 4, and & represent effective coefficients. The turbulence model is described in

Section 3.0. The only modification to the model for axisymmetric flow is the definition of ]ﬁl the mag-
nitude of the total vorticity. For axisymmetric flow,
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2 2 242
ol = (9w w ow v Ou
‘Qi_[<ar+r)+(ax>+(ax ar)]

When the generalized grid transformation of Section 2.3 (with y replaced by 7), is applied to equation
(B.1) the result 1s

(rQ), + (r Q)&+ (r Q) + (rE) s+ (rE)ynx+ (rF)e&, + (rF)n, + H
- (r EV)ééx — (r EV)ran has (r I:V)gél' - (rFV)ﬂ']r - HV= 0 (B4)
Although this axisymmetric cquation cannot be put into exact strong conservation law form, the pro-

cedure used to do so for the two-dimensional cquation, described in Section 2.4, is nonctheless applied to
equation (B.4). The result is

drEy) 4 o(r¥y) +1I“\[V (B.5)

Q) k) arh
5t e Ty THT TR an

where

~ [
Ey=— (Eyic+Fpe)

A% | .
PV:j(hx/'bﬁ“ Fyn,)
A l‘lV

y=
J
Using equations (B.2a) through (B.2g) these can be expanded as

Q=-1p pu pv pw Ef" (B.6a)

|-

pué, + pvé, + p&, ]
, (pu2+p)€x+PuV€r+Pu§l
E=— | pwict e’ +p)E+ev (B.6b)
puwéy + pywé, + pwé,
(Er+ pyut, + (Ep+pé, + Eré,

puny + pvn, + pn, ]
(pt" + Py + ptom, + pum,
puny + (pv" + P, + Py (B.6¢)
puwny + pvwn, + pwn;
L(ET'*' pumy + (Ep+ ppm, + Er M |

>
Il
|-
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=
I
|
=
|
A~
b3
%

(B.6d)

Taxéx + T,

Txrex + 18, (B.6c)

Txo8x + T9¢;
Bxlx+ B2,

lerPd
<
i
|-
e
‘?‘.x

0
1 Txxlx + Txhly
Fy= 7 Re, Txlix + Trply (B.6f)
TxoMx + TroMr
| Banet By |

[ o
0
—Tgg (B.6g)

Tr0

0

where

1
Pr, I
1
By=uty, +vr, + wry— ol
r

Bx= UTgx T VT + WTp —

(B.7)

B.2 LINEARIZATION

Solving cquation (B.5) for 66/61 (assuming r is not a function of time) and substituting the result into the
time differencing scheme of Beam and Warming, given by equation (4. 1), for (AQ)/dt and 0Q/d+ yiclds

A 0,A HrAE")  orAFTY  a arEY oYy A
A = - ml< CAEY) o )MHn)_ Ar L( CE) )+Hn>

Al A A A
0,At | [ B(rAE})  8(rAF}) A Ar 1 [ OEY  ArFy) A,
+1+027< oz YT AWt T\ Tt tHY
02 "n—1 1 2 3
+ 0, AQ +0[(0, —7—02)(Ar) + (A7) (B.8)

This cquation must be lincarized using the procedure described in Section S.0.
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B.2.1 Inviscid Terms

For the inviscid terms the Jacobian coefficient matrix dE/3Q 1s

3 ¢y ¢ 0 0
op dp ap ap ap

7’7 gx— ufl Er +jll +u§x+ a(pu) gx u§r+ a(pv) gx a(pw) Cx TE_;gx
3k ap ‘ oy ap ap ap

20 = E;E,—vfl »§,+m§, §,+f1+v§,.+-a—(;;7§, mf, E{, {B.9)

—wfi wi, w§, §+ 0

[7) 7 [?) %) 0,

‘fn(fz—ﬁ) Bt h gy Ry K :,+f.(n+a—E”7)

where f; = u¢, + v¢, and f; = (Er + p)/p. The Jacobian matrix 6?/0(:) has the same form as 6é/56, but with
¢ replaced by n.

For the additional term H, the lincarization procedure gives

0 0 0 0 0
0 0 0 0 0
ol . ap ap op op
= -——4+w _ — — 2w - B.10
o | Ao Aen) oW 3y ®
—Vw 0 w v 0
0 0 0 0 0

B.2.2 Viscous Terms

To lincarize the viscous terms, E,, E,,, etc., must first be rewritten in terms of the dependent variables,
and with dedvatives in the cylindrical coordinate dircctions transformed to derivatives in the computational
dircctions using the chain rule. The shear stress and heat flux terms, given by equations (B.3) and (B.7),
become

rre = (20 + A)(Exts + myity) + o £ +m),]
Ty = 2/.1({,V§ + 'lrvq) + A(fxug + "xun) + _'}—— tfr(rv)g + '1;(”’),,]
rpp = 2+ A&ty + ngt) + 2 (&) + ()]
Txr = “(grug + 'lru" + fxvc + ﬂx",,)

Ty = H(ExWg + 'wan)
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W
T,y = p(frW'g oWy —u

. 2
Be=QQu+ ,l)(gxuug + ;1qun) + [é,u(rv); + n,u(rv)n]
+ u(vus + N, + Ews + o) + u(Swwy + HxWw,)
k . .
+ Pr (fXT,: + nxfn)

r

)

A
B,= 2;1({,.1’\’: + ’7rvvr,) +- [érv(rv)g + mV(”‘),,]
+ u(&rmy + ety + & vy + Nxtv,) + (S wwy + HWW,)
w’ k
+ AC U i) = + _Pr—, (& Ty +n,T))

The above expressions for the shear stress and heat flux terms are substituted into equations (B.6e)
through (B.6g). As in the two-dimensional planar case, the cross derivative terms are separated from the
non-cross denivative terms. In addition, for the axisymmetric case the non-denivative terms are included
with the cross denvatives.

The resulting five elements of I::Vl (excluding the 1//Re, coefficient) arc

(Ey); =0 (B.11a)
(Ey)y = 2udbis + 28] £t + 7 5,00, | + 08 (s + Ey) (B.11b)
A 1 .
(Ep); = 2#53v§ + Af,[fxug + - 5,(rv)§:| + ud (& + Epvy) (B.11¢)
0 2 2
(Ep)g = péiwg + uéw, (B.11d)

(fiyl)s = E,u(ﬁiuug + ffw;) + icfx[éxuug + —l— é,u(n')g] + ).{,[fxvug + % f,v(rv)g]

+ ul(Evus + ey + Ewwy) + pd (& + Sxtvy + &) + 7)/;— (5)2( + 53)'1'§ (B.11e)

For lineanzation it is convenient to rewnte the last element as

£ rg

2u+ i
1“2—’) (&2, + SO0 T+ (1 + DE& ) + 28— (607 + &)

A
(Ep)s =
H5 L0+ + el sy b 8T (B.110)
The clements of ﬁ‘yl have exactly the same form as those of }AZVl, but with & replaced by y.
The five elements of I:ZV2 (again excluding the 1//Re, coefficient) are

(Ey), =0 (B.12a)

A i
(Ey ) = 208 n,tty + 163 ity + ), | + by + ) (B.12b)
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a 1
(l“.VZ)3 =2, + l{,[r]xun + 5 17,(?’\/),7] + 1S x(n1, + 0yv,) (B.12¢)

(Ey)s = 18 nw, + pémw, — ué, 5 (B.12d)

A 1 1
(Ey)s = 2u(&nxtas, + Enpv,) + ).éx[nxuu,’ + 5 ’7,"(”’),,] + }.f,[nxvun +- r,,v(rv)n]

+ u (i, + nvv, +oww,) + pd (0, + na, + nww,)
2
w k .
—ué 5o Qe+ )Ty (B.12¢)
r

The last elcment can be rewnitten as

A
(EVZ)S = Zﬂ(fx’hcuur] + é,’I,VV,,) + 'J-éx("xuuy; + 'lr"",,) + }"ir(nxvuq + 'hVV,,) + A, % (Exu+ :rv)rn

+ .uéx(nrvuy, + Nx¥Vy, + 'Ix“'w,,) + “ér('lr““q + N UV, + '1rWW,7)
2
w k
—ué 5+ Pr (Exnx + L-l-zr"lr)Tr; (B.12f)
r

The elements of l:‘yz have exactly the same form as those of ﬁiyz, but with & replaced by » and » replaced
by ¢&.

The five elements of }Aly are

(Hy), =0 (B.13a)

(H,), =0 (B.13b)

(Fy)y = =21 2% — A& + my) + 5 L&) + ()] (B.130)
(Hy)s = (&g + nw,) — u 2 (B.13d)

(lAlV)s =0 (B.13e)
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Performing the linearization, the Jacobian cocfficicnt matrix oL, /6Q 1s

where

62

0 0 0
Th) a2 (B) we(S) e
a(\) y xx d§ 3] xr a: P xr p 4
o | (F0) () () b
66 Re, 0(} N vy P rEEP v ¢
0ﬁ‘" 0 0
Q0 Ja
ok, 3Ky, Oy,
a() s 56 s2 56 53
L
Y 2
apy = (2 + A+ ud;
— 2 5 ) E2
arr_#$x+(‘-1“'+ -)Sr
2 2
g, = néx +ué;
ay = {p+ &,
, A
Xxr :7§x§r
A2
ar, :_r—ir
k 2 2
oy = + &
0= P, (Ex+<)
A<
aLVl a a
: tagy (5) ~ 203z (7)
20 . d o&
A\
Rk N DY, (2
A Xxr ‘, p n b4 14
oQ /a a¢ ¢
/\\
aLVl 0 w
8 k(3
Q4 ¢
)
2l
Il | v,

“ta

Axisymmetric Analysis

<&

o

LT T (_ui>_a _(B_(ﬁ)_a a2
N - XX 4 rr 22
2Q 51 o& p o0& P o¢

;W
—2(1 _“—ré—zﬁ(errg‘}'(XO

( W

P

2

)

v
9¢

dp
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06 52 aQ
aEVl = — aEVl + af Y ta _6__( ar >
o0 /s o0 /s mop R0 gE \ a(p)

A A

oLy, OEy, 3 aT

(7(3 54:- 06 a1 ao_a_{(W)

. A
The Jacobian coefficient matrix for the remaining non-cross derivative viscous terms, aFy [0Q, has the

same form as aﬁ:,,l/a(), but with & replaced by 7.

And finally, lincarizing lAly, the Jacobian coeflicient matrix aﬁ,,/a() 1s

0 0 0 0 O1
0 0 0 0 0

2Q Re, aQ /31 0Q /3 eQ /33

oH, ) . oH, .
0Q /a1 66 44
0 0 0 0 0
L ]
where
aIAIV 0 u a v 05) u
~ =M=\ 5 + A= 5 R Pl e
20 I ag(p) ag(p) an(p)
1 d
PO A T+ i (5)
My Vi 2 () 2 (1)
A - o X X
20 aF \ P oan \ P
aflv 3 {1 11 a (1
- :—Af,—(—)—[2u+ﬂ.<¢,r§+n,r>]———ﬂ.n,—(—)
50 3 o0& P nwLr o p Oy, P
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JH, 15, W o w
~ Hop )t T 3
20 i JE ( f ) f O ( P )
JH, iy a (l)—il+ﬂ’1 3} (L)
Q) A re "oy \ P

B.2.3 Equation Of State

The equation of state given in Section 5.3 must be modified slightly to add the swirl velocity w. Thus,

p=(y - 1)[1'5T~%p(u2 +v2 + w2):| (B.16)
or, in terins of temperature,
1 Ly 1,9 9 2
1:?;[ 5 ——2-(11 +v i+ w ):I (B.17)
‘The denvatives arising from the linearization are the same as those presented in Section 5.3, except for
op _y=l .5 2 4
3: 5 (u +Vvi+w ) (B.18a)
»__ | B.18b
6([)1\' - (} - )W ( ’ )
CE N U (5 A WO SR S
=G [ I (1 + v+ w ):' (B.18c)
or . w
AMpw) OGP (B.13d)

It constant stagnation enthalpy can be assumed, the appropriate equation of state is

-1
p= ‘v_y_ ,;[/17-— —é— (u2 +v2 4+ w2)] (B.19)
and the temperature becomes
r= -C—‘; [h.,.- —;— W+ v+ wz)] (B.20)

Again, the denvatives arising from the lincarization are the same as in Section 5.3, except for

.27”4-;—‘ [h-,»+ L4y +w2)J (B.21a)
a(i[;) _ Y ;1 w (B.21b)

% = T:;T @ + vt +wh (B.21c)

6(0;77;) - cplp (B.21d)

64  Axisymmetric Analysis PROTEUS 2-D Analysis Description



B.2.4 Lincarized Governing Equation

The lincarized form of cquation (B.8) can now be written as

l 1 An n n
- - ¥ A AQ” | + r — AQ — AQ" > =
1+0, 7 a& aQ on 30 20
e df k) aeh A\ ac 1 (%Fe) AR L
1+0, 7 A& oy 1+0, 7 3¢ on v
/\‘ /\‘ N N
L U098 orEy) . Arky) \' 0381 |  Ey) . orFy) \"!
1+0, 7 a¢ on 1+0, 7 o¢ on
0 A
+ g A 0[(01 L0, ) @0’ 0 - 00877, (Arf] (B.22)

B.3 SOLUTION PROCEDURE

Letting LHS(B.22) represent the left hand side of equation (B.22), we can write

6,a : oFy s oFy L A
LHS(B22) = < 1+ o+ £ pE ) e 2 ) a1 v AQ" (B.23)
+ 0, > 3Q 3Q n 8Q aQ aQ 2Q
where I represents the identity matrix. The term in braces in equation (B.23) can be factored to give
0,a pe 6Ev N o i
LHsB22) = | 14 ——— L 2 [, 1 % on _ My .
1 +6, a¢ 6() 30
0,8t 1 5
e, T o
L
0,.A 2 N A‘ A af“ . " n
_< e )_1_ 3 rai; _y AVI o,k _, :1 AQ
+0, ) 2 &\ 5% 20 ]\ 50 20
2 " $ A oF .
_( 0,47 ) L 5_'Al__i"7[ S ) S W ) Y (B.23)
1+ 0, r L 80 2Q on 2Q 30

The last two terms represent the splitting error.

Equation (B.22) can thus be rewritten in spatially factored form, and, neglecting the temporal truncation
and splitting error terms, becomes
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a A A n A
68t o [ o  %Ey 08t 1 [ aft  oH, 08t | o [ o  OFy "
I+ Lo, _, e v l+—— L1 2 [,k 7N )Ia0n=
T+, T\ 50 T o8 140, 2% 29 +0 "o\ "6 oo

3 2 ArEy)  rFy) .\
At 1 v E + ¢ F) o + Az 1 o, Yy +11,
1+6, T E an 146, 7 3 an

(+09ar | [ HrEy) Fy) \' gar | [ HKEy) drFy) \ g, A0
T+68, 7 ET IR ™ TT¥e, T\ T Tt t 170, 2Q (B.25)
Equation (B.25) can be split into the following two-sweep sequence.
Sweep 1 (§ direction)
A il n
A6.+ l@,A; +_§r , 2[::_ ? oA BlA; % aa aEAVl 5 |4 BlA; 1 i oHy _
+ 2 » aQ 1+ 2 C aQ 1+ 2 ao aQ
ar_ 1 (B aP A\ _ar g OBy AFy L
TNv6, T ( &t W)ty 7 % Ty tHv
1+ogac | [WEy) )\ g arky) P\t
(I +64r 1 2, Y\ _ 88t N 2 +2_ a5 (B.262)
146, f 3z an 1+0, 7 a¢ an 1+0,
Swecep 2 (n direction)
A 8,At E " A #,A1 af‘:V " A A
n 1 _]__9__ dF LN 1 _l__a_ 1 n{ _ *
AQ+1+0, 3 r<66)AQ 50, T o | % AQ" | =AQ {B.26b)

Applying the spatial differencing formulas of Section 6.0 results in
Sweep 1 (£ direction)
agr e 28t 1| _f, &Y AQ, + Qa1 r ok AQ Q- r "F Aé'
! ( +02)A§ r 36 i1 -1 aQ i aQ i+1

0 At non Ao
‘W%[(i St n e BQL = S 2+ fin) s AQ + i fi+ roa find) g,,,AQH,]
2/ >

8t | [ ay oM, Ar_ 1 A R
trra T T AQ “‘“TW [6¢(rh)+6"(rl-)+ll] + 1+9 [6¢(rhyl)+6q(rl~yl)+lly]
2 Q aQ
(1 +83)A7 1 8,47 A A -1 9, Al
T + (e Ey)+a,,(rl-vz)] _ngT[éﬁ(r Ev)+ 6, Fi)]  + 57 AQ (B.27a)

Sweep 2 (n direction)

A 0 A‘t & n " & n A P " A
AQ7 + W+ - af AQY +Qa—1) r al: AQj+ (1 —a)| r 6!/:‘ aQj,,
231 3Q Ji-1 2Q /i 2Q Jin
01At 1 n_n An A naAn n_n n
- WT [(’j 1fimt + 1Y 818QGy — (i Sy + 205+ 1 [ 8 AQT + (1 S+ 171 ) gj+lAQj+l] =
2
aQ’ (B.27b)

Thesc equations are solved using the same matrix inversion procedure described in Section 8.2.
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