PROTEUS Two-Dimensional Navier-Stokes Computer Code-Version 1.0

Volume 3-Programmer's Reference

Charles E. Towne, John R. Schwab, and Thomas J. Benson
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio
Ambady Suresh
Sverdrup Technology, Inc.
NASA Lewis Research Center Group
Cleveland, Ohio

March 1990

N/SA

```
    150-21307
A*!er-aras GmpUTUR CUPL, VERSTUN 1.O.
```


PROTEUS Two-Dimensional Navier-Stokes Computer Code

Version 1.0
Volume 3 - Programmer's Reference

NASA Lewis Research Center Internal Fluid Mechanics Division Computational Methods Branch September, 1989

CONTENTS

SLMMARY 3
1.0 INTRODICTION 5
2.0 PROGRAM STRLCTERE 7
2.1 ILOW CHART 7
2.2 SLBPROGRAM CALLING TREE 10
2.3 PROGRAMMING CONVENTIONS AND NOTES 13
2.3.1 Computer \& I anguage 13
23.2 Fortran Variables 14
3.0 COMMON BIOCKS 17
3.1 COMMON BLOCK SLMMARY 17
3.2 COMTMON VARIABIES LISTED AIPHABETICALLY 17
3.3 COMMON VARIABIES IISIED SYMBOLICALLY 33
3.4 COMMON VARIABLES LISTED BY COMMON BLOCK $+2$
Common Block BCl 42
Common Block DUMMYI 44
Common Block fIOWI 45
Common Block GMTRY1 48
Common Block ICl 48
Common Block IOI 49
Common Block METRICI 50
Common Block NUM1 51
Common Block RSTRTI 54
Common Block TIMLI 54
Common Plock TITLE1 56
Common Block TLRBI 56
4.0 PROTEUS SLBPROGRAMS 59
4.1 SLBPROGRAM SLMMARY 59
4.2 SLBPROGRAM DITAILS 61
Subroutine $A \mathrm{DI}$ 62
Subroutine AVISCI 63
Subroutine AVISC2 66
Subroutine BCDI:NS 69
Subroutine BCIEI IM 72
Subroutine BCI 73
Subroutine BCFLIN 78
Subroutine BCGEN 80
Subroutine BCGRAD 82
Subroutine BC.MET 83
Subroutine BCPRIS 84
Subroutine BCQ 91
Subroutine BCSEC 95
Subroutine BCIEMP 97
Subroutine BCUVII 103
Subroutine BCVDIR 107
Subroutine BCVVIE 116
Subroutine BCWVEL 120
Subroutine BIISI 124
Subroutine BLIN2 126
BLOCK DATA
Subroutine BLKOUT 127 129
Subroutine BLK3
Subroutine BLK3
Subroutine BLK3P 130 132
Subroutine BLK4
Subroutine BLK4
Subroutine BLK4P 134
Subroutine BLK5 135
Subroutine BLK5P 136
Subroutine BIOUT1 137
Subroutine BLOUT2 138 140

Subroutine BVUP

Subroutine BVUP
Subroutine COEFC 141
Subroutine COEFE 143
Subroutine COEFX
Subroutine COEFX 147 147 155
Subroutine COEFY
Subroutine COEFY 162
Subroutine COEFZ
Subroutine COEFZ
Subroutine CONV 170
Subroutine CLBIC 175
Subroutine EQSTAT 177
Subroutine EXEC 179
Subroutine FILTER 181
Subroutine FTEMP 186
Subroutine GEOM 188
Subroutine INIT 191
Subroutine INITC 194
Subroutine INPCT 195
Function ISAMAX 200
Function ISAMIN 202
MAIN Program 204
Subroutine METS 205
Subroutine OUTPUT 208
Subroutine PAK 210
Subroutine PERIOD 212
Subroutine PLOT 214
Subroutine PRTHST 216
Subroutine PRTOUT 219
Subroutine RESID 220
Subroutine REST 221 224
Subroutine ROBTS
Subroutine ROBTS 226
Function SASUM 228
Subroutine SGEFA
Subroutine SGEFA
Subroutine SGESL
Subroutine SGESL 229 229
Function SNRM2 230
unction
231
231
Subroutine TBC
233
233
Subroutine TIMSTP
Subroutine TIMSTP 235
Subroutine TURBBL 238
Subroutine UPDATE
241
241
Subroutine VORTEX 243
REFERENCES 245

PROTELS TWO-DIMENSIONAL NAVIER-STOKES COMPLTER CODE - VERSION 1.0

Volume 3 - Programmer's Reference

Charles E. Towne, John R. Schwab, Thomas J. Benson
National Aeronautics and Space Administration
I ewis Research Center
Cleveland, Ohio
Ambady Suresh
Sverdrup Technology, Inc.
NASA Lewis Research Center Group
Cleveland, Ohio

SCMMARY

A new computer code, called PROTEUS, has been developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unstcady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled alternating-direction-implicit solution procedure with generalized first- or second-order time differencing. The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using an algebraic eddy viscosity model.

The program contains many operating options. The governing equations may be solved for twodimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp preand post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing of the convective terms in high Reynolds number flow. Several time step options are available for convergence acceleration, including a locally variable time step and global time step cycling. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents the equations and solution procedure used in PROTEUS. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's Guide, and contains information needed to run the program. It describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed information useful when modifying the program. It describes the program structure, the Fortran variables stored in common blocks, and the details of each subprogram.

1.0 NTRODCCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly all of the available nonproprietary programs were started as research projects with the emphasis on demonstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually intend to clean up and formally document the program, but the immediate need to extend it to new geometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An extensively modified program may not even perform as expected under certain combinations of operating options. Each new user must invest considerable time and effort in attempting to understand the underlying structure of the program if intending do anything more than run standard test cases with it. The user's subsequent modifications further obscure the program structure and therefore make it even more difficult for others to understand.

The PROTEUS two-dimensional Navier-Stokes computer program is a user-oriented and easilymodifiable flow analysis program for aerospace propulsion applications. Readability, modularity, and documentation were primary objectives during its development. The entire program was specified, designed, and implemented in a controlled, systematic manner. Strict programming standards were enforced by immediate peer review of code modules; Kernighan and Plauger (1978) provided many useful ideas about consistent programming style. Every subroutine contains an extensive comment section describing the purpose, input variables, output variables, and calling sequence of the subroutine. With just two clearlydefined exceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A master version of the program is maintained and periodically updated with corrections, as well as extensions of general interest (e.g., turbulence models.)

The PROTEUS program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes equations in strong conservation law form. The governing equations are written in Cartesian coordinates and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space differencing (Briley and McDonald, 1977; Beam and Warming, 1978). The current turbulence model is based upon the algebraic eddy-viscosity model of Baldwin and Lomax (1978). All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. The boundary conditions are treated implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available.

The program contains many operating options. The governing equations may be solved for twodimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp preand post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central spatial differencing of the convective terms in high Reynolds number flow. Several time step options are available for convergence acceleration, including a locally variable time step and global time step cycling. Simple grids may be generated internally by the program; more complex geometries require external grid generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents the equations and solution procedure used in PROTEUS. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's Guide, and contains information needed to run the program. It describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed information useful when modifying the program. It describes the program structure, the Fortran variables stored in common blocks, and the details of each subprogram.

The authors would like to acknowledge the significant contributions made by three co-workers in the development of the PROTELS program. Simon Chen did the original coding of the Baldwin-Lomax turbulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model. William Kunik developed the original coding for computing the metrics of the generalized nonorthogonal grid transformation. Frank Molls made many debugging and verification runs, particularly for spatially periodic and unsteady flows.

2.0 PROGRAM STRCCTURE

2.1 FLOW CHART

In this section, a flow chart is presented showing the overall sequence of tasks performed by the twodimensional PROTEUS computer code. Depending on the various options used in a particular run, of course, some of the elements in the chart may be skipped.

Figure 2.1-Flow chart for the 2-D PROTELS computer code.

Figure 2.1-Continued.

Figure 2.1-Concluded.

2.2 SLBPROGRAM CALLING TREE

In this section, the calling sequence for the various subprograms in the PROTEUS 2-D code is shown using a tree structure. The subheadings correspond to the elements of the flow chart shown in the previous section. The main program, listed in the first column, calls the subprograms in the second column, which in turn call those in the third column, etc. For any given case, of course, some of these routines will not be used. The subprograms needed for a particular case will depend on the combination of input parameters being used. The individual subprograms are described in detail in Section 4.0 .

INITIALIZATION					
Read and print input.					
MAIN	INPUT	ISAMAX			
Get grid and metric parameters.					
MAIN	GEOM	PAK METS	ROBTS CUBIC OUTPUT	PRTOUT	
Get initial flow field.					
MAIN	INITC	$\begin{aligned} & \text { REST } \\ & \text { INIT } \\ & \text { FTEMP } \\ & \text { EQSTAT } \\ & \text { TURBBL } \end{aligned}$	METS VORTEX BLOUTI BLIN1 BLOUT2 BLIN2	ISAMAX ISAMIN ISAMAX ISAMIN	
Set point-by-point boundary condition values.					
MAIN	BCSET				
Initialize plot files and print initial or restart flow field.					
MAIN	$\begin{aligned} & \hline \text { PILOT } \\ & \text { OUTPUT } \end{aligned}$	PRTOUT			
SET UP FOR TIME STEP					
Compute time step size.					
MAIN	TIMSTP	ISAMAX			
Reset boundary conditions if time-dependent.					
MAIN	TBC	BCSET			

FILL BLOCK COEFFICIENT MATRIX					
Add extra data line at $N+1$ if spatially periodic in sweep direction.					
MAIN	EXEC	PERIOD			
Compute coefficients of governing equations.					
MAIN	EXEC	EQSTAT COEFC COEFX COEFY COEFE COEFZ			
Add boundary conditions.					
MAIN	EXEC	EQSTAT BCGEN BCELIM	BCQ BCUVEL BCVVEL BCWVEL BCPRES BCTEMP BCDENS BCVDIR BCF BLKOUT SGEFA SGESL	BCMET BCGRAD BCFLIN BCMET BCGRAD	
Compute residuals without artificial viscosity terms (sweep 1 only.)					
MAIN	EXEC	RESID	SNRM2 ISAMAX SASUM		
Add artificial viscosity.					
MAIN	EXEC	AVISCl AVISC2	BLKOUT BLKOUT		
Compute residuals with artificial viscosity terms (sweep 1 only.)					
MAIN	EXEC	RESID	$\begin{aligned} & \text { SNRM2 } \\ & \text { ISAMAX } \\ & \text { SASUM } \\ & \hline \end{aligned}$		

SOLVE DIFFEREXCE EQUATIONS					
Perform matrix inversion.					
MAIN	EXEC	ADI LPDATE	BLKOUT BLK3P BLK3 BLK4P BLK4 BLK5P BLK5	$\begin{aligned} & \text { FILTER } \\ & \text { FILTER } \\ & \text { FILTER } \end{aligned}$	ISAMAX BLKOUT ISAMAX BI KOUT ISAMAX BIKOUT
Update boundary values from first sweep.					
MAIN	1 XEC	BVUP	EQSTAT BCGEN	BCQ BCUVEI, BCVVIE BCWVEL BCPRES BCTEMP BCDENS BCVDIR BCF BLKOUT	BCMIET BCGRAD BCMET BCGRAD BC.MET BCGRAD BC.MET BCGRAD BCMET BCGRAD BCMET BCGRAD BCMET BCGRAD BC.MET BCGRAD BCIIIN BCMET BCGRAD

FINISH TIME STEP AND CHECK RESULTS
Update auxiliary variables.

MAIN	$\begin{aligned} & \text { EQSTAT } \\ & \text { FTEMP } \end{aligned}$				
Update turbulence parameters.					
MAIN	TURBBL	VORTEX BLOUTI BLINI BLOUT2 BLIN2	ISAMAX ISAMIN ISAMAX ISA.MIN		
Check for convergence.					
MAIN	CONV	ISAMAX			
GENERATE OUTPUT					
Print flow field output.					
MAIN	OUTPUT	PRTOUT			
Write plot and restart files.					
MAIN	$\begin{aligned} & \hline \text { PLOT } \\ & \text { REST } \end{aligned}$				
Print convergence history.					
MAIN	PRTHST				

2.3 PROGRAMMING CONVENTIONS AND NOTES

2.3.1 Computer \& Language

At NASA Lewis Research Center, PROTEUS is normally run on a Cray X-MP computer. With just two known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CFT77 Reference Manual (Cray Research, Inc., 1988a). The first exception is the use of namelist input. With namelist input, it's relatively easy to create and/or modify input files, to read the resulting files, and to program default values. Since most Fortran compilers allow namelist input, its use is not considered a serious problem. The second exception is the use of *CALL statements to include *COMDECKS, which contain the labeled common blocks, in most of the subprograms. This is a Cray UPDATE feature, and therefore the source code must be processed by UPDATE to create a file that can be compiled. ${ }^{1}$ UPDATE is described in the LPDATE Reference Manual (Cray Research, Inc., 1988c). Since using the *CALL statements results in cleaner, more readable code, and since many computer systems have an analogous feature, the *CALL statements were left in the program.

Six library subroutines are called by PROTEUS. ISAMAX, SASUM, and SNRM2 are Cray Basic Linear Algebra Subprograms (BLAS). ISAMIN is a Cray extension to the BLAS routines. SGEFA and SGESL are Cray versions of LINPACK routines. All of these routines are described in detail in Section 4.0, and in the Programmer's Library Reference Manual (Cray Research, Inc., 1988b).

[^0]The PROTELS code is highly vectorized for optimal performance on the Cray. The coefficient generation is vectorized in the ADI sweep direction. Since the coefficient matrix is block tridiagonal, the equations are solved using the Thomas algorithm. This algorithm is recursive, and therefore cannot be vectorized in the sweep direction. However, by storing the coefficients and source terms in both coordinate directions, the algorithm can be vectorized in the non-sweep direction. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

2.3.2 Fortran Variables

Variable Names

In developing PROTEUS, code readability has been emphasized. We have therefore attempted to choose Fortran variable names that are meaningful. In gencral, they either match the notation used in the analysis description in Volume 1, or are in some way descriptive of the parameter being represented. For example, RHO, U, V, W, and ET are the Fortran variables representing the density ρ, the velocities u, v, and w, and the total energy per unit volume E_{T}.

REAL and INTEGER Variables

In general, the type (REAL or INTEGER) of the Fortran variables follows standard Fortran convention (i.e., those starting with I, J, K, L, M, or N are INTEGER, and the remainder are REAL.) There are, however, several variables that would normally be INTEGER but are explicitly declared to be REAL. These are noted in the input description in Section 3.0 of Volume 2, and in the description of common block variables in Section 3.0 of this volume.

Array Dimensions

Most Fortran arrays are dimensioned using PARAMETERs. The PARAMETERs are set in COMDECK PARAMSI. This allows the code to be redimensioned simply be changing the appropriate PARAMETERs, and then recompiling the entire program. The PARAMETERs are described in Section 6.2 of Volume 2.

Initialization

All of the input Fortran variables, plus some additional variables, are initialized in BLOCK DATA. Most of the input variables are initialized to their default values directly, but some are initialized to values that trigger the setting of default values in subroutine INPUT. On the Cray X-MP at NASA Lewis, all uninitialized variables have the value zero. There are no known instances in the PROTEUS code, however, in which a variable is used before it is assigned a value.

Nondimensionalization

In general, Fortran variables representing physical quantities, such as RHO, U, etc., are nondimensional. Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing conditions. These normalizing conditions are defined by six basic reference conditions, for length, velocity, temperature, density, viscosity, and thermal conductivity, which are specified by the user. The normalizing conditions used in PRO'TELS are listed in Table 3-1 of Volume 2.

Note that for some variables, like pressure, the normalizing condition is dictated by the form of the governing equations once the six basic reference conditions are chosen. Unfortunately, some of these may not be physically meaningful or convenient for use in setting up input conditions. Therefore, some additional reference conditions are defined from the six user-supplied ones. The reference conditions are listed in Table 3.2 of Volume 2.

Throughout most of the PROTEUS code, physical variables are nondimensionalized by the normalizing conditions. For input and output, however, variables are nondimensionalized by the reference conditions because they are usually more physically meaningful for the user. The Fortran variables representing the reference conditions themselves are, of course, dimensional.

One-Dimensional Addressing of Two-Dimensional Arrays

In the solution algorithm used in PROTECS, there are several instances in which the same steps must be followed in both ADI sweep directions. An example is the computation, in the COEFC, COEFX, COFFY, COEF Z, and COEFE routines, of the submatrices in the block tridiagonal coefficient matrix. These computations involve two-dimensional arrays such as RHO, U, etc. In these arrays, the two subscripts represent, in order, the indices in the computational ξ and η directions. For the first ADI sweep, values at various ξ indices are needed at a fixed η index. For the second ADI sweep, the reverse is true. In order to use the same coding for both sweeps, a scheme for one-dimensional addressing of a twodimensional array has been used. ${ }^{2}$

In Fortran, multi-dimensional arrays are actually stored in memory as a one-dimensional sequence of values, with the first subscript incremented over its range first, then the second subscript, etc. We take advantage of this in PROTECS. As a first step, the two-dimensional array is EQUIVALENCE'd to a onedimensional array of the same total length. The one-dimensional array name is derived from the two-dimensional array name by adding a " 1 ". Thus, letting F represent a typical two-dimensional array,

```
DIMENSION F(N1P,N2P),Fl(NTOTP)
EQUIVALENCE (F (1,1),Fl(1))
```

where N1P and N2P are PARAMETERs specifying the dimension size in the ξ and η directions, and NTOTP is a PARAMETER equal to N1P $\times N 2 P$. Next, we define a "step factor", which depends on the ADI sweep, and a "base index" which depends on the index in the non-sweep direction. For the first ADI sweep,

```
ISTEP = l
DO 1000 I2 = 2,NPT2-1
IV = I2
IBASE = 1 + (I2-1)*N1P
    .
1000 CONTINUE
```

And for the second $A D I$ sweep,

```
ISTEP = NIP
    DO 2000 I1 = 2,NPT1-1
IV = Il
IBASE = II
```

2000 CONTINUE

In both of the above examples, the loop is in the non-sweep direction and IV therefore represents the index in the non-sweep direction. Nested inside this loop is a loop in the sweep direction. In this inner loop, we can compute the equivalent one-dimensional address for a location in a two-dimensional array from the step factor, the base index, and the index in the sweep direction. Thus, for either ADI sweep, the inner loop looks like

```
DO 100 I = 2,NPTS-1
IIMI = IBASE + ISTEPx(I-2)
II = IBASE + ISTEP*(I-1)
IIPI = IBASE + ISTEPXI
```

2 An alternative would be to switch the order of the two subscripts in all the arrays after each sweep. Since these arrays are used in many other areas of the code, this idea was discarded as being unnecessarily confusing. It should be noted, however, that the first two subscripts in the A, B, C, and S arrays, which represent the coefficient submatrices and source term subvector, do switch between sweeps. For these arrays, the first subscript is the index in the non-sweep direction (i.e., the η direction for the first sweep and the ζ direction for the second sweep), and the second is the index in the sweep direction (i.e., ξ for the first sweep and η for the second sweep.)
where I represents the index in the sweep direction. With this coding, for the first sweep

$$
\begin{aligned}
& F 1(I I M 1)=F(I 1-1, I 2) \\
& F 1(I I)=F(I 1, I 2) \\
& F 1(I I P 1)=F(I 1+1, I 2)
\end{aligned}
$$

And for the second sweep,

$$
\begin{aligned}
& F 1(I I M 1)=F(I 1, I 2-1) \\
& F 1(I I)=F(I 1, I 2) \\
& F 1(I I P 1)=F(I 1, I 2+1)
\end{aligned}
$$

Two-Level Storage

With the Beam-Warming time differencing scheme used in PROTEUS, the dependent variables RHO $\mathrm{U}, \mathrm{V}, \mathrm{W}$, and ET must be stored at two time levels. For convenience, T is also stored at two time levels. In the ADI solution procedure, RHO, U , etc. are at the known time level n. The corresponding variable at the other time level is denoted by adding an " L " to the variable name. Exactly which time level the " L " variable is at depends on the stage in the solution procedure. Letting F represent one of these variables, the time levels for F and FL are listed in the following table for the different stages of the solution procedure. Recall that * represents the intermediate time level after the first ADI sweep.

STAGE IN TIME STEP FROM LEVEL n TO $n+1$	TIME LEVEL FOR F	TIME LEVEL FOR FL
From start to end of sweep 1	n	$n-1$
From end of sweep 1 to end of sweep 2	n	$*$
From end of sweep 2 to update in EXEC	n	$n+1$
From update in EXEC to start of next step	$n+1$	n

DUMMY Array

For convenience, a two-dimensional array called DUMMY is stored in common block DUMMY1 and used as a temporary storage location in several areas of the code. This array is DIMENSION'ed N1P by N2P, the same as the flow variables, metrics, etc. DUMMY is used internally in subroutines CONV and RESID. It is also defined in subroutine BCFLIN for use in subroutine BCF, and in subroutines BLIN2 and BLOUT2 for use in TURBBL. And finally, it is defined in subroutine OUTPUT and passed as an argument into subroutine PRTOUT. Details on its use are presented in the subroutine descriptions in
Section 40 Section 4.0.

3.0 COMMON BLOCKS

Transfer of data between routines in PROTELS is primarily accomplished through the use of labeled common blocks. Each common block contains variables dealing with a particular aspect of the analysis, and is stored in a separate Cray COMDECK (Cray Research, Inc., 1988c). The common block names are the same as the COMDECK names. These names also correspond to the names of the input namelists. All the variables in namelist BC are stored in common block BC 1 , etc. The Fortran variables in each common block are stored in alphabetical order.

3.1 COMMION BLOCK SUMMARY

Block Name Description
$\mathrm{BCl} \quad$ Boundary condition parameters.
DUMMYI
FLOW1
GMTRYI
IC1
101
METRICl
NUMI
RSTRTI
TIME1

TITLE 1
TURB1

Scratch array.
Variables dealing with fluid properties and the flow being computed.
Parameters defining the geometric configuration.
Variables needed for setting up initial conditions.
Parameters dealing with program input/output requirements.
Metrics of the nonorthogonal grid transformation, plus the Cartesian coordinates of the grid points.
Parameters associated with the numerical method.
Parameters dealing with the restart option.
Parameters dealing with the time step selection and convergence determination.
Descriptive title for case being run.
Turbulence parameters.

3.2 COMMON VARIABLES LISTED ALPHABETICALLY

In this section all the PROTEUS Fortran variables stored in common blocks are defined, listed alphabetically by variable name. Those marked with an asterisk are input variables. More details on these variables may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the variable, except for the subscripts II and I2, which are the indices i and j in the ξ and η directions, respectively, and run from 1 to N_{1} and N_{2}.

This list also includes the Cray PARAMETERs used as array dimensions. These are not actually stored in a common block, but are stored in the Cray COMDECK PARAMS1. More details may be found in Section 6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K, L, M, or N are integer, and the remainder are real.)

Fortran

Variable
A(IV,I,J,K)

ALPHA

* ALPHAI
* ALPHA2
* APLUS

B(IV,I,J,K)
B
$\mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{J}, \mathrm{K})$
C

* CAVS2E(I) $\quad \varepsilon_{\epsilon}^{(2)}$ or κ_{2}
* CAVS2I(I) ε_{I}
* CAVS4E(I) $\varepsilon_{E}^{(4)}$ or κ_{4}

Definition

Subdiagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript J $=1$ to $N_{\text {eg }}$, corresponding to the $N_{\text {eq }}$ coupled governing equations, and $\mathrm{K}=1$ to $N_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ dependent variables. (NUM1)

Difference centering parameter for first derivatives in the ADI sweep direction. (NUMI)

Difference centering parameter for ξ direction first derivatives. ALPHAl $=0.0,0.5$, or 1.0 corresponding to forward, central, and backward differences, respectively. (NUMI)

Difference centering parameter for η direction first derivatives. ALPHA2 $=0.0,0.5$, or 1.0 corresponding to forward, central, and backward differences, respectively. (NUM1)

Van Driest damping constant in the inner and outer regions of the Baldwin-Lomax turbulence model. (TLRB1)

Diagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathrm{J}=1$ to $N_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ coupled governing equations, and $\mathrm{K}=1$ to $N_{e q}$, corresponding to the $N_{\text {eq }}$ dependent variables. (NUMI)

Superdiagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathrm{J}=1$ to $N_{\text {eq }}$ corresponding to the $N_{e q}$ coupled governing equations, and $K=1$ to $N_{e q}$, corresponding to the $\lambda_{\text {eq }}$ dependent variables. (NLM1)

Second-order explicit artificial viscosity cocfficient in constant coefficient model, or user-specified constant in nonlinear coefficient model. The subscript $\mathrm{I}=1$ to $N_{\text {eg }}$, corresponding to
the N coupled governing equations. (the $N_{\text {eq }}$ coupled governing equations. (NUM1)

Second-order implicit artificial viscosity coefficient in constant coefficient model. The subscript $\mathrm{I}=1$ to $N_{\text {eq }}$, corresponding to the $N_{e q}$ coupled governing equations. (NUM1)
Fourth-order explicit artificial viscosity coefficient in constant coefficient model, or user-specified constant in nonlinear coefficient model. The subscript $\mathrm{I}=1$ to $N_{\text {eq }}$, corresponding to the $N_{e q}$ coupled governing equations. (NCM1)

* CB	B	Constant used in the formula for the Klebanoff intermittency factor $F_{\text {Keb }}$ in the outer region of the Baldwin-Lomax turbulence model, and in the inner region of the SpaldingKleinstein turbulence model. (TURB1)
* CCLAU	K	Clauser constant used in the outer region of the BaldwinLomax turbulence model. (TLRB1)
* CCP	$C_{\text {cp }}$	Constant used in the outer region of the Baldwin-Lomax turbulence model. (TURB1)
CCP1-4	$C_{c_{p}}-C_{c_{p}{ }^{4}}$	Constants in empirical formula for specific heat as a function of temperature. (FLOW1)
* CFL(I)		The ratio $\Delta \tau / \Delta \tau_{c f}$ where $\Delta \tau$ is the actual time step used in the implicit calculation and $\Delta \tau_{c f}$ is the allowable time step based on the Courant-Friedrichs-Lewy (CFL) criterion for explicit methods. I is the time step sequence number, and runs from 1 to NTSEQ. (TIME1)
* CFLMAX		Maximum allowed value of the CFL number. (TIME1)
* CFLMIN		Minimum allowed value of the CFL number. (TIME1)
CHGAVG(I)	$\Delta \mathbf{Q}_{\text {ovg }}$	Maximum change in absolute value of the dependent variables, averaged over the last NITAVG time steps. ${ }^{3}$ The subscript I $=1$ to $N_{e q}$, corresponding to the $N_{e q}$ dependent variables. (TIME1)
CIIGMAX (I,J)	$\Delta \mathbf{Q}_{\text {max }}$	Maximum change in absolute value of the dependent variables over a single time step. ${ }^{3}$ The subscript $\mathrm{I}=1$ to $N_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ dependent variables, and $J=1$ to NITAVG, the number of time steps used in the moving average option for determining convergence. (TIME1)
* CHGl		Minimum change, in absolute value, that is allowed in any dependent variable before increasing the time step. ${ }^{3}$ (TIME1)
* CHG2		Maximum change, in absolute value, that is allowed in any dependent variable before decreasing the time step. ${ }^{3}$ (TIME1)
* CKLEB	$C_{\text {Kıc }}$	Constant used in the formula for the Klebanoff intermittency factor $F_{\text {Xieb }}$ in the outer region of the Baldwin-Lomax turbulence model. (TLRB1)
CK1-2	$C_{k 1}-C_{k 2}$	Constants in empirical formula for thermal conductivity coefficient as a function of temperature. (FLOWl)
C.MU1-2	$C_{\mu 1}-C_{\mu 2}$	Constants in empirical formula for laminar viscosity coefficient as a function of temperature. (FLOW1)
* CNA	n	Exponent in the formula used to average the two outer region μ profiles that result when both boundaries in a coordinate direction are solid surfaces. (TURB1)

[^1]| CNI | n | Fxponent in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model. (TLRBI) |
| :---: | :---: | :---: |
| (P ($\mathrm{IL}, \mathrm{I} 2)$ | $c_{\text {P }}$ | Specific heat at constant pressure at time level n. (l:LOW1) |
| CV(IL,I2) | c_{0} | Specific heat at constant volume at time level n. (FLOWI) |
| CVK | κ | Von Karman mixing length constant used in the inner region of the Baldwin-Iomax and Spalding-Kleinstein turbulence models. (TLRB1) |
| CWK | $C_{n *}$ | Constant used in the formula for $F_{\text {woke }}$ in the outer region of the Baldwin-I omax turbulence model. (TLRBI) |
| 1)E. | $\Delta \xi$ or $\Delta \\|$ | Computational grid spacing in the AIDI sweep direction. ($\times \mathrm{Cl} 11$) |
| DHTA | A ${ }^{\prime}$ | Computational grid spacing in the η direction. (NLM () |
| DPIDET(1) | aplatis | The derivative of p with respect to F_{T}, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOWI) |
| DPDRSHO(I) | dolop | The derivative of p with respect to ρ, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. ($1: L O W 1$) |
| DPIPRU(I) | $\partial p / \partial(\rho u)$ | The derivative of p with respect to ρu, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1) |
| DPDRV(I) | $\partial p / \partial(p y)$ | The derivative of p with respect to ρv, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (1 LOW 1) |
| IPPDRW(I) | $\partial p / \partial(\rho w)$ | The derivative of p with respect to ρw, stored as a onedimensional array in the sweep direction. The subscript 1 therefore runs from 1 to N. (FIOW1) |
| DIT(1) | Δt | The time step size, when specified directly as input. I is the time step sequence number, and runs from 1 to NTSEQ. (TIME1) |
| DTAL(II,12) | Δ r | Computational time step size. (TIME1) |
| DTIDET(${ }^{\text {a }}$ | $\partial T / \partial E_{r}$ | The derivative of T with respect to E_{T}, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1) |
| DTDRHO(I) | $\partial T / \partial \rho$ | The derivative of T with respect to ρ, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1) |
| DTDRC(I) | $\partial T / \partial(\rho u)$ | The derivative of T with respect to ρu, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N . (FLOW1) |

$\operatorname{DTDRV}(\mathrm{I}) \quad \partial T / \partial(\rho v)$

DTDRW(I)
$\partial T / \partial(\rho w)$

* DTF1
* DTF2
* DTMAX
* DTMIN

DCMMY(II,I2)

DXI

* EPS(I)

ER
ET(I1,I2)
$\operatorname{ETAT}(11,12) \quad \eta_{t}$
$\operatorname{ETAX}(\mathrm{I} 1, \mathrm{I} 2) \quad \eta_{x}$
$\operatorname{ETAY}(I 1, I 2)$

ETL(II,I2)

* $\quad \mathrm{FBCl}(12, \mathrm{I}, \mathrm{J})$
* $\quad \mathrm{FBC} 2(\mathrm{I} 1, \mathrm{I}, \mathrm{J})$
* GAMR

The derivative of T with respect to ρv, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1)

The derivative of T with respect to ρw, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOWl)

Factor by which the time step is multiplied if the solution changes too slowly. (TIME1)

Factor by which the time step is divided if the solution changes too quickly. (TIME1)

Maximum value that $\Delta \tau$ is allowed to reach, or the maximum $\Delta \tau$ used in the time step cycling procedure. (TIME1)

Minimum value that $\Delta \tau$ is allowed to reach, or the minimum $\Delta \tau$ used in the time step cycling procedure. (TIME1)

Dummy array used for temporary storage in several subroutines. (DUMMY1)

Computational grid spacing in the ξ direction. (NUM1)
Convergence level to be reached. The subscript I $=1$ to $N_{e q}$, corresponding to the $N_{e q}$ dependent variables. (TIME1)

Dimensional reference energy, $\rho_{r} u_{r}^{2}$. (FLOW1)
Total energy at time level n. (FLOW1)
The derivative of the computational coordinate η with respect to untransformed time t. (METRICl)

The derivative of the computational coordinate η with respect to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate η with respect to the Cartesian coordinate y or cylindrical coordinate r. (METRIC1)
Total energy at previous or intermediate time level. (FLOW1)
Point-by-point values used for steady boundary conditions on the $\xi=0$ and $\xi=1$ surfaces. These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself. I runs from I to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi \stackrel{{ }^{e q}}{=} 0$ and $\xi=1$ boundaries, respectively. (BCl)

Point-by-point values used for steady boundary conditions on the $\eta=0$ and $\eta=1$ surfaces. These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself. I runs from 1 to $N_{e q}$, corresponding to the $N_{\text {eq }}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. (BCl)

Reference ratio of specific heats, $c_{p_{r}} / c_{v_{r}}$. (FLOW1)

* $\quad \mathrm{GBCl}(\mathrm{I}, \mathrm{J})$
* ($\mathrm{BBC} 2(\mathrm{I}, \mathrm{J})$

GC

* GTBCl(K,I,J)
* GTBC2(K,I,J)

IISTAG $\quad h_{T}$

* IISIAGR
* IAV2F:
* IAV2I
* IAV4E
* IAXI

Values used for steady boundary conditions on the $\xi=0$ and $\xi=1$ boundaries, when specified for the entire surface. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively. (BCl)

Values used for steady boundary conditions on the $\eta=0$ and $\eta=1$ boundaries, when specified for the entire surface. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. (BCl)

Dimensional proportionality factor in Newton's second law, either $32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft} / \mathrm{lb}_{\mathrm{f}}-\mathrm{sec}^{2}$, or $1.0 \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{sec}^{2}$. (FLOWl)

A variable used to specify the values for unsteady and timeperiodic boundary conditions on the $\xi=0$ and $\xi=1$ boundaries. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively. For general unsteady boundary conditions, $K=1$ to NTBC, corresponding to the time levels in the array NTBCA, and GTBCl specifies the boundary condition value directly. For time-periodic boundary conditions, $K=1$ to 4 , and GTBCl specifies the four coefficients in the equation used to determine the boundary condition value. (BCl)

A variable used to specify the values for unsteady and timeperiodic boundary conditions on the $\eta=0$ and $\eta=1$ boundaries. I runs from 1 to $N_{e q}$, corresponding to the $N_{\text {eg }}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. For general unsteady boundary conditions, $K=1$ to NTBC, corresponding to the time levels in the array NTBCA, and GTBC2 specifies the boundary condition value directly. For time-periodic boundary conditions, $K=1$ to 4 , and GTBC2 specifies the four coefficients in the equation used to determine the boundary condition value. (BC1)

Stagnation enthalpy used with constant stagnation enthalpy option. (FIOWI)

Dimensional stagnation enthalpy used with constant stagnation enthalpy option. (ILOWI)

Ilag for second-order explicit artificial viscosity; 0 for none, 1 for constant coefficient model, 2 for nonlincar coefficient model. (NUMI)

Flag for second-order implicit artificial viscosity; 0 for none, I for constant coefficient model. (NUMI)

Flag for fourth-order explicit artificial viscosity; 0 for none, 1 for constant coefficient model, 2 for nonlinear coefficient model. (NUM1)

Flag for two-dimensional planar or axisymmetric flow; 0 for two-dimensional planar, 1 for axisymmetric. (GMTRY1)

IBASE

IBCEL.M(I,J)

* $\quad \mathrm{IBCl}(\mathrm{I} 2, \mathrm{I}, \mathrm{J})$
* $\quad \mathrm{IBC} 2(\mathrm{I} 1, \mathrm{I}, \mathrm{J})$

IBVUP(I)

* ICHECK

ICONV

* ICTEST
* ICVARS
* IDEBLG(I)
* IDTAU
* IDTMOD
* IELLER

Base index used with ISTEP to compute one-dimensional index for two-dimensional array. Then, for example, for any sweep $\mathrm{L}(\mathrm{I}, \mathrm{I} 2)=\mathrm{Ul}\left(\mathrm{IBASE}+\operatorname{ISTEP}^{*}(\mathrm{I}-1)\right.$ where I is the grid index in the sweep direction. (NUM1)

Flags for elimination of off-diagonal sub-matrices resulting from gradient or extrapolation boundary conditions: 0 if elimination is not necessary, 1 if it is. The subscript $I=1$ or 2 corresponding to the sweep direction, and $\mathrm{J}=1$ or 2 corresponding to the lower or upper boundary in that direction. (BCl)

Flags specifying, point-by-point, the type of steady boundary conditions used on the $\xi=0$ and $\xi=1$ surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively. (BCl)

Flags specifying, point-by-point, the type of steady boundary conditions used on the $\eta=0$ and $\eta=1$ surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. (BCl)
Flags for updating boundary values from the first sweep after the last sweep: 0 if updating is not necessary, 1 if it is. Updating is required when gradient or extrapolation boundary conditions are used. The subscript $\mathrm{I}=1$ or 2 , corresponding to the lower or upper boundary in the first sweep direction. (BCl)

Results are checked for convergence every ICHECK'th time level. (TIME1)
Convergence flag; 0 if not converged, 1 if converged. (TIME1)

Flag for convergence criteria to be used. (TIME1)
Parameter specifying which variables are being supplied as initial conditions by subroutine INIT. (FLOWI)

A 20 -element array of flags specifying various debug options. (IO1)

Flag for time step selection method. (TIME1)
The time step size is modified every IDTMOD'th time step. (TIME1)

Flag for Euler calculation option; 0 for a full time-averaged Navier-Stokes calculation, 1 for an Euler calculation. (FLOWI)

IGAM

IGI.TT(I)

* IHSTAG
* ILAMV
* ILDAMP

INEG

* InNer
* $\operatorname{IPACK}(\mathrm{I})$
* IPLOT
* IPLT
* IPLTA(I)
* IPRT
* IPRTA(I)
* IPRTI
* IPRT2
* IPRTIA(I)

Flag set by method used to select GAMR; 0 if GAMR is defaulted (and hence c_{p} and c_{v} are functions of temperature), 1 if GAMR is specified by user (and hence c_{p} and c_{v} are constants). (ILOW1)

Flags for grid interpolation requirement; 0 if interpolation is not needed, 1 if interpolation is needed. The subscript $I=1$ or 2 , corresponding to the ξ and η directions, respectively. (GMTRY1)

Flag for constant stagnation enthalpy option; 0 to solve the energy equation, 1 to eliminate the energy equation by assuming constant stagnation enthalpy. (FLOW 1)

Flag for computation of laminar viscosity and thermal conductivity; 0 for constant values, 1 for functions of local temperature. (FLOW1)

Flag for the Launder-Priddin modified mixing length formula in the inner region of the Baldwin-Lomax turbulence model. (TLRB1)

Flag indicating non-positive values of pressure and/or temperature: 0 for no non-positive values, I for some. (FLOW1)

Flag for type of inner region turbulence model. ([LRB1)
Flags for grid packing option; 0 for no packing, 1 to pack points as specified by the input array SQ. The subscript $\mathrm{I}=1$ or 2 , corresponding to the ξ and η directions, respectively. (NUMI)

Flag controlling the creation of an auxiliary file, usually called a "plot file", used for later post-processing. (IO1)

Results are written into the plot file every IPLT time levels. (IOI)

Time levels at which results are written into the plot file. The subscript $I=1$ to 101 , the maximum number of time levels that may be written. (IO1)

Results are printed every IPRT time levels. (IO1)
Time levels at which results are printed. The subscript $\mathrm{I}=1$ to 101 , the maximum number of time levels that may be printed. (IO1)

Results are printed at every IPRT1'th mesh point in the ξ direction. (IOI)

Results are printed at every IPRT2'th mesh point in the η direction. (IO1)
ξ indices at which results are printed. The subscript $I=1$ to a maximum of N , the number of grid points in the ξ direction. (IO 1)

* IPRT2A(I)
* IRIST

ISTEP

ISWEEP

* ISWIRL

IT

ITBEG

ITDBC

ITEND

* ITETA
* ITHIN(I)

ITSEQ

* ITLRB
* ITXI
* IUNits

IV
i
η indices at which results are printed. The subscript $\mathrm{I}=1$ to a maximum of N , the number of grid points in the η direction. (1OI)

Flag controlling the reading and writing of auxiliary files used for restarting the calculation in a separate run. (RSTRT1)

Multiplication factor used with IBASE to compute onedimensional index for two-dimensional array. (NしM!)

Flag specifying ADI sweep direction; 1 for ξ direction and 2 for η direction. (NLM1)

Hag for swirl in axisymmetric flow; 0 for no swirl, 1 for swirl. (FLOW1)

Current time step number, or known time level. Time step number n updates the solution from time level n to $n+1$. (TIME:)

The time time step number, of known time level n, at the beginning of a run. For a non-restart case, IIBI $;=1$. (TIME1)

Flag for time-dependent boundary conditions; 0 if all boundary conditions are steidy, 1 if any general unsteady boundary conditions are used, 2 if only steady and time-periodic boundary conditions are used. (BCl)

The final time step number. (TIME:1)
Flag for computing turbulent viscosity on constant η lines. (TURB1)

Flags for thin-layer option; 0 to include 2nd. derivative viscous terms, 1 to eliminate them. The subscript $I=1$ or 2 , corresponding to the ξ and η directions, respectively. (FLOW1)

Current time step sequence number. (TIME1)
Hag for turbulent flow option; 0 for laminar flow, 1 for turbulent flow using the Baldwin-Lomax algebraic turbulence model. (TURBI)

Flag for computing turbulent viscosity on constant ξ lines. (TURB1)

Flag for type of units used to specify reference conditions; 0 for English units, 1 for SI units. (IOI)

Grid point index in the "yectorized" direction (i.e., the nonsweep direction in which the "BI K" routines are vectorized). Therefore, IV $=j$ for the first sweep and i for the second sweep. (NUM1)

A 50 -element array specifying which variables are to be printed. (IOl)

* IWALLI(I)
* IWALL2(I)

11	i
12	j

* JBCl(I,J)
* JBC2(I,J)
$\mathrm{JI}(\mathrm{I} 1, \mathrm{I} 2) \quad J^{-1}$ or $r J^{-1}$
* JTBCl(I,J)
* JTBC2 $1, \mathrm{~J}$)

KBCPER(I)

* $\mathrm{KBCl}(\mathrm{J})$
* $\mathrm{KBC} 2(\mathrm{~J})$

KT(11,12)

Flags indicating type of surfaces in the ξ direction; 0 for a free boundary, 1 for a solid wall. The subscript $I=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ surfaces, respectively. (TURB1)

Flags indicating type of surfaces in the η direction; 0 for a free boundary, 1 for a solid wall. The subscript $I=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ surfaces, respectively. (TURB1)

Grid point index in the ξ direction. (NUM1)
Grid point index in the η direction. (NL.M1)
Flags specifying the type of steady boundary conditions used on the $\xi=0$ and $\xi=1$ surfaces, when specified for the entire surface. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively. (BCl)

Flags specifying the type of steady boundary conditions used on the $\eta=0$ and $\eta=1$ surfaces, when specified for the entire surface. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. (BCl)

Normally the inverse Jacobian of the non-orthogonal grid transformation. For the COEF routines in axisymmetric flow, it is temporarily redefined as the product of the local radius and the inverse Jacobian. This is a type REAL variable. (METRIC1)

A variable specifying the type of time dependency for the boundary conditions on the $\xi=0$ and $\xi=1$ boundaries. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively. (BCl)

A variable specifying the type of time dependency for the boundary conditions on the $\eta=0$ and $\eta=1$ boundaries. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. (BC1)

Flags for spatially periodic boundary conditions: 0 for nonperiodic, 1 for periodic. The subscript $I=1$ or 2 , corresponding to the ξ and η directions, respectively. (BCl)

Flags for type of boundaries in the ξ direction. The subscript $\mathrm{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively. (BCl)

Flags for type of boundaries in the η direction. The subscript $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. (BCl)

Effective thermal conductivity coefficient at time level n. This is a type REAL variable. (FLOW1)

* KTR k_{r} Dimensional reference thermal conductivity coefficient. This is a type REAL variable. (FLOW1)

Effective second coefficient of viscosity at time level n (usually assumed equal to $-2 \mu / 3$.) This is a type REAL variable. (FLOW1)

* LR L_{r}

LR.MAX(I,J,K)

LWAKE1

LWAKE2

* MACHR M_{r}
$\operatorname{METT}(I V, \mathbf{I}) \quad \xi_{t}$ or η_{2}
$\operatorname{METX}(\mathrm{IV}, \mathrm{I}) \quad \xi_{x}$ or η_{x}
$\operatorname{METY}(\mathrm{IV}, \mathrm{I}) \quad \xi_{y}$ or η_{y}

MU(I1,I2)

* MLR
$\operatorname{MLT}(I 1, I 2) \quad \mu_{\text {: }}$

Dimensional reference length. This is a type REAL variable. (FIOW1)

The grid indices corresponding to the location of the maximum absolute value of the residual. The subscript $\mathrm{I}=1$ or 2 , corresponding to the ξ and η directions, respectively, $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1)

Grid point index in the ξ direction used as the origin for computing length scales for free turbulent flows. (TLRBI)

Grid point index in the η direction used as the origin for computing length scales for free turbulent flows. (TLRB1)

Reference Mach number, $u_{r} /\left(\gamma_{r} \bar{R} T_{r}\right)^{1 / 2}$. This is a type REAL variable. (FIOW1)

The derivative of the computational coordinate in the ADI sweep direction with respect to untransformed time t. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. This is a type REAL variable. (METRICI)

The derivative of the computational coordinate in the ADI sweep direction with respect to the Cartesian coordinate x. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. This is a type REAL variable. (METRIC1)

The derivative of the computational coordinate in the ADI sweep direction with respect to the Cartesian coordinate y or cylindrical coordinate r. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. This is a type REAL variable. (METRIC1)

Effective viscosity coefficient at time level n. This is a type REAL variable. (FLOW1)

Dimensional reference viscosity coefficient. This is a type REAL variable. (FLOWI)

Turbulent viscosity coefficient at time level n. This is a type REAL variable. (FLOW1)

NAMAX		A PARAMETER equal to the maximum number of time steps allowed in the moving average convergence test (the ICTEST $=2$ option). (PARAMS1)
$\therefore B C$		A PARAMETER equal to the number of boundary conditions per equation. (PARAMS1)
NC		Array index associated with the continuity equation. (NLM1)
, DTCYC		Number of time steps per cycle used in the time step cycling procedure. (TIME1)
NEN		Array index associated with the energy equation. (NUMI)
NET		Array index associated with the dependent variable E_{T}. (CLM)
NEQ	$N_{\text {eq }}$	The number of coupled governing equations actually being solved. (UM1)
NEQP		A PARAMETER equal to the maximum number of coupled equations that can be solved. (PARAMS1)
NGEOM		Flag used to specify type of computational coordinates; 1 for Cartesian (x, y) coordinates, 2 for polar ($r^{\prime}, \theta^{\prime}$) coordinates, and 10 to read the coordinates from unit NGRID. (GMTRY1)
* NGRID		Unit number for reading grid file. (IO1)
* Nhist		Unit number for writing convergence history file. (IO1)
* NHMAX		Maximum number of time levels allowed in the printout of the convergence history file (not counting the first two, which are always printed.) (IOI)
NiN		Unit number for reading namelist input. (IO1)
* Nitavg		Number of time steps used in the moving average convergence test. (TIME1)
NMAXP		A PARAMETER equal to the maximum of N1P and N2P. (PARAMSI)
* Nout		Unit number for writing standard output. (IOI)
* Nplot		Unit number for writing CONTOUR or PLOT3D Q plot file. (IO1)
* NPlotx		Unit number for writing PLOT3D XYZ plot file. (IO1)
NPRT1		Total number of indices for printout in the ξ direction. (IO1)
NPRT2		Total number of indices for printout in the η direction. (IO1)
NPTS	N	The number of grid points in the sweep direction. (NLM1)

NPT2 $\quad N_{2}$ or $N_{2}+1$
$N R$

* NRQIN
* NRQOUT

NRU

NRV

NRW

* NRXIN
* NRXOUT
* NSCR1
- NTBC
* NTBCA(I)
* NTIME(I)

NTOTP

NTP

* NTSEQ

NTSEQP

N_{1} or $N_{1}+1 \quad$ The number of grid points in the ξ direction used in computing coefficients: N_{1} for non-periodic boundary conditions; $N_{1}+1$ for spatially periodic boundary conditions. (NUM1)
N_{2} or $N_{2}+1$ The number of grid points in the η direction used in computing coefficients: N_{2} for non-periodic boundary conditions; $N_{2}+1$ for spatially periodic boundary conditions. (NUM1)

Array index associated with the dependent variable ρ. (NLM1)

Unit number for reading restart flow field. (RSTRT1)
Unit number for writing restart flow ficld. (RSTRT1)
Array index associated with the dependent variable ρu. (NUM1)

Array index associated with the dependent variable ρv. (NUM1)

Array index associated with the dependent variable ρw. (NUM1)

Unit number for reading restart computational mesh. (RSTRT1)

Unit number for writing restart computational mesh. (RSTRT1)

Unit number for scratch file in subroutine PLO'T. (IO1)
Number of values in the tables of GTBCl and/or GГBC2 vs. NTBCA for general unsteady boundary conditions. (BC1)

Time levels at which GTBC1 and/or GTBC2 are specified for general unsteady boundary conditions. The subscript $I=1$ to NTBC, corresponding to the NTBC values in the table. (BCl)

Maximum number of time steps to march. I runs from 1 to NTSEQP, corresponding to the time step sequence number. (TIME1)

A PARAMETER equal to the total storage required for a single two-dimensional array (i.e., $N 1 P \times N 2 P$). (PARAMS1)

A PARAMETER equal to the maximum number of entries in the table of time-dependent boundary condition values. (PARAMS1)

The total number of time step sequences being used. (TIME1)

A PARAMETER equal to the maximum number of time step sequences in the time step sequencing option. (PARAMS1)

*	REXT1	$R e_{x_{t r}}$	Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from $\xi=0$, for flow predominantly in the ξ direction with a leading edge at $\xi=0$. (TURBI)
*	REXT2	$R e_{x_{t r}}$	Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from $\eta=0$, for flow predominantly in the η direction with a leading edge at $\eta=0$. (TURB1)
*	RG	\bar{R}	Dimensional gas constant. (FLOW 1)
	RGAS	R	Nondimensional gas constant. (FLOW1)
	$\mathrm{RHO}(\mathrm{Il}, \mathrm{I} 2)$	ρ	Static density at time level n. (FLOW1)
	RHOL(11,12)	ρ	Static density at previous or intermediate time level. (FLOWI)
*	RHIOR	ρ_{r}	Dimensional reference density. (FLOW1)
*	RMAX	$r_{\text {max }}^{\prime}$	Maximum r^{\prime} coordinate for polar grid option. (GMTRY1)
*	RMIN	$r_{\text {min }}^{\prime}$	Minimum r^{\prime} coordinate for polar grid option. (GMTRY1)
	S(IV,I,J)	S	Subvector of source terms at grid point I in the block tridiagonal system of equations. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations. (NUM1)
*	SQ(I, J)		An array controlling the packing of grid points using the Roberts transformation. The subscript $I=1$ or 2 , corresponding to the ξ and η directions, respectively. $\mathrm{SQ}(\mathrm{I}, 1)$ specifies the location of packing, and $\mathrm{SQ}(\mathrm{I}, 2)$ specifies the amount of packing. (NUM1)
	T(IL,I2)	T	Static temperature at time level n. (FLOWl)
	TAU(I1,I2)	τ	Current value of the time marching parameter. (TIME1)
*	THC(I)	θ_{1}, θ_{2}	A two-element array specifying the time difference centering parameters used for the continuity equation. (NUM1)
*	THE(I)	$\theta_{1}, \theta_{2}, \theta_{3}$	A three-element array specifying the time difference centering parameters used for the energy equation. (NUM1)
*	THMAX	$\theta_{\text {max }}^{\prime}$	Maximum θ^{\prime} coordinate in degrees for polar grid option. (GMTRY1)
*	THMIN	$\theta_{\text {min }}^{\prime}$	Minimum θ^{\prime} coordinate in degrees for polar grid option. (G.MTRY1)

* THX (1)	$\theta_{1}, \theta_{2}, \theta_{3}$	A three-element array specifying the time difference centering parameters used for the x-momentum equation. (NLM1)
* THY(1)	$\theta_{1}, \theta_{2}, \theta_{3}$	A three-element array specifying the time difference centering parameters used for the y or r-momentum equation. (NUM1)
* TH7. I)	$\theta_{1}, \theta_{2}, \theta_{3}$	A three-element array specifying the time difference centering parameters used for the swirl momentum equation. (NLM1)
* TITLE		Title for printed output and CONTOUR plot file, up to 72 characters long. This is a type CHARACTER variable. (TITLE1)
TL(11,12)	T	Static temperature at previous or intermediate time level. (FLOW1)
* TR	T,	Dimensional reference temperature. (FLOW1)
* T0	T_{0}	Initial static temperature. (IC1)
U(II,I2)	u	Velocity in the Cartesian x direction at time level n. (FLOW1)
LL(I1,12)	u	Velocity in the Cartesian x direction at previous or intermediate time level. (FLOW1)
* UR	u_{r}	Dimensional reference velocity. (FLOW1)
* L0	u_{0}	Initial velocity in the Cartesian x direction. (ICl)
$\mathrm{V}(\mathrm{IL}, \mathrm{I} 2)$	v	Velocity in the Cartesian y direction or cylindrical r direction at time level n. (FLOW1)
VI, (I1,I2)	v	Velocity in the Cartesian y direction or cylindrical r direction at previous or intermediate time level. (FLOW1)
VORT(I1,I2)	$\|\stackrel{\rightharpoonup}{\Omega}\|$	Total vorticity magnitude. (TURB1)
* V0	ν_{0}	Initial velocity in the Cartesian y direction or cylindrical r direction. (IC1)
W(I1,I2)	w	Swirl velocity at time level n. (FLOW1)
WL(11,I2)	w	Swirl velocity at previous or intermediate time level. (FLOWl)
* W0	w_{0}	Initial swirl velocity. (ICl)
X (I1,I2)	x	Cartesian x coordinate. (METRIC1)
XIT(I1,I2)	ξ_{t}	The derivative of the computational coordinate ξ with respect to untransformed time t. (METRICl)
XIX(11,12)	ξ_{x}	The derivative of the computational coordinate ξ with respect to the Cartesian coordinate x. (METRIC1)

3.3 (OMIMON VARIABIES IISIED SYMBOI.ICALIY

In this section many of the PROTFLS Fortan variables stored in common blocks are defined, listed symbolically. Note that this list does not include those variables without symbolic representations, such as farious flags, or those whose meaning depends on other parameters, such as the boundary condition values and sweep diection metrics. The variables marked with an asterisk are input variables. Wore details on these may be found in Section 3.1 of Volume 2. The common block cach variable is stored in is given in parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with the variable, except for the subscripts $I!$ and $I 2$, which are the indices i and j in the ξ and η directions, respectively, and run from 1 to N_{1} and V_{2}.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The nondimensionalizing procedure is described in Section 3. L. 1 of Volume 2. The type (real or integer) of the tariables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K, 1., M, or λ are integer, and the remainder are real.)

Symbol Vortran | Variable \quad Definition |
| :--- |

Van Driest damping constant in the inner and outer regions of the Baldwin-I omax turbulence model. (ILRBI)

Subdiagonal submatrix of cocfficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, rumning from 1 to V. IV is the grid index in the "rectorized" direction (i.e., the non-sweep direction in which the "BI K" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathbf{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ to $\mathrm{N}_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ dependent variables. (NUM1)

Constant used in the formula for the Klebanoff internittency factor $F_{\text {Kleb }}$ in the outer region of the Baldwin-I omax turbulence model, and in the inner region of the SpaldingKleinstein turbulence model. (TLRB1)
$B \quad B(I V, 1, J, K)$
Diagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to $\mathrm{V} . \mathrm{IV}$ is the grid index in the

		"vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ to $N_{\text {eq }}$, corresponding to the $N_{e q}$ dependent variables. (NCMI)
c_{p}	$\mathrm{CP}(\mathrm{I} 1, \mathrm{I} 2)$	Specific heat at constant pressure at time level n. (FLOW1)
c_{*}	$\mathrm{CV}(\mathrm{IL}, \mathrm{I} 2)$	Specific heat at constant volume at time level n. (FLOW1)
* $C_{c p}$	CCP	Constant used in the outer region of the Baldwin-Lomax turbulence model. (TLRBI)
$C_{c_{p} 1}-C_{c_{p}{ }^{4}}$	CCPl-CCP4	Constants in empirical formula for specific heat as a function of temperature. (FLOWI)
$C_{k 1}-C_{k 2}$	CKI-2	Constants in empirical formula for thermal conductivity coefficient as a function of temperature.
* $C_{K \prime t b}$	CKLEB	Constant used in the formula for the Klebanoff intermittency factor $F_{\text {Kicb }}$ in the outer region of the Baldwin-Lomax turbulence model. (TURB1)
$C_{\mu 1}-C_{\mu 2}$	CMU1-2	Constants in empirical formula for laminar viscosity coefficient as a function of temperature. (FLOW1)
* C_{w}	CWK	Constant used in the formula for $F_{\text {wake }}$ in the outer region of the Baldwin-Lomax turbulence model. (TURB1)
C	C(IV,I,J,K)	Superdiagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and ${ }^{e q}=1$ to $N_{e q}$, corresponding to the $N_{\text {eq }}$ dependent variables. (NUM1)
$e r$	ER	Dimensional reference energy, $\rho_{r} u_{r}^{2}$. (FLOW1)
E_{T}	ET(I1,I2)	Total energy at time level n. (FLOWl)
E_{T}	$\operatorname{ETL}(\mathrm{IL,I2})$	Total energy at previous or intermediate time level. (FLOW1)
$g{ }_{c}$	GC	Dimensional proportionality factor in Newton's second law, either $32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft} / \mathrm{lb}_{\mathrm{f}}-\mathrm{sec}^{2}$, or $1.0 \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{sec}^{2}$. (FLOW1)
h_{T}	HSTAG	Stagnation enthalpy used with constant stagnation enthalpy option. (FLOWI)
* h_{r},	HSTAGR	Dimensional stagnation enthalpy used with constant stagnation enthalpy option. (FLOW1)
i	I1	Grid point index in the ξ direction. (NLM1)
i	IV	Grid point index in the "vectorized" direction (i.e., the nonsweep direction in which the "BLK" routines are vectorized). Therefore, $\mathrm{IV}=j$ for the first sweep and i for the second sweep. (NLM1)

	j	I2
	J^{-1}	JI(II, I2)
	k	$\mathrm{K} \Gamma(11, \mathrm{I} 2)$
*	k,	KTR
*	K	CCLAU
*	L_{r}	LR
*	M_{r}	MACHR
	n	IT
*	n	CNA
*	n	CNL
	N	NPTS
	$N_{e q}$	NEQ
	N_{ν}	NV
*	N_{1}	N1
	N_{1}	NPT1
	$N_{1}+1$	NPT1
*	N_{2}	$N 2$
	N_{2}	NPT2

Grid point index in the η direction. (NLM1)
Inverse Jacobian of the non-orthogonal grid transformation. (For axisymmetric flow, in the COEF routines $\mathrm{JI}=r J^{-1}$, the product of the local radius and the inverse Jacobian.) This is a type REAL variable. (METRICI)

Fffective thermal conductivity coefficient at time level n. This is a type REAL variable. (FLOW1)

Dimensional reference thermal conductivity coefficient. This is a type REAI variable. (FLOW1)

Clauser constant used in the outer region of the BaldwinI omax turbulence model. (TURB1)

Dimensional reference length. This is a type REAL variable. (FLOW1)

Reference Mach number, $u_{r} /\left(\gamma_{r} \bar{R} T_{r}\right)^{1 / 2}$. This is a type REAL variable. (FLOWV)

Current time step number, or known time level. Time step number n updates the solution from time level n to $n+1$. (IIMEI)

Exponent in the formula used to average the two outer region μ_{t} profiles that result when both boundaries in a coordinate direction are solid surfaces. (TLRB1)

Exponent in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model. (TLRB1)

The number of grid points in the sweep direction. (NUM1)
The number of coupled governing equations actually being solved. (NU.M1)

The number of grid points in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized). Therefore, $\mathrm{NV}=N_{2}$ for the first sweep and N_{1} for the second sweep. (NUM1)

The number of grid points in the ξ direction. (NUM1)
The number of grid points in the ξ direction used in computing coefficients (only for non-periodic boundary conditions.) (NUM1)

The number of grid points in the ξ direction used in computing coefficients (only for spatially periodic boundary conditions.) (NLM1)

The number of grid points in the η direction. (NUM1)
The number of grid points in the η direction used in computing coefficients (only for non-periodic boundary conditions.) (NUM1)

$\mathrm{N}_{2}+1$	NPT 2	The number of grid points in the η direction used in computing coefficients (only for spatially periodic boundary conditions.) (NLM1)
p	$l^{\prime}(11,12)$	Static pressure at time level n. (FIOW1)
p.	PR	Dimensional reference static pressure, $\rho_{\mathrm{r}} \bar{R} T_{t} / g_{c}$. (FIOW ${ }^{\text {a }}$ ()
* p_{0}	$\mathrm{P}^{(0)}$	Initial static pressure. (ICl)
$\overline{\partial / O E}$	DPDIT(1)	The derivative of p with respect to E_{T}, stored as a onedimensional array in the sweep direction. The subscript I therefore rums from 1 to N . (IFLOWI)
$\lambda p / d \rho$	I)PDRHO(I)	The derivative of p with respect to ρ, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FIOWI)
Sp/dent	IPPDRI(I)	The derivative of p with respect to ρu, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N . (IFIOW1)
ip/o($\rho \cdot$	DPDRV(I)	The derivative of p with respect to ρv, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N . (FIOWl)
dp/r(pw)	DPIDRW(I)	The derivative of p with respect to ρw, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (IIOW1)
* Pr r_{1}	PRIR	Reference laminar Prandtl number, $c_{p} \mu_{r} / k_{r}$, where $c_{r}=\gamma, \bar{R} /\left(\gamma_{r}-1\right)$. (ILOVI)
Pr,	PRR	Reference Prandtl number, $\mu_{r} u_{r}^{2} / k_{r} T_{r}$. (ILOWD)
* Pr,	PRT	Turbulent Prandtl number, or, if non-positive, a flag indicating the use of a variable turbulent Prandtl number. (TLRB1)
$\Delta Q_{\text {alg }}$	CHGAVG(1)	Maximum change in absolute value of the dependent variables, averaged over the last NITAVG time steps. ${ }^{4}$ The subsoript $I=1$ to $V_{e q}$, corresponding to the $N_{e q}$ dependent variables. (TIME1)
$\Delta \mathbf{Q}_{\text {max }}$	CHGMAX(I,J)	Maximum change in absolute value of the dependent variables over a single time step. ${ }^{4}$ The subscript $I=1$ to $N_{e q}$, corresponding to the $V_{\text {eq }}$ dependent variables, and $J=1$ to \therefore XTAVG, the number of time steps used in the moving average option for determining convergence. (IIME1)
r	Y(11,12)	Cy lindrical r coordinate. (MITRRIC1)
r	R $\backslash \mathrm{X}(\mathrm{I})$	I ocal radius r for axisymmetric flow. I is the grid index in the sweep direction, running from 1 to N . (METRIC1)

[^2]| $r_{\text {max }}$ | RMAX | Maximum r^{\prime} coordinate coordinate for polar grid option. (GMTRY1) |
| :---: | :---: | :---: |
| * $r_{\text {min }}$ | R.MIN | Minimum r^{\prime} coordinate coordinate for polar grid option. (G.MTRY1) |
| $\mathrm{R}_{\text {avg }}$ | RESAVG(J,K) | The average absolute value of the residual for the previous time step. The subscript $\mathbf{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) |
| $\mathrm{R}_{L_{2}}$ | RESL2(J,K) | The L_{2} norm of the residual for the previous time step. The subscript $\mathbf{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) |
| $\mathrm{R}_{\text {max }}$ | RESMAX (J, K) | The maximum absolute value of the residual for the previous time step. The subscript $\mathbf{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms. (TIME1) |
| * \bar{R} | RG | Dimensional gas constant. (FLOW1) |
| R | RGAS | Nondimensional gas constant. (FLOWI) |
| * Re , | RER | Reference Reynolds number, $\rho_{r} u_{r} L_{r} / \mu_{r}$. (FLOW1) |
| * $R e_{x_{\text {tr }}}$ | REXT1 | Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from $\xi=0$, for flow predominantly in the ξ direction with a leading edge at $\xi=0 .($ TURB1) |
| * $R e^{\text {xtr }}$ | REXT2 | Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from $\eta=0$, for flow predominantly in the η direction with a leading edge at $\eta=0$. (TURB1) |
| S | S(IV,I,J) | Subvector of source terms at grid point I in the block tridiagonal system of equations. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript J $=1$ to $N_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ coupled governing equations. (NUMI) |
| * Δt | DT(I) | The time step size, when specified directly as input. I is the time step sequence number, and runs from 1 to NTSEQ. (TIMEl) |
| T | T(I1,I2) | Static temperature at time level n. (FLOW1) |
| T | TL(I1,12) | Static temperature at previous or intermediate time level. (FLOW1) |

$\partial T / \partial E_{T}$	DTDET(1)	The derivative of T with respect to E_{T}, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1)
$\partial T / \partial \rho$	DTDRHO(I)	The derivative of T with respect to ρ, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1)
$\partial T / \partial(\rho u)$	DTDRU(I)	The derivative of T with respect to ρu, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1)
$\partial T / \partial(\rho v)$	$\operatorname{DTDRV}(\mathrm{I})$	The derivative of T with respect to ρv, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOW1)
$\partial T / \partial(\rho w)$	DTDRW(I)	The derivative of T with respect to ρw, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N. (FLOWI)
- T_{r}	TR	Dimensional reference temperature. (FLOW1)
* T_{0}	T0	Initial static temperature. (IC1)
u	U(II,I2)	Velocity in the Cartesian x direction at time level n. (FLOW1)
u	UL(I1,12)	Velocity in the Cartesian x direction at previous or intermediate time level. (FLOWI)
* u_{r}	UR	Dimensional reference velocity. (FLOW1)
* u_{0}	U0	Initial velocity in the Cartesian x direction. (IC1)
v	V(I1,12)	Velocity in the Cartesian y direction or cylindrical r direction at time level n. (FLOW1)
v	VL(I1,I2)	Velocity in the Cartesian y direction or cylindrical r direction at previous or intermediate time level. (FLOW1)
* v_{0}	V0	Initial velocity in the Cartesian y direction or cylindrical r direction. (ICI)
w	W(I1,I2)	Swirl velocity at time level n. (FLOW1)
w	WL(I1,I2)	Swirl velocity at previous or intermediate time level. (FLOW1)
* w_{0}	W0	Initial swirl velocity. (IC1)
x	$\mathrm{X}(\mathrm{I}, 12)$	Cartesian x coordinate. (METRIC1)
* $x_{\text {max }}$	XMAX	Maximum x coordinate for Cartesian grid option. (GMTRY1)
* $x_{\text {mn }}$	XMIN	Minimum x coordinate for Cartesian grid option. (GMTRY1)
y	$\mathrm{Y}(\mathrm{IL,12})$	Cartesian y coordinate. (METRIC1)

* $y_{\text {max }}$
* $y_{\text {min }}$ α
* α_{1}
* α_{2}

$$
\text { * } \quad \varepsilon
$$

$$
* \quad \varepsilon_{E}^{(2)}
$$

$$
* \varepsilon_{E}^{(4)}
$$

$$
* \quad \varepsilon_{I}
$$

η_{r}
η
η_{1}
η,
η_{x}

YMAX

YMIN

AIPHA

ALPIIAI

ALPHA2
$\operatorname{EPS}(I)$

CAVS2L(I)

CAVS4E(I)

CAVS2I(I)
$\operatorname{ETAY}(I 1, I 2)$

METY(IV,I)
$\operatorname{ETAT}(11, \mathrm{I} 2)$

METT(IV,I)
$\operatorname{ETAX}(11,12)$

Maximum y coordinate for Cartesian grid option. (GMTRY1)

Minimum y coordinate for Cartesian grid option. (GMTRY1)

Difference centering parameter for first derivatives in the ADI sweep direction. (ㄴ.M1)

Difference centering parameter for ξ direction first derivatives. ALPIAA1 $=0.0,0.5$, or 1.0 corresponding to forward, central, and backward differences, respectively. (NU.M1)

Difference centering parameter for η direction first derivatives. ALPIIA2 $=0.0,0.5$, or 1.0 corresponding to forward, central, and backward differences, respectively. (NLM1)

Convergence level to be reached. The subscript $I=1$ to $N_{e q}$, corresponding to the $V_{e q}$ dependent variables. (TIME1)

Second-order explicit artificial viscosity coefficient in constant coefficient model. The subscript $\mathrm{I}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing cquations. (NUM1)

Fourth-order explicit artificial viscosity coefficient in constant coefficient model. The subscript $I=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations. (NUM1)

Second-order implicit artificial viscosity coefficient in constant coefficient model. The subscript $I=1$ to $N_{e q}$, corresponding to the $N_{\text {eq }}$ coupled governing equations. (NLM1)

The derivative of the computational coordinate η with respect to the cylindrical coordinate r. (METRIC1)

The derivative of the computational coordinate η with respect to the cylindrical coordinate r (second ADI sweep only.) I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. This is a type REAL variable. (METRIC1)

The derivative of the computational coordinate η with respect to untransformed time t. (METRIC1)

The derivative of the computational coordinate η with respect to untransformed time t (second ADI sweep only.) I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. This is a type REAL variable. (METRIC1)

The derivative of the computational coordinate η with respect to the Cartesian coordinate x. (METRIC1)
$\eta_{x} \quad \operatorname{METX}(\mathrm{IV}, \mathrm{I})$
$\eta_{y} \quad$ ETAY $(11,12)$
η_{y}
METY(IV,I)

DEL
$\Delta \eta$

* κ
* κ
* κ_{4}

$*$	γ_{r}
λ	GAMR
	LA(I1,12)

μ

* μ,
μ_{t}
ξ. XIY(II,I2)
ξ

CAVS4E(I)

LA(I1,12)

MU(I1,I2)

MLR

MUT(11,12)

METY(IV,I)

The derivative of the computational coordinate η with respect to the Cartesian coordinate x (second ADI sweep only.) I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. This is a type REAL variable. (METRIC1)

The derivative of the computational coordinate η with respect to the Cartesian coordinate y. (METRICl)

The derivative of the computational coordinate η with respect to the Cartesian coordinate y (second ADI sweep only.) I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. This is a type REAL variable. (METRIC1)

Computational grid spacing in the η direction (second ADI sweep only.) (NUM1)

Computational grid spacing in the η direction. (NUM1)
Von Karman mixing length constant used in the inner region of the Baldwin-Lomax and Spalding-Kleinstein turbulence models. (TURB1)

User-specified constant in nonlinear coefficient artificial viscosity model. The subscript $\mathrm{I}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations. (NUM1)

User-specified constant in nonlinear coefficient artificial viscosity model. The subscript $\mathrm{I}=1$ to $N_{e q}$, corresponding to the $N_{\text {eq }}$ coupled governing equations. (NUM1)

Reference ratio of specific heats, $c_{p,} / c_{v_{v}}$. (FLOW1)
Effective second cocfficient of viscosity at time level n (usually assumed equal to $-2 \mu / 3$.) This is a type REAL variable. (FLOWI)

Effective viscosity coefficient at time level n. This is a type REAL variable. (FLOW1)

Dimensional reference viscosity coefficient. This is a type REAL variable. (FIOW1)

Turbulent viscosity coefficient at time level n. This is a type REAL variable. (FLOWI)

The derivative of the computational coordinate ξ with respect to the cylindrical coordinate r. (METRIC1)

The derivative of the computational coordinate ξ with respect to the cylindrical coordinate r (first ADI sweep only.) I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and
runs from 2 to $\mathrm{N}-1$. This is a type RIAI variable. (METRICI)

ξ_{t}	$\mathrm{XIT}(\mathrm{I}, \mathrm{I} 2)$	The derivative of the computational coordinate s with respect to untransformed time t. (MLTRICI)
ξ	MFIT(IV,I)	The derivative of the computational coordinate ξ_{5} with respect to untransformed time t (first $A D I$ sweep only.) I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the nom-sweep direction in which the "BIK" routines are vectorized), and runs from 2 to $, ~, ~ 1$. This is a type REAI variable. (METRIC.
5	XIX(I1,I2)	The derivative of the computational coordinate ξ with respect to the Cartesian coordinate x. (MIITRICl)
ξ^{\prime}	MIFTX(IV,I)	The derivative of the computational coordinate $\underline{\xi}$ with respect to the Cartesian coordinate x (first $A D$ sweep only.) I is the grid index in the sweep direction, running from 1 to N . IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the " BI K " routines are vectorized), and runs from 2 to $V_{1}-1$. This is a type REAI variable. (METRICI)
ξ_{y}	XIY(11,12)	The derivative of the computational coordinate 5 with respect to the Cantesian coordinate y ((MFTRIC1)
ξ_{y}	METY(IV.I)	The derivative of the computational coordinate ξ with respect to the Cartesian coordinate y (first ADI sweep only) I is the grid index in the sweep direction, ruming from 1 to N. IV is the grid index in the "rectorized" direction (ie., the non-sweep direction in which the " BI K " routines are vectorized), and runs from 2 to $N .-1$. This is a type REAL variable. (METRICI)
$\Delta \xi$	DI:	Computational erid spacing in the ξ direction (first ADI sweep only.) (.VUM1)
$\Delta \xi$	DXI	Computational grid spacing in the ξ direction. (NLM1)
ρ	$\mathrm{RIIO}(11,12)$	Static density at time level n. (Fl OWV $)$
ρ	RHIOL(I1,12)	Static density at presious or intermediate time level. (FIOWl)
ρ_{r}	RHOR	Dimensional reference density. (II OWI)
τ	TAL($\mathrm{I} 1,12$)	Current value of the time marching parameter. (TIMI:1)
$\Delta \tau$	DTAL(I1,I2)	Computational time step size. (IIME1)
$\theta_{\text {max }}^{\prime}$	THMAX	Maximum θ^{\prime} coordinate in degrees for polar grid option. (GMTRY1)
$\theta_{\text {min }}^{\prime}$	THMIN	Minimum θ^{\prime} coordinate in degrees for polar grid option. (GMTRY1)

θ_{1}, θ_{2}	THC(I)	A two-element array specifying the time difference centering parameters used for the continuity equation. (.LUM1)
$\theta_{1}, \theta_{2}, \theta_{3}$	THE(I)	A three-element array specifying the time difference centering parameters used for the energy equation. (XUM1)
$\theta_{1}, \theta_{2}, \theta_{3}$	THX (I)	A three-element array specifying the time difference centering parameters used for the x-momentum equation. (NUMil)
* $\theta_{1}, \theta_{2}, \theta_{3}$	THY(1)	A three-element array specifying the time difference centering parameters used for the y or r-momentum equation. (NLM1)
* $\theta_{1}, \theta_{2}, \theta_{3}$	THZ (I)	A three-element array specifying the time difference centering parameters used for the swirl momentum equation. (NUM1)
$\|\stackrel{\rightharpoonup}{\Omega}\|$	VORT(I1,I2)	Total vorticity magnitude. (TURB1)

A two-element array specifying the time difference centering parameters used for the continuity equation. (NC.M1)

A three-element array specifying the time difference centering parameters used for the energy equation. (NUM1)

A three-element array specifying the time difference centering parameters used for the x-momentum equation. (NUM1)

A three-element array specifying the time difference centering parameters used for the y or r-momentum equation. (NLM1)

A three-element array specifying the time difference centering parameters used for the swirl momentum equation. (NUM1)

Total vorticity magnitude. (TURB1)

3.4 COMINON VARIABLES LISTED BY COMMON BLOCK

In this section all the PROTELS Fortran variables stored in common blocks are defined, with each block listed separately. Within each block, the variables are listed alphabetically. Those marked with an asterisk are input variables. More details on these variables may be found in Section 3.1 of Volume 2. For subscripted variables, the subscripts are defined along with the variable, except for the subscripts I1 and I2, which are the indices i and k in the ξ and η directions, respectively, and run from 1 to N_{1} and N_{2}.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K, L, M, or N are integer, and the remainder are real.)

Common Block BC1

This common block contains variables dealing with the application of boundary conditions.

Fortran
Variable Symbol

* $\mathrm{FBCl}(\mathrm{I}, \mathrm{I}, \mathrm{J})$
* $\mathrm{FBC} 2(\mathrm{II}, \mathrm{I}, \mathrm{J})$
* $\quad \mathrm{GBCl}(\mathrm{I}, \mathrm{J})$

Definition

Point-by-point values used for steady boundary conditions on the $\xi=0$ and $\xi=1$ surfaces. These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself. I runs from 1 to $N_{e q}$, corresponding to the $N_{\text {eq }}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively.

Point-by-point values used for steady boundary conditions on the $\eta=0$ and $\eta=1$ surfaces. These are either set in the input, if a point-by-point distribution is being specified by the user, or by the program itself. I runs from 1 to $N_{e q}$, corresponding to the $N_{\text {eq }}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta \stackrel{e q}{=} 0$

Values used for steady boundary conditions on the $\xi=0$ and $\xi=1$ boundaries, when specified for the entire surface. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively.

* GBC2(I,J)
* $\operatorname{GTBCl}(\mathrm{K}, \mathrm{I}, \mathrm{J})$
* GTBC2(K,I,J)

IBCELM(I,J)

* $\quad \mathrm{IBCl}(\mathrm{I} 2, \mathrm{I}, \mathrm{J})$
* $\quad \mathrm{IBC} 2(\mathrm{I} 1, \mathrm{I}, \mathrm{J})$

IBVUP (I)

Values used for steady boundary conditions on the $\eta=0$ and $\eta=1$ boundaries, when specified for the entire surface. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively.

A variable used to specify the values for unsteady and timeperiodic boundary conditions on the $\xi=0$ and $\xi=1$ boundaries. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively. For general unsteady boundary conditions, $K=1$ to NTBC, corresponding to the time levels in the array NTBCA, and GTBCl specifies the boundary condition value directly. For time-periodic boundary conditions, $K=1$ to 4 , and $G T B C 1$ specifies the four coefficients in the equation used to determine the boundary condition value.

A variable used to specify the values for unsteady and timeperiodic boundary conditions on the $\eta=0$ and $\eta=1$ boundaries. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively. For general unsteady boundary conditions, $K=1$ to NTBC, corresponding to the time levels in the array NTBCA, and GTBC2 specifies the boundary condition value directly. For time-periodic boundary conditions, $K=1$ to 4 , and GTBC2 specifies the four coefficients in the equation used to determine the boundary condition value.

Flags for elimination of off-diagonal sub-matrices resulting from gradient or extrapolation boundary conditions: 0 if elimination is not necessary, 1 if it is. The subscript $I=1$ or 2 corresponding to the sweep direction, and $\mathbf{J}=1$ or 2 corresponding to the lower or upper boundary in that direction.

Flags specifying, point-by-point, the type of steady boundary conditions used on the $\xi=0$ and $\xi=1$ surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\xi \stackrel{e q}{=} 0$ and $\xi=1$ boundaries, respectively.

Flags specifying, point-by-point, the type of steady boundary conditions used on the $\eta=0$ and $\eta=1$ surfaces. These are either set in the input, if a point-by-point distribution is specified by the user, or by the program itself. I runs from 1 to $N_{\text {eq }}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively.

Flags for updating boundary values from the first sweep after the last sweep: 0 if updating is not necessary, 1 if it is. Lpdating is required when gradient or extrapolation boundary conditions are used. The subscript $I=1$ or 2 , corresponding to the lower or upper boundary in the first sweep direction.

ITDBC

* JBCl(I.J)
* JBC2(I)
* JTBCl(1.J)
* JTBC:2(I, J)

KBCPIR(I)

* $\mathrm{KBCl}(\mathrm{J})$
* KBC2(J)
* NIBC
* $\operatorname{NtBCA(I)}$

Hag for time-dependent boundary conditions; 0 if all boundary conditions are steady, 1 if any general unsteady houndary conditions are used, 2 if only steady and time periodic boundary conditions are used.

Flags specifying the type of steady boundary conditions used on the $\xi=0$ and $\xi=1$ surfaces, when specified for the entire surface. I runs from 1 to $N_{\text {en }}$ corresponding to the $V_{\infty,}$ conditions needed, and $I=1$ or 2 , corresponding to the $=20$ and $\xi=1$ boundaries. respectively.

Hags specifying the type of steady boundary conditions used on the $\eta=0$ and $\eta=1$ surfaces, when specified for the entire surface. I runs from 1 to $X_{\text {we }}$, correspending to the $X_{\text {, con- }}$ ditions needed, and $\mathrm{J}=1$ or 2 , correspending to the $\eta=10$ and $\eta=1$ boundaries, respectively.

A variable specitying the type of time dependency for the boundary conditions on the $\xi=0$ and $\xi=1$ boundaries. I runs from 1 to $N_{\text {cy }}$, corresponding to the $\lambda_{e q}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ boundaries, respectively.

A variable specifying the type of time dependency for the boundary conditions on the $\eta=0$ and $\eta=1$ boundarics. I runs from 1 to $N_{e r}$ corresponding to the $N_{\text {ca }}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively.

Ilags for spatially periodic boundary conditions: 0 for nonperiodic, 1 for periodic. The subscript $\mathrm{I}=1$ or 2 , corresponding to the ξ and η directions, respectively.

Flags for type of boundaries in the ξ direction. The subsicript $\mathbf{J}=1$ or 2 , corresponding to the $\xi-0$ and $\xi=1$ boundaries, respectively.

Flags for type of boundaries in the η direction. The subscript $\mathrm{J}=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ boundaries, respectively.

Number of values in the tables of GTBCl and or GIBC2 ws. \therefore TBCA for general unsteady boundary conditions.

Time levels at which GTBC1 and or GIBC2 are specified for general unsteady boundary conditions. The subscript $I=I$ to NTBC, corresponding to the NTBC values in the table.

Common Block DLXMYI

This common block contains a variable used for temporary scratch storage in several subroutines.
Fortran
Variable Symbol Definition
DCMMY(I1,I2)
Dummy array used for temporary storage in several subroutines.

Common Block FLOW 1

This common block contains variables dealing with the flow being computed, and with the basic properties of the fluid. Several of the two-dimensional variables are equivalenced to corresponding onedimensional variables. The names of the one-dimensional variables were created by adding a " 1 " to the name of the corresponding two-dimensional variable (e.g., ET and E'T1, P and P1, etc.) Lsing the variables IBASE and ISTEP (see common block NU.M1), a one-dimensional indexing scheme can thus be used to access a particular location in a two-dimensional array. This is useful, in the COEF routines for example, because it allows the same coding to be used for both sweeps.

Fortran Variable	Symbol	$\underline{\text { Definition }}$
CCP1-4	$C_{c_{p}}-C_{c_{p}{ }^{4}}$	Constants in empirical formula for specific heat as a function of temperature.
CK1-2	$C_{k 1}-C_{k 2}$	Constants in empirical formula for thermal conductivity coefficient as a function of temperature.
C.MU1-2	$C_{\mu 1}-C_{\mu 2}$	Constants in empirical formula for laminar viscosity coefficient as a function of temperature.
$\mathrm{CP}(11,12)$	c_{p}	Specific heat at constant pressure at time level n.
$\mathrm{CV}(\mathrm{I} 1, \mathrm{I} 2)$	c_{v}	Specific heat at constant volume at time level n.
DPDET(I)	$\partial p \mid \partial E_{T}$	The derivative of p with respect to E_{T}, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
DPDRHO(1)	$\partial p / \partial \rho$	The derivative of p with respect to ρ, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
DPDRC(I)	$\partial p / \partial(\rho u)$	The derivative of p with respect to ρu, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
DPDRV(I)	$\partial p \mid \partial(\rho v)$	The derivative of p with respect to ρv, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
DPDRW(I)	$\partial p / \partial(\rho w)$	The derivative of p with respect to ρw, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
DTDET(I)	$\partial T / \partial E_{T}$	The derivative of T with respect to E_{T}, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
DTDRHO(I)	$\partial T / \partial \rho$	The derivative of T with respect to ρ, stored as a onedimensional array in the sweep direction. The subscript 1 therefore runs from 1 to N.
DTDRU(I)	$\partial T / \partial(\rho u)$	The derivative of T with respect to ρu, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.

$\operatorname{DTDRV}(\mathrm{I})$	$\partial T / \partial(\rho v)$	The derivative of T with respect to ρv, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
DTDRW(1)	$\partial T / \partial(\rho w)$	The derivative of T with respect to ρw, stored as a onedimensional array in the sweep direction. The subscript I therefore runs from 1 to N.
ER	e,	Dimensional reference energy, ρ, u_{r}^{2}.
ET(11.12)	E_{T}	Total energy at time level n.
ETI(11,12)	E_{T}	Total energy at previous or intermediate time level.
* GamR	γ,	Reference ratio of specific heats, $c_{p_{r}} / c_{v_{r}}$.
GC	g c	Dimensional proportionality factor in Newton's second law, either $32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft} / \mathrm{lb}-\mathrm{sec}^{2}$, or $1.0 \mathrm{~kg}-\mathrm{m} / \mathrm{N}-\mathrm{sec}^{2}$.
hstag	h_{T}	Stagnation enthalpy used with constant stagnation enthalpy option.
* HSTAGR	$h_{r,}$	Dimensional stagnation enthalpy used with constant stagnation enthalpy option.
* ICVARS		Parameter specifying which variables are being supplied as initial conditions by subroutine INIT.
* IEULER		Flag for Euler calculation option; 0 for a full time-averaged Navier-Stokes calculation, 1 for an Euler calculation.
IGAM		Flag set by method used to select GAMR; 0 if GAMR is defaulted (and hence c_{p} and c_{v} are functions of temperature), 1 if GAMR is specified by user (and hence c_{p} and c_{v} are constants).
* IHSTAG		Flag for constant stagnation enthalpy option; 0 to solve the energy equation, 1 to eliminate the energy equation by assuming constant stagnation enthalpy.
* ILA.MV		Flag for computation of laminar viscosity and thermal conductivity; 0 for constant values, 1 for functions of local temperature.
INEG		Flag indicating non-positive values of pressure and/or temperature: 0 for no non-positive values, 1 for some.
* ISWIRL		Flag for swirl in axisymmetric flow; 0 for no swirl, 1 for swirl.
* ITHIN(1)		Flags for thin-layer option; 0 to include 2nd. derivative viscous terms, 1 to eliminate them. The subscript $I=1$ or 2 , corresponding to the ξ and η directions, respectively.
KT(11,I2)	k	Effective thermal conductivity coefficient at time level n. This is a type REAL variable.
* KTR	k r	Reference thermal conductivity coefficient. This is a type REAL variable.

LA(II,I2)

* LR
* MACHR

MU(I1,I2)

* MLR

MUT(11,12)

P(11,I2)
PR

* PRIR

PRR

* RER
* RG

RGAS
RHO(I1,12)
RHOL(I1,I2)

* RHOR

TL(I1,12)

* TR
$\mathrm{U}(\mathrm{I} 1, \mathrm{I} 2)$
UL(11,I2)
* UR

V(I1,I2)
$\mathrm{VL}(\mathrm{I}, \mathrm{L} 2)$
W(I1,I2)

Effective second coefficient of viscosity at time level n (usually assumed equal to $-2 \mu / 3$.) This is a type REAL variable.
Dimensional reference length. This is a type REAL variable.
Reference Mach number, $u_{l} /\left(\gamma_{r} \bar{R} T\right)^{1 / 2}$. This is a type REAL variable.

Effective viscosity coefficient at time level n. This is a type REAL variable.
Dimensional reference viscosity coefficient. This is a type REAL variable.

Turbulent viscosity coefficient at time level n. This is a type REAL variable.

Static pressure at time level n.
Dimensional reference static pressure, $\rho_{r} \bar{R} T_{r} / g_{c}$.
Reference laminar Prandtl number, $c_{p_{r},} \mu_{r} / k_{\text {, }}$, where $c_{p_{r}}=\gamma_{r} \bar{R} /\left(\gamma_{r}-1\right)$.
Reference Prandtl number, $\mu_{r} u_{r}^{2} \mid k_{r} T_{r}$.
Reference Reynolds number, $\rho_{r} u_{r} L_{r} / \mu_{r}$.
Dimensional gas constant.
Nondimensional gas constant.
Static density at time level n.
Static density at previous or intermediate time level.
Dimensional reference density.
Static temperature at time level n.
Static temperature at previous or intermediate time level.
Dimensional reference temperature.
Velocity in the Cartesian x direction at time level n.
Velocity in the Cartesian x direction at previous or intermediate time level.
Dimensional reference velocity.
Velocity in the Cartesian y direction or cylindrical r direction at time level n.
Velocity in the Cartesian y direction or cylindrical r direction
at previous or intermediate time level.
Swirl velocity at time level n.

Swirl velocity at previous or intermediate time level.

Common Block G.MTRY1

This common block contains variables used to determine the geometric configuration being analyzed.
Fortran
Variable
Symbol Definition

* IAXI

IGINT(I)

* NGEOM
* RMAX
* R.MIN
ras
r-m
* THMAX $\theta_{\max }^{\prime}$
* THMIN $\theta_{\min }^{\prime}$
* XMAX $x_{\max }$
* XMIN $x_{\text {min }}$
* YMAX $\quad y_{\max }$ or $r_{\text {max }}$
* YMIN $\quad y_{\text {min }}$ or $r_{\text {min }}$

Common Block IC1

This common block contains variables used in setting up the initial conditions in subroutine INIT. For the version of INIT supplied with PROTEUS, these variables specify the properties of an initial uniform flow field. It is anticipated that, for user-supplicd versions of subroutine INIT, the user will need to change the contents of this common block and of namelist IC.

Fortran
 Variable

* P 0
* T 0
* L 0
* V0
* W0

Symbol
p_{0}
T_{0}
u_{0}
v_{0}
w_{0}

Definition

Initial static pressure.
Initial static temperature.
Initial velocity in the Cartesian x direction.
Initial velocity in the Cartesian y direction or cylindrical r direction.

Initial swirl velocity.

Common Block IOI

This common block contains variables dealing with input'output requirements.

Fortran
Variable

* II)EBCG(I)
* IPLOT
* IPLT
* IPLTA(I)
* IPRT
* IPRTA(I)
* IPRTl
* IPRT2
* IPRT1A(I)
* IPRT2A(I)
* IUNITS
* IVOUT(I)
* NGRID
* NIIST
* NIMAX

NIN

* NOUT
* NPIOT

Definition

A 20 -element array of flags specifying various debug options.
Flag controlling the creation of an auxiliary file, usually called a "plot file", used for later post-processing.

Results are written into the plot file every IPLT time levels.
Time levels at which results are written into the plot file. The subscript $I=1$ to 101 , the maximum number of time levels that may be written.

Results are printed every IPRT time levels.
Time levels at which results are printed. The subscript $I=1$ to 101 , the maximum number of time levels that may be printed.
Results are printed at every IPRT1'th mesh point in the ξ direction.

Results are printed at every IPRT2 th mesh point in the η direction.
ξ indices at which results are printed. The subscript $I=1$ to a maximum of N , the number of grid points in the ξ direction.
η indices at which results are printed. The subscript $I=1$ to a maximum of N 2 , the number of grid points in the η direction.
Flag for type of units used to specify reference conditions; 0 for English units, 1 for SI units.
A 50 -element array specifying which variables are to be printed.

Unit number for reading grid file.
Unit number for writing convergence history file.
Maximum number of time levels allowed in the printout of the convergence history file (not counting the first two, which are always printed.)

Unit number for reading namelist input.
Unit number for writing standard output.
Unit number for writing CONTOUR or PLOT3D Q plot file.

```
* NP(OIX
\PRT1
N1212
```

Unit number for writing PIOT3D XYZ plot file
Total number of indices for printout in the ξ direction.
Total number of indices for printout in the η direction.
Cint number for scratch file in subroutine PIOT.
Commo: An M VITRIC1

Im. anmon block contams the metric coefficients and inverse Jacobian describing the nonorthogonal abit tantomaion, plus the Cartesian woordinates of each grid point. The two-dimensional variables in this comment bhek are equivatenced to corresponding one-dimensional variables. This is done for the same ane am! th the seme manmer as described previously for several variables in common block II OWI.

Tontran
Variable
$11: 11(1.12$

H1AX (11,12)	η_{x}
1"1. 1 (11,12)	η_{y} or η,
J1(11,12)	${ }^{1}$ or J^{1}

MITIT(V,I) $\quad \xi$ or η :
METX (IV,I) ξ_{x} or η_{x}

MIETY(IV,I) $\quad \xi_{y}$ or $\eta_{y} \quad$| The derivative of the computational coordinate in the ADI |
| :--- |
| sweep direction with respect to the Cartesian coordinate y or |
| cylindrical coordinate r. I is the grid index in the sweep di- |
| rection, running from 1 to N. IV is the grid index in the |
| "vectorized" direction (i.e., the non-sweep direction in which |
| the "BLK" routines are vectorized), and runs from 2 to |
| $N_{v}-1$. This is a type REAL variable. |
| $\mathrm{RAX}(\mathrm{I}) \quad 1$ for two-dimensional planar flow, and the local radius r for |
| axisymmetric flow. I is the grid index in the sweep direction, | running from 1 to N.

X(II,I2)	x	Cartesian x coordinate.
XIT(I1,I2)	ξ_{t}	The derivative of the computational coordinate ξ with respect to untransformed time t.
XIX(II,I2)	ξ_{x}	The derivative of the computational coordinate ξ with respect to the Cartesian coordinate x.
Y(II,I2)	ξ_{y} or ξ_{r}	The derivative of the computational coordinate ξ with respect to the Cattesian coordinate y or cylindrical coordinate r.
y or r	Cartesian y coordinate or cylindrical r coordinate.	

Common Block NU.M1

This common block contains variables dealing with various aspects of the numerical method used to solve the equations.

Fortran

Variable
A(IV,I,J,K)

ALPIIA

* ALPMAl
* ALPHA2

B(IV,I,J,K)

C(IV,I,J,K)

Symbol
A
α
α_{1}
α_{2}

B

C

Definition

Subdiagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BI K" routines are vectorized), and runs from 2 to $N_{\nu}-1$. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ to $N_{e q}$, corresponding to the $N_{\text {eq }}$ dependent variables.

Difference centering parameter for first derivatives in the ADI sweep direction.

Difference centering parameter for ξ direction first derivatives. ALPHAL $=0.0,0.5$, or 1.0 corresponding to forward, central, and backward differences, respectively.

Difference centering parameter for η direction first derivatives. ALPIIA2 $=0.0,0.5$, or 1.0 corresponding to forward, central, and backward differences, respectively.

Diagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BIK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ to $N_{\text {eq }}$, corresponding to the $N_{e q}$ dependent variables.

Superdiagonal submatrix of coefficients at grid point I in the block tridiagonal coefficient matrix. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ dependent variables.

* CAVS2E(I)
* CAVS2I(I)

$$
\varepsilon_{I}
$$

* CAVS4E(I) $\quad \varepsilon_{E}^{(4)}$ or κ_{4}

DEL $\quad \Delta_{5}^{5}$ or $\Delta \eta$
DETA
DXI

* IAV2E
* IAV2I
* IAV4E

IBASE

* IPACK(I)

ISTEP

ISWEEP

IV

II
12
NC
NEN
$\Delta \xi$

Computational grid spacing in the ξ direction.
Flag for second-order explicit artificial viscosity; 0 for none, 1 for constant coefficient model, 2 for nonlinear coefficient model.

Flag for second-order implicit artificial viscosity; 0 for none, 1 for constant coefficient model.

Flag for fourth-order explicit artificial viscosity; 0 for none, 1 for constant coefficient model, 2 for nonlinear coefficient model.

Base index used with ISTE \bar{P} to compute one-dimensional index for two-dimensional array. Then, for example, for any sweep $\mathrm{U}(\mathrm{I} 1, \mathrm{I} 2)=\mathrm{Ul}\left(\mathrm{IBASE}+\operatorname{ISTEP}{ }^{*}(\mathrm{I}-1)\right)$ where I is the grid index in the sweep direction.

Flags for grid packing option; 0 for no packing, 1 to pack points as specified by the input array $S Q$. The subscript $I=1$ or 2 , corresponding to the ξ and η directions, respectively.

Multiplication factor used with IBASE to compute onedimensional index for two-dimensional array.

Flag specifying ADI sweep direction; 1 for $\boldsymbol{\xi}$ direction, 2 for η direction.
i Grid point index in the "vectorized" direction (i.e., the nonsweep direction in which the "BLK" routines are vectorized). Therefore, IV $=j$ for the first sweep and i for the second sweep.

Grid point index in the ξ direction.
Grid point index in the η direction.
Array index associated with the continuity equation.
Array index associated with the energy equation.

NEQ

NET
NPTS

NR
NRU
NRV
NRW
NV

NXM
NYM
NZM

* N1
* N 2

S(IV,I,J)

* $\quad \mathrm{SQ}(\mathrm{I}, \mathrm{J})$
* THC(I)
* THE(I)
$\theta_{1}, \theta_{2}, \theta_{3}$

The number of coupled governing equations actually being solved.

Array index associated with the dependent variable E_{T}.
The number of grid points in the sweep direction.
The number of grid points in the ξ direction used in computing coefficients: N, for non-periodic boundary conditions; $N_{1}+1$ for spatially periodic boundary conditions.
The number of grid points in the η direction used in computing coefficients: N_{2} for non-periodic boundary conditions; $N_{2}+1$ for spatially periodic boundary conditions.
Array index associated with the dependent variable ρ.
Array index associated with the dependent variable ρu.
Array index associated with the dependent variable ρv.
Array index associated with the dependent variable ρw.
The number of grid points in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized). Therefore, NV $=N_{2}$ for the first sweep and N_{1} for the second sweep.
Array index associated with the x-momentum equation.
Array index associated with the y or r-momentum equation.
Array index associated with the swirl momentum equation.
The number of grid points in the ξ direction.
The number of grid points in the η direction.
Subvector of source terms at grid point I in the block tridiagonal system of equations. I is the grid index in the sweep direction, running from 1 to N. IV is the grid index in the "vectorized" direction (i.e., the non-sweep direction in which the "BLK" routines are vectorized), and runs from 2 to $N_{v}-1$. The subscript J = 1 to $N_{e q}$, corresponding to the $N_{\text {eq }}$ coupled governing equations.
An array controlling the packing of grid points using the Roberts transformation. The subscript $\mathrm{I}=1$ or 2 , corresponding to the ξ and η directions, respectively. $\mathrm{SQ}(\mathbf{I}, 1)$ specifies the location of packing, and $\operatorname{SQ}(\mathbf{1}, 2)$ specifies the amount of packing.

A two-element array specifying the time difference centering parameters used for the continuity equation.

A three-element array specifying the time difference centering parameters used for the energy equation.

* $\operatorname{THX}(\mathrm{I}) \quad \theta_{1}, \theta_{2}, \theta_{3} \quad$ A three-element array specifying the time difference centering
* THY(I) $\quad \theta_{1}, \theta_{2}, \theta_{3} \quad$ A three-element array specifying the time difference centering parameters used for the y or r-momentum equation.
* THZ(I) $\quad \theta_{1}, \theta_{2}, \theta_{3}$

A three-element array specifying the time difference centering parameters used for the swirl momentum equation.

Common Block RSTRT1

This common block contains variables controlling the use of the restart option
Fortran
Variable Symbol Definition

* IREST
* NRQIN
* NRQOLT
* NRXIN
* NRXOLT

Flag controlling the reading and writing of auxiliary files used for restarting the calculation in a separate run.

Unit number for reading restart flow field.
Unit number for writing restart flow ficld.
Unit number for reading restart computational mesh.
Unit number for writing restart computational mesh.

Common Block TIMIE1

This common block contains variables dealing with time step selection and convergence determination. The two-dimensional array DTAU is equivalenced to a corresponding one-dimensional array DTAU1, as described previously for variables in common blocks FLOW1 and METRIC1.

Fortran
Variable Symbol Definition

* CFL(I)
* CFlmax
* ClLMAN

CHGAVG(I) $\quad \Delta Q_{\text {vvg }}$

CHGMAX $(1, J) \quad \Delta Q_{\max }$

The ratio $\Delta \tau / \Delta \tau_{c f f}$ where $\Delta \tau$ is the actual time step used in the implicit calculation and $\Delta \tau_{c f f}$ is the allowable time step based on the Courant-Friedrichs-Lewy (CFL) criterion for explicit methods. I is the time step sequence number, and runs from 1 to NISEQ.

Maximum allowed value of the CFL number.
Minimum allowed value of the CFL number.
Maximum change in absolute value of the dependent variables, averaged over the last NITAVG time steps. ${ }^{5}$ The subscript I $=1$ to $N_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ dependent variables.

Maximum change in absolute value of the dependent variables over a single time step. ${ }^{5}$ The subscript $\mathrm{I}=1$ to $N_{\text {eg }}$, corresponding to the $N_{e q}$ dependent variables, and $\mathrm{J}=1$ to

[^3]* CHGI
* CHG2
* DT(I)

DTAC(11.I2)

* DTFI
* 1)T12
* DIMAX
* DTMIN
* $\operatorname{IPS}(\mathrm{I})$
* ICIIECK

1 CONV

* ICTIST
* IDTAU
* IDTMOD

II

ITBEG

ITEND
ITSEQ
I R.MAX (I,J,K)

NITAVG, the number of time steps used in the moving average option for determining convergence.

Minimum change, in absolute value, that is allowed in any dependent variable before increasing the time step. ${ }^{5}$

Waximum change, in absolute value, that is allowed in any dependent variable before decreasing the time step. ${ }^{3}$

The time step size, when specified directly as input. I is the time step sequence number, and runs from 1 to $\triangle \mathrm{ISl} \mathrm{Q}$.

Computational time step size.
Factor by which the time step is multiplied if the solution changes too slowly.

Factor by which the time step is divited if the whwett changes too quickly.

Maximum value that Δt is allowed to reach, or the maximma $\Delta \tau$ used in the time step cycling procedure.

Minimum value that $\Delta \tau$ is allowed to reach, or the minimmat $\Delta \tau$ used in the time step cycling procedure.

Convergence level to be reached. The subscript $I=1$ to $\lambda_{0,}$, corresponding to the $N_{e q}$ dependent variables.

Results are checked for convergence every ICHILCK th time level.

Convergence flag; 0 if not converged, 1 if converged.
Flag for convergence criteria to be used.
Flag for time step selection method.
The time step size is modified every IDTMOD'th time step.
Current time step number, or known time level. Time step number n updates the solution from time level n to $n+1$.

The time time step number, or known time level n, at the beginning of a run. For a non-restart case, $I T B I: G=1$.

The final time step number.
Current time step sequence number.
The grid indices corresponding to the location of the maximum absolute value of the residual. The subscript $\mathrm{I}=1$ or 2, corresponding to the ξ and η directions, respectively, $J=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms.

Number of time steps per cycle used in the time step cycling procedure.

Nitavg

* NTIME(I)
* NMSEQ RESAVG(J,K)

RESL $2(\mathrm{~J}, \mathrm{~K})$

RESMAX(J,K)

TAL(I1,I2)

Number of time steps used in the moving average convergence test.

Maximum number of time steps to march. I runs from 1 to \therefore TSEQP, corresponding to the time step sequence number.

The total number of time step sequences being used.
The average absolute value of the residual for the previous time step. The subscript $\mathbf{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms.

The I_{2} norm of the residual for the previous time step. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms.

The maximum absolute value of the residual for the previous time step. The subscript $\mathrm{J}=1$ to $N_{e q}$, corresponding to the $N_{e q}$ coupled governing equations, and $\mathrm{K}=1$ or 2 , corresponding to the residual computed without and with the artificial viscosity terms.

Current value of the time marching parameter.

Common Block TITLE 1

This common block contains a descriptive title for the case being run.
Fortran
Variable Symbol Definition

* TITLE

Title for printed output and CONTOUR plot file, up to 72 characters long. This is a type CHARACTER variable.

Common Block TURB1

This common block contains turbulence model constants, plus flags and parameters used for turbulent flow calculations.

Fortran
Variable Symbol Definition

* APLLS $A^{-} \quad$ Van Driest damping constant in the inner and outer regions of the Baldwin-Lomax turbulence model.
* CB B Constant used in the formula for the Klebanoff intermittency factor $F_{\text {Kics }}$ in the outer region of the Baldwin-Lomax turbulence model, and in the inner region of the SpaldingKleinstein turbulence model.
* CCLAU
* CCP $\quad C_{c p} \quad$ Constant used in the outer region of the Baldwin-Lomax tur-
$K \quad$ Clauser constant used in the outer region of the BaldwinLomax turbulence model. bulence model.
* CKLE
* CNA
* CNL
* CVK
* CWK
* ILDAMP
* INNER
* ITETA
* ITURB
* ITXI
* IWALLI(I)
* IWALL2(I)

LWAKEI

LWAKE2

* PRT
* REXT1
* REXT2

Constant used in the formula for $F_{\text {wake }}$ in the outer region of the Baldwin-Lomax turbulence model.

Flag for the Launder-Priddin modified mixing length formula in the inner region of the Baldwin-Lomax turbulence model.

Flag for type of inner region turbulence model.
Flag for computing turbulent viscosity on constant η lines.
Flag for turbulent flow option; 0 for laminar flow, 1 for turbulent flow using the Baldwin-Lomax algebraic turbulence model.

Flag for computing turbulent viscosity on constant ξ lines.
Flags indicating type of surfaces in the ξ direction; 0 for a free boundary, 1 for a solid wall. The subscript $I=1$ or 2 , corresponding to the $\xi=0$ and $\xi=1$ surfaces, respectively.

Flags indicating type of surfaces in the η direction; 0 for a free boundary, I for a solid wall. The subscript $I=1$ or 2 , corresponding to the $\eta=0$ and $\eta=1$ surfaces, respectively.

Grid point index in the ξ direction used as the origin for computing length scales for free turbulent flows.

Grid point index in the η direction used as the origin for computing length scales for free turbulent flows.

Turbulent Prandtl number, or, if non-positive, a flag indicating the use of a variable turbulent Prandtl number.

Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from $\xi=0$, for flow predominantly in the ξ direction with a leading edge at $\xi=0$.

Reynolds number at the beginning of the transition region, based on maximum total velocity and distance from $\eta=0$, for flow predominantly in the η direction with a leading edge at $\eta=0$.
$\operatorname{VORT}(11, I 2) \quad|\vec{\Omega}| \quad$ Total vorticity magnitude.

4.0 PROTELS SLBPROGRAMS

In this section, each subprogram in PROTELS is described, first in summary, then in detail. The summary is simply a list of the subprograms with a brief description of the purpose of each one. The detailed description includes, for each subprogram, a list of the subprograms that reference it, and a list of the subprograms that it references. The Fortran variables that are input to and output from each subprogram are defined. And finally, details of the computations being done within each subprogram are presented.

4.1 SLBPROGRAM SLMMARY

The following table presents a brief description of the purpose of each subprogram in the PROTEUS code.

PROTEUS Subprogram Summary	
Subprogram	Purpose
ADI	Manage the block tridiagonal inversion.
AVISCl	Compute constant coefficient artificial viscosity.
AVISC2	Compute nonlinear coffficient artificial viscosity.
BCDENS	Compute density boundary conditions.
BCELIM	Eliminate off-diagonal coefficient submatrices resulting from
three-point boundary conditions.	
BCF	Compute user-written boundary conditions.
BCFLIN	User-supplied routine for linearization of user-supplied boundary
BCGEN	conditions.
MCGnage computation of boundary conditions.	
BCGRAD	Compute gradients with respect to ξ and η.
	Compute various metric functions for normal gradient boundary
BCPRES	conditions.
BCQ	Compute pressure boundary conditions.
BCSET	Compute conservation variable boundary conditions.
BCTEMP	Set various boundary condition parameters and flags.
BCLVEL	Compute temperature boundary conditions.
BCVDIR	Compute x-velocity boundary conditions.
BCVVEL	Compute normal and tangential velocity boundary conditions.
BCWVEL	Compute y or r-velocity boundary conditions.
BLIN1	Compute swirl velocity boundary conditions.
BLIN2	Compute inner layer turbulent viscosity along constant ξ lines.
BLOCK DATA	Compute inner layer turbulent viscosity along constant η lines.
Set default values for input parameters, plus a few other parame-	
BLKOUT	ters.
PLKint coefficient blocks at specified indices in the ξ and η di-	
	rections.
	Solve 3x3 block tridiagonal system of equations.

PROTEUS Subprogram Summary	
Subprogram	Purpose
BI.K3P	Solve 3×3 periodic block tridiagonal system of equations.
BLK4	Solve 4×4 block tridiagonal system of equations.
BLK4P	Solve 4×4 periodic block tridiagonal system of equations.
BIK5	Solve 5×5 block tridiagonal system of equations.
BIK5P	Solve 5×5 periodic block tridiagonal system of equations.
BLOLTl	Compute outer layer turbulent viscosity along constant ξ lines.
BIOUT2	Compute outer layer turbulent viscosity along constant η lines.
BVUP	Update first sweep boundary values after second sweep.
COEFC	Compute coefficients and source terms for the continuity equation.
COEFE	Compute coefficients and source terms for the energy equation.
COEPX	Compute coefficients and source terms for the x-momentum equation.
COEFY	Compute coefficients and source terms for the y or r-momentum equation.
COEFZ	Compute coefficients and source terms for the swirl momentum equation.
CONV	Test computed flow field for convergence.
CLBIC	Interpolation using Fierguson's parametric cubic.
EQSTAT	Use equation of state to compute pressure, temperature, and their derivatives with respect to the dependent variables.
EXEC	Manage solution of governing equations.
FILTER	Rearrange rows of the boundary condition coefficient submatrices and the source term subvector to eliminate any zeroes on the diagonal.
FTEMP	Compute auxiliary variables that are functions of temperature.
GLOM	Manage computation of grid and metric parameters.
INIT	Get user-defined initial flow field.
NITC	Set up consistent initial conditions based on data from INIT.
input	Read and print input, perform various initializations.
ISAMAX	Find the first index corresponding to the largest absolute value of the elements of an vector. This is a Cray BLAS routine.
ISAMIN	Find the first index corresponding to the smallest absolute value of the elements of an vector. This is a Cray extension to the BLAS routines.
MAIN	Manage overall solution.
METS	Compute metrics of nonorthogonal grid transformation.
OLTPUT	Manage printing of output.
PAK	Manage packing and/or interpolation of grid points.
PERIOD	Define extra line of data for use in computing coefficients for spatially periodic boundary conditions.
PLOT	Write files for post-processing by CONTOLR or PLOT3D plotting programs.
PRTHST	Print convergence history.
PRTOLT	Print output.

PROTIELS Subprogram Summary	
Subprogram	Purpose
RISID	Compute residuals and write convergence history file.
REST	Read and or write restart file.
Robls	Pack points along a line using Roberts transfornation.
SASLCI	Compute the sum of the absolute values of the elements of a vector. This is a Cray BLAS routine.
SGiem	Factor a matrix using Gaussian climination. This is a Cray IINPACK routine.
SGESL	Solve the matrix equation $\mathbf{A x}=\mathbf{B}$ or $\mathbf{A}^{\top} \mathbf{x}=\mathbf{B}$ using the factors computed by SGEFA. This is a Cray LI \triangle PACK routine.
SSRM2	Compute the L_{2} norm of a vector. This is a Cray BIAS routine.
TBC	Set time-dependent boundary condition values.
TIMSTP	Set computational time step.
TLRBBL	Manage computation of turbulence parameters using BaldwinI omax algebraic model.
LPDATE	Update flow variables after each ADI sweep.
VORTEX	Compute magnitude of total vorticity.

4.2 SLBPROGRAMI DETAILS

The subprograms used in PROTEUS are described in detail in the remainder of this section. A few additional words are necessary about the input and output descriptions. The description of the input to each subprogram includes all Fortran variables actually used by the subprogram that are defined out side the subprogram. Variables defined and used inside the subprogram are not listed as input. In addition, variables that are merely passed through to lower level routines are not listed. Variables marked with an asterisk are user-specified namelist input variables.

Similarly, the output description includes only those variables computed inside the subprogram and used outside the subprogram. It does not include variables computed by lower level routines. In general, variables defined inside the subprogram that are used by lower level routines are listed as output, even if they are not needed after control is returned to the calling program.

Variables entering or leaving a subprogram through an argunent list are defined in detail. However, most of the Fortran variables listed in the input and output descriptions are contained in common blocks, and are defined in detail in Section 3.0. For that reason, they are defined only briefly in this section

Subroutine ADI		
Called by	Calls	Purpose
EXEC	BLKOLT	Manage the block tridiagonal inversion.
	BI 3	
	BLK3P	
	BLK4	
	BLK4P	
	BLK5	
	BLK5P	

Input

* IDEBUG
* IPRTIA, IPRT2A

ISWEEP
IT
KBCPER
NEQ

* Nolt

NPRT1, NPRT2
S

Debug flags.
Indices for printout in the ξ and η directions.
Current ADI sweep number.
Current time step number n.
Flags for spatially periodic boundary conditions in the ξ and η directions; 0 for non-periodic, 1 for periodic.
Number of coupled equations being solved, $N_{e q}$.
Unit number for standard output.
Total number of indices for printout in the ξ and η directions.
Computed solution subvector, $\Delta \hat{\mathbf{Q}}$ or $\Delta \hat{\mathbf{Q}}^{n}$.
Output
None.

Description

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by the number of equations being solved, and by the presence or absence of spatially periodic boundary conditions in the sweep direction.

Remarks

1. This subroutine generates the output for the $\operatorname{IDEBUG}(1)$, $\operatorname{IDEBUG}(5)$, and $\operatorname{IDEBUG}(6)$ options.

Subroutine AVISCl		
Called by	Calls	Purpose
EXI:C	BI KOLT	Compute constant coefficient artificial viscosity.

Input

A, B, C
Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} without artificial viscosity.

* CAVS2E, CAVS4E, CAVS2I

DTAU

* IAV2E, LAV4E, IAV2I
* IDEBLG

Artificial viscosity cocfficients $\varepsilon_{E}^{(2)}, \varepsilon_{E}^{(4)}$, and ε_{j}.
Time step $\Delta \tau$.
Flags for second-order explicit, fourth-order explicit, and secondorder implicit artificial viscosity.

* IhStag
* IPRT1A, IPRT2A

ISWEEP
Debug flags.
Flag for constant stagnation enthalpy option.
Indices for printout in the ξ and η directions.
Current ADI sweep number.

* ISWIRL

Flag for swirl in axisymmetric flow.
IT
Current time step number n.
JI
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
NC, NXM, NYM, NZM, NEN
Array indices associated with the continuity, x-momentum, y-momentum (or r-momentum if axisymmetric), swirl momentum, and energy equations.

* NOUT

NPRT1, NPRT2
Unit number for standard output.

NPT1, NPT2
Total number of indices for printout in the ξ and η directions.
N_{1} and N_{2} for non-periodic boundary conditions, $N_{1}+1$ and $N_{2}+1$ for spatially periodic boundary conditions in ξ and η.
NR, NRU, NRV, NRW, NET
RHO, U, V, W, ET
S
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{r}.
Static density ρ, velocities u, v, and w, and total energy E_{τ} at time level n.
Source term subvector \mathbf{S} without artificial viscosity.
Output
A, B, C Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} with artificial viscosity.
$S \quad$ Source term subvector \mathbf{S} with artificial viscosity.

Description

Subroutine AVISC1 adds explicit and or implicit artificial viscosity to the governing equations, using the constant coefficient model of Steger (1978), as presented by Pulliam (1986b). The model is described in Section 9.1 of Volume 1. The explicit artificial viscosity may be second and or fourth order, and is added only during the first ADI sweep. The implicit artificial viscosity is second order, and is added during both sweeps.

The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term subvector as

$$
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}-\frac{\varepsilon_{E}^{(4)} \Delta \tau_{i, j}}{J_{i, j}}\left[\left(\nabla_{\xi} \Delta_{\xi}\right)^{2} \mathbf{Q}_{i, j}+\left(\nabla_{\eta} \Delta_{\eta}\right)^{2} \mathbf{Q}_{i, j}\right]
$$

where i and j vary from 3 to $\times P \Gamma 1-2$ and from 3 to $\times P T 2-2$, respectively. At grid points adjacent to boundaries the fourth-order differences in the above equation cannot be used, and therefore are replaced by second-order differences. Thus, at $i=2$ and at $i=N P \Gamma 1-1$, with j varying from 3 to NPT2-2,

$$
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\frac{\varepsilon_{F}^{(4)} \Delta \tau_{i, j}}{J_{i, j}}\left[\nabla_{\xi} \Delta_{\xi} \mathbf{Q}_{i, j}-\left(\nabla_{\eta} \Delta_{\eta}\right)^{2} \mathbf{Q}_{i, j}\right]
$$

Similarily, at $j=2$ and at $j=\ \mathrm{PT} 2-1$, with i varying from 3 to NPT1-1,

$$
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\frac{\varepsilon_{E}^{(4)} \Delta \tau_{i, j}}{J_{i, j}}\left[-\left(\nabla_{\xi} \Delta_{\xi}\right)^{2} \mathbf{Q}_{i, j}+\nabla_{\eta} \Delta_{\eta} \mathbf{Q}_{i, j}\right]
$$

The second-order explicit artificial viscosity is implemented in Fortran by redefining the source term subvector as

$$
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\frac{\varepsilon_{E}^{(2)} \Delta \tau_{i, j}}{J_{i, j}}\left(\nabla_{\xi} \Delta_{\xi} \mathbf{Q}_{i, j}+\nabla_{\eta} \Delta_{\eta} \mathbf{Q}_{i, j}\right)
$$

where i and j vary from 2 to $\mathrm{NPT} 1-1$ and from 2 to $\mathrm{NP} \mathrm{\Gamma} 2-1$, respectively.
The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by redefining the coefficient block submatrices as

$$
\begin{aligned}
& \mathbf{A}_{i, j}=\boldsymbol{A}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i-1, j} \\
& \mathbf{B}_{i, j}=\mathbf{B}_{i, j}+2 \frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j} \\
& \mathbf{C}_{i, j}=\mathbf{C}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i+1, j}
\end{aligned}
$$

where i and j vary from 2 to NP'I - 1 and from 2 to NPT2-1, respectively. Similarily, for the second sweep,

$$
\begin{aligned}
& \mathbf{A}_{i, j}=\mathbf{A}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j-1} \\
& \mathbf{B}_{i, j}=\mathbf{B}_{i, j}+2 \frac{\varepsilon_{t} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j} \\
& \mathbf{C}_{i, j}=\mathbf{C}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{I_{i, j}} J_{i, j+1}
\end{aligned}
$$

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the "i,j" term in the difference formula. See Section 9.1 of Volume 1 for details.
2. The coding to add artificial viscosity to the energy and or swirl momentum equations is separate from the coding for the remaining equations, and is bypassed if they are not being solved.
3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I1), and for the second sweep the order is ($\mathrm{I} 1, \mathrm{I} 2$).
4. For spatially periodic boundary conditions in the ξ direction, fourth-order differences could be used at $i=2$ and at $i=$ SPT1-1 $\left(=N_{1}\right)$. Similarly, for the η direction, fourth-order differences could be used at $j=2$ and at $j=\triangle \mathrm{PT} 2-1\left(=N_{2}\right)$. The logic to do this has not been coded, however, and at these points second-order differences are still used, as described above.
5. This subroutine generates the output for the IDEBUG(2) option.

Subroutine AVISC2		
Called by	Calls	Purpose
EXEC	BLKKOLT	Compute nonlinear coefficient artificial viscosity.

Input

A, B, C

* CAVS2E, CAVS4E, CAVS2I

CP, CV
DTAU
ETAX, ETAY, ETAT

* IAV2E, IAV4E, IAV2I
* IDEBCG
* IhSTAG
* IPRTIA, IPRT2A

ISWEEP

* ISWIRL

IT
JI
NC, NXM, NYM, NZM, NEN

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} without artificial viscosity.
User-specified coefficients κ_{2}, κ_{4}, and ε_{l}.
Specific heats c_{ρ} and c_{ν} at time level n.
Time step $\Delta \tau$.

Flags for second-order explicit, fourth-order explicit, and secondorder implicit artificial viscosity.
Debug flags.
Flag for constant stagnation enthalpy option.
Indices for printout in the ξ and η directions.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Current time step number n.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Array indices associated with the continuity, x-momentum, y-momentum (or r-momentum if axisymmetric), swirl momentum, and energy equations.

* NOUT

NPRT1, NPRT2
NPT1, NPT2
NR, NRU, NRV, NRW, NET

P, T
RGAS
RHO, $\mathrm{L}, \mathrm{V}, \mathrm{W}, \mathrm{ET}$

S
XIX, XIY, XIT
Output

A, B, C
S

Unit number for standard output.
Total number of indices for printout in the ξ and η directions.
N_{1} and N_{2} for non-periodic boundary conditions, $N_{1}+1$ and $N_{2}+1$ for spatially periodic boundary conditions in ξ and η.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.

Gas constant R.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.
Source term subvector \mathbf{S} without artificial viscosity.

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} with artificial viscosity. Source term subvector \mathbf{S} with artificial viscosity.

Description

Subroutine AVISC2 adds explicit artificial viscosity to the governing equations, using the nonlinear coefficient model of Jameson, Schmidt, and Turkel (1981), as presented by Pulliam (1986b). The model is described in Section 9.2 of Volume 1. Second-order implicit artificial viscosity can also be added, using the constant coefficient model of Steger (1978) described in Section 9.1 of Volume 1, although this is not normally used in combination with the explicit nonlinear coefficient model. The explicit artificial viscosity is added only during the first ADI sweep. The implicit artificial viscosity is added during both sweeps.

The explicit artificial viscosity in the ξ direction is computed first, at the η-indices $j=2$ to NPT2-1. The spectral radius term $\psi_{i, j}$ and the pressure gradient scaling factor $\sigma_{i, j}$ are computed and stored in local one-dimensional arrays for $i=1$ to NPT1. Special formulas are used to compute σ near boundaries, as described in Section 9.2 of Volume 1.

The second-order artificial viscosity is added first, and is implemented in Fortran by redefining the source term subvector as

$$
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}+\nabla_{\xi}\left\{\left[\left(\frac{\psi}{J}\right)_{i+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(2)}\right)_{i, j} \Delta_{\xi} \mathbf{Q}_{i, j}\right\}
$$

Or, after evaluating the differences,

$$
\begin{aligned}
\mathbf{S}_{i, j}=\mathbf{S}_{i, j} & +\left[\left(\frac{\psi}{J}\right)_{i+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(2)}\right)_{i, j}\left(\mathbf{Q}_{i+1, j}-\mathbf{Q}_{i, j}\right) \\
- & {\left[\left(\frac{\psi}{J}\right)_{i, j}+\left(\frac{\psi}{J}\right)_{i-1, j}\right]\left(\varepsilon_{\xi}^{(2)}\right)_{i-1, j}\left(\mathbf{Q}_{i, j}-\mathbf{Q}_{i-1, j}\right) }
\end{aligned}
$$

where i varies from 2 to NPT1-1.
The fourth-order explicit artificial viscosity is added next, and is implemented similarly by redefining the source term subvector as

$$
\mathbf{S}_{i, j}=\mathbf{S}_{i, j}-\nabla_{\xi}\left\{\left[\left(\frac{\psi}{J}\right)_{i+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(4)}\right)_{i, j} \Delta_{\xi} \nabla_{\xi} \Delta_{\xi} \mathbf{Q}_{i, j}\right\}
$$

Or, after evaluating the differences,

$$
\begin{aligned}
\mathbf{S}_{i, j}=\mathbf{S}_{l, j} & -\left[\left(\frac{\psi}{J}\right)_{l+1, j}+\left(\frac{\psi}{J}\right)_{i, j}\right]\left(\varepsilon_{\xi}^{(4)}\right)_{i, j}\left(\mathbf{Q}_{i+2, j}-3 \mathbf{Q}_{i+1, j}+3 \mathbf{Q}_{i, j}-\mathbf{Q}_{i-1, j}\right) \\
+ & {\left[\left(\frac{\psi}{J}\right)_{l, j}+\left(\frac{\psi}{J}\right)_{i-1, j}\right]\left(\varepsilon_{\xi}^{(4)}\right)_{i-1, j}\left(\mathbf{Q}_{i+1, j}-3 \mathbf{Q}_{i, j}+3 \mathbf{Q}_{i-1, j}-\mathbf{Q}_{i-2, j}\right) }
\end{aligned}
$$

where i varies from 3 to NPT1-2. Special formulas are used at $i=2$ and at $i=N \mathrm{PT} 1-1$, as described in Section 9.2 of Volume 1.

The explicit artificial viscosity in the η direction is computed next, and is implemented in a manner analogous to that just described for the explicit artificial viscosity in the ξ direction.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by redefining the coefficient block submatrices as

$$
\begin{aligned}
& \mathbf{A}_{i, j}=\mathbf{A}_{i, j}-\frac{\varepsilon_{f} \Delta \tau_{i, j}}{J_{i, j}} J_{i-1, j} \\
& \mathbf{B}_{i, j}=\mathbf{B}_{i, j}+2 \frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j} \\
& \mathbf{C}_{i, j}=\mathbf{C}_{i, j}-\frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i+1, j}
\end{aligned}
$$

where i and j vary from 2 to NPT1-1 and from 2 to NPT2-1, respectively. Similarily, for the second sweep,

$$
\begin{aligned}
& \mathbf{A}_{i, j}=\mathbf{A}_{i, j}-\frac{\varepsilon_{l} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j-1} \\
& \mathbf{B}_{i, j}=\mathbf{B}_{i, j}+2 \frac{\varepsilon_{I} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j} \\
& \mathbf{C}_{i, j}=\mathbf{C}_{i, j}-\frac{\varepsilon_{l} \Delta \tau_{i, j}}{J_{i, j}} J_{i, j+1}
\end{aligned}
$$

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the "i,j" term in the difference formula. See Section 9.1 of Volume 1 for details.
2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from the coding for the remaining equations, and is bypassed if they are not being solved.
3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I1), and for the second sweep the order is (11,I2).
4. For spatially periodic boundary conditions, the need for special formulas near boundaries could be eliminated. The logic to do this has not been coded, however.
5. This subroutine generates the output for the IDEBUG(2) option.

Subroutine BCDE.S (IBC,FBC,IEQ,IMIN,IMAX,IBOCND)		
Called by	Calls	Purpose
BCGE.	BCGRAD BCMET	Compute density boundary conditions.

Input

DEI,
IBASE, ISTEP

IBC, IBC

1300 NI
$11: 9$
IMIN, IMAX
ISWEEP
IV
JI

* Nour

NR
RHO

Output

Description

Subroutine BCDENS computes coefficients and source terms for density boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections apply these generalized equations to the particular density boundary conditions in PROTECS. ${ }^{6}$

[^4]Applying equation (7.3) of Volume 1 , and noting that $\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
J_{i, j} \Delta \hat{\rho}_{i, j}^{n}=0
$$

Specified Static Density, $\rho=f$
Applying equation (7.5) of Volume 1 ,

$$
J_{i, j} \Delta \hat{\rho}_{i, j}^{n}=f_{i, j}^{n+1}-\rho_{i, j}^{n}
$$

Specified Two-Point Density Gradient in Coordinate Direction, $\partial \rho \mid \partial \phi=f$
Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
-J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+J_{2, j} \Delta \hat{\rho}_{2, j}^{n}=(\Delta \xi) f_{1, j}^{n+1}+\rho_{1, j}^{n}-\rho_{2, j}^{n}
$$

At the $\xi=1$ boundary,

$$
-J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=(\Delta \xi) f_{N_{1}, j}^{n+1}+\rho_{N_{1}-1, j}^{n}-\rho_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Density Gradient in Coordinate Direction, $\partial \rho / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided diffcrencing,

$$
-3 J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+4 J_{2, j} \Delta \hat{\rho}_{2, j}^{n}-J_{3, j} \Delta \hat{\rho}_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 \rho_{1, j}^{n}-4 \rho_{2, j}^{n}+\rho_{3, j}^{n}
$$

At the $\xi=1$ boundary,

$$
J_{N_{1}-2, j} \Delta \hat{\rho}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-\rho_{N_{1}-2, j}^{n}+4 \rho_{N_{1}-1, j}^{n}-3 \rho_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point Density Gradient in Normal Direction, $\nabla \rho \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
-J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+J_{2, j} \Delta \hat{\rho}_{2, j}^{n}=\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} \rho_{1, j}^{n}\right]+\rho_{1, j}^{n}-\rho_{2, j}^{n}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
-J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=\frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} \rho_{N_{1}, j}^{n}\right]+\rho_{N_{1}-1, j}^{n}-\rho_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Density Gradient in Normal Direction, $\nabla \rho \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
& -3 J_{1, j} \Delta \hat{\rho}_{1, j}^{n}+4 J_{2, j} \Delta \hat{\rho}_{2, j}^{n}-J_{3, j} \Delta \hat{\rho}_{3, j}^{n}= \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} \rho_{1, j}^{n}\right]+3 \rho_{1, j}^{n}-4 \rho_{2, j}^{n}+\rho_{3, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{η} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
& J_{N_{1}-2, j} \Delta \hat{\rho}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}= \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi \xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} \rho_{N_{1}, j}^{n}\right]-\rho_{N_{1}-2, j}^{n}+4 \rho_{N_{1}-1, j}^{n}-3 \rho_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of Static Density

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
J_{1, j} \Delta \hat{\rho}_{1, j}^{n}-2 J_{2, j} \Delta \hat{\rho}_{2, j}^{n}+J_{3, j} \Delta \hat{\rho}_{3, j}^{n}=-\rho_{1, j}^{n}+2 \rho_{2, j}^{n}-\rho_{3, j}^{n}
$$

At the $\bar{\xi}=1$ boundary,

$$
J_{N_{1}-2, j} \Delta \hat{\rho}_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j} \Delta \hat{\rho}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{\rho}_{N_{1}, j}^{n}=-\rho_{N_{1}-2, j}^{n}+2 \rho_{N_{1}-1, j}^{n}-\rho_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent density boundary condition is specified.

Subroutine BCELIM		
Called by	Calls	Purpose
EXEC	SGEFA SGESL	Eliminate off-diagonal coefficient submatrices resulting from three- point boundary conditions.

Input

A, B, C

IBCFLM

ISWEEP
IV
NEQ
NEQP
NPTS
S

Output

A, B, C $\quad \begin{aligned} & \text { Cocfficient submatrices } A, B, \text { and } \mathbf{C} \text { after eliminating off- } \\ & \text { diagonal blocks. }\end{aligned}$
S

Description

Subroutine BCELIM eliminates the off-diagonal coefficient submatrices that result from the application of three-point boundary conditions. This is necessary when three-point gradients are specified in the coordinate or normal direction, and when linear extrapolation is used. The procedure is described in Section 8.2.1 of Volume 1.

Remarks

1. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays A and B represent A and B, where A is a square N by N matrix and B is a matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is LDA, then the Iortran sequence
```
                                    CALL SGEFA (A,LDA,N,IPVT,INFO)
                                    DO 10 J = 1,NCOL
                                    CALL SGESL (A,LDA,N,IPVT,B(1,J),0)
```

10 CONTINUE
computes $\mathbf{A}^{-1} \mathbf{B}$, storing the result in \mathbf{B}.

Subroutine BCF (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)		
Called by	Calls	Purpose
BCGEN	BCFLIN BCGRAD BC.MET	Compute user-written boundary conditions.

Input

DEL

IBASE, ISTEP

IBC, FBC

IBOLND

IEQ
IMIN, IMAX
ISWEEP

* ISWIRL

IV
JI

* NOUT

NR, NRU, NRV, NRW, NET

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Boundary condition types and values for current sweep direction, specified as $\operatorname{IBC}(I, J)$ and $\mathrm{FBC}(\mathrm{I}, \mathrm{J})$, where I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, i_{v}.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Unit number for standard output.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{Γ}.

Output

A, B, C

S
Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at boundary IBOUND (row IEQ only).
Source term subvector S at boundary IBOUND (element IEQ only).

Description

Subroutine BCF computes coefficients and source terms for user-written boundary conditions of the form $\Delta F=0, F=f, \partial F / \partial \phi=f$, and $\nabla F \cdot \vec{n}=f$. The values of F and its derivatives with respect to the dependent variables must be supplied by the user-written subroutine BCFLIN. The linearized equations for these types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections expand these generalized equations in detail.?

[^5]
No Change From Initial Conditions, $\Delta F=0$

Applying equation (7.3) of Volume 1, and noting that $\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
\left.J_{i, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\hat{\partial}(\rho u)} \Delta \hat{\rho u}\right)+\frac{\partial F}{\partial(\rho v)} \Delta \hat{(\rho v)}+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
$$

Specified Value, $F=f$
Applying equation (7.5) of Volume 1 ,

$$
J_{i, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=f_{i, j}^{n+1}-F_{i, j}^{n}
$$

Specified Two-Point Gradient in Coordinate Direction, $\partial F / \partial \phi=f$
Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+F_{1, j}^{n}-F_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
&-J_{N_{1}-1, j} {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
& J_{N_{1}, j} {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1}+F_{N_{1}-1, j}^{n}-F_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Gradient in Coordinate Direction, $\partial F / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, J}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, J}^{n}-} \\
J_{3, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, J}^{n}=} \\
& 2(\Delta \xi) \int_{1, j}^{n+1}+3 F_{1, J}^{n}-4 F_{2, J}^{n}+F_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{N_{1}-1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& 2(\Delta \xi) f_{N_{1}, j}^{n+1}-F_{N_{1}-2, j}^{n}+4 F_{N_{1}-1, j}^{n}-3 F_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point Gradient in Normal Direction, $\nabla F \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta \hat{(\rho u)}+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} F_{1, j}^{n}\right]+F_{1, j}^{n}-F_{2, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1 . At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, J} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, J}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, J}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} F_{N_{1}, j}^{n}\right]+F_{N_{1}-1, j}^{n}-F_{N_{1}, J}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Gradient in Normal Direction, $\nabla F \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u l)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} F_{1, j}^{n}\right]+3 F_{1, j}^{n}-4 F_{2, j}^{n}+F_{3, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and $\hat{\delta}_{\eta}$ is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$
boundary,

$$
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{N_{1}-1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\rho \hat{w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1, j}}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right) N_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} F_{N_{1}, j}^{n}\right]-F_{N_{1}-2, j}^{n}+4 F_{N_{1}-1, j}^{n}-3 F_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
& J_{1, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}- \\
& 2 J_{2, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}+ \\
& J_{3, j}\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}= \\
& \quad-F_{1, j}^{n}+2 F_{2, j}^{n}-F_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta \hat{(\rho w)}+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
2 J_{N_{1}-1, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial F}{\partial \rho} \Delta \hat{\rho}+\frac{\partial F}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial F}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial F}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial F}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& -F_{N_{1}-2, j}^{n}+2 F_{N_{1}-1, j}^{n}-F_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent user-written boundary condition is specified.
3. The scratch array DUMMY, from the common block DUMMY1, is used to store the value of the function F for boundary condition types ± 93. The array is filled in subroutine BCFLIN and passed through to subroutine BCGRAD.

Subroutine BCFLIN:						
(IBC,IEQ,IBOLXD,IMIN,IMAX,F,DFDRHO,DFDRU,DFDRV,DFDRW, DFDET,IBC)						
Called by	Calls	Purpose				
BCF		Cser-supplied routine for linearization of user-supplied boundary con- ditions.				

Input

IBC

IBOCND
Boundary condition types for current sweep direction, specified as IBC(I,J), where I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the lower and upper boundaries.

IEQ IMIN, IMAX
IEQ IMIN, IMAX

Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.

Output

DFDRIIO, DFDRL, DFDRV, DFDRW, DI:DET
DLMMY

F

IBC

Three-element arrays, specified as DFDRHO(IW), etc., giving the values of $\partial F / \partial \rho, \partial F / \partial(\rho u), \partial F / \partial(\rho v), \partial F / \partial(\rho w)$, and $\partial F / \partial E_{T}$.
A scratch array, specified as DUMMY(I,J), containing the value of the function F. The subscripts I and J run from 1 to N_{1} and N_{2}, respectively. This is only needed for boundary condition types ± 93, and only needs to be defined at the beginning of each sweep.
A three-element array specified as F (IW) giving the value of the function F at the boundary (IW $=1$), at the first point away from the boundary (IW =2), and at the second point away from the boundary ($\mathrm{IW}=3$). Values at $\mathrm{IW}=3$ are not needed for boundary condition types 91,92 , or -92 . Values at IW $=2$ are not needed for boundary condition type 91 .
Boundary condition values for current sweep direction, specified as $\mathrm{FBC}(1, \mathrm{~J})$, where I runs from 1 to $N_{e q}$, corresponding to the $N_{\text {eq }}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the lower and upper boundaries. This is only needed if values for GBCI or GBC 2 , or FBC or FBC 2 , are not specified in the input namelist BC.

Description

Subroutine BCFLIN is a user-written routine used in conjunction with subroutine BCF for user-written boundary conditions of the form $\Delta F=0, F=f, \partial F / \partial \phi=f$, and $\nabla F \cdot \ddot{n}=f$. BCFLIN supplies the values of F and its derivatives with respect to the dependent variables, which are required for writing the linearized form of the boundary condition.

The version of BCFLIN supplied with PROTELS makes BCF equivalent to BCTEMP, except for the total temperature options in BCTF.MP. Thus $F=T, \partial F / \partial \rho=\partial T / \partial \rho$, etc., where T and its derivatives with respect to the dependent variables are computed using the perfect gas equation of state. (See Section 5.3 of Volume 1.) This version of BCFLI. is intended as an example for use in coding boundary conditions not already available.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. The capability of specifying FBC as an output variable may be useful in writing time-dependent boundary conditions. It also may be used when specifying boundary conditions involving derivatives in both coordinate directions. In this case, the derivatives in the non-sweep direction may be lagged one time step and treated as source terms.

Subroutine BCGEN		
Called by	Calls	Purpose
BVLP	BCDENS	Manage computation of boundary conditions.
EXEC	BCI:	
	BCPRES	
	BCQ	
	BCIFMP	
	BCLVIEL	
	BCVDRR	
	BCVVEL	
	BCWVL	

Input

* $\mathrm{FBCl}, \mathrm{FBC} 2$
* $\mathrm{IBCl}, \mathrm{IBC} 2$
* IDEBUG
* IPRTIA, IPRT2A

ISWEEP
IT
IV
II, I2
NBC
NEQ

* NOUT

NPRT1, NPRT2

* N1, N2

Output

IBC, $\mathrm{FBC} \quad \begin{aligned} & \text { Boundary condition types and values for current sweep direction, }, \\ & \text { specified as } 1 \mathrm{BC}(1, \mathrm{~J}) \text { and } \mathrm{FBC}(\mathrm{I}, \mathrm{J}) \text {, where I runs from } 1 \text { to } N_{e q},\end{aligned}$ specified as $1 B C(I, J)$ and $F B C(1, J)$, where I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the lower and upper boundaries.
IBOCND
IEQ
IMIN, IMAX

Point-by-point boundary condition values for the 5 and η directions.
Point-by-point boundary condition types for the g and η directions.
Debug flags.
Indices for printout in the ξ and η directions.
Current ADI sweep number.
Current time step number n.
Index in the "vectorized" direction, i_{y}.
Grid indices i and j, in the ξ and η directions.
Cray PARAMETER specifying number of boundary conditions per equation.
Number of coupled equations being solved, $N_{e q}$.
Unit number for standard output.
Total number of indices for printout in the ξ and η directions.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.
Boundary condition equation number, from 1 to $N_{e q}$.
Minimum and maximum indices in the sweep direction.

Description

Subroutine BCGEN manages the computation of coefficients and source terms for boundary conditions. It first loads the $\ E \mathrm{EQ}$ boundary condition types and values from the input arrays $I B C 1$ and $\mathrm{FBC1}$, or $I B C 2$
and FBC2, depending on the ADI sweep, into the arrays IBC and FBC. This was done so that the BC routines could be non-sweep dependent. Next the coefficient submatrices and source term subvectors at the two boundaries in the current sweep direction are initialized to zero. And finally, the appropriate BC routine is called, depending on the input boundary condition type, for each of the NEQ boundary conditions at each boundary in the sweep direction.

Remarks

1. An error message is generated and execution is stopped if any of the non-existent boundary condition types $80-89$ is specified, or if the boundary condition type is less than 0 or greater than 99 .
2. This subroutine generates the output for the IDEBUG(3) option.

Subroutine BCGRAD (F.I,DFDI,DFD2)		
Called by	Calls	Purpose
BCDENS		Compute gradients with respect to ξ and η.
BCF		
BCPRES		
BCQ		
BCTEMP		
BCCVEL		
BCVDIR		
BCVVEL		
BCWVEL		

Input

* ALPHAI, ALPHA2

DXI, DETA
F

I
ISWEEP
I1, I2

* $\mathrm{N} 1, \mathrm{~N} 2$

Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
A two-dimensional array, specified as $F(I, J)$, containing the function f whose gradient is to be computed. The subscripts I and J run from I to N_{1} and N_{2}, respectively.
Current grid point index in the current sweep direction.
Current ADI sweep number.
Grid indices i and j, in the ξ and η directions.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.

Output

DFD1, DFD2
First derivatives of f with respect to ξ and η.

Description

Subroutine BCGRAD computes first derivatives of the function f, with respect to ξ and η, at the current grid point in the ADI sweep direction. At interior points, the variably centered difference formula presented in Section 6.0 of Volume 1 is used. For derivatives with respect to ξ,

$$
\left(\frac{\partial f}{\partial \xi}\right)_{l, j} \simeq \frac{1}{\Delta \xi}\left[(1-\alpha) f_{l+i, j}+(2 \alpha-1) f_{l, j}-\alpha f_{l-1, j}\right]
$$

An analogous formula is used for η derivatives.
At boundary points three-point one-sided formulas are used.

$$
\begin{gathered}
\left(\frac{\partial f}{\partial \xi}\right)_{1, j} \simeq \frac{1}{2 \Delta \xi}\left(-3 f_{1, j}+4 f_{2, j}-f_{3, j}\right) \\
\left(\frac{\partial f}{\partial \xi}\right)_{N_{1}, j} \simeq \frac{1}{2 \Delta \xi}\left(f_{N_{1}-2, j}-4 f_{N_{1}-1, j}+3 f_{N_{1}, j}\right)
\end{gathered}
$$

Again, analogous formulas are used for η derivatives.

Subroutine BC.MET (I,FM0,FM1,F.M2)		
Called by	Calls	Purpose
BCDE.S		Compute various metric functions for normal gradient boundary con-
BCF		ditions.
BCPRES		
BCQ		
BCTEMP		
BCUVEL		
BCVDIR		
BCVVEL		
BCWVEL		

Input

ETAX, ETAY
I
ISWEEP
I1, I2
XIX, XIY

Metric coefficients η_{x} and η_{y} (or η_{r} if axisymmetric.)
Current grid point index in the current sweep direction.
Current ADI sweep number.
Grid indices i and j, in the ξ and η directions.
Metric coefficients ξ_{x} and ξ_{y} (or ξ, if axisymmetric.)

Output

FM0, FM1, FM2
Various metric functions used for normal derivative boundary conditions.

Description

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the first ADI sweep,

$$
\begin{aligned}
& \mathrm{FM} 0=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}} \\
& \mathrm{FMI}=0 \\
& \mathrm{FM}=\xi_{x} \eta_{x}+\xi_{y} \eta_{y}
\end{aligned}
$$

And for the second sweep,

$$
\begin{aligned}
& \mathrm{FM} 0=\sqrt{\eta_{x}^{2}+\eta_{y}^{2}} \\
& \mathrm{FM} 1=\xi_{x} \eta_{x}+\xi_{y} \eta_{y} \\
& \mathrm{FM} 2=0
\end{aligned}
$$

Subroutine BCPRES (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)		
Called by	Calls	Purpose
BCGE	BCGRAD BC.MET	Compute pressure boundary conditions.

Input

CP, CV
DEL
DPDRHO, DPDRU, DPDRV, DPDRW, DPDET
DTDRHO, DTDRU, DTDRV, DTDRW, DTDET
GC
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP

* ISWIRL

IV
JI

* NOUT

NR, NRU, NRV, NRW, NET
P, T
PR
RGAS
RHO, U, V, W

* RHIOR, UR

Output

Specific heats c_{p} and c_{r} at time level n.
Computational grid spacing in sweep direction.
Derivatives $\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)$, and $\partial p / \partial E_{T}$.
Derivatives $\partial T / \partial \rho, \partial T / \partial(\rho u), \partial T / \partial(\rho v), \partial T / \partial(\rho w)$, and $\partial T / \partial E_{r}$.
Proportionality factor g_{c} in Newton's second law.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Boundary condition types and values for current sweep direction, specified as $\operatorname{IBC}(\mathbb{I}, \mathrm{J})$ and $\mathrm{FBC}(\mathrm{I}, \mathrm{J})$, where I runs from 1 to $N_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI swecp number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, i_{v}.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Unit number for standard output.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
Static pressure p and temperature T at time level n.
Reference pressure p_{r}.
Gas constant R.
Static density ρ, and velocities u, v, and w, at time level n.
Reference density ρ_{r} and velocity u_{r}.

A, B, C
S

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at boundary IBOLND (row IEQ only).

Source term subvector \mathbf{S} at boundary IBOLXD (element IEQ only).

Description

Subroutine BCPRIS computes coefficients and source terms for pressure boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections apply these generalized equations to the particular pressure boundary conditions in PROTELS. ${ }^{8}$

No Change From Initial Conditions, $\Delta p=0$

Applying equation (7.3) of Volume 1 , and noting that $\partial g / \hat{Q}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
\left.J_{i, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta \hat{\rho} \hat{w}\right)+\frac{\partial p}{\partial E_{T}} \Delta \hat{E_{T}}\right]_{i, j}^{n}=0
$$

The derivatives $\partial p / \partial \rho, \partial p / \partial(\rho u)$, etc., depend on the equation of state. They are defined for a perfect gas in Section 5.3 of Volume 1.

Specified Static Pressure, $p=f$

Applying equation (7.5) of Volume 1 ,

$$
J_{i, j}\left[-\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial F_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=f_{i, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-p_{i, j}^{n}
$$

Specifled Two-Point Pressure Gradient in Coordinate Direction, $\partial p / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& (\Delta \xi) j_{1, j}^{n+1} \frac{p_{r} \xi_{c}}{\rho_{r} u_{r}^{2}}+p_{1, j}^{n}-p_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& (\Delta \xi) f_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}+p_{N_{1}-1, j}^{n}-p_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

[^6]
Specified Three-Point Pressure Gradient in Coordinate Direction, $\partial p / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
\quad 2(\Delta \xi) f_{1, j}^{n+1} & \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}+3 p_{1, j}^{n}-4 p_{2, j}^{n}+p_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
& J_{N_{1}-2, j} {\left.\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta \hat{\rho v}\right)+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
& 4 J_{N_{1}-1, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
& 3 J_{N_{1}, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& 2(\Delta \xi) f_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-p_{N_{1}-2, j}^{n}+4 p_{N_{1}-1, j}^{n}-3 p_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point Pressure Gradient in Normal Direction, $\nabla p \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} p_{1, j}^{n}\right]+p_{1, j}^{n}-p_{2, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{v_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{v_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-\frac{\left.\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right){N_{1}, j}^{m_{N_{1}, j}} \delta_{\eta} p_{N_{1}, j}^{n}\right]+p_{N_{1}-1, j}^{n}-p_{N_{1}, j}^{n}}{}\right.
\end{aligned}
$$

Analogous equations can casily be written for the η boundaries.

Specified Three-Point Pressure Gradient in Normal Direction, $\nabla p: \dot{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{gathered}
-3 J_{1, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta \hat{(\rho w)}+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+ \\
4 J_{2, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}- \\
J_{3, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}= \\
\quad \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta p_{1, j}^{n}}^{n}\right]+3 p_{1, j}^{n}-4 p_{2, j}^{n}+p_{3, j}^{n}
\end{gathered}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{η} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{N_{1}-1, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}^{\xi}}\left[f_{N_{1}, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-\frac{\left(\xi_{x} \eta x+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} \rho_{N_{1}, j}^{n}\right]-p_{N_{1}-2, j}^{n}+4 p_{N_{1}-1, j}^{n}-3 p_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of Static Pressure

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
& J_{1, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}- \\
& 2 J_{2, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}+ \\
& J_{3, j}\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}= \\
& \quad-p_{1, j}^{n}+2 p_{2, j}^{n}-p_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
& J_{N_{1}-2, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
& 2 J_{N_{1}-1, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u} u)+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
& J_{N_{1}, j} {\left[\frac{\partial p}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& \quad-p_{N_{1}-2, j}^{n}+2 p_{N_{1}-1, j}^{n}-p_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

No Change From Initial Conditions for Total Pressure, $\Delta p_{T}=0$

The total pressure is defined as

$$
p_{T}=p\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}
$$

Applying equation (7.3) of Volume 1, we get

$$
J_{i, j}\left[\frac{\partial p_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p_{T}}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p_{T}}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p_{T}}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
$$

where

$$
\begin{aligned}
\frac{\partial p_{T}}{\partial \rho} & =\frac{\partial p}{\partial \rho}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial \rho} \\
\frac{\partial p_{T}}{\partial(\rho u)} & =\frac{\partial p}{\partial(\rho u)}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial(\rho u)} \\
\frac{\partial p_{T}}{\partial(\rho v)} & =\frac{\partial p}{\partial(\rho v)}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial(\rho v)} \\
\frac{\partial p_{T}}{\partial(\rho w)} & =\frac{\partial p}{\partial(\rho w)}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial(\rho w)} \\
\frac{\partial p_{T}}{\partial E_{T}} & =\frac{\partial p}{\partial E_{T}}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}+p \frac{\gamma}{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{\gamma-1}} \frac{\partial M^{2}}{\partial E_{T}}
\end{aligned}
$$

The Mach number is defined by

$$
M^{2}=\frac{u^{2}+v^{2}+w^{2}}{\gamma R T}=\frac{(\rho u)^{2}+(\rho v)^{2}+(\rho w)^{2}}{\gamma R \rho^{2} T}
$$

The derivatives $\partial M^{2} / \partial \rho$, etc., can then be derived as

$$
\begin{aligned}
\frac{\partial M^{2}}{\partial \rho} & =-M^{2}\left(\frac{2}{\rho}+\frac{1}{T} \frac{\partial T}{\partial \rho}\right) \\
\frac{\partial M^{2}}{\partial(\rho u)} & =\frac{2 u}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho u)} \\
\frac{\partial M^{2}}{\partial(\rho v)} & =\frac{2 v}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho v)} \\
\frac{\partial M^{2}}{\partial(\rho w)} & =\frac{2 w}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho w)} \\
\frac{\partial M^{2}}{\partial E_{T}} & =-\frac{M^{2}}{T} \frac{\partial T}{\partial E_{T}}
\end{aligned}
$$

Specified Total Pressure, $p_{I}=f$

Applying equation (7.5) of Volume 1, we get

$$
\begin{aligned}
& J_{i, j} {\left[\frac{\partial p_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial p_{T}}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial p_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial p_{T}}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial p_{T}}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=} \\
& f_{i, j}^{n+1} \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}-p_{i, j}^{n}\left[\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}\right]_{i, j}^{n}
\end{aligned}
$$

where $p_{T}, \partial p_{T} / \partial \rho$, etc., are defined above as part of the description of the $\Delta p_{T}=0$ boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent pressure boundary condition is specified.
3. The multiplying factor $p_{r} g_{d} / \rho_{r} u_{r}^{2}$ that appears with specified values of pressure and pressure gradients is necessary because input values of pressure are nondimensionalized by the reference pressure $p_{r}=\rho_{r} \bar{R} T_{r} / g_{c}$, while internal to the PROTELS code itself pressure is nondimensionalized by the normalizing pressure $p_{n}=\rho_{r} u_{r}^{2}$. (See Section 3.1.1 of Volume 2.)

Subroutine BCQ (IBC,FBC,IEQ,IMIN,IMAX,IBOLXD)		
Called by	Calls	Purpose
BCGEN	BCGRAD BCMET	Compute conservation variable boundary conditions.

Input

* ALPHA1, AIPHA2

DEL
DXI, DETA
IBASE, ISTIP
$\mathrm{IBC}, \mathrm{FBC}$

IBOUND
IEQ
IMIN, IMAX
ISWEEP

* ISWIRL

IV
I1, I2
JI
NC, NXM, NYM, NZM, NEN

* NOLT

Nip
RHO, U, V, W, ET

Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing in sweep direction.
Computational grid spacing Δ_{5}^{ξ} and Δ_{η}.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Boundary condition types and values for current sweep direction, specificd as $\operatorname{IBC}(I, J)$ and $\operatorname{FBC}(I, J)$, where I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, i_{v}.
Grid indices i and j, in the ξ and η directions.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Array indices associated with the continuity, x-momentum, y-momentum (or r-momentum if axisymmetric), swirl momenturn, and energy equations.
Unit number for standard output.
Cray PARAMETER specifying the DIME CSION size in the ξ direction.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.

Output

A, B, C
Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at boundary IBOLND (row IEQ only).

S
Source term subvector \mathbf{S} at boundary IBOU. $\$ D (element IEQ only).

Description

Subroutine BCQ computes coefficients and source terms for conservation variable boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0
of Volume 1. The following sections apply these generalized equations to the particular conservation variable boundary conditions in PROTELS. ${ }^{9}$

No Change From Initial Conditions, $\Delta Q=0$
Applying equation (7.3) of Volume 1 , and noting that $\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
J_{i, j} \Delta \hat{Q}_{i, j}^{n}=0
$$

where \hat{Q} is the clement of $\hat{\mathbf{Q}}$ for which this boundary condition is to be applied.

Specified Conservation Variable, $Q=f$

Applying equation (7.5) of Volume 1 ,

$$
J_{i, j} \Delta \hat{Q}_{i, j}^{n}=f_{i, j}^{n+1}-Q_{i, j}^{n}
$$

Specified Two-Point Conservation Variable Gradient in Coordinate Direction, $\partial Q / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
-J_{1, j} \Delta \hat{Q}_{1, j}^{n}+J_{2, j} \Delta \hat{Q}_{2, j}^{n}=(\Delta \xi) f_{1, j}^{n+1}+Q_{1, j}^{n}-Q_{2, j}^{n}
$$

At the $\xi=1$ boundary,

$$
-J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}=(\Delta \xi) f_{N_{1}, j}^{n+1}+Q_{N_{1}-1, j}^{n}-Q_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Speciffed Three-Point Conservation Variable Gradient in Coordinate Direction, $\partial Q / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
-3 J_{1, j} \Delta \hat{Q}_{1, j}^{n}+4 J_{2, j} \Delta \hat{Q}_{2, j}^{n}-J_{3, j} \Delta \hat{Q}_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 Q_{1, j}^{n}-4 Q_{2, j}^{n}+Q_{3, j}^{n}
$$

At the $\xi=1$ boundary,

$$
J_{N_{1}-2, j} \Delta \hat{Q}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-Q_{N_{1}-2, j}^{n}+4 Q_{N_{1}-1, j}^{n}-3 Q_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point Conservation Variable Gradient in Normal Direction, $\nabla Q \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

[^7]$$
-J_{1, j} \Delta \hat{Q}_{1, j}^{n}+J_{2, j} \Delta \hat{Q}_{2, j}^{n}=\frac{\Delta \dot{\xi}}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} Q_{1, j}^{n}\right]+Q_{1, j}^{n}-Q_{2, j}^{n}
$$
where
$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$
and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,
$$
-I_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+J_{N_{1}, j} \Delta \hat{Q}_{M_{1}, j}^{n}=\frac{\Delta \xi}{m_{M_{1}, j}^{\xi}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right) N_{N_{1}, j}}{m_{N_{1}, j}} i_{\eta} Q_{V_{1}, j}^{n}\right]+Q_{N_{1}-1, j}^{n}-Q_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Comservation V'ariable Gradient in Normal Direction, $\nabla Q-\dot{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{gathered}
-3 J_{1, j} \Delta \hat{Q}_{1, j}^{n}+4 I_{2, j} \Delta Q_{2, j}^{n}-J_{3, j} \Delta \hat{Q}_{3, j}^{n}= \\
\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} Q_{1, j}^{n}\right]+3 Q_{1, j}^{n}-4 Q_{2, j}^{n}+Q_{3, j}^{n}
\end{gathered}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{η} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{gathered}
J_{N_{1}-2, j} \Delta \hat{Q}_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}+3 J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}= \\
\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{v_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} Q_{N_{1}, j}^{n}\right]-Q_{N_{1}-2, j}^{n}+4 Q_{N_{1}-1, j}^{n}-3 Q_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of Conservation Variable

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
J_{1, j} \Delta \hat{Q}_{1, j}^{n}-2 I_{2, j} \Delta \hat{Q}_{2, j}^{n}+J_{3, j} \Delta \hat{Q}_{3, j}^{n}=-Q_{1, j}^{n}+2 Q_{2, j}^{n}-Q_{3, j}^{n}
$$

At the $\bar{\xi}=1$ boundary,

$$
J_{N_{1}-2, j} \Delta \hat{Q}_{\mathrm{N}_{1}-2, j}^{n}-2 J_{N_{1}-1, j} \Delta \hat{Q}_{N_{1}-1, j}^{n}-J_{N_{1}, j} \Delta \hat{Q}_{N_{1}, j}^{n}=-Q_{N_{1}-2, j}^{n}+2 Q_{N_{1}-1, j}^{n}-Q_{N_{1}, j}^{n}
$$

Analogous equations can easily be written for the η boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent conservation variable boundary condition is specified.

Subroutine BCSET		
Called by	Calls	Purpose
MAIN		Set various boundary condition parameters and flags.

Input

* GBC1, GBC2
* GTBC1, GTBC2
* ISWIRI

ITDBC

* $\mathrm{JBCl}, \mathrm{JBC} 2$
* JTBC1, JTBC2
* $\mathrm{KBC} 1, \mathrm{KBC} 2$

NBC

NEQ

* NOUT
* MTbC
* NTBCA
* $\mathrm{N} 1, \mathrm{~N} 2$

Output

FBC1, FBC2
IBC1, IBC2
IBCELM

IBVLP
$\mathrm{JBC} 1, \mathrm{JBC} 2$

KBCPER

Surface boundary condition values for the ξ and η directions.
Time-dependent surface boundary condition values for the ξ and η directions.
Flag for swirl in axisymmetric flow.
Flag for time-dependent boundary conditions; 0 if all boundary conditions are steady, 1 if any general unsteady boundary conditions are used, 2 if only steady and time-periodic boundary conditions are used.
Surface boundary condition types for the ξ and η directions.
Flags for type of time dependency for boundary conditions in the ξ and η directions.
Boundary types for the ξ and η directions.
Cray PARAMETER specifying number of boundary conditions per equation.
Number of coupled equations being solved, $N_{e q}$.
Unit number for standard output.
Number of values in tables for general unsteady boundary conditions.
Time levels at which general unsteady boundary conditions are specified.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.

Point-by-point boundary condition values for the ξ and η directions.
Point-by-point boundary condition types for the ξ and η directions.
Flags for elimination of off-diagonal coefficient submatrices resulting from three-point boundary conditions in the ξ and η directions at either boundary; 0 if elimination is not necessary, 1 if it is.
Flags for updating boundary values from first sweep after second sweep; 0 if updating is not necessary, 1 if it is.
Surface boundary condition types for the ξ and η directions (only if using the KBC meta flags.)
Flags for spatially periodic boundary conditions in the ξ and η directions; 0 for non-periodic, 1 for periodic.
$\therefore P \Gamma 1, N P I 2 \quad \lambda_{1}$ and γ_{2} for non-periodic boundary conditions, $\gamma_{1}+1$ and $\lambda_{2}+1$ for spatially periodic boundary conditions in ξ and η.

Description

Subroutine BCSIET sets various boundary condition parameters and flags. If boundary types are specified with the KBC meta tlags, the appropriate surface boundary condition types are loaded into the JBC arrays. Special thags are set if spatially periodic boundary conditions are being used. BCSET also sets NPII and $\triangle P[2$, the number of grid points in each ADI sweep direction to be used in computing coefficients and source terms. For spatially periodic boundary conditions in the ξ direction, $\mathrm{NP} \Gamma=\mathrm{N} 1+1$. Similarly, for spatially periodic boundary conditions in the η direction, $\mathrm{NPI} 2=N 2+1$. This is done in order to use central differences at the periodic boundary. (See Section 8.2 .2 of Volume 1.)

Next, if surface boundary conditions are being specified using the JBC and GBC parameters (or the KBC meta flags), the appropriate point-by-point boundary condition types and values (the IBC and 1 BC parameters) are loaded with the JBC and GBC values.

If three-point boundary conditions are being used at a boundary, a flag is set for eliminating the resulting off-diagonal coefficient submatrix. If gradient (two-point or three-point) or extrapolation boundary conditions are used during the first sweep, a flag is set for updating the ξ boundary values after the second sweep. The input boundary condition parameters are then written to the standard output file.

Remarks

1. An error message is generated and execution is stopped if an invalid boundary type is specified with the KBC meta tlags.

Subroutine BCTEMP (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by	Calls	Purpose
BCGEN	BCGRAD BCMET	Compute temperature boundary conditions.

Input

CP, CV
DEL
DTDRHO, DTDRU, DTDRV, DTDRIV, DTDET

IBASE, ISTEP
IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP

* ISWIRL

IV
JI

* NOUT

NR, NRU, NRV, NRW, NET

P, T
RGAS
RHO, L, V, W

Specific heats c_{p} and c_{\vee} at time level n.
Computational grid spacing in sweep direction.
Derivatives $\partial T / \partial \rho, \partial T / \partial(\rho u), \partial T / \partial(\rho v), \partial T / \partial(\rho w)$, and $\partial T / \partial E_{T}$.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Boundary condition types and values for current sweep direction, specified as $\operatorname{IBC}(I, J)$ and $\operatorname{FBC}(\mathrm{I}, \mathrm{J})$, where I runs from 1 to $N_{\text {eq }}$, corresponding to the $N_{\text {eq }}$ conditions needed, and $\mathbf{J}=1$ or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, i_{v}.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Unit number for standard output.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
Static pressure p and temperature T at time level n.
Gas constant R.
Static density ρ, and velocities u, v, and w, at time level n.

Output

A, B, C Coefficient submatrices A, B, and C at boundary IBOUND (row IEQ only).

Source term subvector \mathbf{S} at boundary IBOUND (element IEQ only).

Description

Subroutine BCTEMP computes coefficients and source terms for temperature boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0
of Volume 1. The following sections apply these generalized equations to the particular temperature boundary conditions in PROTELS. ${ }^{10}$

Bo Change From Initial Conditions, $\Delta T=0$

Applying equation (7.3) of Volume 1, and noting that $\partial \mathrm{g} / \hat{\boldsymbol{Q}}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
J_{i, j}\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=0
$$

The derivatives $\partial T / \partial \rho, \partial T / \partial(\rho u)$, etc., depend on the equation of state. They are defined for a perfect gas in Section 5.3 of Volume 1.

Specified Static Temperature, $T=f$

Applying equation (7.5) of Volume 1,

$$
J_{i, j}\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho} u)+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=f_{i, j}^{n+1}-T_{i, j}^{n}
$$

Specified Two-Point Temperature Gradient in Coordinate Direction, $\partial T / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+T_{1, j}^{n}-T_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u l)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& (\Delta \xi) f_{N_{1}, j}^{n+1}+T_{N_{1}-1, j}^{n}-T_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Temperature Gradient in Coordinate Direction, $\partial T / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

[^8]\[

$$
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& 2(\Delta \bar{\zeta}) f_{1, j}^{n+1}+3 T_{1, j}^{n}-4 T_{2, j}^{n}+T_{3, j}^{n}
\end{aligned}
$$
\]

At the $\xi=1$ boundary,

$$
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{V_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E_{T}}\right]_{N_{1}, j}^{n}=} \\
& 2(\Delta \xi))_{N_{1}, j}^{n+1}-T_{N_{1}-2, j}^{n}+4 T_{N_{1}-1, j}^{n}-3 T_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can casily be written for the η boundaries.

Specified Two-Point Temperature Gradient in Normal Direction, $\nabla T \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left.\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta \hat{\rho v}\right)+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} T_{1, j}^{n}\right]+T_{1, j}^{n}-T_{2, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[\int_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right) N_{1}, j}{m_{N_{1}, j}} \delta_{\eta} T_{N_{1}, j}^{n}\right]+T_{N_{1}-1, j}^{n}-T_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Temperature Gradient in Normal Direction, $\nabla T \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}+} \\
4 J_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} T_{1, j}^{n}\right]+3 T_{1, j}^{n}-4 T_{2, j}^{n}+T_{3, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
J_{N_{1}-2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-2, j}^{n}-} \\
4 J_{N_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}-1, j}^{n}+} \\
3 J_{N_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{N_{1}, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}, j}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} T_{N_{1}, j}^{n}\right]-T_{N_{1}-2, j}^{n}+4 T_{N_{1}-1, j}^{n}-3 T_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of Static Temperature

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
J_{1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u l})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{1, j}^{n}-} \\
2 I_{2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{2, j}^{n}+} \\
J_{3, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{3, j}^{n}=} \\
& -T_{1, j}^{n}+2 T_{2, j}^{n}-T_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
J_{V_{1}-2, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{\gamma_{1}-2, j}^{n}-} \\
2 J_{V_{1}-1, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{\gamma_{1}-1, j}^{n}+} \\
J_{V_{1}, j} & {\left[\frac{\partial T}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{\gamma_{1}, j}^{n}=} \\
& -\Gamma_{\gamma_{1}-2, j}^{n}+2 T_{V_{1}-1, j}^{n}-T_{\gamma_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can casily be written for the η boundaries.
No Change From Initial Conditions for Total Temperature, $\Delta T_{y}=0$
The total temperature is defined as

$$
T_{T}=T\left(1+\frac{\gamma-1}{2} M^{2}\right)
$$

Applying equation (7.3) of Volume 1, we get

$$
J_{i, j}\left[\frac{\partial T_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T_{T}}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T_{T}}{\partial(\rho w)} \Delta(\hat{\rho} \hat{v})+\frac{\partial T_{T}}{\partial E_{T}} \Delta \hat{B}_{T}\right]_{i, j}^{n}=0
$$

where

$$
\begin{aligned}
\frac{\partial T_{T}}{\partial \rho} & =\frac{\partial T}{\partial \rho}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial \rho} \\
\frac{\partial T_{T}}{\partial(\rho u)} & =\frac{\partial T}{\partial(\rho u)}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial(\rho u)} \\
\frac{\partial T_{T}}{\partial(\rho v)} & =\frac{\partial T}{\partial(\rho v)}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial(\rho v)} \\
\frac{\partial T_{T}}{\partial(\rho w)} & =\frac{\partial T}{\partial(\rho w)}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial(\rho w)} \\
\frac{\partial T_{T}}{\partial E_{T}} & =\frac{\partial T}{\partial E_{T}}\left(1+\frac{\gamma-1}{2} M^{2}\right)+\frac{\gamma-1}{2} T \frac{\partial M^{2}}{\partial E_{T}}
\end{aligned}
$$

The Mach number is defined by

$$
M^{2}=\frac{u^{2}+v^{2}+w^{2}}{\gamma R T}=\frac{(\rho u)^{2}+(\rho v)^{2}+(\rho w)^{2}}{\gamma R \rho^{2} T}
$$

The derivatives $\partial M^{2} / \partial \rho$, etc., can then be derived as

$$
\begin{aligned}
\frac{\partial M^{2}}{\partial \rho} & =-M^{2}\left(\frac{2}{\rho}+\frac{1}{T} \frac{\partial T}{\partial \rho}\right) \\
\frac{\partial M^{2}}{\partial(\rho u)} & =\frac{2 u}{\partial p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho u)} \\
\frac{\partial . M^{2}}{\partial(\rho v)} & =\frac{2 v}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho v)} \\
\frac{\partial M^{2}}{\partial(\rho w)} & =\frac{2 w}{\gamma p}-\frac{M^{2}}{T} \frac{\partial T}{\partial(\rho w)} \\
\frac{\partial M^{2}}{\partial E_{T}} & =-\frac{M^{2}}{T} \frac{\partial T}{\partial E_{T}}
\end{aligned}
$$

Specified Total Temperature, $T_{T}=f$
Applying equation (7.5) of Volume 1, we get

$$
\begin{aligned}
J_{i, j} & {\left[\frac{\partial T_{T}}{\partial \rho} \Delta \hat{\rho}+\frac{\partial T_{T}}{\partial(\rho u)} \Delta(\hat{\rho u})+\frac{\partial T_{T}}{\partial(\rho v)} \Delta(\hat{\rho v})+\frac{\partial T_{T}}{\partial(\rho w)} \Delta(\hat{\rho w})+\frac{\partial T_{T}}{\partial E_{T}} \Delta \hat{E}_{T}\right]_{i, j}^{n}=} \\
& f_{i, j}^{n+1}-T_{i, j}^{n}\left(1+\frac{\gamma-1}{2} M^{2}\right)_{i, j}^{n}
\end{aligned}
$$

where $T_{T}, \partial T_{T} / \partial \rho$, etc., are defined above as part of the description of the $\Delta T_{T}=0$ boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent temperature boundary condi-
tion is specified.

Subroutine BCLVEL (IBC,FBC,IEQ,IMIN,_IMAX,IBOLND)		
Called by	Calls	Purpose
BCGEN	BCGRAD BCMET	Compute x-velocity boundary conditions.

Input

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
IV
JI

* NOUT

NR, NRU
RHO, U

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Boundary condition types and values for current sweep direction, specified as $\operatorname{IBC}(I, J)$ and $\operatorname{FBC}(\mathrm{I}, \mathrm{J})$, where I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Index in the "vectorized" direction, i_{v}.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Unit number for standard output.
Array indices associated with the dependent variables ρ and ρu. Static density ρ and velocity u at time level n.

Output

A, B, C

S

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at boundary IBOUND (row IEQ only).
Source term subvector \mathbf{S} at boundary IBOUND (element IEQ only).

Description

Subroutine BCCVEL computes coefficients and source terms for x-velocity boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections apply these generalized equations to the particular x-velocity boundary conditions in PROTELS. ${ }^{11}$

[^9]Applying equation (7.3) of Volume 1 , and noting that $\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
J_{i, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{i, j}^{n}=0
$$

Specified x-Velocity, $u=f$
Applying equation (7.5) of Volume 1 ,

$$
J_{i, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{i, j}^{n}=f_{i, j}^{n+1}-u_{i, j}^{n}
$$

Specified Two-Point x-Velocity Gradient in Coordinate Direction, $\partial u / \partial \phi=f$
Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+u_{1, j}^{n}-u_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta \hat{(\rho u)}\right]_{N_{1}, j}^{n}=} \\
& (\Delta \xi) f_{N_{1}, j}^{n+1}+u_{N_{1}-1, j}^{n}-u_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specifled Three-Point x-Velocity Gradient in Coordinate Direction, $\partial u / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 u_{1, j}^{n}-4 u_{2, j}^{n}+u_{3, j}^{n} }
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+ \\
3 J_{N_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}, j}^{n}=2\left(\Delta \Delta_{\xi}^{\xi}\right) f_{N_{1}, j}^{n+1}-u_{N_{1}-2, j}^{n}+4 u_{N_{1}-1, j}^{n}-3 u_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point x-Velocity Gradient in Normal Direction, $\nabla u \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{gathered}
-J_{1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}= \\
\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} u_{1, j}^{n}\right]+u_{1, j}^{n}-u_{2, j}^{n}
\end{gathered}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\dot{\xi}_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{gathered}
-J_{N_{1}-1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u)}]_{N_{1}, j}^{n}=\right. \\
\frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} u_{N_{1}, j}^{n}\right]+u_{N_{1}-1, j}^{n}-u_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.
Specified Three-Point x-Velocity Gradient in Normal Direction, $\nabla u \cdot \vec{n}=f$
Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u u)}]_{1, j}^{n}+4 J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}-\right.} \\
J_{3, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{3, j}^{n}=\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} u_{1, j}^{n}\right]+} \\
& 3 u_{1, j}^{n}-4 u_{2, j}^{n}+u_{3, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\left.\begin{array}{rl}
J_{N_{1}-2, j} & {\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u} u)\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right.}
\end{array}\right]_{N_{1}-1, j}^{n}+1
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of x-Velocity

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
& J_{1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{1, j}^{n}-2 J_{2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{2, j}^{n}+ \\
& J_{3, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u} u)\right]_{3, j}^{n}=-u_{1, j}^{n}+2 u_{2, j}^{n}-u_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
& J_{N_{1}-2, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u})\right]_{N_{1}-1, j}^{n}+ \\
& J_{V_{1}, j}\left[-\frac{u}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho u u)}]_{N_{1}, j}^{n}=-u_{\cdot V_{1}-2, j}^{n}+2 u_{N_{1}-1, j}^{n}-u_{N_{1}, j}^{n}\right.
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent x-velocity boundary condition
is specified.

Subroutine BCVDIR (IBC,FBC,IEQ,IMIN,IMAX,IBOL, $\perp D)$		
Called by	Calls	Purpose
BCGEN	BCGRAD BCMET	Compute normal and tangential velocity boundary conditions.

Input

* ALPHAL, AIPHA2

DEL
DXI, DETA
IBASE, ISTEP
$\mathrm{IBC}, \mathrm{IFBC}$

IBOUND

IEQ
IMIN, IMAX
ISWEEP

* ISWIRL

IV
I1, I2
JI
METX, METY

* NOL"I
$\lambda R, N R U, ~ N R V, ~ N R W$

Nip

RHO, U, V, W

Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing in sweep direction.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Boundary condition types and values for current sweep direction, specified as $\operatorname{IBC}(\mathrm{I}, \mathrm{J})$ and $\mathrm{FBC}(\mathrm{I}, \mathrm{J})$, where I runs from 1 to $N_{e q}$, corresponding to the $N_{\text {eq }}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, i_{v}.
Grid indices i and j, in the ξ and η directions.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Derivatives of sweep direction computational coordinate with respect to x and y (or r if axisymmetric.)
Unit number for standard output.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, and ρw.
Cray PARAMETER specifying the DIMENSION size in the ξ direction.
Static density ρ, and velocities $u_{1} v$, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOCND (row IEQ only).
Source term subvector \mathbf{S} at boundary IBOLYD (element IEQ only).

Description

Subroutine BCVDIR computes coefficients and source terms for normal and tangential velocity boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections apply these generalized equations to the particular normal and tangential velocity boundary conditions in PROTEUS. ${ }^{12}$

Specified Normal Velocity, $V_{n}=f$

The normal velocity is defined as

$$
V_{n}=\vec{V} \cdot \vec{n}
$$

where \vec{n} is the unit vector normal to the boundary. For a ξ boundary,

$$
\vec{n}=\frac{\nabla \xi}{|\nabla \xi|}=\frac{1}{m} \xi_{x} \vec{i}+\frac{1}{m} \xi_{y} \vec{j}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

Therefore, for a ξ boundary,

$$
V_{n}=\frac{1}{m}\left(\xi_{x} u+\xi_{y} v\right)=f
$$

Similarly, for an η boundary,

$$
V_{n}=\frac{1}{m}\left(\eta_{x} u+\eta_{y} v\right)=f
$$

where

$$
m=\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}
$$

Applying equation (7.5) of Volume 1 , the linearized boundary condition at a ξ boundary becomes

$$
\frac{J_{i, j}}{m_{i, j}}\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{i, j}^{n}=f_{i, j}^{n+1}-\left(V_{n}\right)_{i, j}^{n}
$$

An analogous equation can easily be written for the η boundaries.

[^10]
Specifled Two-Point Normal Velocity Gradient in Coordinate Direction, $\partial V_{n} \mid \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-\frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
\frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+\left(V_{n}\right)_{1, j}^{n}-\left(V_{n}\right)_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
&-\frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta \hat{\rho \rho v)}\right]_{N_{1}-1, j}^{n}+} \\
& \frac{J_{N_{1}, j}}{m_{N_{1}, j}} {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1}+\left(V_{n}\right)_{N_{1}-1, j}^{n}-\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.
Specified Three-Point Normal Velocity Gradient in Coordinate Direction, $\partial V_{n} 1 \partial \phi=f$
Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 \frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
4 \frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}-} \\
\frac{J_{3, j}}{m_{3, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=} \\
& 2(\Delta \xi) f_{1, j}^{n+1}+3\left(V_{n}\right)_{1, j}^{n}-4\left(V_{n}\right)_{2, j}^{n}+\left(V_{n}\right)_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
\frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-} \\
4 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
3 \frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& 2(\Delta \xi) f_{N_{1}, j}^{n+1}-\left(V_{n}\right)_{N_{1}-2, j}^{n}+4\left(V_{n}\right)_{N_{1}-1, j}^{n}-3\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point Normal Velocity Gradient in Normal Direction, $\nabla V_{n} \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-\frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
\frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x}^{\xi} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{n}\right)_{1, j}^{n}\right]+\left(V_{n}\right)_{1, j}^{n}-\left(V_{n}\right)_{2, j}^{n}
\end{aligned}
$$

Where δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
-\frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
\frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{n}\right)_{N_{1}, j}^{n}\right]+\left(V_{n}\right)_{N_{1}-1, j}^{n}-\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Normal Velocity Gradient in Normal Direction, $\nabla V_{n} \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 \frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+} \\
4 \frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}-} \\
\frac{J_{3, j}}{m_{3, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{n}\right)_{1, j}^{n}\right]+3\left(V_{n}\right)_{1, j}^{n}-4\left(V_{n}\right)_{2, j}^{n}+\left(V_{n}\right)_{3, j}^{n}
\end{aligned}
$$

where δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$
boundary,

$$
\begin{aligned}
\frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-} \\
4 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{V_{1}-1, j}^{n}+} \\
3 \frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[\int_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{v_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{n}\right)_{N_{1}, j}^{n}\right]-\left(V_{n}\right)_{N_{1}-2, j}^{n}+4\left(V_{n}\right)_{N_{1}-1, j}^{n}-3\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of Normal Velocity

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
\frac{J_{1, j}}{m_{1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}-} \\
2 \frac{J_{2, j}}{m_{2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}+} \\
\frac{J_{3, j}}{m_{3, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=} \\
& -\left(V_{n}\right)_{1, j}^{n}+2\left(V_{n}\right)_{2, j}^{n}-\left(V_{n}\right)_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
\frac{J_{N_{1}-2, j}}{m_{N_{1}-2, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u} u)+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-} \\
2 \frac{J_{N_{1}-1, j}}{m_{N_{1}-1, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
\frac{J_{N_{1}, j}}{m_{N_{1}, j}} & {\left[-\frac{\xi_{x} u+\xi_{y} v}{\rho} \Delta \hat{\rho}+\frac{\xi_{x}}{\rho} \Delta(\hat{\rho u})+\frac{\xi_{y}}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& -\left(V_{n}\right)_{N_{1}-2, j}^{n}+2\left(V_{n}\right)_{N_{1}-1, j}^{n}-\left(V_{n}\right)_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Tangential Velocity, $V_{s}=f$

For a ξ boundary, the tangential velocity is defined as

$$
V_{t}=\sqrt{V_{\eta}^{2}+w^{2}}
$$

where V_{n}, the velocity in the η direction, is defined as

$$
\begin{aligned}
V_{\eta} & =\sqrt{u^{2}+v^{2}-V_{n}^{2}} \\
& =\frac{1}{m}\left(-\xi_{y} u+\xi_{x} v\right)
\end{aligned}
$$

and

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

Therefore, for a ξ boundary,

$$
V_{t}=\frac{1}{m}\left[\left(-\xi_{y} u+\xi_{x}\right)^{2}+m^{2} w^{2}\right]^{1 / 2}
$$

Similarly, for an η boundary.

$$
v_{t}=\frac{1}{m}\left[\left(\eta_{y} u-\eta_{x} v\right)^{2}+m^{2} w^{2}\right]^{1 / 2}
$$

where

$$
m=\sqrt{\eta_{x}^{2}+\eta_{y}^{2}}
$$

Appling cquation (7.5) of Volume 1, the linearized boundary condition at a ξ^{5} boundary becomes

$$
\begin{aligned}
&\left(\frac{1}{m V_{t}^{\prime}}\right)_{i, j}^{n} {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{i, j}^{n}=} \\
& f_{i, j}^{n+1}-\left(V_{t}\right)_{i, j}^{n}
\end{aligned}
$$

An analogous equation can casily be written for the η boundaries.

Specificd Tiwo-Point Tungential Velocity Gradient in Coordinate Direction, $\partial V J \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-\left(\frac{J}{m V_{t}}\right)_{1, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+} \\
\left(\frac{l}{m V_{t}}\right)_{2, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+\left(V_{t}\right)_{1, j}^{n}-\left(V_{t}\right)_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
&-\left(\frac{J}{m V_{t}}\right)_{N_{1}-1, j}^{n} {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta \hat{(\rho v)}+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{V_{1}-1, j}^{n}+} \\
&\left(\frac{J}{m V_{t}}\right)_{N_{1}, j}^{n} {\left.\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta \hat{\rho v}\right)+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) f_{N_{1}, j}^{n+1}+\left(V_{t}\right)_{N_{1}-1, j}^{n}-\left(V_{t}\right)_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Tangential Velocity Gradient in Coordinate Direction, $\partial V J \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{gathered}
-3\left(\frac{J}{m V_{t}}\right)_{1, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+ \\
4\left(\frac{J}{m V_{t}}\right)_{2, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n^{n}}- \\
\left(\frac{J}{m V_{t}}\right)_{3, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{3, j}^{n^{n}}= \\
2(\Delta \xi) f_{l, j}^{n+1}+3\left(V_{t}\right)_{l, j}^{n}-4\left(V_{i}\right)_{2, j}^{n}+\left(V_{t}\right)_{3, j}^{n}
\end{gathered}
$$

At the $\xi=1$ boundary,

$$
\begin{gathered}
\left(\frac{J}{m V_{t}}\right)_{N_{1}-2, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-2, j}^{n}- \\
4\left(\frac{J}{m V_{t}}\right)_{N_{1}-1, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+ \\
3\left(\frac{J}{m V_{t}}\right)_{N_{1}, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u} u)+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}= \\
2(\Delta \xi) f_{N_{1}, j}^{n+1}-\left(V_{t}\right)_{N_{1}-2, j}^{n}+4\left(V_{t}\right)_{N_{1}-1, j}^{n}-3\left(V_{t}\right)_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point Tangential Velocity Gradient in Normal Direction, $\nabla V \cdot \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{gathered}
-\left(\frac{J}{m V_{t}}\right)_{1, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+ \\
\left.\left(\frac{J}{m V_{t}}\right)_{2, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta \hat{\rho v}\right)+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}= \\
\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{t}\right)_{1, j}^{n}\right]+\left(V_{t}\right)_{1, j}^{n}-\left(V_{t}\right)_{2, j}^{n}
\end{gathered}
$$

where δ_{η} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{gathered}
-\left(\frac{J}{m V_{t}}\right)_{N_{1}-1, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+ \\
\left(\frac{J}{m V_{t}}\right)_{N_{1}, j}^{n}\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}= \\
\frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{t}\right)_{N_{1}, j}^{n}\right]+\left(V_{t}\right)_{N_{1}-1, j}^{n}-\left(V_{t}\right)_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Tangential Velocily Gradient in Normal Direction, $\nabla V \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3\left(\frac{J}{m V_{1}}\right)_{1, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta \hat{\rho v}\right)+m \frac{w}{\rho} \Delta(\hat{\rho w)}]_{1, j}^{n}+} \\
4\left(\frac{J}{m V_{t}}\right)_{2, j}^{n} & {\left.\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta \hat{\rho v}\right)+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}-} \\
\left(\frac{J}{m V_{t}}\right)_{3, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho \hat{w}})\right]_{3, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta}\left(V_{t}\right)_{1, j}^{n}\right]+3\left(V_{t}\right)_{1, j}^{n}-4\left(V_{t}\right)_{2, j}^{n}+\left(V_{t}\right)_{3, j}^{n}
\end{aligned}
$$

where $\dot{\delta}_{\eta}$ is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
\left(\frac{J}{m V_{I}}\right)_{N_{1}-2, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{V_{1}-2, j}^{n}-} \\
4\left(\frac{J}{m V_{t}}\right)_{N_{1}-1, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n_{1}}+} \\
3\left(\frac{J}{m V_{t}}\right)_{N_{1}, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=} \\
& \frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta}\left(V_{t}\right)_{N_{1}, j}^{n}\right]-\left(V_{t}\right)_{N_{1}-2, j}^{n}+4\left(V_{t}\right)_{N_{1}-1, j}^{n}-3\left(V_{t}\right)_{N_{\mathrm{l}}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of Tangential Velocity

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
\left(\frac{J}{m V_{t}}\right)_{1, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}-} \\
2\left(\frac{J}{m V_{t}}\right)_{2, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}+} \\
\left(\frac{J}{m V_{t}}\right)_{3, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{3, j}^{n}=} \\
& -\left(V_{t}\right)_{1, j}^{n}+2\left(V_{t}\right)_{2, j}^{n}-\left(V_{t}\right)_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
\left(\frac{J}{m V_{t}}\right)_{N_{1}-2, j}^{n} & {\left.\left.\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta \hat{\rho u}\right)+V_{\eta} \frac{\xi_{x}}{\rho} \Delta \hat{\rho v}\right)+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{V_{1}-2, j}^{n}-} \\
2\left(\frac{J}{m V_{t}}\right)_{X_{1}-1, j}^{n} & {\left.\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta \hat{\rho v}\right)+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{V_{1}-1, j}^{n}+} \\
\left(\frac{J}{m V_{t}^{\prime}}\right)_{X_{1}, j}^{n} & {\left[-\frac{m}{\rho}\left(V_{\eta}^{2}+w^{2}\right) \Delta \hat{\rho}-V_{\eta} \frac{\xi_{y}}{\rho} \Delta(\hat{\rho u})+V_{\eta} \frac{\xi_{x}}{\rho} \Delta(\hat{\rho v})+m \frac{w}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=} \\
& -\left(V_{t}\right)_{V_{1}-2, j}^{n}+2\left(V_{t}\right)_{V_{1}-1, j}^{n}-\left(V_{t}\right)_{V_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent normal or tangential velocity boundary condition is specified.

Subroutine BCVVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)		
Called by	Calls	Purpose
BCGE.	BCGRAD BC.MET	Compute y or r-velocity boundary conditions.

Input

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
IV
JI

* NOUT

NR, NRU, NRV

RHO, U, V

Output

A, B, C
Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at boundary IBOLND (row IEQ only).

S Source term subvector \mathbf{S} at boundary IBOUND (element IEQ only).

Description

Subroutine BCVVEL computes coefficients and source terms for y or r-velocity boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections apply these generalized equations to the particular y or r-velocity boundary conditions in PROTEUS. ${ }^{13}$

[^11]No Change From Initial Conditions, $\Delta v=0$
Applying equation (7.3) of Volume 1, and noting that $\partial g / \partial \dot{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
J_{i, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{i, j}^{n}=0
$$

Specified y or r-Velocity, $v=f$
Applying equation (7.5) of Volume 1 ,

$$
J_{i, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{i, j}^{n}=f_{i, j}^{n+1}-v_{i, j}^{n}
$$

Specified Two-Point y or r-Velocity Gradient in Coordinate Direction, $\partial v / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+v_{1, j}^{n}-v_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& (\Delta \xi) f_{N_{1}, j}^{n+1}+v_{N_{1}-1, j}^{n}-v_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can casily be written for the η boundaries.

Specified Three-Point y or r-Velocity Gradient in Coordinate Direction. $\partial v / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{array}{r}
-3 J_{1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}- \\
J_{3, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 v_{1, j}^{n}-4 v_{2, j}^{n}+v_{3, j}^{n}
\end{array}
$$

At the $\xi=1$ boundary,

$$
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho} v)\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+ \\
3 J_{N_{1}, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-v_{N_{1}-2, j}^{n}+4 v_{N_{1}-1, j}^{n}-3 \hat{N}_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point y or r-Velocity Gradient in Normal Direction, $\nabla v \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{gathered}
-J_{1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}= \\
\frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} v_{1, j}^{n}\right]+v_{1, j}^{n}-v_{2, j}^{n}
\end{gathered}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{η} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{V_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} v_{N_{1}, j}^{n}\right]+v_{N_{1}-1, j}^{n}-v_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point y or r-Velocity Gradient in Normal Direction, $\nabla v \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} v_{1, j}^{n}\right]+} \\
& 3 v_{1, j}^{n}-4 v_{2, j}^{n}+v_{3, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{η} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
& J_{N_{1}-2, j} {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
& 3 J_{N_{1}, j} {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}, j}^{n}=\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} v_{N_{1}, j}^{n}\right]-} \\
& v_{N_{1}-2, j}^{n}+4 v_{N_{1}-1, j}^{n}-3 v_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of y or r-Velocity

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
& J_{1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{1, j}^{n}-2 J_{2, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{2, j}^{n}+ \\
& J_{3, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{3, j}^{n}=-r_{1, j}^{n}+2 v_{2, j}^{n}-v_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
J_{N_{1}-2, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j}\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v})\right]_{N_{1}-1, j}^{n}+} \\
J_{N_{1}, j} & {\left[-\frac{v}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho v v})\right]_{N_{1}, j}^{n}=-v_{N_{1}-2, j}^{n}+2 v_{N_{1}-1, j}^{n}-v_{N_{1}, j}^{n} }
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.
Specified Flow Angle, $\tan ^{-1}(v / u)=f$
This boundary condition can be rewritten as

$$
\frac{v}{u}=\tan f
$$

where f is the specified flow angle. Multiplying by ρu,

$$
(\tan f) \rho u-\rho v=0
$$

Applying equation (7.5) of Volume 1 to the above equation, we get

$$
J_{i, j}\left[(\tan f)_{i, j}^{n+1} \Delta(\hat{\rho u})_{i, j}^{n}-\Delta(\hat{\rho v})_{i, j}^{n}\right]=-(\tan f)_{i, j}^{n}+(\rho v)_{i, j}^{n}
$$

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent y-velocity boundary condition is specified.

Subroutine BCWVEL (IBC,FBC,IEQ,IMIN,IMAX,IBOLND)		
Called by	Calls	Purpose
BCGEN	BCGRAD BC.MET	Compute swirl velocity boundary conditions.

Input

DFL
IBASE, ISTEP
IBC, FBC

IBOUND
IEQ
IMIN, IMAX
ISWEEP
IV
JI

* NOUT

NR, NRU, NRW
RIIO, L, W

Output

Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Boundary condition types and values for current sweep direction, specified as $\operatorname{IBC}(I, J)$ and $F B C(I, J)$, where I runs from 1 to $N_{e q}$, corresponding to the $N_{e q}$ conditions needed, and $\mathrm{J}=1$ or 2 , corresponding to the lower and upper boundaries.
Flag specifying boundary; 1 for lower boundary, 2 for upper boundary.
Boundary condition equation number.
Minimum and maximum indices in the sweep direction.
Current ADI sweep number.
Index in the "vectorized" direction, $i_{\text {. }}$.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Linit number for standard output.
Array indices associated with the dependent variables $\rho, \rho u$, and ρw.
Static density ρ, and velocities u and w, at time level n.
A, B, C
Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at boundary IBOUND (row IEQ only).
S
Source term subvector \mathbf{S} at boundary IBOUND (element IEQ only).

Description

Subroutine BCWVEL computes coefficients and source terms for swirl velocity boundary conditions. The linearized equations for the various general types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections apply these generalized equations to the particular swirl velocity boundary conditions in PROTEUS. ${ }^{14}$

[^12]
No Change From Initial Conditions, $\Delta w=0$

Applying equation (7.3) of Volume 1 , and noting that $\partial g / \partial \hat{\mathbf{Q}}=J \partial g / \partial \mathbf{Q}$, we get simply

$$
J_{i, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{i, j}^{n}=0
$$

Specified Swirl Velocity, $w=f$
Applying equation (7.5) of Volume 1,

$$
J_{i, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{i, j}^{n}=f_{i, j}^{n+1}-w_{i, j}^{n}
$$

Specified Two-Point Swirl Velocity Gradient in Coordinate Direction, $\partial w / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}=} \\
& (\Delta \xi) f_{1, j}^{n+1}+w_{1, j}^{n}-w_{2, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{aligned}
&-J_{N_{1}-1, j} {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\rho \hat{w})\right]_{N_{1}, j}^{n}=} \\
&(\Delta \xi) J_{N_{1}, j}^{n+1}+w_{N_{1}-1, j}^{n}-w_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Specified Three-Point Swirl Velocity Gradient in Coordinate Direction, $\partial w / \partial \phi=f$

Applying equation (7.8) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{array}{r}
-3 J_{1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}- \\
J_{3, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{3, j}^{n}=2(\Delta \xi) f_{1, j}^{n+1}+3 w_{1, j}^{n}-4 w_{2, j}^{n}+w_{3, j}^{n}
\end{array}
$$

At the $\xi=1$ boundary,

$$
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+ \\
3 J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=2(\Delta \xi) f_{N_{1}, j}^{n+1}-w_{N_{1}-2, j}^{n}+4 w_{N_{1}-1, j}^{n}-3 w_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.

Specified Two-Point Swirl Velocity Gradient in Normal Direction, $\nabla w \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using two-point one-sided differencing,

$$
\begin{aligned}
-J_{1, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}=} \\
& \frac{\Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} w_{1, j}^{n}\right]+w_{1, j}^{n}-w_{2, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{n} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
-J_{N_{1}-1, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=} \\
& \frac{\Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} w_{N_{1}, j}^{n}\right]+w_{N_{1}-1, j}^{n}-w_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can casily be written for the η boundaries.

Specified Three-Point Swirl Velocity Gradient in Vormal Direction, $\nabla w \cdot \vec{n}=f$

Applying equation (7.12a) of Volume 1 at the $\xi=0$ boundary, and using three-point one-sided differencing,

$$
\begin{aligned}
-3 J_{1, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}+4 J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}-} \\
J_{3, j} & {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{3, j}^{n}=\frac{2 \Delta \xi}{m_{1, j}}\left[f_{1, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)_{1, j}}{m_{1, j}} \delta_{\eta} w_{1, j}^{n}\right]+} \\
& 3 w_{1, j}^{n}-4 w_{2, j}^{n}+w_{3, j}^{n}
\end{aligned}
$$

where

$$
m=\sqrt{\xi_{x}^{2}+\xi_{y}^{2}}
$$

and δ_{π} is the variably centered difference operator presented in Section 6.0 of Volume 1. At the $\xi=1$ boundary,

$$
\begin{aligned}
& J_{N_{1}-2, j} {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-2, j}^{n}-4 J_{N_{1}-1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+} \\
& 3 J_{N_{1}, j} {\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=\frac{2 \Delta \xi}{m_{N_{1}, j}}\left[f_{N_{1}, j}^{n+1}-\frac{\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right) N_{N_{1}, j}}{m_{N_{1}, j}} \delta_{\eta} w_{N_{1}, j}^{n}\right]-} \\
& w_{N_{1}-2, j}^{n}+4 w_{N_{1}-1, j}^{n}-3 w_{N_{1}, j}^{n}
\end{aligned}
$$

Analogous equations can easily be written for the η boundaries.

Linear Extrapolation of Swirl Velocity

Applying equation (7.14) of Volume 1 at the $\xi=0$ boundary,

$$
\begin{aligned}
& J_{1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{1, j}^{n}-2 J_{2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{2, j}^{n}+ \\
& J_{3, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{3, j}^{n}=-w_{1, j}^{n}+2 w_{2, j}^{n}-w_{3, j}^{n}
\end{aligned}
$$

At the $\xi=1$ boundary,

$$
\begin{gathered}
J_{N_{1}-2, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-2, j}^{n}-2 J_{N_{1}-1, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}-1, j}^{n}+ \\
J_{N_{1}, j}\left[-\frac{w}{\rho} \Delta \hat{\rho}+\frac{1}{\rho} \Delta(\hat{\rho w})\right]_{N_{1}, j}^{n}=-w_{N_{1}-2, j}^{n}+2 w_{N_{1}-1, j}^{n}-w_{N_{1}, j}^{n}
\end{gathered}
$$

Analogous equations can easily be written for the η boundaries.
Specified Flow Angle, $\tan ^{-1}(w / u)=f$
This boundary condition can be rewritten as

$$
\frac{w}{u}=\tan f
$$

where f is the specified flow angle. Multiplying by ρu,

$$
(\tan f) \rho u-\rho w=0
$$

Applying equation (7.5) of Volume 1 to the above equation, we get

$$
J_{i, j}\left[(\tan f)_{i, j}^{n+1} \Delta(\hat{\rho u})_{i, j}^{n}-\Delta(\hat{\rho w})_{i, j}^{n}\right]=-(\tan f)_{i, j}^{n}+(\rho w)_{i, j}^{n}
$$

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. An error message is generated and execution is stopped if a non-existent swirl velocity boundary condition is specified.

Subroutine BLINI		
Called by	Calls	Purpose
TLRBBL		Compute inner layer turbulent viscosity along constant ξ lines.

Input

* APLLS
* CB
* CNL
* CVK
* IIDAMP
* INNER
* IWALL2

II
MU
MUT

* N 2
* RER

RHO, U, V, W
VORT
X, Y

Output
 Oupu

MUT

Van Driest damping constant A^{+}.
Constant B in the Spalding-Kleinstein inner layer model.
Exponent n in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model.

Von Karman mixing length constant used in the inner region of the Baldwin-Lomax and Spalding-Kleinstein models.
Flag for I aunder-Priddin modified mixing length formula in the Baldwin-Lomax inner region model.
Flag for type of inner region model.
Flags indicating whether or not the η boundaries are walls.
Grid index i in the ξ direction.
Laminar coefficient of viscosity μ_{l}.
Outer layer turbulent viscosity coefficient $\left(\mu_{t}\right)_{o u t e r}$ along constant ξ lines.
Number of grid points N_{2} in the η direction.
Reference Reynolds number $R e_{r}$.
Static density ρ, and velocities u, v, and w.
Total vorticity magnitude.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Turbulent viscosity coefficient μ_{t} along constant ξ lines.

Description

Subroutine BLINI computes the inner layer turbulent viscosity coefficient $\left(\mu_{\mathrm{t}}\right)_{\text {inner }}$ along constant ξ lines (i.e., due to walls at $\eta=0$ and/or $\eta=1$.) Two different inner region models are available - the model of Baldwin and Lomax (1978), and the model of Spalding (1961) and Kleinstein (1967). These are described in Section 3.2 of Volume 1.

If both η boundaries are solid walls, $\left(\mu_{t}\right)_{\text {inner }}$ is computed separately for each wall, and it is assumed that the two inner regions do not overlap. For each wall, the computation is done inside a loop starting at the wall and moving outward. Once the inner region value exceeds the outer region value, the loop is exited. Thus $\mu_{\mathrm{t}}=\left(\mu_{t}\right)_{\text {inver }}$ until $\left(\mu_{t}\right)_{\text {inner }} \geq\left(\mu_{t}\right)_{\text {outer }}$, then $\mu_{t}=\left(\mu_{t}\right)_{\text {outer }}$.

The distribution of μ_{t} across the intersection of the inner and outer regions is smoothed using the following formulas. For the $\eta=0$ wall,

$$
\begin{aligned}
\left(\mu_{t}\right)_{j_{b}} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{j_{b}-1}+2\left(\mu_{t}\right)_{j_{b}}+\left(\mu_{t}\right)_{j_{b}+1}\right] \\
\left(\mu_{t}\right)_{j_{b}-1} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{j_{b}-2}+2\left(\mu_{t}\right)_{j_{b}-1}+\left(\mu_{t}\right)_{j_{b}}\right]
\end{aligned}
$$

where the boundary between the inner and outer regions falls between between $j=j_{b}-1$ and $j=j_{b}$. It should be noted that the unsmoothed value of $\left(\mu_{t}\right)_{i n}$ is used in the second smoothing formula, not the smoothed value from the first formula. Similarly, for the $\eta=1$ wall,

$$
\begin{aligned}
\left(\mu_{t}\right)_{j_{b}} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{j_{b}+1}+2\left(\mu_{t}\right)_{j_{b}}+\left(\mu_{t}\right)_{j_{b}-1}\right] \\
\left(\mu_{t}\right)_{j_{b}+1} & =\frac{1}{4}\left[\left(\mu_{t}\right)_{j_{b}+2}+2\left(\mu_{t}\right)_{j_{b}+1}+\left(\mu_{t}\right)_{j_{b}}\right]
\end{aligned}
$$

where the boundary between the inner and outer regions falls between between $j=j_{b}+1$ and $j=j_{b}$.

Remarks

1. To avoid the possibility of floating point errors, the value of $|\vec{\Omega}|_{w}$ used to compute τ and u^{*} is set to a minimum of 10^{-10}.

Subroutine BLIN2		
Called by	Calls	Purpose
TLRBBL		Compute inner layer turbulent viscosity along constant η lines.

Input

* APLLS
* CB
* CNL
* CVK

DU.MMY

* ILDAMP
* INNER
* IWALLI

12
MU

* Ni
* RER

RHO, U, V, W
VORT
X, Y

Van Driest damping constant A^{+}.
Constant B in the Spalding-Kleinstein inner layer model.
Exponent n in the Launder-Priddin modified mixing length formula for the inner region of the Baldwin-Lomax turbulence model.
Von Karman mixing length constant used in the inner region of the Baldwin-Lomax and Spalding-Kleinstein models.
Outer layer turbulent viscosity coefficient $\left(\mu_{t}\right)_{\text {outer }}$ along constant η lines.
Flag for Launder-Priddin modified mixing length formula in the Baldwin-Lomax inner region model.
Flag for type of inner region model.
Flags indicating whether or not the ξ boundaries are walls.
Grid index j in the η direction.
Laminar coefficient of viscosity μ_{l}.
Number of grid points N_{1} in the ξ direction.
Reference Reynolds number $R e_{r}$.
Static density ρ, and velocities u, v, and w.
Total vorticity magnitude.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Output

DUMMY
Turbulent viscosity coefficient μ_{t} along constant η lines.

Description

Subroutine BLIN2 computes the inner layer turbulent viscosity coefficient $\left(\mu_{t}\right)_{\text {iner }}$ along constant η lines (i.e., due to walls at $\xi=0$ and/or $\xi=1$.) The procedure is exactly analogous to that used in subroutine BLIN1.

BLOCK DATA Subprogram		
Called by	Calls	Purpose
		Set default values for input parameters, plus a few other parameters.

Input

None.

Output

All namelist input parameters, plus:
CCP1, CCP2, CCP3, CCP4 Constants in formula for specific heat. $\left(8.53 \times 10^{3}, 3.12 \times 10^{4}\right.$, $\left.2.065 \times 10^{6}, 7.83 \times 10^{8}\right)^{15}$

CK1, CK2
Constants in formula for laminar thermal conductivity coefficient. $\left(7.4907 \times 10^{-3}, 350.0\right)^{15}$
CMU1, CMU2 Constants in formula for laminar viscosity coefficient. (7.3035 $\left.\times 10^{7}, 198.6\right)^{15}$

GC
Proportionality factor g_{c} in Newton's second law. (32.174) ${ }^{\text {Is }}$
IBCEIM Flags for elimination of off-diagonal coefficient submatrices resulting from three-point boundary conditions in the ξ and η directions at cither boundary; 0 if elimination is not necessary, 1 if it is. $\left(2 * 0,2^{*} 0\right)$

IBVUP
Flags for updating boundary values from first sweep after second sweep; 0 if updating is not necessary, 1 if it is. $(0,0)$

ICONV
Convergence flag; 1 if converged, 0 if not. (0)
Flags for grid interpolation requirement for the ξ and η directions; 0 if interpolation is not necessary, 1 if it is. $(0,0)$

ITBEG
The time level n at the beginning of a run. (1)
KBCPER
Flags for spatially periodic boundary conditions in the ξ and η directions; 0 for non-periodic, 1 for periodic. $(0,0)$

NC, NXM, NYM, NZM, NEN Array indices associated with the continuity, x-momentum, y-momentum (or r-momentum if axisymmetric), swirl momentum, and energy equations. ($1,2,3,5,4$)

NIN
NR, NRU, NRV, NRW, NET
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}. $(1,2,3,5,4)$

RAX 1 for two-dimensional planar flow, and the local radius r for axisymmetric flow. (N.MAXP*1.0)

TAU Initial time value τ. (NTOTP*0.0)
${ }^{15}$ These values are for reference conditions specified in English units. Values for SI units are set in subroutine INPLT.

Description

The BIOCK DATA routine is used to set default values for all the input parameters, plus various other parameters and constants. The defaults for all the input parameters are given as part of the standard input description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BLOCK DATA are given in parentheses in the above output description. Note that some of these values assume English units are being used to specify reference conditions. If SI units are being used, these values are redefined in subroutine INPLI.

Remarks

1. Most of the default values are defined directly, but some, like the reference viscosity MCR , are set equal to zero and defined in subroutine INPLT if not specified by the user.

Subroutine BLKOUT (I1PT,I2PT)		
Called by	Calls	Purpose
ADI		Print coefficient blocks at specified indices in the ξ and η directions.
AVISC1		
AVISC2		
BCGEN		
FIITER		

Input

A, B, C	Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C}
IHSTAG	Flag for constant stagnation enthalpy option.
ISWEEP	Current ADI sweep number.
ISWIRL	Flag for swirl in axisymmetric flow.
IIPT, I2PT	Indices for printout in the ξ and η directions.
NC, NXM, NYM, NZM, NEN	Array indices associated with the continuity, x-momentum, y-momentum (or r-momentum if axisymmetric), swirl momen- tum, and energy equations.
NEQ	Number of coupled equations being solved, $N_{e q}$. NOUT
Unit number for standard output.	

Output

None.

Description

Subroutine BLKOUT prints the coefficient block submatrices A, B, and C, and the source term subvector S at the grid points specified by IIPT and I2PT. This is the routine that actually prints the output for the IDEBUG(1) through IDEBUG(4) options.

Subroutine BI K3		
Called by	Calls	Purpose
ADI	FILTER	Solve 3×3 block tridiagonal system of equations.

Input

A, B, C
NPTS
NV
S

> Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C}
> Number of grid points in the sweep direction, N.
> Number of grid points in the "vectorized" direction, N_{r}.
> Source term subvector \mathbf{S}.

Output

S
Computed solution subvector.

Description

Subroutine BLK3 solves a block tridiagonal system of equations with 3×3 blocks using the block matrix version of the Thornas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values on the diagonal of the submatrix \mathbf{B} at the two boundaries. These can occur when boundary conditions are specified using the JBC and or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional "new" matrices D, E, and $\Delta \hat{\mathbf{Q}}^{\prime}$. In Fortran, however, we can save storage by overwriting B, C, and S. The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step	In Fortran	In Volume 1 Notation
1		$\mathrm{D}_{1}=\mathrm{B}_{1}$
$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~b} \end{aligned}$	LU decompose \mathbf{B}_{1}, storing result in \mathbf{B}_{1} Solve $\mathbf{B}_{1} \mathbf{E}_{1}=\mathbf{C}_{1}$ for \mathbf{F}_{1} using LU decomposition of \mathbf{B}_{1}, storing result in \mathbf{C}_{1}	LU decomposition of \mathbf{D}_{1} $\mathbf{E}_{1}=\mathbf{D}_{1}^{-1} \mathbf{C}_{1}$
2c	Solve $\mathbf{B}_{1} \Delta \hat{\mathbf{Q}}_{1}^{\prime}=\mathbf{S}_{1}$ for $\Delta \hat{\mathbf{Q}}_{1}^{\prime}$ using LU decomposition of \mathbf{B}_{1}, storing result in \mathbf{S}_{1}	$\Delta \hat{\mathbf{Q}}_{1}^{\prime}=\mathbf{D}_{1}^{-1} \mathbf{S}_{1}$
	For $i=2$ to N_{1},	
3a	Compute $\mathbf{B}_{\mathbf{i}}-\mathbf{A}_{i} \mathbf{C}_{i-1}$, storing result in \mathbf{B}_{i}	$\mathrm{D}_{\text {d }}=\mathbf{B}_{i}-\mathrm{A}_{\text {d }} \mathrm{E}_{i-1}$
3 b	Compute $\mathbf{S}_{1}-\mathbf{A}_{i} \mathbf{S}_{\mathbf{t}-1}$, storing result in \mathbf{S}_{i}	$\mathbf{S}_{\mathbf{i}}-\mathbf{A}, ~_{\text {d }} \hat{\mathbf{Q}}_{i-1}^{\prime}$
3 c	LU decompose \mathbf{B}_{i}, storing result in \mathbf{B}_{i}	LU decomposition of \mathbf{D}_{i}
3d	Solve $\mathbf{B}_{i} \mathbf{E}_{i}=\mathbf{C}_{i}$ for \mathbf{E}_{i} using LU decomposition of \mathbf{B}_{i}, storing result in C_{i}	$\mathbf{E}_{i}=\mathbf{D}_{i}^{-1} \mathbf{C}_{i}$
3 e	Solve $\mathbf{B}_{i} \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{S}_{t}$ for $\Delta \hat{\mathbf{Q}}_{i}^{\prime}$ using LU decomposition of \mathbf{B}_{i}, storing result in \mathbf{S}	$\Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{D}_{i}^{-1}\left(\mathbf{S}_{i}-\mathbf{A}_{i} \Delta \hat{\mathbf{Q}}_{i-1}^{\prime}\right)$
4		$\Delta \hat{\mathbf{Q}}_{N_{1}}=\Delta \hat{\mathbf{Q}}_{N_{N_{1}}}^{\prime}$
5	For $i=N_{1}-1$ to 1 , Compute $\mathbf{S}_{i}-\mathbf{C}_{i} \mathbf{S}_{t-1}$, storing result in \mathbf{S}_{t}	$\Delta \hat{\mathbf{Q}}_{i}=\Delta \hat{\mathbf{Q}}_{i}^{\prime}-\mathbf{E}_{1} \Delta \hat{\mathbf{Q}}_{i+1}$

Remarks

1. The notation used in the comments in BLK3 is consistent with the notation used in the description of the algorithm in Volume 1.
2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Subroutine BLK3P		
Called by	Calls	Purpose
ADI		Solve 3×3 periodic block tridiagonal system of equations.

Input

A, B, C
Coefficient submatrices A, B, and C
NPTS
NV
S
Number of grid points in the sweep direction, N.
Number of grid points in the "vectorized" direction, N_{r}.
Source term subvector \mathbf{S}.

Output

S
Computed solution subvector.

Description

Subroutine BLK3P solves a periodic block tridiagonal system of equations with 3×3 blocks. An efficient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional "new" matrices $\mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}$, and $\Delta \hat{\mathbf{Q}}^{\prime}$. In Fortran, however, we can save storage by overwriting $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and S . The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step	In Fortran	In Volume 1 Notation
$\begin{aligned} & \overline{1 a} \\ & \mathrm{lb} \end{aligned}$		$\begin{aligned} & \mathbf{D}_{2}=\mathbf{B}_{2} \\ & \mathbf{F}_{2}=\mathbf{C}_{N_{1}} \end{aligned}$
$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~b} \end{aligned}$	LU decompose \mathbf{B}_{2}, storing result in \mathbf{B}_{2} Solve $\mathbf{B}_{2} \mathbf{E}_{2}=\mathbf{C}_{2}$ for \mathbf{F}_{2} using LU decomposition of \mathbf{B}_{1}, storing result in \mathbf{C}_{2}	$\begin{aligned} & \text { LU decomposition of } \mathbf{D}_{2} \\ & \mathbf{E}_{2}=\mathbf{D}_{2}^{-1} \mathbf{C}_{2} \end{aligned}$
2c	Solve $B_{2} \mathbf{G}_{2}=A_{2}$ for \mathbf{G}_{2} using LU decomposition of B_{2}, storing result in A_{2}	$\mathbf{G}_{2}=\mathbf{D}_{2}^{-1} \mathbf{A}_{2}$
2 d	Solve $\mathbf{B}_{2} \Delta \hat{\mathbf{Q}}_{2}^{\prime}=\mathbf{S}_{2}$ for $\Delta \hat{\mathbf{Q}}_{2}^{\prime}$ using LU decomposition of \mathbf{B}_{2}, storing result in \mathbf{S}_{2}	$\Delta \hat{\mathbf{Q}}_{2}^{\prime}=\mathbf{D}_{2}{ }^{-1} \mathbf{S}_{2}$

Step	In Fortran	In Volume 1 Notation
3 a	For $i=3$ to $N_{1}-1$, Compute $\mathbf{B}_{i}-\mathbf{A}_{i} \mathbf{C}_{i-1}$, storing result in \mathbf{B}_{i}	$\mathbf{D}_{\mathbf{t}}=\mathbf{B}_{1}-\mathbf{A}_{i} \mathbf{E}_{i-1}$
3 b	Compute $\mathbf{S}_{i}-\boldsymbol{A}_{i} \mathbf{S}_{i-1}$, storing result in $\mathbf{S}_{\text {, }}$	
3c	Compute $-\mathbf{A}_{i} \mathbf{A}_{i-1}$, storing result in \mathbf{A}_{i}	$-\mathbf{A}_{6} \mathrm{G}_{\text {t }}$
3 d	I U decompose \mathbf{B}_{6}, storing result in $\mathbf{B}_{\text {, }}$	LU decomposition of \mathbf{D}_{i}
3 e	Solve $\mathbf{B}_{i} \mathbf{E}_{i}=\mathbf{C}_{i}$ for \mathbf{E}_{i} using LU decomposition of \mathbf{B}_{i}, storing result in C_{t}	$\mathbf{E}_{i}=\mathbf{D}_{i}^{-1} \mathbf{C}_{i}$
3 f	Solve $\mathbf{B}_{i} \mathbf{G}_{i}=\boldsymbol{A}_{i}$ for \mathbf{G}_{i} using LU decomposition of \mathbf{B}_{i}, storing result in A_{i}	$\mathrm{G}_{i}=\mathrm{D}_{i}^{-1} \mathrm{~A}_{i} \mathrm{G}_{i-1}$
3 g	Solve $\mathbf{B}_{1} \Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{S}$, for $\Delta \hat{\mathbf{Q}}_{:}^{\prime}$ using I U decomposition of \mathbf{B}, storing result in $\mathbf{S}_{\text {, }}^{\prime}$	$\Delta \hat{\mathbf{Q}}_{i}^{\prime}=\mathbf{D}_{i}^{1}\left(\mathbf{S}_{i}-\mathbf{A}_{i} \Delta \hat{\mathbf{Q}}_{i-1}^{\prime}\right)$
3h	Compute $\mathbf{B}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{A}_{t-1}$, storing result in $\mathbf{B}_{N_{1}}$	$\mathbf{B}_{v_{1}}-\sum_{j=2} \mathbf{F}_{j} \mathbf{G}_{j}$
3 i 3 j	Compute $\mathbf{S}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{S}_{l-1}$, storing result in $\mathbf{S}_{v_{1}}$ Compute $-\mathrm{C}_{N_{1}} \mathrm{C}_{i-1}$, storing result in $\mathrm{C}_{N_{1}}$	$\begin{aligned} & \mathbf{S}_{N_{1}}-\sum_{j=2}^{1-1} \mathbf{F}_{j} \Delta \hat{\mathbf{Q}}_{j}^{\prime} \\ & \mathbf{F}_{i}=-\mathbf{F}_{i-1} \mathbf{E}_{i-1} \end{aligned}$
$\begin{aligned} & 4 \mathrm{a} \\ & 4 \mathrm{~b} \end{aligned}$	Compute $\boldsymbol{A}_{N_{1}-1}+\mathbf{C}_{N_{1}-1}$, storing result in $\mathbf{A}_{N_{1}-1}$ Compute $\mathbf{A}_{N_{1}}+\mathbf{C}_{N_{1}}$, storing result in $\mathbf{C}_{N_{1}}$	$\begin{aligned} & \mathbf{G}_{N_{1}-1}=\mathbf{D}_{N_{1}^{1}}\left(\mathbf{C}_{N_{1}-1}-\mathbf{A}_{N_{1}} \mathbf{G}_{N_{1}-2}\right) \\ & \mathbf{F}_{N_{1}-1}=\mathbf{A}_{N_{1}}-\mathbf{F}_{N_{1}}{ }_{2} \mathbf{E}_{N_{1}-2} \end{aligned}$
4 c	Compute $\mathbf{B}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{A}_{N_{1}-1}$, storing result in $\mathbf{B}_{N_{1}}$	$\mathbf{D}_{N_{1}}=\mathbf{B}_{N_{1}}-\sum_{i-2} \mathbf{F}_{i} \mathbf{G}_{i}$
4 d	Compute $\mathbf{S}_{N_{1}}-\mathbf{C}_{N_{1}} \mathbf{S}_{N_{1}-1}$, storing result in $\mathbf{S}_{N_{1}}$	$\mathbf{S}_{N_{1}}-\sum_{i=2} \mathbf{F}_{i} \Delta \hat{\mathbf{Q}}_{i}^{\prime}$
4e	LU decompose $\mathbf{B}_{N_{1}}$, storing result in $\mathbf{B}_{N_{1}}$	I.U decomposition of $\mathbf{D}_{N_{1}}$
+f	Solve $\mathbf{B}_{v_{1}} \Delta \mathbf{Q}_{N_{1}}^{\prime}=\mathbf{S}_{N_{1}}$ for $\Delta \mathbf{Q}_{N_{1}}^{\prime}$ using LU decomposition of $\mathbf{1}_{N_{1}}$, storing result in $\mathbf{S}_{N_{1}}^{\prime}$	$\Delta \hat{\mathbf{Q}}_{N_{1}}^{\prime}=\mathbf{D}_{N_{1}}^{\prime}\left(\mathbf{S}_{N_{1}}-\sum_{i=2} \mathbf{F} \Delta \hat{\mathbf{Q}}_{i}^{\prime}\right)$
5		$\Delta \hat{\mathbf{Q}}_{N_{1}}=\Delta \hat{\mathbf{Q}}_{\mathrm{N}_{1}}^{\prime}$
6	Compute $\mathbf{S}_{N_{1}, 1}-\mathbf{A}_{N_{1}, 1} \mathbf{S}_{N_{1}}$, storing result in $\mathbf{S}_{N_{1}-1}$	$\Delta \hat{\mathbf{Q}}_{N_{1}-1}=\Delta \hat{\mathbf{Q}}_{N_{1}-1}^{\prime}-\mathbf{G}_{N_{1}-1} \Delta \hat{\mathbf{Q}}_{N_{1}}$
7	For $i=N_{1}-2$ to 2 , Compute $\mathbf{S}_{i}-\mathbf{A}_{i} \mathbf{S}_{\mathbf{N}_{1}}-\mathbf{C}_{i} \mathbf{S}_{i+1}$, storing result in $\mathbf{S}_{\text {, }}$	$\Delta \hat{\mathbf{Q}}_{i}=\Delta \mathbf{Q}_{i}^{\prime}-\mathbf{G}_{i} \Delta \hat{\mathbf{Q}}_{N_{1}}-\mathbf{E}, \Delta \hat{\mathbf{Q}}_{i-1}$
8	Set $S_{1}=S_{S_{1}}$	$\Delta \hat{\mathbf{Q}}_{1}=\Delta \hat{\mathbf{Q}}_{N_{1}}$

Remarks

1. The notation used in the comments in BLK3P is consistent with the notation used in the description of the algorithm in Volume 1.
2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BI K routines. This increases the storage required by the program, but greatly decreases the CPL time required for the $A D I$ solution.

Subroutine BLK4		
Called by	Calls	Purpose
ADI	FILTER	Solve 4×4 block tridiagonal system of equations.

Input

A, B, C	Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C}
NPTS	Number of grid points in the sweep direction, N.
NV	Number of grid points in the "vectorized" direction, N_{ν}.
S	Source term subvector \mathbf{S}.

Output

S Computed solution subvector.

Description

Subroutine BLK 4 solves a block tridiagonal system of equations with 4×4 blocks using the block matrix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values on the diagonal of the submatrix \mathbf{B} at the two boundaries. These can occur when boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional "new" matrices D, E, and $\Delta \hat{\mathbf{Q}}^{\prime}$. In Fortran, however, storage is saved by overwriting B, C, and S. The algorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK4 is consistent with the notation used in the description of the algorithm in Volume 1.
2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Subroutine BLK4P		
Called by	Calls	Purpose
ADI		Solve 4×4 periodic block tridiagonal system of equations.

Input

A, B, C
NPTS
NV
S

Output
S
Computed solution subvector.

Description

Subroutine BLK4P solves a periodic block tridiagonal system of equations with 4×4 blocks. An efficient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional "new" matrices $\mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}$, and $\Delta \hat{Q}^{\prime}$. In Fortran, however, storage is saved by overwriting A, B, C, and S. The algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK4P is consistent with the notation used in the description of the algorithm in Volume 1.
2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Subroutine BI K5		
Called by	Calls	Purpose
ADI	FIITYR	Solve 5×5 block tridiagonal system of equations.

Input

A, B, C	Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C}
NPIS	Number of grid points in the sweep direction, N.
NV	Number of grid points in the "vectorized" direction, N_{v}.
S	Source term subvector \mathbf{S}.

Output

S
Computed solution subvector.

Description

Subroutine BLK 5 solves a block tridiagonal system of equations with 5×5 blocks using the block matrix version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values on the diagonal of the submatrix \mathbf{B} at the two boundaries. These can occur when boundary conditions are specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional "new" matrices D, E, and $\Delta \hat{Q}^{\prime}$. In Fortran, however, storage is saved by overwriting B, C, and S. The algorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK 5 is consistent with the notation used in the description of the algorithm in Volume 1.
2. The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Subroutine BLK5P		
Called by	Calls	Purpose
ADI		Solve 5×5 periodic block tridiagonal system of equations.

Input

A, B, C	Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C}
NPTS	Number of grid points in the sweep direction, N.
NV	Number of grid points in the "vectorized" direction, N_{v}.
S	Source term subvector \mathbf{S}.

Output

S
Computed solution subvector.

Description

Subroutine BLK5P solves a periodic block tridiagonal system of equations with 5×5 blocks. An efficient algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional "new" matrices $\mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}$, and $\Delta \hat{\mathbf{Q}}^{\prime}$. In Forran, however, storage is saved by overwriting A, B, \mathbf{C}, and \mathbf{S}. The algorithm is identical to that used in subroutine BLK 3P. See the description of that subroutine for a table relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK 5 P is consistent with the notation used in the description of the algorithm in Volume 1.
2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

Subroutine BLOUT1		
Called by	Calls	Purpose
TLRBBL	ISAMAAX ISAMIN	Compute outer layer turbulent viscosity, using the algebraic Baldwin- Lomax model, along constant ξ lines.

Input

* APLLS
- CB
* CCLAU
- CCP
* CKLEB
* CNA
* CWK
* IWALL2

II
MU

* N2
* RER

RIIO, U, V, w
VORT
X, Y

Output

LWAKE2

MLT

Van Driest damping constant A^{+}.
Constant B in the Klebanoff intermittency factor.
Clauser constant K in the Baldwin-Lomax outer region model.
Constant $C_{c p}$ in the Baldwin-Lomax outer region model.
Constant $C_{\text {Kles }}$ in the Klebanoff intermittency factor.
Exponent n in the formula used to average the two outer region μ_{t} protiles that result when both boundaries in a coordinate direction are solid surfaces.
Constant $C_{w k}$ in the Baldwin-Lomax outer region model.
Flags indicating whether or not the η boundaries are walls.
Grid index i in the ξ direction.
Laminar coefficient of viscosity μ_{l}.
Number of grid points N_{2} in the η direction.
Reference Reynolds number $R e_{r}$.
Static density ρ, and velocities u, v, and w.
Total vorticity magnitude.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Grid index j in the η direction used as the origin for computing length scales for free turbulent flows.
Outer layer turbulent viscosity coefficient $\left(\mu_{1}\right)_{o u t e r}$ along constant ξ lines.

Description

Subroutine BLOUT1 computes the outer layer turbulent viscosity coefficient $\left(\mu_{t}\right)_{\text {outer }}$ along constant ξ lines (i.e., due to walls at $\eta=0$ and or $\eta=1$, or due to a free turbulent flow in the ξ direction) using the algebraic eddy viscosity model of Baldwin and Lomax (1978). The model is described in Section 3.1 of Volume 1.

In BLOUT1, the values and locations of $|\vec{V}|_{\text {max }}$ and $|\vec{V}|_{\text {min }}$ are found first. Next, if a solid wall exists at $\eta=0$ and/or $\eta=1$, the parameter $F_{\text {wake }}$ is computed for each wall. If neither η boundary is a solid wall, a free turbulent flow in the $\boldsymbol{\xi}$ direction is assumed. In this case $F_{\text {woks }}$ is computed using the procedure described in Section 3.1 of Volume 1.

Finally, if a solid wall exists at $\eta=0$ or at $\eta=1$, but not both, or if neither η boundary is a solid wall, the value of $\left(\mu_{r}\right)_{\text {outrer }}$ is computed directly. If both η boundaries are solid walls, the two computed values of
$F_{\text {wake }}$ are combined using the averaging formula presented as equation (3.12) of Volume 1, and the resulting value is used to compute $\left(\mu_{t}\right)_{\text {outer }}$.

Remarks

1. The Cray BLAS routines ISA.MAX and ISA.MIN: are used in computing $\left|\vec{V}_{\max }\right|,\left|\vec{V}_{\min }\right|$, and $F_{\max }$.
2. If the maximum and minimum total velocities are equal, indicating a uniform flow along this particular ξ line, their locations are arbitrarily set equal to the middle η index. This normally would occur only during the first time step in a case with uniform initial velocity profiles.
3. To avoid the possibility of floating point errors, the values of $\left|\vec{V}_{\max }\right|,\left|\vec{V}_{\operatorname{mn}}\right|$, and $F_{\max }$ are set to a minimum of 10^{-10}.

Subroutine BLOUT2		
Called by	Calls	Purpose
TCRBBL	ISAMAX ISAMIN	Compute outer layer turbulent viscosity, using the algebraic Baldwin- Lomax model, along constant η lines.

Input

* APLLS
* CB
* cClaU
* CCP
* CKLEB
* CNA
* CWK
* IWALLI

I2
MU

* Nl
* RER

RHO, U, V, w
VORT
X, Y

Output

LWAKE1
DUMMY

Van Driest damping constant A^{+}.
Constant B in the Klebanoff intermittency factor.
Clauser constant K in the Baldwin-Lomax outer region model.
Constant $C_{c p}$ in the Baldwin-Lomax outer region model.
Constant $C_{\text {Kieb }}$ in the Klebanoff intermittency factor.
Exponent n in the formula used to average the two outer region μ_{e} profiles that result when both boundaries in a coordinate direction are solid surfaces.
Constant $C_{w k}$ in the Baldwin-Lomax outer region model.
Flags indicating whether or not the ξ boundaries are walls.
Grid index j in the η direction.
Laminar coefficient of viscosity μ_{μ}.
Number of grid points N_{1} in the ξ direction.
Reference Reynolds number Re_{r}.
Static density ρ, and velocities u, v, and w.
Total vorticity magnitude.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Grid index i in the ξ direction used as the origin for computing length scales for free turbulent flows.
Outer layer turbulent viscosity coefficient $\left(\mu_{\mu}\right)_{o u t e r}$ along constant η lines.

Output

Description

Subroutine BLOLT2 computes the outer layer turbulent viscosity coefficient ($\mu)_{\text {outer }}$ along constant η lines (i.e., due to walls at $\xi=0$ and/or $\xi=1$, or due to a free turbulent flow in the η direction) using the algebraic eddy viscosity model of Baldwin and Lomax (1978). The procedure is exactly analogous to that used in subroutine BLOUTI.

Subroutine BVUP		
Called by	Calls	Purpose
EXEC	BCGEN EQSTAT SGEFA SGESL	Update first sweep boundary values after second sweep.

Input

* ALPHAl

DXI
IBVUP

* ISWIRL

JI
KBCPER
NEQ
NEQP
NR, NRU, NRV, NRW, NET
NPT2

* N1, N2

N1P

RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL
XIX, XIY, XIT

Output

ALPHA
DEL
IBASE, ISTEP
ISWEEP
IV
METX, METY, METT

Spatial difference centering parameter α_{1} for the ξ direction.
Computational grid spacing $\Delta \xi$.
Flags for updating boundary values from first sweep after second sweep; 0 if updating is not necessary, 1 if it is.
Flag for swirl in axisymmetric flow.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Flags for spatially periodic boundary conditions in the ξ and η directions; 0 for non-periodic, 1 for periodic.
Number of coupled equations being solved, $N_{e q}$.
Cray PARAMETER specifying maximum number of coupled equations allowed.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
N_{2} for non-periodic boundary conditions, $N_{2}+1$ for spatially periodic boundary condition in η.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Cray PARAMETER specifying the DIMENSION size in the ξ direction.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n at all grid points.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level $n+1$ at all interior grid points.

Spatial difference centering parameter α for the sweep direction being updated.
Computational grid spacing for the sweep direction being updated.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
ADI sweep number for sweep direction being updated.
Index in the "vectorized" direction, i_{v}.
Derivatives of computational coordinate, for the sweep direction being updated, with respect to x, y (or r if axisymmetric), and t.

NPTS
NV
RHOL, LL, VL, WL, ETL

Number of grid points N in the sweep direction being updated. Number of grid points in the "vectorized" direction, N_{v}.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level $n+1$ at boundary points from first sweep.

Description

Subroutine BVLP updates boundary values from the first, or ξ, sweep after the second, or η, sweep. In general, this is necessary when gradient or extrapolation boundary conditions are used in the ξ direction. Some updating is also necessary when spatially periodic boundary conditions are used. The procedure is described in Section 8.3 of Volume 1 for all cases.

Remarks

1. The comer values of ρ and E_{τ} are updated by linearly extrapolating from the two adjacent points in the ξ and η directions, and averaging the two results. Note that this extrapolation is done in computational space. Grid packing in either direction is thus not taken into account. The comer values of the velocities are updated by doing the same type of extrapolation. Instead of averaging, however, the extrapolated velocity whose absolute value is lower is used. This was done to maintain no-slip at duct inlets and exits.
2. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays A and S represent \mathbf{A} and \mathbf{S}, where \mathbf{A} is a square N by N matrix and \mathbf{S} is a vector with N elements, and if the leading dimension of the Fortran array A is LDA, then the Fortran sequence

> CALL SGEFA (A,LDA,N,IPVT,INFO)
> CALL SGESL (A,LDA,N,IPVT, S, 0)
computes $\mathbf{A}^{-1} \mathbf{S}$, storing the result in \mathbf{S}.

Subroutine COEFC		
Called by	Calls	Purpose
EXEC		Compute cocfficients and source term for the continuity equation.

Input

ALPHA

* ALPHA1, ALPHA2

DEL
DTAU
DXI, DETA
ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

ISWEEP

* ISWIRL

IV
I1, I2
JI
METX, METY, METT
NC
NEQ
NPTS
NR, NRU, NRV, NRW, NET
RAX
RHO, U, V
RHOL

* TIIC

XIX, XIY, XIT
Y

Output

Spatial difference centering parameter α for the sweep direction.
Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing in sweep direction.
Time step $\Delta \tau$.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Metric coefficients η_{x}, η_{y} (or η_{r} if axisymmetric), and η_{t}.
Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Index in the "vectorized" direction, i_{v}.
Grid indices i and j, in the ξ and η directions.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1} (times the radius r for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to x, y (or r if axisymmetric), and t.
Array index associated with the continuity equation.
Number of coupled equations being solved, $N_{\text {eq }}$.
Number of grid points in the sweep direction, N.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
1 for two-dimensional planar flow, and the local radius r for axisymmetric flow.
Static density ρ, and velocities u and v, at time level n.
Static density ρ from previous ADI sweep.
Parameters θ_{1} and θ_{2} determining type of time differencing for the continuity equation.

Radial coordinate r for axisymmetric flow.
$\mathrm{A}, \mathrm{B}, \mathrm{C} \quad \begin{aligned} & \text { Coefficient submatrices } \mathbf{A}, \mathbf{B}, \text { and } \mathbf{C} \text { at interior points (row NC } \\ & \text { only). }\end{aligned}$

Description

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations ($8.5 \mathrm{a}-\mathrm{b}$) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors $\hat{\mathbf{E}}$ and $\hat{\mathbf{F}}$ are given in Section 2.0 of Volume 1, and the elements of the viscous flux vectors $\hat{\mathbf{E}}_{V_{1}}, \hat{\mathbf{E}}_{V_{2}}$, etc., are given in Appendix A of Volume 1 The Jacobian coefficient matrices $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$, etc., are given in Section 5.0 of Volume 1. Using all of these equations, the differenced form of the continuity cquation for 2-D planar flow may be written for the two ADI sweeps as ${ }^{16}$

Swee 1 (Edirection)

$$
\begin{aligned}
& \Delta_{i} \hat{i}_{i}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \xi}\left[-\alpha\left(\frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right]= \\
& \quad-\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{1}+\delta_{\eta} \hat{\mathbf{F}}_{1}\right)^{n}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{\rho}^{n-1}
\end{aligned}
$$

Sweep 2 (n direction)

$$
\Delta \hat{\rho}_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta}\left[-\alpha\left(\frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]=
$$

In the above equations, the subscripts i and j represent grid point indices in the ξ and η directions. For notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

The vector of dependent variables is

$$
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
$$

The appropriate elements of the flux vectors are given by

$$
\begin{aligned}
& \hat{\mathbf{E}}_{1}=\frac{1}{J}\left[\rho u \xi_{x}+\rho v \xi_{y}+\rho \xi_{t}\right] \\
& \hat{\mathbf{F}}_{1}=\frac{1}{J}\left[\rho u \eta_{x}+\rho v \eta_{y}+\rho \eta_{t}\right]
\end{aligned}
$$

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}$ for the continuity equation are

$$
\frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{llll}
\xi_{t} & \xi_{x} & \xi_{y} & 0
\end{array}\right]
$$

[^13]The Jacobian coefficient matrix $\partial \hat{\mathbf{F}}_{1} / \partial \hat{\mathbf{Q}}$ has the same form as $\partial \hat{\mathbf{E}}_{1} / \partial \hat{\mathbf{Q}}$, but with ξ replaced by η.
As an example of how these equations are translated into Fortran, consider the $\Delta(\rho u / J)$ term on the left hand side for the first sweep. This is the second element of $\hat{\mathbf{Q}}$, so using the second element in $\partial \hat{\mathbf{E}}_{1} / \partial \hat{\mathbf{Q}}$ we get

$$
\begin{aligned}
\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NC}, \mathrm{NRU}) & =\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(-\alpha)\left(\xi_{x}\right)_{i-1, j} \\
\mathrm{~B}(\mathrm{IV}, \mathrm{I}, \mathrm{NC}, \mathrm{NRU}) & =\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(2 \alpha-1)\left(\xi_{x}\right)_{i, j} \\
\mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NC}, \mathrm{NRU}) & =\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(1-\alpha)\left(\xi_{x}\right)_{i+1, j}
\end{aligned}
$$

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric continuity equation for the two ADI sweeps is given by ${ }^{17}$

Sweep 1 (ξ direction)

$$
\begin{aligned}
& \Delta \hat{\rho}_{i}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r}\left[-x\left(r \frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}+(2 x-1)\left(r \frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}+(1-x)\left(r \frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}\right]= \\
& \quad-\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(r \hat{\mathbf{E}}_{1}\right)+\delta_{n}\left(\hat{\mathbf{F}}_{1}\right)\right]^{n}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{\rho}^{n-1}
\end{aligned}
$$

Sweep 2 (η direction)

$$
\Delta \hat{\rho}_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta} \frac{1}{r}\left[-\alpha\left(r \frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 x-1)\left(r \frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(r \frac{\partial \hat{\mathbf{F}}_{1}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]=\Delta \hat{\rho}
$$

where now

$$
\left.\left.\begin{array}{l}
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & \rho w
\end{array} E_{T}\right.
\end{array}\right]^{T}\right] \begin{aligned}
& \hat{\mathbf{E}}_{1}=\frac{1}{J}\left[\begin{array}{llll}
\rho u \xi_{x}+\rho v \xi_{r}+\rho \xi_{t}
\end{array}\right] \\
& \hat{\mathbf{F}}_{1}=\frac{1}{J}\left[\begin{array}{llll}
\rho u \eta_{x}+\rho v \eta_{r}+\rho \eta_{t}
\end{array}\right] \\
& \frac{\partial \hat{\mathbf{E}}_{1}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
\xi_{t} & \xi_{x} & \xi_{r} & 0 & 0
\end{array}\right]
\end{aligned}
$$

As in 2-D planar flow, the Jacobian coefficient matrix $\partial \hat{\mathbf{F}}_{1} / \partial \hat{\mathbf{Q}}$ has the same form as $\partial \hat{\mathbf{E}}_{1} / \partial \hat{\mathbf{Q}}$, but with ξ replaced by η.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric equations, the radius r appears as an additional coefficient in front of the flux vectors $\hat{\mathbf{E}}$ and $\hat{\mathbf{F}}$, and in front

17 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum ρw would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.
of the Jacobian coefficient matrices $\partial \hat{\mathbf{E}}_{1} / \partial \hat{\mathbf{Q}}$ and $\partial \hat{\mathbf{F}}_{1} / \partial \hat{\mathbf{Q}}$. In addition, $1 / r$ appears in front of every term in the equation except the $\Delta \hat{\rho}$ terms. In PROTELS, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with ξ replaced by η. By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for $2 \cdot \mathrm{D}$ planar flow, and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for axisymmetric flow, but has no effect for $2-\mathrm{D}$ planar flow. The $1 / r$ coefficient in front of each term will be added later. In this section of code, the coefficient of $\Delta \hat{\rho}$ (part of $B(I V, I, N C, N R)$) is set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as $1 / J$, is temporarily redefined as r / J before the COEF routines are called. This automatically accounts for the r coefficient in front of all the flux vectors in the source term. The $1 / r$ coefficient in front of each term will be added later. This definition of JI adds an r in front of the $\Delta \hat{\rho}^{n-1}$ term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of $\Delta \hat{\rho}^{*}$, comes next. The definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the $1 / r$ coefficient where it should be added, and removes the r in front of the $\Delta \hat{\rho}$ terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3 .
2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the second sweep, they are written as (11,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which A, B, or C is a coefficient.

Subroutine COEFE		
Called by	Calls	Purpose
EXEC		Compute coefficients and source term for the energy equation.

Input

ALPHA

* ALPHA1, ALPHA2

DEL
DPDRHO, DPDRU, DPDRV, DPDRW, DPDET
DTAU
DTDRHO, DTDRU, DTDRV, DTDRW, DTDET
DXI, DETA
ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

* IEULER

ISWEEP

* ISWIRL
* ITHIN

IV
I1, I2
JI
METX, METY, METT
MU, LA, KT

NEN
NEQ
NPTS
NR, NRU, NRV, NRW, NET
P, T
PRR
RAX

Spatial difference centering parameter α for the sweep direction.
Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing in sweep direction.
Derivatives $\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)$, and $\partial p / \partial E_{T}$.
Time step $\Delta \tau$.
Derivatives $\partial T / \partial \rho, \partial T / \partial(\rho u), \partial T / \partial(\rho v), \partial T / \partial(\rho w)$, and $\partial T / \partial E_{T}$.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Metric coefficients η_{x}, η_{y} (or η_{r} if axisymmetric), and η_{t}.
Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Flags for thin-layer option.
Index in the "vectorized" direction, i_{v}.
Grid indices i and j, in the ξ and η directions.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1} (times the radius r for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to x, y (or r if axisymmetric), and t.
Effective coefficient of viscosity μ, effective second coefficient of viscosity λ, and effective coefficient of thermal conductivity k at time level n.
Array index associated with the energy equation.
Number of coupled equations being solved, $N_{\text {eq }}$.
Number of grid points in the sweep direction, N.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
Static pressure p and temperature T at time level n.
Reference Prandtl number $P r_{r}$.
1 for two-dimensional planar flow, and the local radius r for axisymmetric flow.

* RER

RHO, U, V, W, ET

* THE

TL
UL, VL, WL, ETL

XIX, XIY, XIT
Y

Output

Reference Reynolds number $R e_{r}$.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.

Parameters θ_{1}, θ_{2}, and θ_{3} determining type of time differencing for the energy equation.
Static temperature T from previous ADI sweep.
Velocities u, v, and w, and total energy E_{T} from previous ADI sweep.

Radial coordinate r for axisymmetric flow.

A, B, C
S

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at interior points (row NEN only).
Source term subvector \mathbf{S} at interior points (element NEN only).

Description

Subroutine COEFE computes the coefficients and source term for the energy equation. Equations ($8.5 \mathrm{a}-\mathrm{b}$) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors $\hat{\mathbf{E}}$ and $\hat{\mathbf{F}}$ are given in Section 2.0 of Volume 1, and the elements of the viscous flux vectors $\hat{\mathbf{E}}_{V_{1}}, \hat{\mathbf{E}}_{V_{2}}$, etc., are given in Appendix A of Volume 1. The Jacobian coefficient matrices $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$, etc., are given in Section 5.0 of Volume 1. Using all of these equations, the differenced form of the energy equation for 2-D planar flow may be written for the two ADI sweeps as

Sweep 1 (ξ direction)

$$
\begin{aligned}
\Delta\left(\hat{E}_{T}\right)_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \xi}\left[-\alpha\left(\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}}\left[\left(f_{i-1}+f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}-\left(f_{i-1}+2 f_{i}+f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+\left(f_{i}+f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{4}+\delta_{\eta} \hat{\mathbf{F}}_{4}\right)^{n}+\frac{\Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4}\right]^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{E}_{T}^{n-1}
\end{aligned}
$$

Sweep 2 (η direction)

$$
\begin{aligned}
& \Delta\left(\hat{E}_{T}\right)_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta}\left[-\alpha\left(\frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
& \quad-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}}\left[\left(f_{j-1}+f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(f_{j-1}+2 f_{j}+f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(f_{j}+f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta \hat{E}_{T}^{*}
\end{aligned}
$$

In the above equations, the subscripts i and j represent grid point indices in the ξ and η directions. For notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j. On the left hand side, f is the coefficient of $\partial / \partial \xi$ (or $\partial / \partial \eta$, depending on the sweep) in the $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ (or $\partial \hat{\mathbf{F}}_{v_{1}} \mid \partial \hat{\mathbf{Q}}$) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following $\partial \mid \partial \xi$ (or $\partial \mid \partial \eta$) in the $\partial \hat{\mathbf{E}}_{V_{1}} \partial \partial \hat{\mathbf{Q}}$ (or $\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}$) Jacobian coefficient matrix.

The vector of dependent variables is

$$
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
$$

The appropriate elements of the inviscid flux vectors are given by

$$
\begin{aligned}
& \hat{\mathbf{F}}_{4}=\frac{1}{J}\left[\left(E_{T}+p\right) u \xi_{x}+\left(E_{T}+p\right) v \xi_{y}+E_{T} \xi_{t}\right] \\
& \hat{\mathbf{F}}_{4}=\frac{1}{J}\left[\left(E_{T}+p\right) u \eta_{x}+\left(E_{T}+p\right) v \eta_{y}+E_{T} \eta_{t}\right]
\end{aligned}
$$

The appropriate elements of the non-cross derivative viscous flux vectors are

$$
\begin{aligned}
\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\{ & \frac{(2 \mu+\lambda)}{2}\left[\xi_{x}^{2}\left(u^{2}\right)_{\xi}+\xi_{y}^{2}\left(v^{2}\right)_{\xi}\right]+(\mu+\lambda) \xi_{x} \xi_{y}(u v)_{\xi} \\
& \left.+\frac{\mu}{2}\left[\xi_{x}^{2}\left(v^{2}\right)_{\xi}+\xi_{y}^{2}\left(u^{2}\right)_{\xi}\right]+\frac{k}{P r_{r}}\left(\xi_{x}^{2}+\xi_{y}^{2}\right) T_{\xi}\right\} \\
\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{\operatorname{Re} e_{r}}\{ & \frac{(2 \mu+\lambda)}{2}\left[\eta_{x}^{2}\left(u^{2}\right)_{\eta}+\eta_{y}^{2}\left(v^{2}\right)_{\eta}\right]+(\mu+\lambda) \eta_{x} \eta_{y}(u v)_{\eta} \\
& \left.+\frac{\mu}{2}\left[\eta_{x}^{2}\left(v^{2}\right)_{\eta}+\eta_{y}^{2}\left(u^{2}\right)_{\eta}\right]+\frac{k}{P r_{r}}\left(\eta_{x}^{2}+\eta_{y}^{2}\right) T_{\eta}\right\}
\end{aligned}
$$

And the appropriate elements of the cross derivative viscous flux vectors are

$$
\begin{aligned}
\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}[& 2 \mu\left(\xi_{x} \eta_{x} u u_{\eta}+\xi_{y} \eta_{y} v v_{\eta}\right)+\lambda \xi_{x}\left(\eta_{x} u u_{\eta}+\eta_{y} u v_{\eta}\right)+\lambda \xi_{y}\left(\eta_{x} v u_{\eta}+\eta_{y} v v_{\eta}\right) \\
& \left.+\mu \xi_{x}\left(\eta_{y} v u_{\eta}+\eta_{x} v v_{\eta}\right)+\mu \xi_{y}\left(\eta_{y} u u_{\eta}+\eta_{x} u v_{\eta}\right)+\frac{k}{P r_{r}}\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right) T_{\eta}\right]
\end{aligned}
$$

$$
\begin{aligned}
\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}[& 2 \mu\left(\eta_{x} \xi_{x} u u_{\xi}+\eta_{y} \xi_{y} v v_{\xi}\right)+\lambda \eta_{x}\left(\xi_{x} u u_{\xi}+\xi_{y} u v_{\xi}\right)+\lambda \eta_{y}\left(\xi_{x} v u_{\xi}+\xi_{y} v v_{\xi}\right) \\
& \left.+\mu \eta_{x}\left(\xi_{y} v u_{\xi}+\xi_{x} v v_{\xi}\right)+\mu \eta_{y}\left(\xi_{y} u u_{\xi}+\xi_{x} v v_{\xi}\right)+\frac{k}{P r_{r}}\left(\eta_{x} \xi_{x}+\eta_{y} \xi_{y}\right) T_{\xi}\right]
\end{aligned}
$$

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}$ for the inviscid terms in the encrgy equation are

$$
\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}=\left[-f_{1}\left(f_{2}-\frac{\partial p}{\partial \rho}\right) \quad f_{2} \xi_{x}+f_{1} \frac{\partial p}{\partial(\rho u)} \quad f_{2} \xi_{y}+f_{1} \frac{\partial p}{\partial(\rho v)} \quad \xi_{t}+f_{1}\left(1+\frac{\partial p}{\partial E_{T}}\right)\right]
$$

where $f_{1}=u \xi_{x}+v \xi_{y}$ and $f_{2}=\left(E_{T}+p\right) / \rho$.
The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ for the viscous terms are

$$
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{42}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{43} \alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial E_{T}}\right)\right]
$$

where

$$
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41}=-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u^{2}}{\rho}\right)-\alpha_{y y} \frac{\partial}{\partial \xi}\left(\frac{v^{2}}{\rho}\right)-2 \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{u v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial \rho}\right) \\
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{42}=\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho u)}\right) \\
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{43}=\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{y y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho v)}\right) \\
\alpha_{x x}=(2 \mu+\lambda) \xi_{x}^{2}+\mu \xi_{y}^{2} \\
\alpha_{y y}=\mu \xi_{x}^{2}+(2 \mu+\lambda) \xi_{y}^{2} \\
\alpha_{x y}=(\mu+\lambda) \xi_{x} \xi_{y} \\
\alpha_{0}=\frac{k}{P_{r}}\left(\xi_{x}^{2}+\xi_{y}^{2}\right)
\end{gathered}
$$

The Jacobian coefficient matrices $\partial \hat{\mathbf{F}}_{4} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}$ have the same form as $\partial \hat{\mathbf{E}}_{4} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}$, but with ξ replaced by η.

As an example of how these equations are translated into Fortran, consider the $\Delta(\rho u / J)$ term on the left hand side for the first sweep. This is the second element of $\hat{\mathbf{Q}}$, so using the second element in $\partial \hat{\mathbf{E}}_{4} / \partial \hat{\mathbf{Q}}$ we get for the inviscid term

$$
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN,NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(-\alpha)\left\{\left(\frac{E_{T}+p}{\rho} \xi_{x}\right)_{i-1, j}+\left[\left(u \xi_{x}+\nu \xi_{y}\right) \frac{\partial p}{\partial(\rho u)}\right]_{i-1, j}\right\} \\
& \mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \mathrm{NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(2 \alpha-1)\left\{\left(\frac{E_{T}+p}{\rho} \xi_{x}\right)_{i, j}+\left[\left(u \xi_{x}+\nu \xi_{y}\right) \frac{\partial p}{\partial(\rho u)}\right]_{i, j}\right\} \\
& \mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN,NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(1-\alpha)\left\{\left(\frac{E_{T}+p}{\rho} \xi_{x}\right)_{i+1, j}+\left[\left(u \xi_{x}+\nu \xi_{y}\right) \frac{\partial p}{\partial(\rho u)}\right]_{i+1, j}\right\}
\end{aligned}
$$

For the viscous terms on the left hand side, we use the second element in $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}$, which is

$$
\frac{1}{R e_{r}}\left[\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho u)}\right)\right]
$$

There are three terms in that element. Thus, in turn, $f=\alpha_{x x} / R e_{r}, \alpha_{x l} / R e_{r}$, and $\alpha_{0} / R e_{r}$, and $g=u / \rho, v / \rho$, and $\partial T / \partial(\rho u)$. To add the viscous contribution to this part of the A coefficient submatrix, we therefore set

$$
\begin{gathered}
\text { A(IV,I,NE.N,,\RU) }=\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \mathrm{NRU})-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2} R e_{r}} \cdot \\
\left\{\left[\left(\alpha_{x x}\right)_{i-1, j}+\left(\alpha_{x x}\right)_{i, j}\right]\left(\frac{u}{\rho}\right)_{i-1, j}+\left[\left(\alpha_{x y}\right)_{i-1, j}+\left(\alpha_{x y}\right)_{i, j}\right]\left(\frac{v}{\rho}\right)_{i-1, j}+\left[\left(\alpha_{0}\right)_{i-1, j}+\left(\alpha_{0}\right)_{i, j}\right]\left(\frac{\partial T}{\partial(\rho u)}\right)_{i-1, j}\right\}
\end{gathered}
$$

Similar equations may be written for the \mathbf{B} and \mathbf{C} coefficient submatrices.
The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric energy equation for the two ADI sweeps is given by ${ }^{18}$

Sweep 1 (ξ direction)

$$
\begin{aligned}
& \Delta\left(\hat{E}_{T}\right)_{i}^{\cdot}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r}\left[-\alpha\left(r \frac{\partial \hat{\mathbf{E}}_{S}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}+(2 \alpha-1)\left(r \frac{\partial \hat{\mathbf{E}}_{5}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}+(1-\alpha)\left(r \frac{\partial \hat{\mathbf{E}}_{5}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}\right] \\
& -\frac{\theta_{1} \Delta \mathrm{t}}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f_{i}\right)_{g_{i-1}}^{n} \Delta \hat{\mathbf{Q}}_{i-1}-\left(r_{i-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{0}+\left(r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(r \hat{\mathbf{E}}_{5}\right)+\delta_{\eta}\left(r \hat{\mathbf{F}}_{5}\right)\right]^{n}+\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{s}\left[r\left(\hat{\mathbf{E}}_{V_{1}}\right)_{s}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{1}}\right)\right]\right\}^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right) r\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right) r\right]\right\}^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{r}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right) r\right]\right\}^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{E}_{r}^{n-1}
\end{aligned}
$$

Sweep 2 (η direction)

$$
\begin{aligned}
& \Delta\left(\hat{E}_{T}\right)_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta} \frac{1}{r}\left[-\alpha\left(r \frac{\partial \hat{\mathbf{F}}_{S}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 \alpha-1)\left(r \frac{\partial \hat{\mathbf{F}}_{S}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(r \frac{\partial \hat{\mathbf{F}}_{S}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
& \quad-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[\left(r_{j-1} f_{j-1}+r_{j} f_{j} n_{j-1}^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]=\right. \\
& \Delta \hat{E}_{T}
\end{aligned}
$$

[^14]where now
\[

$$
\begin{aligned}
& \hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T} \\
& \hat{\mathbf{E}}_{S}=\frac{1}{J}\left[\left(E_{T}+p\right) u \xi_{x}+\left(E_{T}+p\right) v \xi_{r}+E_{T} \xi_{t}\right] \\
& \hat{\mathbf{F}}_{5}=\frac{1}{J}\left[\left(E_{T}+p\right) u \eta_{x}+\left(E_{T}+p\right) v \eta_{r}+E_{T} \eta_{t}\right] \\
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{5}=\frac{1}{J} \frac{1}{R e_{r}}\left\{\frac{(2 \mu+\lambda)}{2}\left[\xi_{x}^{2}\left(u^{2}\right)_{\xi}+\xi_{r}^{2}\left(v^{2}\right)_{\xi}\right]+(\mu+\lambda) \xi_{x} \xi_{r}(u v)_{\xi}+\lambda \xi_{r} \frac{r_{\xi}}{r}\left(\xi_{r} \nu^{2}+\xi_{x} u v\right)\right. \\
& \left.+\frac{\mu}{2}\left[\xi_{x}^{2}\left(v^{2}+w^{2}\right)_{\xi}+\xi_{r}^{2}\left(u^{2}+w^{2}\right)_{\xi}\right]+\frac{k}{P r_{r}}\left(\xi_{x}^{2}+\xi_{r}^{2}\right) T_{\xi}\right\} \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{5}=\frac{1}{J} \frac{1}{R e_{r}}\left\{\frac{(2 \mu+\lambda)}{2}\left[\eta_{x}^{2}\left(u^{2}\right)_{\eta}+\eta_{r}^{2}\left(v^{2}\right)_{\eta}\right]+(\mu+\lambda) \eta_{x} \eta_{r}(u v)_{\eta}+\lambda \eta_{r} \frac{r_{\eta}}{r}\left(\eta_{r} \nu^{2}+\eta_{x} u v\right)\right. \\
& \left.+\frac{\mu}{2}\left[\eta_{x}^{2}\left(v^{2}+w^{2}\right)_{\eta}+\eta_{r}^{2}\left(u^{2}+w^{2}\right)_{\eta}\right]+\frac{k}{P r_{r}}\left(\eta_{x}^{2}+\eta_{r}^{2}\right) T_{\eta}\right\} \\
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{5}=\frac{1}{J} \frac{1}{\operatorname{Re} e_{r}}\left[2 \mu\left(\xi_{x} \eta_{x} u u_{\eta}+\xi_{r} \eta_{r} v v_{\eta}\right)+\lambda \xi_{x}\left(\eta_{x} u u_{\eta}+\eta_{r} u v_{\eta}\right)+\lambda \xi_{r}\left(\eta_{x} v u_{\eta}+\eta_{r} v v_{\eta}\right)+\lambda \eta_{r} \frac{\nu}{r}\left(\xi_{x} u+\xi_{r} v\right) r_{\eta}\right. \\
& +\mu \xi_{x}\left(\eta_{r} v u_{\eta}+\eta_{x} v v_{\eta}+\eta_{x} w w_{\eta}\right)+\mu \xi_{r}\left(\eta_{r} u u_{\eta}+\eta_{x} w v_{\eta}+\eta_{r} w w_{\eta}\right)-\mu \xi_{r} \frac{w^{2}}{r} \\
& \left.+\frac{k}{P r_{r}}\left(\xi_{x} \eta_{x}+\xi_{r} \eta_{r}\right) T_{\eta}\right] \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{5}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu\left(\eta_{x} \xi_{x} u u_{\xi}+\eta_{r} \xi_{r} r v_{\xi}\right)+\lambda \eta_{x}\left(\xi_{x} u u_{\xi}+\xi_{r} u \nu_{\xi}\right)+\lambda \eta_{r}\left(\xi_{x} v u_{\xi}+\xi_{r} v v_{\xi}\right)+\lambda \xi_{r} \frac{v}{r}\left(\eta_{x} u+\eta_{r} v\right) r_{\xi}\right. \\
& +\mu \eta_{x}\left(\xi_{r} v u_{\xi}+\xi_{x} v v_{\xi}+\xi_{x} u w_{\xi}\right)+\mu \eta_{r}\left(\xi_{r} u u_{\xi}+\xi_{x} u v_{\xi}+\xi_{r} w w_{\xi}\right)-\mu \eta_{r} \frac{w^{2}}{r} \\
& \left.+\frac{k}{P r_{r}}\left(\eta_{x} \xi_{x}+\eta_{r} \xi_{r}\right) T_{\xi}\right]
\end{aligned}
$$
\]

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}$ for the inviscid terms in the axisymmetric form of the encrgy equation are

$$
\frac{\partial \hat{\mathbf{E}}_{5}}{\partial \hat{\mathbf{Q}}}=\left[-f_{1}\left(f_{2}-\frac{\partial p}{\partial \rho}\right) \quad f_{2} \xi_{x}+f_{1} \frac{\partial p}{\partial(\rho u)} \quad f_{2} \xi_{r}+f_{1} \frac{\partial p}{\partial(\rho v)} \quad f_{1} \frac{\partial p}{\partial(\rho w)} \quad \xi_{t}+f_{1}\left(1+\frac{\partial p}{\partial E_{T}}\right)\right]
$$

where $f_{1}=u \xi_{x}+\nu \xi_{\text {, and }} f_{2}=\left(E_{T}+p\right) / \rho$.
The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ for the viscous terms are

$$
\frac{\left.\partial \hat{\mathbf{E}}_{V_{1}}\right)_{s}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 1}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 2}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 3}\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{s 4} \alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial E_{T}}\right)\right]
$$

where

$$
\begin{aligned}
& \left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{51}=-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u^{2}}{\rho}\right)-\alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{v^{2}}{\rho}\right)-\alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{w^{2}}{\rho}\right) \\
& -2 \alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{u v}{\rho}\right)-2 \alpha_{r r}^{\prime} \frac{v^{2}}{\rho} r_{\xi}-2 \alpha_{x r}^{\prime} \frac{w v}{\rho} r_{\xi}+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial \rho}\right) \\
& \left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{52}=\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{\nu}{\rho}\right)+\alpha_{x r}^{\prime} \frac{\nu}{\rho} r_{\xi}+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho u)}\right) \\
& \left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{53}=\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\alpha_{r r}^{\prime} \frac{v}{\rho} r_{\xi}+\alpha_{r r}^{\prime} \frac{v}{\rho} r_{\xi}+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho v)}\right) \\
& \left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{54}=\alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{w}{\rho}\right)+\alpha_{0} \frac{\partial}{\partial \xi}\left(\frac{\partial T}{\partial(\rho w)}\right) \\
& \alpha_{x x}=(2 \mu+\lambda) \xi_{x}^{2}+\mu \xi_{r}^{2} \\
& \alpha_{r r}=\mu \xi_{x}^{2}+(2 \mu+\lambda) \xi_{r}^{2} \\
& \alpha_{z z}=\mu \xi_{x}^{2}+\mu \xi_{r}^{2} \\
& \alpha_{x r}=(\mu+\lambda) \xi_{x} \xi_{r} \\
& \alpha_{x r}^{\prime}=\frac{\lambda}{r} \xi_{x} \xi_{r} \\
& \alpha_{r r}^{\prime}=\frac{\lambda}{r} \xi_{r}^{2} \\
& \alpha_{0}=\frac{k}{P r_{r}}\left(\xi_{x}^{2}+\xi_{r}^{2}\right)
\end{aligned}
$$

As in 2-D planar flow, the Jacobian coefficient matrices $\partial \hat{\mathbf{F}}_{s} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{F}}_{r_{1}}\right)_{s} / \partial \hat{\mathbf{Q}}$ have the same form as $\partial \hat{\mathbf{E}}_{5} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{s} / \partial \hat{\mathbf{Q}}$, but with ξ replaced by η.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric equations there are some additional terms involving the radius r in the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in front of the flux vectors $\hat{\mathbf{E}}, \hat{\mathbf{E}}_{V_{1}}$, etc., and in front of the Jacobian coefficient matrices $\partial \hat{\mathbf{E}}_{s} / \partial \hat{\mathbf{Q}}, \partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{s} / \partial \hat{\mathbf{Q}}$, etc. In addition, $1 / r$ appears in front of every term in the equation except the $\Delta \hat{E}_{T}$ terms. In PROTEUS, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFE, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with ξ replaced by η. By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow, and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for axisymmetric flow, but has no effect for 2-D planar flow. The $1 / r$ coefficient in front of each term will be added later. In this section of code, the coefficient of $\Delta \hat{E}_{T}$ (part of $\mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NEN}, \mathrm{NET})$) is set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as $1 / J$, is temporarily redefined as r / J before the COEF routines are called. This automatically accounts for the r coefficient in front of all the flux vectors in the source term. The $1 / r$ coefficient in front of each term will be added later. This definition of JI adds an r in front of the $\Delta \hat{E}_{T}^{n-1}$ term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of $\Delta \hat{E}_{T}^{*}$, comes next. The definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the $1 / r$ coefficient where it should be added, and removes the r in front of the $\Delta \hat{E}_{T}$ terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3 .
2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the second sweep, they are written as ([1,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which A, B, or C is a coefficient.
3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding, and is bypassed if there is no swirl.
4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous and heat conduction terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous and heat conduction terms containing derivatives in the specified direction.

Subroutine COEFX		
Called by	Calls	Purpose
EXEC		Compute coefficients and source term for the x-momentum equation.

Input

ALPHA

* ALPHA1, ALPHA2

DEL
DPDRHO, DPDRU, DPDRV, DPDRW, DPDET
DTAU
DXI, DETA
ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

* IEULER

ISWEEP

* ISWIRL
* ITHIN

IV
I1, I2
JI
METX, METY, METT
MU, LA
NEQ
NPTS
NR, NRU, NRV, NRW, NET
NXM
P
RAX

* RER

RHO, U, V
RHOL, LL, VL

Spatial difference centering parameter α for the sweep direction.
Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing in sweep direction.
Derivatives $\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)$, and $\partial p / \partial E_{T}$.
Time step $\Delta \tau$.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Metric coefficients η_{x}, η_{y} (or η_{r} if axisymmetric), and η_{r}.
Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Current ADI sweep number.
Flay for swirl in axisymmetric flow.
Flags for thin-layer option.
Index in the "vectorized" direction, i_{v}.
Grid indices i and j, in the ξ and η directions.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1} (times the radius r for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to x, y (or r if axisymmetric), and t.
Effective cocfficient of viscosity μ and effective sccond coefficient of viscosity λ at time level n.
Number of coupled equations being solved, $N_{\text {eq }}$.
Number of grid points in the sweep direction, N.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
Array index associated with the x-momentum equation.
Static pressure p at time level n.
1 for two-dimensional planar flow, and the local radius r for axisymmetric flow.
Reference Reynolds number $R e_{r}$.
Static density ρ, and velocities u and v at time level n.
Static density ρ, and velocities u and v from previous ADI sweep.

* THX

XIX, XIY, XIT Y

Parameters θ_{1}, θ_{2}, and θ_{3} determining type of time differencing for the x-momentum equation.
Metric coefficients ξ_{x}, ξ_{y} (or ξ, if axisymmetric), and ξ_{r}.
Radial coordinate r for axisymmetric flow.

Output

A, B, C
Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at interior points (row NX.M only).

S
Source term subvector \mathbf{S} at interior points (element NXM only).

Description

Subroutine COEFX computes the coefficients and source term for the x-momentum equation. Equations ($8.5 \mathrm{a}-\mathrm{b}$) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors $\hat{\mathbf{E}}$ and $\hat{\mathbf{F}}$ are given in Section 2.0 of Volume 1, and the elements of the viscous flux vectors $\hat{\mathbf{E}}_{V_{1}}, \hat{\mathbf{E}}_{V_{2}}$, etc., are given in Appendix A of Volume 1. The Jacobian coefficient matrices $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$, etc., are given in Section 5.0 of Volume 1. Using all of these equations, the differenced form of the x-momentum equation for 2 -D planar flow may be written for the two ADI sweeps as ${ }^{19}$

Sweep 1 (ξ direction)

$$
\begin{aligned}
\Delta(\hat{\rho u})_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \xi}\left[-\alpha\left(\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}^{2}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}}\left[\left(f_{i-1}+f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}-\left(f_{i-1}+2 f_{i}+f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+\left(f_{i}+f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{2}+\delta_{\eta} \hat{\mathbf{F}}_{2}\right)^{n}+\frac{\Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}\right]^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}\right]^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}\right]^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta(\hat{\rho u})^{n-1}
\end{aligned}
$$

Sweep 2 (1 direction)

$$
\begin{aligned}
& \Delta(\hat{\rho u l u})_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(\mathbf{I}+\theta_{2}\right) \Delta \eta}\left[-\alpha\left(\frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
&-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}}\left[\left(f_{j-1}+f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(f_{j-1}+2 f_{j}+f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(f_{j}+f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta(\hat{\rho u})^{*}
\end{aligned}
$$

In the above equations, the subscripts i and j represent grid point indices in the ξ and η directions. For notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

[^15]On the left hand side, f is the coefficient of $\partial / \partial \xi$ (or $\partial / \partial_{\eta}$, depending on the sweep) in the $\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}$ (or $\partial \hat{\mathbf{F}}_{v_{1}} / \partial \hat{\mathbf{Q}}$) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following $\partial / \hat{\Sigma}$ (or $\partial / \partial \eta$) in the $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ (or $\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}$) Jacobian coefficient matrix.

The vector of dependent variables is

$$
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
$$

The appropriate elements of the inviscid flux vectors are given by

$$
\begin{aligned}
& \hat{\mathbf{F}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \xi_{x}+\rho u v \xi_{y}+\rho u \xi_{I}\right] \\
& \hat{\mathbf{F}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \eta_{x}+\rho u \eta_{y}+\rho u \eta_{t}\right]
\end{aligned}
$$

The appropriate elements of the non-cross derivative viscous flux vectors are

$$
\begin{aligned}
& \left(\hat{\mathbf{F}}_{v_{1}}\right)_{2}=\frac{1}{J} R e_{r}\left[2 \mu \xi_{x}^{2} u_{\xi}+\lambda \xi_{x}\left(\xi_{x} u_{5}+\xi_{y} v_{\xi}\right)+\mu \xi_{y}\left(\xi_{y} u_{5}+\xi_{x} v_{\xi}\right)\right] \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{x}^{2} u_{\eta}+i \eta_{x}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \eta_{y}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right]
\end{aligned}
$$

And the appropriate elements of the cross derivative viscous flux vectors are

$$
\begin{aligned}
& \left(\hat{\mathbf{E}}_{v_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \xi_{x} \eta_{x} u_{\eta}+\lambda \xi_{x}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \mu_{y} \xi_{y}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right] \\
& \left(\hat{\mathbf{F}}_{v_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{x} \xi_{x} u_{5}+i \eta_{x}\left(\xi_{x}^{\xi} u_{5}+\xi_{y} v_{\xi}\right)+\mu \eta_{y}\left(\xi_{y} u_{\xi}+\xi_{x} v_{y}\right)\right]
\end{aligned}
$$

The elements of the Jacobian coefficient matrix $\hat{\mathbf{E}} \hat{\mathbf{Q}}$ for the inviscid terns in the x-momentum equation are

$$
\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{llll}
\frac{\partial p}{\partial \rho} \xi_{x}-u f_{1} & \xi_{i}+f_{1}+u \xi_{x}+\frac{\partial p}{\partial(\rho u)} \xi_{x} & u \xi_{y}+\frac{\partial p}{\partial(\rho v)} \xi_{x} & \frac{\partial p}{\partial f_{T}} \xi_{x}
\end{array}\right]
$$

where $f_{1}=u_{s}^{*}+v_{s}^{*}$.
The elements of the Jacobian cocfficient matrix $\partial \hat{\mathbf{E}}_{r_{1}} \partial \hat{\mathbf{Q}}$ for the viscous terms are

$$
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}}{\partial \hat{\mathbf{Q}}}=\frac{1}{\operatorname{Re}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{21} \quad \alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad 0\right]
$$

where

$$
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{Q}}\right)_{21}=-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right) \\
\alpha_{x x}=(2 \mu+\lambda) \xi_{x}^{2}+\mu \xi_{y}^{2}
\end{gathered}
$$

$$
\alpha_{x y}=(\mu+\lambda) \xi_{x} \xi_{y}
$$

The Jacobian coefficient matrices $\partial \hat{\mathbf{F}}_{2} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}$ have the same form as $\partial \hat{\mathbf{F}}_{2} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}$, but with ξ replaced by η.

As an example of how these equations are translated into Fortran, consider the $\Delta(\rho u / J)$ term on the left hand side for the first sweep. This is the second element of $\hat{\mathbf{Q}}$, so using the second element in $\partial \hat{\mathbf{E}}_{2} / \partial \hat{\mathbf{Q}}$, and including the $\Delta(\hat{\rho} \hat{u})^{;}$term, we get for the inviscid term

$$
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(-\alpha)\left[\left(\xi_{l}\right)_{i-1, j}+\left(u \xi_{x}+\nu \xi_{y}\right)_{i-1, j}+\left(u \xi_{x}\right)_{i-1, j}+\left(\frac{\partial p}{\partial(\rho u)} \xi_{x}\right)_{i-1, j}\right] \\
& \mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(2 \alpha-1)\left[\left(\xi_{t}\right)_{i, j}+\left(u \xi_{x}+\nu v_{y}\right)_{i, j}+\left(u \xi_{x}\right)_{i, j}+\left(\frac{\partial p}{\partial(\rho u)} \xi_{x}\right)_{i, j}\right]+1 \\
& \mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(1-\alpha)\left[\left(\xi_{t}\right)_{i+1, j}+\left(u \xi_{x}+\nu \xi_{y}\right)_{i+1, j}+\left(u \xi_{x}\right)_{i+1, j}+\left(\frac{\partial p}{\partial(\rho u)} \xi_{x}\right)_{i+1, j}\right]
\end{aligned}
$$

For the viscous terms on the left hand side, we use the second element in $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}$, which is

$$
\frac{1}{R e_{r}} \alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)
$$

Thus $f=\alpha_{x x} / R e$, and $g=1 / \rho$. To add the viscous contribution to this part of the A coefficient submatrix, we therefore set

$$
\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})=\mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NXM}, \mathrm{NRU})-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2} R e_{r}}\left[\left(\alpha_{x x}\right)_{i-1, j}+\left(\alpha_{x x}\right)_{i, j}\right]\left(\frac{1}{\rho}\right)_{i-1, j}
$$

Similar equations may be written for the \mathbf{B} and \mathbf{C} coefficient submatrices.
The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric x-momentum equation for the two ADI sweeps is given by ${ }^{20}$

Swecp 1 (ξ direction)

$$
\begin{aligned}
& \Delta\left(\hat{\rho}^{u}\right)_{i}^{+}+\frac{\theta \Delta z}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r}\left[-x\left(r \frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}+(2 \alpha-1)\left(r \frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}+(1-\alpha)\left(r \frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{\cdot}\right] \\
& -\frac{\theta_{1} \Delta t}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f_{i}{ }^{n} g_{i-1}^{n} \Delta \hat{Q}_{i-1}-\left(r_{i-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{-}+\left(r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{Q}_{i+1}\right]=\right. \\
& -\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{2}\right)+\delta_{n}\left(\hat{\mathbf{F}}_{2}\right)\right]^{n}+\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}\right]\right\}^{n} \\
& \left.+\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}\right]\right\}^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left\{r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}\right]\right\}^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{\rho} \hat{\mu}\right)^{n-1}
\end{aligned}
$$

[^16]Sweep 2 (η direction)

$$
\begin{aligned}
& \Delta(\hat{\rho u})_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta} \frac{1}{r}\left[-x\left(r \frac{\hat{\partial} \hat{\mathbf{F}}_{2}}{\hat{\partial} \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 x-1)\left(r \frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-x)\left(r \frac{\partial \hat{\mathbf{F}}_{2}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
&-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[\left(r_{j-1} f_{j-1}+r_{j} f_{j}^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}\right]= \\
& \Delta(\hat{\rho} u)^{*}
\end{aligned}
$$

where now

$$
\begin{aligned}
& \hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T} \\
& \hat{\mathbf{E}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \xi_{x}+\rho t a \xi_{r}+\rho u \xi_{t}\right] \\
& \hat{\mathbf{F}}_{2}=\frac{1}{J}\left[\left(\rho u^{2}+p\right) \eta_{x}+\rho u v \eta_{r}+\rho u \eta_{t}\right] \\
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{x}^{2} u_{\xi}+\lambda \xi_{x}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(r)_{\xi}\right]+\mu \xi_{r}\left(\xi_{r} u_{\xi}+\xi_{x} v_{\xi}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \eta_{x}^{2} u_{\eta}+\lambda \eta_{x}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(r v)_{\eta}\right]+\mu \eta_{r}\left(\eta_{r} u_{\eta}+\eta_{x} v_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{x} \eta_{x} u_{\eta}+\lambda \xi_{x}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(n)_{\eta}\right]+\mu \xi_{r}\left(\eta u_{r} u_{\eta}+\eta_{x} v_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{2}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \eta_{x} \xi_{x} u_{\xi}+\lambda \eta_{x}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(n)_{\xi}\right]+\mu \eta_{r}\left(\xi_{r} u_{\xi}+\xi_{x} v_{\xi}\right)\right\}
\end{aligned}
$$

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}$ for the inviscid terms in the axisymmetric form of the energy equation are

$$
\frac{\partial \hat{\mathbf{E}}_{2}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
\frac{\partial p}{\partial \rho} \xi_{x}-u f_{1} & \xi_{t}+f_{1}+u \xi_{x}+\frac{\partial p}{\partial(\rho u)} \xi_{x} & u \xi_{r}+\frac{\partial p}{\partial(\rho v)} \xi_{x} & \frac{\partial p}{\partial(\rho w)} \xi_{x} & \frac{\partial p}{\partial E_{T}} \xi_{x}
\end{array}\right]
$$

where $f_{1}=u_{5}^{\xi_{x}}+v \xi_{r}$.
The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}}_{v_{1}} / \partial \hat{\mathbf{Q}}$ for the viscous terms are

$$
\frac{\left.\partial \hat{\mathbf{E}}_{V_{\hat{1}}}\right)_{2}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{21} \alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)+\alpha_{x r}^{\prime} \frac{1}{\rho} r_{\xi} 00\right]
$$

where

$$
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{21}=-\alpha_{x x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)-\alpha_{x r}^{\prime} \frac{v}{\rho} r_{\xi} \\
\alpha_{x x}=(2 \mu+i) \xi_{x}^{2}+\mu \xi_{r}^{2} \\
\alpha_{x r}=(\mu+i) \xi_{x} \xi_{r}
\end{gathered}
$$

$$
\alpha_{x r}^{\prime}=\frac{\lambda}{r} \xi_{x} \xi_{r}
$$

As in 2-D planar flow, the Jacobian cocfficient matrices $\partial \hat{\mathbf{F}}_{2} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}$ have the same form as $\partial \hat{\mathbf{E}}_{2} / \dot{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{2} / \partial \hat{\mathbf{Q}}$, but with $\frac{5}{5}$ replaced by η.

Note that the equations for 2-D planar and axisymmeric flow are very similar. In the axisymmetric equations there are some additional terms involving the radius r in the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in front of the flux vectors $\dot{\mathbf{E}}^{\prime}, \hat{\mathbf{E}}_{b}$, etc., and in front of the Jacobian coefficient matrices $\partial \dot{\mathbf{H}}_{2} / \partial \hat{\mathbf{Q}}, \partial\left(\hat{\mathbf{E}}_{r}\right)_{2} / \hat{\mathbf{Q}}$, etc. In addition, $1 / r$ appears in front of every term in the equation except the $\Delta(\hat{\rho} u)$ terms. In PROTELS, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFX, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms for the second ADI sweep have exactly the same form as for the first sweep, but with ξ replaced by η. By defining DEL, MLTX, METY, and MFTT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow, and the radius r for axisymmetric flow. This adds the r in front of the Jacobian cocfficient matrices for axisymmetric flow, but has no (ffect for 2-D planar flow. The $1 / r$ cocfficient in front of each term will be added later. In this section of code, the cocfficient of $\Delta(\rho u)$ (part of $\mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{XXM}, \mathrm{XRL})$) is set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side. for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terns. These formulas are presented in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as $1 / J$, is temporarily redefined as M / J before the COIF routines are called. This automatically accounts for the r coefficient in front of all the flux vectors in the source term. The $1 / r$ coefficient in front of cach term will be added later. This definition of II adds an r in front of the $\Delta \hat{\rho} \hat{\rho})^{n}$: term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of $\Delta(\hat{\rho} u)^{\circ}$, comes next. The definition of Ji also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the $1 / r$ coefficient where it should be added, and removes the r in front of the $\Delta(\hat{\rho} u)$ terms.

Remarks

1. This cubroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 23.
2. The subscripts on the lortran variables A, B, C, and S may be confusing. The first subseript is the index in the non-sweep (i.e.. "vectorized") direction, and the second subscript is the index in the sweep diection. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by r at the end). the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which A, B, or C is a coefficiont.
3. The coding of the extra coefficients and source terns in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding. and is bypassed if there is no swirl.
4. The luler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous terms containing derivatives in the specified direction.

Subroutine COEFY		
Called by	Calls	Purpose
EXEC		Compute coefficients and source term for the y or r-momentum equation.

Input

ALPHA

* Al.Phal, Al Phaz

DEL
DPDRHO, DPDRL, DPDRV, DPDRW, DPDEI
DTAU
DXI, DETA
ETAX, ETAY, ETAT

* IAXI

IBASE, ISTEP

* IEULER

ISWEEP

* ISWIRL
* ITHIN

IV
I1, I2
JI

METX, METY, METT
MU, LA
NEQ
NPTS
NR, NRU, NRV, NRW, NET
NYM
P
RAX

* RER

RHO, U, V, W

Spatial difference centering parameter α for the sweep direction.
Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing in sweep direction
Derivatives $\partial p / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)$, and $\partial p / \partial E_{T}$.
Time step $\Delta \tau$.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.

Flag for axisymmetric flow.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Current ADI sweep number.
Flag for swirl in axisymmetric flow.
Flags for thin-layer option.
Index in the "vectorized" direction, i_{v}.
Grid indices i and j, in the ξ and η directions.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1} (times the radius r for axisymmetric flow.)
Derivatives of sweep direction computational coordinate with respect to x, y (or r if axisymmetric), and t.
Effective coefficient of viscosity μ and effective second coefficient of viscosity λ at time level n.
Number of coupled equations being solved, $N_{e q}$.
Number of grid points in the sweep direction, N.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
Array index associated with the y-momentum (or r-momentum if axisymmetric) equation.
Static pressure p at time level n.
1 for two-dimensional planar flow, and the local radius r for axisymmetric flow.
Reference Reynolds number $R e_{r}$.
Static density ρ, and velocities u, v, and w, at time level n.

RHOL, LL, VL

* THY

XIX, XIY, XIT
Y

Static density ρ, and velocities u and v from previous ADI sweep. Parameters θ_{1}, θ_{2}, and θ_{3} determining type of time differencing for the y-momentum equation.
Metric coefficients ξ_{x}, ξ_{y} (or ξ_{r} if axisymmetric), and ξ_{r}. Radial coordinate r for axisymmetric flow.

Output

A, B, C
S

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at interior points (row NYM only).
Source term subvector S at interior points (element NYM only).

Description

Subroutine COEFY computes the coefficients and source term for the y-momentum equation for 2-D planar flow, or the r-momentum cquation for axisymmetric flow. Fquations ($8.5 \mathrm{a}-\mathrm{b}$) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors $\hat{\mathbf{E}}$ and $\hat{\mathbf{F}}$ are given in Section 2.0 of Volume 1, and the elements of the viscous flux vectors $\hat{\mathbf{E}}_{V_{1}}, \dot{\mathbf{E}}_{\gamma_{2}}$, etc., are given in Appendix A of Volume 1. The Jacobian coefficient matrices $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}, \partial \hat{\mathbf{E}}_{r_{1}} / \partial \hat{\mathbf{Q}}$, etc., are given in Section 5.0 of Volume 1. Using all of these equations, the differenced form of the y-momentum equation for 2-D planar flow may be written for the two ADI sweeps as ${ }^{21}$

Sweep 1 (ξ direction)

$$
\begin{aligned}
\Delta(\hat{\rho v})_{i}^{*} & +\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \xi}\left[-\alpha\left(\frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}}\left[\left(f_{i-1}+f_{i}\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}-\left(f_{i-1}+2 f_{i}+f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}+\left(f_{i}+f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{*}\right]= \\
& -\frac{\Delta \tau}{1+\theta_{2}}\left(\delta_{\xi} \hat{\mathbf{E}}_{3}+\delta_{\eta} \hat{\mathbf{F}}_{3}\right)^{n}+\frac{\Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{1}}\right)_{3}\right]^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}\right]^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}}\left[\delta_{\xi}\left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}+\delta_{\eta}\left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}\right]^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta(\hat{\rho v})^{n-1}
\end{aligned}
$$

Sweep 2 (η direction)

$$
\begin{aligned}
& \Delta(\hat{\rho} v)_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta}\left[-\alpha\left(\frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 \alpha-1)\left(\frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(\frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
&-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}}\left[\left(f_{j-1}+f_{j}\right)^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(f_{j-1}+2 f_{j}+f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(f_{j}+f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta(\hat{\rho v})^{*}
\end{aligned}
$$

[^17]In the above equations, the subscripts i and j represent grid point indices in the ξ and η directions. For notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j. On the left hand side, f is the coefficient of $\partial / \partial \xi$ (or $\partial / \partial \eta$, depending on the sweep) in the $\partial \hat{\mathbf{E}}_{\nu_{\mathbf{1}}} / \partial \hat{\mathbf{Q}}$ (or $\left.\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}\right)$ Jacobian coefficient matrix. Similarly, g is the term in the parentheses following $\partial / \partial \xi$ (or $\partial / \partial \eta$) in the $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ (or $\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}$) Jacobian coefficient matrix.

The vector of dependent variables is

$$
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{llll}
\rho & \rho u & \rho v & E_{T}
\end{array}\right]^{T}
$$

The appropriate elements of the inviscid flux vectors are given by

$$
\begin{aligned}
& \hat{\mathbf{E}}_{3}=\frac{1}{J}\left[\rho u v \xi_{x}+\left(\rho v^{2}+p\right) \xi_{y}+\rho v \xi_{t}\right] \\
& \hat{\mathbf{F}}_{3}=\frac{1}{J}\left[\rho u v \eta_{x}+\left(\rho v^{2}+p\right) \eta_{y}+\rho v \eta_{t}\right]
\end{aligned}
$$

The appropriate elements of the non-cross derivative viscous flux vectors are

$$
\begin{aligned}
& \left(\hat{\mathbf{E}}_{\nu_{1}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \xi_{y}^{2} v_{\xi}+\lambda \xi_{y}\left(\xi_{x} u_{\xi}+\xi_{y} v_{\xi}\right)+\mu \xi_{x}\left(\xi_{y} u_{\xi}+\xi_{x} v_{\xi}\right)\right] \\
& \left(\hat{\mathbf{F}}_{\nu_{1}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{y}^{2} v_{\eta}+\lambda \eta_{y}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \eta_{x}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right]
\end{aligned}
$$

And the appropriate elements of the cross derivative viscous flux vectors are

$$
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \xi_{y} \eta_{y} v_{\eta}+\lambda \xi_{y}\left(\eta_{x} u_{\eta}+\eta_{y} v_{\eta}\right)+\mu \xi_{x}\left(\eta_{y} u_{\eta}+\eta_{x} v_{\eta}\right)\right] \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left[2 \mu \eta_{y} \xi_{y} v_{\xi}+\lambda \eta_{y}\left(\xi_{x} u_{\xi}+\xi_{y} v_{\xi}\right)+\mu \eta_{x}\left(\xi_{y} u_{\xi}+\xi_{x} v_{\xi}\right)\right]
\end{aligned}
$$

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}$ for the inviscid terms in the y-momentum equation are

$$
\frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}=\left[\frac{\partial p}{\partial \rho} \xi_{y}-v f_{1} \quad \nu \xi_{x}+\frac{\partial p}{\partial(\rho u)} \xi_{y} \quad \xi_{t}+f_{1}+v \xi_{y}+\frac{\partial p}{\partial(\rho v)} \xi_{y} \quad \frac{\partial p}{\partial E_{T}} \xi_{y}\right]
$$

where $f_{1}=u \xi_{x}+v \xi_{y}$.
The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ for the viscous terms are

$$
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31} \quad \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad \alpha_{y y} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \quad 0\right]
$$

where

$$
\left(\frac{\partial \hat{\mathbf{E}}_{\nu_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31}=-\alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{y y} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)
$$

$$
\begin{gathered}
\alpha_{x y}=(\mu+\lambda) \xi_{x} \xi_{y} \\
\alpha_{y y}=\mu \xi_{x}^{2}+(2 \mu+\lambda) \xi_{y}^{2}
\end{gathered}
$$

The Jacobian coefficient matrices $\partial \hat{\mathbf{F}}_{3} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{F}}_{i_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}$ have the same form as $\partial \hat{\mathbf{E}}_{3} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{E}}_{p_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}$, but with ξ replaced by η.

As an example of how these equations are translated into lortran, consider the $\Delta(p u / f)$ term on the left hand side for the first sweep. This is the second element of $\hat{\mathbf{Q}}$, so using the second clement in $\hat{\mathbf{N}}, \hat{\mathbf{Q}}$, we get for the inviscid term

$$
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NYM}, \mathrm{NRL})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(-\alpha)\left[\left(\xi_{\mathrm{g}}\right)_{i-1, j}+\left(\frac{\partial p}{\partial(1,1)} \xi_{y}\right)_{i, 1, j}\right] \\
& \mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{YYM}, \mathrm{NR} \mathrm{C})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta_{\xi}}(2 x-1)\left[\left(v_{x}\right)_{i, j}+\left(\frac{\partial p}{\partial\left(\rho^{\prime}\right)} \xi_{y}\right)_{i, j}\right] \\
& C(I V, I, N Y M, N R U)=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi}(1-\alpha)\left[\left(v_{x}\right)_{i+1 . j}+\left(\frac{\theta_{1}}{\lambda(\rho u)} \xi_{y}\right)_{i+1, j}\right]
\end{aligned}
$$

For the viscous terms on the left hand side, we use the second element in $\left.\hat{(i)} \hat{\mathbf{F}}_{v_{1}}\right) / \hat{\mathbf{Q}}$, which is

$$
\frac{1}{R e_{r}} \alpha_{x y} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)
$$

Thus $f=\alpha_{x y} / R e_{\text {, }}$ and $g=1 / \rho$. To add the viscous contribution to this part of the A coefficient subinatrix, we therefore set

$$
A\left(\mathrm{IV}, \mathrm{I}, \mathrm{MYM}, \mathrm{NRL},=\Delta(\mathrm{IV}, \mathrm{I}, \mathrm{NYM}, \mathrm{NRU})-\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2} R e_{r}}\left[\left(x_{x y}\right)_{i-1, j}+\left(x_{x y}\right)_{i, j}\right]\left(\frac{1}{\rho}\right)_{i-1, j}\right.
$$

Similar equations may be written for the \mathbf{B} and \mathbf{C} coefficient submatrices.
The equations for axisymmetric flow are developed in $A_{p} p e n d i x B$ of Volume 1 . The axisymmetric -momentum equation for the two ADI sweeps is given by?

[^18]
Sweep 1 (ξ direction)

$$
\begin{aligned}
& \Delta(\hat{\rho} v)_{i}^{*}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r}\left[-x\left(r \frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}+(2 x-1)\left(r \frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{+}+(1-\alpha)\left(r \frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left.\left(1+\theta_{2}\right) 2(\Delta t)^{5}\right)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f_{i} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}-\left(r_{r-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{Q}_{i}^{\cdot}+\left(r_{i} f_{i}+r_{i+1} f_{i-1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}\right]\right. \\
& +\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{3}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{\nu_{3}}\right.}{\partial \hat{\mathbf{Q}}}\right]_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{\cdot}=-\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(r \hat{\mathbf{E}}_{3}\right)+\delta_{\eta}\left(r \hat{\mathbf{F}}_{3}\right)+\hat{\mathbf{H}}_{3}\right]^{n} \\
& +\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{i}\left[r\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{1}}\right)_{3}\right]+\left(\hat{\mathbf{H}}_{v^{\prime}}\right\}^{n}\right\}^{n}+\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\left\{\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}\right]\right\}^{n}, ~}^{n}\right. \\
& \left.-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{s}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}\right]\right\}^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta \hat{\rho} \hat{\nu}\right)^{n-1}
\end{aligned}
$$

Sweep 2 (n direction)

$$
\begin{aligned}
& \Delta(\hat{\rho} v)_{j}^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta} \frac{1}{r}\left[-\alpha\left(r \frac{\partial \hat{F}_{3}}{\partial \hat{Q}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 \alpha-1)\left(r \frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(r \frac{\partial \hat{\mathbf{F}}_{3}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
&-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[\left(r_{j-1} f_{j-1}+r_{j} f_{j}\right)_{j-1}^{n} g_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j-1} f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta(\hat{\rho v})^{n}
\end{aligned}
$$

where now

$$
\begin{aligned}
& \hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T} \\
& \hat{\mathbf{E}}_{3}=\frac{1}{J}\left[\rho u v \xi_{x}+\left(\rho v^{2}+p\right) \xi_{r}+\rho v \xi_{t}\right] \\
& \hat{\mathbf{F}}_{3}=\frac{1}{J}\left[\rho u v \eta_{x}+\left(\rho v^{2}+\rho\right) \eta_{r}+\rho v \eta_{t}\right] \\
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{r}^{2} v_{\xi}+\lambda \xi_{r}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(r v)_{\xi}\right]+\mu \xi_{x}\left(\xi_{r} u_{\xi}+\xi_{x} v_{\xi}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{\nu_{1}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \eta_{r}^{2} v_{\eta}+\lambda \eta_{r}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(r)_{\eta}\right]+\mu \eta_{x}\left(\eta_{r} u_{\eta}+\eta_{x} \nu_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{2 \mu \xi_{r} \eta_{r} v_{\eta}+\lambda \xi_{r}\left[\eta_{x} u_{\eta}+\frac{1}{r} \eta_{r}(r v)_{\eta}\right]+\mu \xi_{x}\left(\eta_{r} u_{\eta}+\eta_{x} v_{\eta}\right)\right\} \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{3}=\frac{1}{J} \frac{1}{\operatorname{Re}_{r}}\left\{2 \mu \eta_{r} \xi_{r} v_{\xi}+\lambda \eta_{r}\left[\xi_{x} u_{\xi}+\frac{1}{r} \xi_{r}(r v)_{\xi}\right]+\mu \eta_{x}\left(\xi_{r} u_{\xi}+\xi_{x} v_{\xi}\right)\right\} \\
& \hat{\mathbf{H}}_{3}=\frac{1}{J}\left(-p-\rho w^{2}\right) \\
& \left(\hat{\mathbf{H}}_{V}\right)_{3}=\frac{1}{J} \frac{1}{R e_{r}}\left\{-2 \mu \frac{\nu}{r}-\lambda\left(\xi_{x} u_{5}+\eta_{x} u_{\eta}\right)+\frac{\lambda}{r}\left[\xi_{r}(n)_{\xi}+\eta_{r}(n)_{\eta}\right]\right\}
\end{aligned}
$$

The $\hat{\mathbf{H}}$ and $\hat{\mathbf{H}}_{\nu}$ terms, which do not appear in the 2-D planar form of the equations, result from the nonconservative form of the axisymmetric equations.

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}$ for the inviscid terms in the axisymmetric form of the energy equation are

$$
\frac{\partial \hat{\mathbf{E}}_{3}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
\frac{\partial p}{\partial \rho} \xi_{r}-v f_{1} & v \xi_{x}+\frac{\partial p}{\partial(\rho u)} \xi_{r} & \xi_{t}+f_{1}+v \xi_{r}+\frac{\partial p}{\partial(\rho v)} \xi_{r} & \frac{\partial p}{\partial(\rho w)} \xi_{r} & \frac{\partial p}{\partial E_{T}} \xi_{r}
\end{array}\right]
$$

where $f_{1}=u \xi_{x}+v \xi_{r}$.
The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}}_{V_{1}} \partial \partial \hat{\mathbf{Q}}$ for the viscous terms are

$$
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31} \alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right) \alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)+\alpha_{r r}^{\prime} \frac{1}{\rho} r_{\xi} 000\right]
$$

where

$$
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{31}=-\alpha_{x r} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)-\alpha_{r r} \frac{\partial}{\partial \xi}\left(\frac{\nu}{\rho}\right)-\alpha_{r r}^{\prime} \frac{\nu}{\rho} r_{\xi} \\
\alpha_{x r}=(\mu+\lambda) \xi_{x} \xi_{r} \\
\alpha_{r r}=\mu \xi_{x}^{2}+(2 \mu+\lambda) \xi_{r}^{2} \\
\alpha_{r r}^{\prime}=\frac{\lambda}{r} \xi_{r}^{2}
\end{gathered}
$$

As in 2-D planar flow, the Jacobian coefficient matrices $\partial \hat{\mathbf{F}}_{3} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}$ have the same form as $\partial \hat{\mathbf{E}}_{3} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{3} / \partial \hat{\mathbf{Q}}$, but with ξ replaced by η.

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{H}} / \partial \hat{\mathbf{Q}}$ are

$$
\frac{\partial \hat{\mathbf{H}}_{3}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
-\frac{\partial p}{\partial \rho}+w^{2} & -\frac{\partial p}{\partial(\rho u)} & -\frac{\partial p}{\partial(\rho v)} & -\frac{\partial p}{\partial(\rho w)}-2 w & -\frac{\partial p}{\partial E_{T}}
\end{array}\right]
$$

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{H}}_{V} / \partial \hat{\mathbf{Q}}$ are

$$
\frac{\partial\left(\hat{\mathbf{H}}_{V)_{3}}\right.}{\partial \hat{\mathbf{Q}}}=\frac{1}{\operatorname{Re} e_{r}}\left[\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{31}\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{32}\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{33} 000\right]
$$

where

$$
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{31}=\lambda \xi_{x} \frac{\partial}{\partial \xi}\left(\frac{u}{\rho}\right)+\lambda \xi_{r} \frac{\partial}{\partial \xi}\left(\frac{v}{\rho}\right)+\lambda \eta_{x} \frac{\partial}{\partial \eta}\left(\frac{u}{\rho}\right) \\
+\left[2 \mu+\lambda\left(\xi_{r} r_{\xi}+\eta_{r} r_{\eta}\right)\right] \frac{1}{r} \frac{v}{\rho}+\lambda \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{v}{\rho}\right) \\
\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{32}=-\lambda \xi_{x} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)-\lambda \eta_{x} \frac{\partial}{\partial \eta}\left(\frac{1}{\rho}\right)
\end{gathered}
$$

$$
\left(\frac{\partial \mathbf{H}_{V}}{\partial \hat{Q}}\right)_{33}=-\lambda \xi_{r} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)-\left[2 \mu+\lambda\left(\xi_{r} r_{\xi}+\eta_{r} r_{\eta}\right)\right] \frac{1}{r} \frac{1}{\rho}-\lambda \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{1}{\rho}\right)
$$

Note that, except for the additional $\hat{\mathbf{H}}$ and $\hat{\mathbf{H}}_{v}$, terms, the equations for 2 -D planar and axisymmetric flow are very similar. In the axisymmetric equations there are some additional terms involving the radius r in the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in front of the flux vectors $\hat{\mathbf{E}}, \hat{\mathbf{E}}_{V_{1}}$, etc., and in front of the Jacobian coefficient matrices $\dot{\mathbf{F}}_{3} / \partial \dot{\mathbf{Q}}, \partial\left(\dot{\mathbf{E}}_{b_{2}}\right)_{3} / \partial \hat{\mathbf{Q}}$, etc. In addition, $1 / r$ appears in front of every term in the equation except the A(ωv terms. In PROTEXS, the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing. It is hoped that this detailed description, when compared with the source listing. will help make things clear.

In COEFY, the coefficients of the left hand side, or implicit, terms are defined first. With the exception of the II and \mathbf{H}_{4} turms, which only appear in the first ADI sweep, the implicit terms for the second sweep have exactly the same form as for the first sweep, but with ξ replaced by η. By defining DEI., METX, WEIY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. The variable RAX is equal to 1 for $2-D$ planar flow, and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for axisymmetric flow, but has no effect for 2-D planar flow. The $1 / r$ coefficient in front of each tern will be added later. In this section of code, the coefficient of $\Delta(\rho v)$ (part of $B(I V, I, N Y M, N R V)$) is set equal t, r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Scetion 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally detined as $1 / J$, is temporarily redefined as r / J before the COEF routines are called. This automatically accounts for the r coefficient in front of all the flux vectors in the source term. The $1 / r$ coefficient in front of each term will be added later. This definition of JI adds an r in front of the $\Delta(\hat{\rho} v)^{n-1}$ term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of $\Delta(\rho v)^{\circ}$, comes next. The definition of JI atso adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius r. This adds the $1 / r$ coefficient where it should be added, and removes the r in front of the $\Delta(\hat{\rho} v)$ terms.

Remarhs

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only: to the first sweep, the first two subscripts are written as (I2,II). Ior sections that apply only to the second sweep, they are written as (I1,I2). The third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which A, B, or C is a coefficient.
3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding, and is bypassed if there is no swirl.
4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous terms containing derivatives in the specified direction.

Subroutine COEFZ		
Called by	Calls	Purpose
EXFC		Compute coefficients and source term for the swirl momentum equation.

Input

ALPHA

* ALPHA1, ALPHA2

DEL
DTAU
DNI, DETA
ETAX, ETAY, ETAT
IBASE, ISTEP

* IEULER

ISWEEP

* ITIIIN

IV
I1, I2
JI

METX, METY, METT

MU
NEQ
NPTS
NR, NRU, NRV, NRW, NET
NZ.M
RAX

* RER

RHO, L, V, W
RHOL, WL

* THZ

XIX, XIY, XIT
Y

Spatial difference centering parameter α for the sweep direction.
Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.

Computational grid spacing in sweep direction.
Time step $\Delta \tau$.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Metric coefficients η_{x}, η_{y} (or η, if axisymmetric), and η_{t}.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Flag for Euler calculation.
Current ADI sweep number.
Flags for thin-layer option.
Index in the "vectorized" direction, i_{2}.
Grid indices i and j, in the ξ and η directions.
Inverse Jacobian of the nonorthogonal grid transformation times the radius, $r J^{-1}$.
Derivatives of sweep direction computational coordinate with respect to x, r, and t.

Effective coefficient of viscosity μ at time level n.
Number of coupled equations being solved, $N_{\text {eq }}$.
Number of grid points in the sweep direction, N.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.

Array index associated with the swirl momentum equation.
The local radius r.
Reference Reynolds number Rer.
Static density ρ, and velocities u, v, and w, at time level n.
Static density ρ and velocity w from previous ADI sweep.
Parameters θ_{1}, θ_{2}, and θ_{3} determining type of time differencing for the swirl momentum equation.

Radial coordinate r.

Output

A, B, C

S

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} at interior points (row $\times Z . \mathrm{M}$ only).
Source term subvector S at interior points (element NZM only).

Description

Subroutine COEFZ computes the coefficients and source term for the swirl momentum equation, which is only valid in axisymmetric flow. The equations for axisymmetric flow are developed in Appendix B of Volume 1. The swirl momentum equation for the two ADI sweeps is given by ${ }^{23}$

Sweep 1 (ξ direction)

$$
\begin{aligned}
& \Delta\left(\hat{r}^{\prime}\right)_{i}+\frac{\theta_{1} \Delta-}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r}\left[-x\left(r \frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{\cdot}+(2 x-1)\left(r \frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}^{\cdot}+(1-x)\left(r \frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{\cdot}\right] \\
& -\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \xi)^{2}} \frac{1}{r}\left[\left(r_{i-1} f_{i-1}+r_{i} f\right)^{n} g_{i-1}^{n} \Delta \hat{\mathbf{Q}}_{i-1}^{*}-\left(r_{i-1} f_{i-1}+2 r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i}^{n} \Delta \hat{\mathbf{Q}}_{i}+\left(r_{i} f_{i}+r_{i+1} f_{i+1}\right)^{n} g_{i+1}^{n} \Delta \hat{\mathbf{Q}}_{i+1}^{n}\right] \\
& +\frac{\theta_{1} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\frac{\partial \hat{\mathbf{H}}_{4}}{\partial \hat{\mathbf{Q}}}-\frac{\partial\left(\hat{\mathbf{H}}_{V}\right)_{4}}{\partial \hat{\mathbf{Q}}}\right]^{n} \Delta \hat{\mathbf{Q}}_{i}^{*}=-\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left[\delta_{\xi}\left(r \hat{\mathbf{E}}_{4}\right)+\delta_{n}\left(r \hat{\mathbf{F}}_{4}\right)+\hat{\mathbf{H}}_{4}\right]^{n}+\frac{\Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4}\right]+\left(\hat{\mathbf{H}}_{V}\right)_{4}\right\}^{n} \\
& +\frac{\left(1+\theta_{3}\right) \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]\right\}^{n}-\frac{\theta_{3} \Delta \tau}{1+\theta_{2}} \frac{1}{r}\left\{\delta_{\xi}\left[r\left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}\right]+\delta_{n}\left[r\left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}\right]\right\}^{n-1}+\frac{\theta_{2}}{1+\theta_{2}} \Delta(\hat{\rho w})^{n-1}
\end{aligned}
$$

Sweep 2 (n direction)

$$
\begin{aligned}
& \Delta(\rho \hat{w})^{n}+\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) \Delta \eta} \frac{1}{r}\left[-x\left(r \frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j-1}^{n} \Delta \hat{\mathbf{Q}}_{j-1}^{n}+(2 x-1)\left(r \frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+(1-\alpha)\left(r \frac{\partial \hat{\mathbf{F}}_{4}}{\partial \hat{\mathbf{Q}}}\right)_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right] \\
&-\frac{\theta_{1} \Delta \tau}{\left(1+\theta_{2}\right) 2(\Delta \eta)^{2}} \frac{1}{r}\left[\left(r_{j-1} f_{j-1}+r_{j} f_{j}\right)_{j-1}^{n} g_{j-1}^{n} \hat{\mathbf{Q}}_{j-1}^{n}-\left(r_{j-1} f_{j-1}+2 r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j}^{n} \Delta \hat{\mathbf{Q}}_{j}^{n}+\left(r_{j} f_{j}+r_{j+1} f_{j+1}\right)^{n} g_{j+1}^{n} \Delta \hat{\mathbf{Q}}_{j+1}^{n}\right]= \\
& \Delta(\hat{\rho W})^{*}
\end{aligned}
$$

In the above equations, the subscripts i and j represent grid point indices in the ξ and η directions. For notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j. On the left hand side, f is the coefficient of $\partial / \partial \xi$ (or $\partial / \partial \eta$, depending on the sweep) in the $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ (or $\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}$) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following $\partial / \partial \xi$ (or $\partial / \partial \eta$) in the $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ (or $\partial \hat{\mathbf{F}}_{V_{1}} / \partial \hat{\mathbf{Q}}$) Jacobian coefficient matrix.

The vector of dependent variables is

$$
\hat{\mathbf{Q}}=\frac{1}{J}\left[\begin{array}{lllll}
\rho & \rho u & \rho v & \rho w & E_{T}
\end{array}\right]^{T}
$$

The appropriate elements of the inviscid flux vectors are given by

[^19]\[

$$
\begin{aligned}
& \hat{\mathbf{E}}_{4}=\frac{1}{J}\left[\rho w w \xi_{x}+\rho v w \xi_{r}+\rho w \xi_{t}\right] \\
& \hat{\mathbf{F}}_{4}=\frac{1}{J}\left[\rho w w \eta_{x}+\rho v w \eta_{r}+\rho w \eta_{t}\right]
\end{aligned}
$$
\]

The appropriate elements of the non-cross derivative viscous flux vectors are

$$
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \xi_{x}^{\xi^{2} w_{\xi}}+\mu \xi_{r}^{2} w_{\xi}\right) \\
& \left(\hat{\mathbf{F}}_{V_{1}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \eta_{x}^{2} w_{\eta}+\mu \eta_{r}^{2} w_{\eta}\right)
\end{aligned}
$$

And the appropriate elements of the cross derivative viscous flux vectors are

$$
\begin{aligned}
& \left(\hat{\mathbf{E}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \xi_{x} \eta_{x} w_{\eta}+\mu \xi_{r} \eta_{r} w_{\eta}-\mu \xi_{r} \frac{w}{r}\right) \\
& \left(\hat{\mathbf{F}}_{V_{2}}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left(\mu \eta_{x} \xi_{x} w_{\xi}+\mu \eta_{r} \xi_{r} w_{\xi}-\mu \eta_{r} \frac{w}{r}\right)
\end{aligned}
$$

The extra terms resulting from the non-conservative form of the axisymmetric equations are

$$
\begin{gathered}
\hat{\mathbf{H}}_{4}=\frac{1}{J} \rho v w \\
\left(\hat{\mathbf{H}}_{\nu}\right)_{4}=\frac{1}{J} \frac{1}{R e_{r}}\left[\mu\left(\xi_{r} w_{\xi}+\eta_{r} w_{\eta}\right)-\mu \frac{w}{r}\right]
\end{gathered}
$$

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}} / \partial \hat{\mathbf{Q}}$ for the inviscid terms in the r-momentum equation are

$$
\frac{\partial \hat{\mathbf{E}}_{4}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
-w f_{1} & w \xi_{x} & w \xi_{r}^{\xi} & \xi_{t}+f_{1} & 0
\end{array}\right]
$$

where $f_{1}=u \xi_{x}+\nu \xi_{,}$.
The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{E}}_{V_{1}} / \partial \hat{\mathbf{Q}}$ for the viscous terms are

$$
\frac{\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4}}{\partial \hat{\mathbf{Q}}}=\frac{1}{R e_{r}}\left[\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41} \begin{array}{llll}
& 0 & 0 & \alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)
\end{array} 0\right]
$$

where

$$
\begin{gathered}
\left(\frac{\partial \hat{\mathbf{E}}_{V_{1}}}{\partial \hat{\mathbf{Q}}}\right)_{41}=-\alpha_{z z} \frac{\partial}{\partial \xi}\left(\frac{w}{\rho}\right) \\
\alpha_{z z}=\mu \xi_{x}^{2}+\mu \xi_{r}^{2}
\end{gathered}
$$

The Jacobian coefficient matrices $\partial \hat{\mathbf{F}}_{4} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{F}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}$ have the same form as $\partial \hat{\mathbf{E}}_{4} / \partial \hat{\mathbf{Q}}$ and $\partial\left(\hat{\mathbf{E}}_{V_{1}}\right)_{4} / \partial \hat{\mathbf{Q}}$,
but with ξ replaced by η. but with ξ replaced by η.

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{H}} / \partial \hat{\mathbf{Q}}$ are

$$
\frac{\partial \hat{\mathbf{H}}_{4}}{\partial \hat{\mathbf{Q}}}=\left[\begin{array}{lllll}
-v w & 0 & w & v & 0
\end{array}\right]
$$

The elements of the Jacobian coefficient matrix $\partial \hat{\mathbf{H}}_{v} / \partial \hat{\mathbf{Q}}$ are

$$
\frac{\partial\left(\hat{\mathbf{H}}_{V}\right)_{4}}{\partial \hat{\mathbf{Q}}}=\frac{1}{\operatorname{Re}_{r}}\left[\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{41} \quad 0 \quad 0\left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{44} \quad 0\right]
$$

where

$$
\begin{aligned}
& \left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{41}=-\mu \xi_{r} \frac{\partial}{\partial \xi}\left(\frac{w}{\rho}\right)+\frac{\mu}{r} \frac{w}{\rho}-\mu \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{w}{\rho}\right) \\
& \left(\frac{\partial \hat{\mathbf{H}}_{V}}{\partial \hat{\mathbf{Q}}}\right)_{44}=\mu_{\xi_{r}} \frac{\partial}{\partial \xi}\left(\frac{1}{\rho}\right)-\frac{\mu}{r} \frac{1}{\rho}+\mu \eta_{r} \frac{\partial}{\partial \eta}\left(\frac{1}{\rho}\right)
\end{aligned}
$$

As an example of how these equations are translated into Fortran, consider the $\Delta(\rho v / /)$ term on the left hand side for the first sweep. This is the third element of $\hat{\mathbf{Q}}$, so using the third element in $\partial \hat{\mathbf{E}} / 4 \hat{\mathbf{Q}}$, and including the contribution from the third element of $\partial \hat{\mathbf{H}}_{4} / \partial \hat{\mathbf{Q}}$, we get for the inviscid term

$$
\begin{aligned}
& \mathrm{A}(\mathrm{IV}, \mathrm{I}, \mathrm{NZM}, \mathrm{NRV})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r_{i, j}}(-\alpha)\left[\left(n \xi_{r}^{\xi}\right)_{i-1, j}\right] \\
& \mathrm{B}(\mathrm{IV}, \mathrm{I}, \mathrm{NZM}, \mathrm{NRV})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r_{i, j}}(2 \alpha-1)\left[\left(n w \xi_{r}\right)_{i, j}\right]+\frac{\theta_{1}(\Delta \tau)_{i, j}}{1+\theta_{2}} \frac{1}{r_{i, j}} w_{i, j} \\
& \mathrm{C}(\mathrm{IV}, \mathrm{I}, \mathrm{NZM}, \mathrm{NRV})=\frac{\theta_{1}(\Delta \tau)_{i, j}}{\left(1+\theta_{2}\right) \Delta \xi} \frac{1}{r_{i, j}}(1-\alpha)\left[\left(n \xi_{r}\right)_{i+1, j}\right]
\end{aligned}
$$

For the $\Delta(\rho v / \Omega)$ term, there are no viscous terms on the left hand side.
In COEFZ, the coefficients of the left hand side, or implicit, terms are defined first. With the exception of the $\hat{\mathbf{H}}$ and $\hat{\mathbf{H}}_{v}$ terms, which only appear in the first ADI sweep, the implicit terms for the second sweep have exactly the same form as for the first sweep, but with ξ replaced by η. By defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can be used for both sweeps. Since COEFZ is only used in axisymmetric flow, the variable RAX is equal to the radius r. This adds the r in front of the Jacobian coefficient matrices. The $1 / r$ coefficient in front of each term will be added later. In this section of code, the coefficient of $\Delta(\hat{\rho} \hat{w})$ (part of B(IV,I,NZM,NRW)) is set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to compute the source term are the same as those used for the implicit terms. These formulas are presented in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as $1 / J$, is temporarily redefined as r / J before the COEF routines are called. This automatically accounts for the r coefficient in front of all the flux vectors in the source term. The $1 / r$ coefficient in front of each term will be added later. This definition of JI adds an r in front of the $\Delta(\rho \hat{w})^{n-1}$ term that should not be there. This will also be corrected later.

The coding for the source term for the second sweep, which consists only of $\Delta(\hat{\rho} w)^{\prime}$, comes next. The definition of JI also adds an r in front of this term that should not be there.

And finally, the entire equation is divided by the local radius r. This adds the $1 / r$ coefficient where it should be added, and removes the r in front of the $\Delta(\rho \hat{\omega})$ terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.
2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only to the first sweep, the first two subscripts are written as (I2,II). For sections that apply only to the second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the equation. And, for A, B, and C , the fourth subscript corresponds to the dependent variable for which A, B, or C is a coefficient.
3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the coding of coefficients and source terms involving the swirl velocity is separate from the rest of the coding, and is bypassed if there is no swirl.
4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms for the viscous terms.
5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms for the viscous terms containing derivatives in the specified direction.

Subroutine CONV		
Called by	Calls	Purpose
MAIN	ISA.MAX	Test computed flow field for convergence.

Input

CHGMAX

DUMMY

* EPS
* GAMR
* IAV2E, IAV4E
* ICTEST
* IHSTAG
* ISWIRL

IT
NEQ

* NITAVG
* NOUT

NR, NRU, NRV, NRW, NET
NTOTP

* N1, N2

RESAVG
RESL2
RESMAX
RGAS
RHO, U, V, W, ET
RHOL, LL, VL, WL, ETL

Maximum change in absolute value of the dependent variables from time level $n-1$ to n (or over the previous NITAVG-1 time steps if ICTEST $=2$), $\Delta \mathbf{Q}_{\text {max }}$.
A two-dimensional scratch array.
Convergence level to be reached, ε.
Reference ratio of specific heats, γ_{r}.
Flags for second- and fourth-order explicit implicit artificial viscosity.
Flag for convergence criteria to be used.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Current time step number n.
Number of coupled equations being solved, $N_{\text {eq }}$.
Number of time steps in moving average convergence test.
Lnit number for standard output.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
Cray PARAMETER specifying the storage required for a full two-dimensional array (i.e., N1P $\times \mathrm{N} 2 \mathrm{P}$).
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
The average absolute value of the residual at time level $n, \mathrm{R}_{\text {arg }}$.
The I_{2} norm of the residual at time level $n, \mathrm{R}_{L_{2}}$.
The maximum absolute value of the residual at time level n, $\mathrm{R}_{\text {max }}$.
Gas constant R.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level $n+1$.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.

Output

CHGAVG
CHGMAX

Maximum change in absolute value of the dependent variables, averaged over the last $\lambda I T A V G$ time steps, $\Delta Q_{\text {arg }}$.
Maximum change in absolute value of the dependent variables from time level n to $n+1$ (or over the previous NITAVG time steps if ICTEST $=2$), $\Delta \mathbf{Q}_{\text {max }}$.

ICO.VV

Convergence flag; 1 if converged, 0 if not.

Description

Subroutine CONV checks the computed flow field for convergence. Convergence may be based on: (1) the absolute value of the maximum change in the dependent variables over the previous time step; (2) the absolute value of the maximum change in the dependent variables, averaged over the last NITAVG time steps; (3) the I_{2} norm of the residual for each equation; (4) the average residual for each equation; or (5) the maximum residual for each equation. These parameters are defined in Section 4.1.5 of Volume 2.

The convergence criteria to be used and the level to be reached are set by the input parameters ICTEST and EPS. Each dependent variable or equation is checked separately, and convergence is declared when the specified level is reached for all of the variables or equations. The same criteria is used for each one, but different levels may be specified.

Subroutine CONV first computes $\Delta Q_{\text {max }}$, the absolute value of the maximum change in each dependent variable over all the grid points for the most recent time step. These values are stored in CHGMAX(IVAR,1), where IVAR varies from 1 to NEQ, the number of dependent variables. If ICIEST = 2 (the so-called "moving average" convergence test), CHGMAX(IVAR,2) contains the maximum change for the previous time step, etc.

Then, depending on the value of ICTEST, the chosen convergence criteria is compared with the level to be reached for each dependent variable or equation, and a flag is set if the calculation is converged.

Remarks

1. For ICTEST $=1$ or 2 , the change in E_{τ} is divided by $R /\left(\gamma_{r}-1\right)+1 / 2$. This is equivalent to dividing the dimensional value \bar{E}_{T} by

$$
E_{T_{r}}=\frac{\rho_{r} \bar{R} T_{r}}{\gamma_{r}-1}+\frac{\rho_{r} u_{r}^{2}}{2}
$$

This makes the change in total energy the same order of magnitude as the other conservation variables.
2. For ICTEST $=1$ or 2 , the convergence test is based on (or includes) the change in dependent variables from time level n to $n+1$. For ICTEST $=3,4$, or 5 , convergence is based on the residual at time level n, not $n+1$. This is because the residuals at time level $n+1$ are not computed until the marching step from $n+1$ to $n+2$ is taken.
3. For cases run with artificial viscosity, the residuals are computed and printed both with and without the artificial viscosity terms. This may provide some estimate of the overall error in the solution introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms included.
4. The Cray BLAS routine ISAMAX is used in computing the absolute value of the maximum change in dependent variables.
5. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the change in dependent variables for use by ISAMAX.
6. A warning message is generated if an illegal convergence criteria is specified. ICTEST is reset to 3 (convergence based on the L_{2} norm of the residual), and the calculation will continue.

Subroutine CLBIC (IDIR,T,G,NOLD,TINT,GINT)		
Called by	Calls	Purpose
PAK		Interpolation using Ferguson's parametric cubic.

Input

G

IDIR

I1, I2
NOID

* N1, N2

T

TINT

A two-dimensional array containing NOLD $1 \times$ NOLD2 values of the function $g(t)$ to be interpolated.
Direction flag; 1 if first subscript in G varies, 2 if second subscript varies.
Grid indices i and j, in the ξ and η directions.
Number of values in direction IDIR in array G (i.e., NOLD1 or NOLD2.)
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
A one-dimensional array containing NOLD values of the independent variable t.
A one-dimensional array containing N 1 or N 2 (depending on IDIR) values of the independent variable $t=t_{i n t}$ at which interpolated values $g_{i n t}=g\left(t_{i n t}\right)$ are desired.

Output

GINT
A one-dimensional array containing N 1 or N 2 (depending on IDIR) interpolated values $g_{i n t}=g\left(t_{i n t}\right)$.

Description

Subroutine CUBIC performs interpolation using Ferguson's parametric cubic polynomial (Faux and Pratt, 1979). Given the function $g(t)$ and a value $t_{\text {int }}$, CCBIC computes $g_{\text {int }}=g\left(t_{\text {int }}\right)$.

The function $g(t)$ is specified by the Fortran arrays G and T. For a general value t, let

$$
t_{f}=\frac{t-t_{u}}{t_{d}-t_{u}}
$$

where $t_{u} \leq t \leq t_{d}$. (I.e., t_{u} and t_{d} are the two elements of the array T that bracket t.)
Between t_{u} and t_{d}, assume g can be described by a cubic polynomial in t_{f}, as follows:

$$
g=a_{1}+a_{2} t_{f}+a_{3} t_{f}^{2}+a_{4} t_{f}^{3}
$$

Differentiating,

$$
g^{\prime}=\frac{d g}{d t_{f}}=a_{2}+2 a_{3} t_{f}+3 a_{4} t_{f}^{2}
$$

Noting that $t_{f}=0$ at $t=t_{w}$, and 1 at $t=t_{d}$, we get

$$
\begin{aligned}
g_{u} & =a_{1} \\
g_{u}^{\prime} & =a_{2} \\
g_{d} & =a_{1}+a_{2}+a_{3}+a_{4} \\
g_{d}^{\prime} & =a_{2}+2 a_{3}+3 a_{4}
\end{aligned}
$$

Solving for a_{1} through a_{4},

$$
\begin{aligned}
& a_{1}=g_{u} \\
& a_{2}=g_{u}^{\prime} \\
& a_{3}=3\left(g_{d}-g_{u}\right)-2 g_{u}^{\prime}-g_{d}^{\prime} \\
& a_{4}=2\left(g_{u}-g_{d}\right)+g_{u}^{\prime}+g_{d}^{\prime}
\end{aligned}
$$

Plugging these into the cubic polynomial for f and rearranging,

$$
\begin{aligned}
g & =g_{u}\left(1-3 t_{f}^{2}+2 t_{f}^{3}\right)+g_{d}\left(3 t_{f}^{2}-2 t_{f}^{3}\right) \\
& +g_{u}^{\prime}\left(t_{f}-2 t_{f}^{2}+t_{f}^{3}\right)+g_{d}^{\prime}\left(-t_{f}^{2}+t_{f}^{3}\right)
\end{aligned}
$$

This is the form of the equation used to compute $g_{\text {int }}$.

Remarks

1. At interior points in the array g, the derivatives g_{u}^{\prime} and g_{d}^{\prime} are computed using a second-order central difference formula. At the end points, second-order one-sided difference formulas are used.
2. The Fortran variable TINT is actually a one-dimensional array containing N_{1} or N_{2} input values of $t_{n n}$. Similarly, GINT is a one-dimensional array containing N_{1} or N_{2} output values of $g_{i n t}$.
3. The Fortran array G that specifies the input values of $g(t)$ is actually a two-dimensional array. Within CUBIC, however, only one of the subscripts varics. The input flag IDIR specifies which one.

Subroutine EQSTAT (ICALL)		
Called by	Calls	Purpose
BVUP		Use equation of state to compute pressure, temperature, and their de- EXEC EXVatives with respect to the dependent variables.
NITC		
MAIN		

Input

CP, CV

* HSTAG

IBASE, ISTEP

ICALL

* IHSTAG

NPTS

* N1, N2

RGAS
RHO, U, V, W, ET

Specific heats c_{ρ} and c_{ν}.
Stagnation enthalpy h_{F} used with constant stagnation enthalpy option.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
0 to get p and $T, 1$ to get derivatives of p and T with respect to dependent variables.
Flag for constant stagnation enthalpy option.
Number of grid points in the sweep direction, N.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Gas constant R.
Static density ρ, velocities u, v, and w, and total energy E_{T}.

Output

DPDRHO, DPIDRU, DPDRV, Derivatives $\partial \rho / \partial \rho, \partial p / \partial(\rho u), \partial p / \partial(\rho v), \partial p / \partial(\rho w)$, and $\partial \rho / \partial E_{T}$.
DPDRW, DPDET
DTDRHO, DTDRU, DTDRV, DTDRW, DTDET
ET
INEG
P, T

Derivatives $\partial T / \partial \rho, \partial T / \partial(\rho u), \partial T / \partial(\rho v), \partial T / \partial(\rho w)$, and $\partial T / \partial E_{T}$.
Total energy (constant stagnation enthalpy option only.)
Flag for non-positive pressure and/or temperature; 0 if positive, 1 if non-positive.
Static pressure p and temperature T.

Description

Subroutine EQSTAT computes various quantities that depend on the form of the equation of state. It actually serves a dual purpose. First, it is called from subroutine INITC and from the MAIN program, with the input parameter ICALL $=0$, to compute the static pressure p and temperature T from the initial or just-computed values of the dependent variables. If the constant stagnation enthalpy option is being used it also computes a value for the total energy E_{T}. And second, it is called from subroutines BVUP and EXEC, with ICALL $=1$, to compute the derivatives of p and T with respect to the dependent variables. ${ }^{24}$

The equation of state currently built into PROTELS is for a perfect gas. The formulas used to compute p, T, and their derivatives with respect to the dependent variables are presented in Section 5.3 of Volume 1 for two-dimensional planar flow and in Section B.2.3 of Volume 1 for axisymmetric flow.

[^20]
Remarks

1. When used to compute p and $T($ ICALL $=0)$, this subroutine is called from outside any loops in the ξ or η directions. When used to compute $\partial p / \partial \rho$, etc., (ICALL $=1$), it is called for each ADI sweep from inside a loop in the non-sweep direction.
2. When computing $\partial p / \partial \rho$, etc., this subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

Subroutine EXEC		
Called by	Calls	Purpose
MAIN	ADI	Manage solution of governing equations.
	AVISC1	
	AVISC2	
	BCELIM	
	BCGEN	
	BVEP	
	COEFC	
	COEFE	
	COEFX	
	COEFY	
	COEFZ	
	EQSTAT	
	PERRIOD	
	RESID	

Input

* AIPHA1, ALPILA2

DXI, DETA
ETAX, ETAY, ETAT

* IAV2E, IAV4E, IAV2I
* IAXI

IBCELM

* ICHECK
* IHSTAG
* ISIVIRI,

IT
ITBEG

* ITHIN

JI
KBCPER

NEQP

NMAXP
\PT1, \PT2

* $\mathrm{N} 1, \mathrm{~N} 2$

Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.

Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Metric coefficients η_{x}, η_{y} (or η_{r} if axisymmetric), and η_{t}.
Flags for second-order explicit, fourth-order explicit, and secondorder implicit artificial viscosity.
Flag for axisymmetric flow.
Flags for elimination of off-diagonal coefficient submatrices resulting from three-point boundary conditions in the ξ and η directions at either boundary; 0 if elimination is not necessary, 1 if it is.
Convergence checking interval.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Current time step number n.
The time level n at the beginning of a run.
Flags for thin-layer option.
Inverse Jacobian of the nonorthogonal grid transformation, J^{1}.
Flags for spatially periodic boundary conditions in the ξ and η directions; 0 for non-periodic, 1 for periodic.
Cray PARAMETER specifying maximum number of coupled equations allowed.
Cray PARAMETER specifying maximum of N1P and N2P.
N_{1} and N_{2} for non-periodic boundary conditions, $N_{1}+1$ and $N_{2}+1$ for spatially periodic boundary conditions in ξ and η.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.

NIP
XIX, XIY, XIT
Y

Output

ALPHA

DEL
IBASE, ISTEP

ISWEEP
IV
I1, I2
JI

METX, METY, METT

NPTS
NV
RAX

RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL

Cray PARAMETER specifying the DIME SSION size in the ξ direction.

Metric coefficients ξ_{x}, ξ_{y} (or ξ, if axisymmetric), and ξ_{r}.
Radial coordinate r for axisymmetric flow.

Spatial difference centering parameter α for the sweep direction.
Computational grid spacing in sweep direction.
Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Current ADI sweep number.
Index in the "vectorized" direction, i.
Grid indices i and j, in the ξ and η directions.
The radius times the inverse Jacobian of the nonorthogonal grid transformation, $r J^{-1}$ (used in COEF routines for axisymmetric flow only.)
Derivatives of sweep direction computational coordinate with respect to x, y (or r if axisymmetric), and t.
Number of grid points in the sweep direction, N.
Number of grid points in the "vectorized" direction, N_{v}.
1 for two-dimensional planar flow, and the local radius r for axisymmetric flow.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level $n+1$.

Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.

Static temperature T at time level n.

Description

Subroutine EXEC manages the solution of the governing equations. It is called by the MAIN program during each marching step from time level n to $n+1$. The steps involved in EXEC are described below.

Preliminary Steps

1. If this is the first time step, temporarily set the thin-layer flags to zero.
2. Initialize the coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C}, and the source term subvector \mathbf{S}, to zero.
3. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the appropriate extra line(s) of data.

First ADI sweep, ξ direction

4. Set various sweep-dependent parameters, as follows:

$$
\begin{aligned}
& \text { ISWEEP }=1 \\
& \text { ISTEP }=1 \\
& \text { DEL }=\Delta \xi \\
& \text { ALPHA }=\alpha_{1} \\
& \text { NPTS }=N_{1} \text { or } N_{1}+1 \\
& \text { NV }
\end{aligned}=N_{2} \text { or } N_{2}+1 .
$$

5. For axisymmetric flow, set $\mathrm{JI}=r / J$ at all grid points.
6. Begin loop in non-sweep (η) direction over interior points $(j=12=2$ to NP厂2-1).
7. Set metrics in sweep (ξ) direction along the current η-line $(j=12)$ at all ξ grid points $(i=11=1$ to \PT1), as follows:
```
\(\operatorname{METX}(I 2, I 1)=\left(\xi_{x}\right)_{i,}\)
\(\operatorname{METY}(I 2, I 1)=\left(\xi_{y}\right)_{i, j}\) or \(\left(\xi_{r}\right)_{l, j}\)
\(\operatorname{METT}(12, I 1)=\left(\xi_{t}\right)_{i,}\)
```

8. For axisymmetric flow, set $\mathrm{RAX}(\mathrm{II})=r_{i, j}$ along the current η-line at all ξ grid points.
9. Call EQSTAI to get the derivatives of p and T with respect to $\rho, \rho u$, etc., along the current η-line at all ξ grid points.
10. Call the COEF routines to compute the coefficients and source terms for the governing equations along the current η-line at all interior ξ grid points.
11. End of loop in non-sweep (η) direction.
12. For axisymmetric flow, reset $\mathrm{JI}=1 / J$ at all grid points.
13. For non-spatially periodic boundary conditions in the ξ direction, begin loop in non-sweep (η) direction over interior points $(j=\mathrm{I} 2=2$ to $\mathrm{NP} \mathrm{P} 2-1)$.
14. Call EQSTAT to get the derivatives of p and T with respect to $\rho, \rho u$, ctc., along the current η-line at all ξ grid points.
15. Call BCGEN to compute the coefficients and source terms for the boundary condition equations at the end points ($i=11=1$ and N_{1}) of the current η-line.
16. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the resulting off-diagonal coefficient submatrices.
17. End of loop in non-sweep (η) direction.
18. Every ICHECK time steps, call RESID to compute residuals at time level n without the artificial viscosity terms, and to update the convergence history file.
19. If artificial viscosity is being used, call AVISC1 or AVISC2 to add the appropriate terms to the coefficient submatrices and/or the source term subvectors at all interior grid points.
20. Every ICHECK time steps, if artificial viscosity is being used, call RESID to compute residuals at time level n with the artificial viscosity terms, and to update the convergence history file.
21. If spatially periodic boundary conditions are being used in the ξ direction, reset NPTS $=N_{1}$.
22. Call ADI to solve the system of difference equations.
23. Begin loop in non-sweep (η) direction over interior points $(j=\mathrm{I} 2=2$ to NPT2-1).
24. Call LPDATE to compute the primitive flow variables, Q^{\prime}, from the newly computed conservation variables in delta form, $\Delta \hat{\mathbf{Q}}^{*}$, along the current η-line at all ξ grid points.
25. End of loop in non-sweep (η) direction.

Second ADI sweep, η direction

26. Set various sweep-dependent parameters, as follows:

$$
\begin{aligned}
\text { ISWEEP } & =2 \\
\text { ISTEP } & =\text { NIP } \\
\text { DEL } & =\Delta \eta \\
\text { ALPHA } & =\alpha_{2} \\
\text { NPTS } & =N_{2} \text { or } N_{2}+1 \\
\text { NV } & =N_{1} \text { or } N_{1}+1
\end{aligned}
$$

27. For axisymmetric flow, set $\mathrm{JI}=r / J$ at all grid points.
28. Begin loop in non-sweep (ξ) direction over interior points ($i=\mathrm{Il}=2$ to $\mathrm{XPTl}-1$).
29. Set metrics in sweep (η) direction along the current ξ-line $(i=\mathrm{I} 1)$ at all η grid points $(j=12=1$ to NPT2), as follows:

$$
\begin{aligned}
& \operatorname{METX}(\mathrm{I} 1, \mathrm{I} 2)=\left(\eta_{x}\right)_{i, j} \\
& \operatorname{METY}(\mathrm{I} 1, \mathrm{I} 2)=\left(\eta_{y}\right)_{i, j} \text { or }\left(\eta_{r}\right)_{i, j} \\
& \operatorname{METT}(\mathrm{I} 1, \mathrm{I} 2)=\left(\eta_{t}\right)_{i, j}
\end{aligned}
$$

30. For axisymmetric flow, set $\operatorname{RAX}(I 2)=r_{6, j}$ along the current ξ-line at all η grid points.
31. Call EQSTAT to get the derivatives of p and T with respect to $\rho, \rho u$, etc., along the current ξ-line at all η grid points.
32. Call the COEF routines to compute the coefficients and source terms for the governing equations along the current ξ-line at all interior η grid points.
33. End of loop in non-sweep (ξ) direction.
34. For axisymmetric flow, reset $\mathrm{JI}=1 / \mathrm{J}$ at all grid points.
35. For non-spatially periodic boundary conditions in the η direction, begin loop in non-sweep (ξ) direction over interior points ($i=\mathrm{Il}=2$ to $\mathrm{XPT1}-1$).
36. Call EQSTAT to get the derivatives of p and T with respect to $\rho, \rho u$, etc., along the current ξ-line at all η grid points.
37. Call BCGEN to compute the coefficients and source terms for the boundary condition equations at the end points ($j=12=1$ and N_{2}) of the current ξ-line.
38. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the resulting off-diagonal coefficient submatrices.
39. End of loop in non-sweep (ξ) direction.
40. If implicit artificial viscosity is being used, call AVISC1 to add the appropriate terms to the coefficient submatrices at all interior grid points.
41. If spatially periodic boundary conditions are being used in the η direction, reset NPTS $=N_{2}$.
42. Call ADI to solve the system of difference equations.
43. Begin loop in non-sweep (ξ) direction over interior points ($i=\mathrm{I} 1=2$ to NPT1-1).
44. Call UPDATE to compute the primitive flow variables, \mathbf{Q}^{n+1}, from the newly computed conservation variables in delta form, $\Delta \hat{\mathbf{Q}}^{n}$, along the current ξ-line at all η grid points.
45. End of loop in non-sweep (ξ) direction.

Finishing Steps

46. If this is the first time step, reset the thin-layer flags back to their input value.
47. Call BVUP to update the ξ boundary values, if necessary.
48. For all grid points, shift RHO and RHOL so that $\mathrm{RHO}=\rho^{n+1}$ and $\mathrm{RHOL}=\rho^{n}$. Similarly, shift the Fortran variables for u, v, w, and E_{T}. Finally, set $\mathrm{TL}=T^{n}$.

Subroutine FILTER		
Called by	Calls	Purpose
BI K3 BIK4 BI K5	BI KOLT ISAMAX	Rearrange rows of the boundary condition coefficient submatrices and the source term subvector to eliminate any zeroes on the diagonal.

Input

A, B, C

* IDEBCG
* IPRT1A, IPRT2A

ISWEEP
IT
IV
NEQ
MMAXP

* NOUT

NPRT1, NPRT2
NPTS
S

Coefficient submatrices A, B, and C before rearrangement. Debug flags.
Indices for printout in the ξ and η directions.
Current ADI sweep number.
Current time step number n.
Index in the "vectorized" direction, i_{v}.
Number of coupled equations being solved, $N_{e q}$.
Cray PARAMETER specifying maximum of N1P and N2P.
Unit number for standard output.
Total number of indices for printout in the ξ and η directions.
Number of grid points in the sweep direction, N.
Source term subvector \mathbf{S} before rearrangement.

Output

A, B, C
S

Coefficient submatrices \mathbf{A}, \mathbf{B}, and \mathbf{C} after rearrangement.

Source term subvector \mathbf{S} after rearrangement.

Description

Subroutine FILTER rearranges rows of the coefficient block submatrices and the source term subvector, at the two boundaries in the ADI sweep direction, in an attempt to eliminate any zero values on the diagonal of the submatrix B. These zero values may occur when boundary conditions are specified using the JBC and or IBC input parameters, depending on the initial conditions and the order of the boundary conditions.

For instance, if the specified initial conditions are zero velocity and constant flow properties everywhere in the flow field, the perfect gas equation of state yields:

$$
\begin{gathered}
E_{T}=\rho c_{v} T \\
p=(\gamma-1) E_{T} \\
\frac{\partial p}{\partial \rho}=\frac{\partial p}{\partial(\rho u)}=\frac{\partial p}{\partial(\rho v)}=0 \\
\frac{\partial p}{\partial E_{T}}=\gamma-1
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial T}{\partial \rho}=-\frac{E_{T}}{c_{\nu} \rho^{2}} \\
\frac{\partial T}{\partial(\rho u)}=\frac{\partial T}{\partial(\rho v)}=0 \\
\frac{\partial T}{\partial E_{T}}=\frac{1}{c_{\nu} \rho}
\end{gathered}
$$

If, in addition, the boundary conditions at a given boundary are, in order, specified pressure $p=f$, no-slip x - and and y-velocity $u=0$ and $v=0$, and specified temperature $T=f$, then the linearization of the boundary conditions leads to the following \mathbf{B} coefficient submatrix for that boundary:

$$
\mathbf{B}=\left[\begin{array}{cccc}
0 & 0 & 0 & J(\gamma-1) \\
0 & J / \rho & 0 & 0 \\
0 & 0 & J / \rho & 0 \\
-J E_{T} / c_{v} \rho^{2} & 0 & 0 & J / c_{\vartheta} \rho
\end{array}\right]
$$

The zero on the diagonal will lead to a divide-by-zero error in subroutine BLK4, even though this is not a singular matrix.

Subroutine FILTER tries to fix this problem. In this example, it finds a zero at element \mathbf{B}_{11}, searches column 1 for the largest element in absolute value (in this case $-J E_{T} / c_{1} \rho^{2}$), and adds that row to the row with the zero on the diagonal. Of course, the corresponding rows of \mathbf{A}, \mathbf{C}, and \mathbf{S} must also be added together. The new \mathbf{B} submatrix would be:

$$
\mathbf{B}=\left[\begin{array}{cccc}
-J E_{T} / c_{v} \rho^{2} & 0 & 0 & J(\gamma-1)+J / c_{v} \rho \\
0 & J / \rho & 0 & 0 \\
0 & 0 & J / \rho & 0 \\
-J E_{T} / c_{v} \rho^{2} & 0 & 0 & J / c_{v} \rho
\end{array}\right]
$$

Remarks

1. If a column with a zero on the diagonal has no other elements greater than 10^{-10}, then it is assumed that the matrix B is singular, which means the specified boundary conditions are not independent of one another. An error message is printed and the calculation is stopped.
2. It's probably sufficient to only call this subroutine for the first time step. After the first step, the chances of u and v both being exactly zero at the same interior grid point are slim. Nevertheless, in the current version of PROTEUS, FILTER is called at every time step.
3. The Cray BLAS routine ISAMAX is used in finding the largest element in any column corresponding to a zero on the matrix diagonal.
4. This subroutine generates the output for the IDEBUG(4) option.

Subroutine FTEMP		
Called by	Calls	Purpose
INITC MAI		Compute auxiliary variables that are functions of temperature.

Input

CCP1, ССР2, ССР3, ССР4
CK1, CK2
CMU1, CMU2

* GAMR

IGAM

* ILAMV
* NOUT
* $\mathrm{N} 1, \mathrm{~N} 2$

RGAS
T

* TR, UR, MUR, KTR

Constants in formula for specific heat.
Constants in formula for laminar thermal conductivity coefficient.
Constants in formula for laminar viscosity coefficient.
Reference ratio of specific heats, γ_{r}.
Flag for constant or variable c_{p}, c_{v}, and $\gamma ; 0$ if they are to be computed as functions of temperature, l if they are to be treated as constant.
Flag for computation of laminar viscosity and thermal conductivity.
Unit number for standard output.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Gas constant R.
Static temperature T.
Reference temperature T_{r}, velocity u_{r}, viscosity μ_{r}, and thermal conductivity k_{r}.

Output

CP, CV
MU, LA, KT

Specific heats c_{p} and c_{ν}.
Laminar coefficient of viscosity μ_{t}, laminar second coefficient of viscosity λ_{l}, and laminar coefficient of thermal conductivity k_{i}.

Description

Subroutine FTEMP computes the auxiliary variables $\mu_{,}, \lambda_{l}, k_{t}, c_{p}$, and c_{v}. For the laminar viscosities μ_{t} and λ_{l}, and the laminar thermal conductivity k_{l}, there are two options currently available.

If the input parameter ILAMV $=0$ (the default), FTEMP sets the nondimensional values as:

$$
\begin{aligned}
\mu_{l} & =1 \\
\lambda_{l} & =-2 / 3 \\
k_{l} & =1
\end{aligned}
$$

Thus, with this option, the laminar viscosity and thermal conductivity are held constant at their reference values. These reference values may be specified by the user, or computed from the reference temperature. The laminar second coefficient of viscosity λ_{l} is set equal to $-2 \mu_{l} / 3$.

If ILAMV $=1, \mu_{l}$ and k_{l} are computed as functions of temperature using Sutherland's formula (White, 1974). The formula for the laminar viscosity coefficient μ_{l} is

$$
\mu_{l}=\frac{\bar{\mu}_{l}}{\mu_{r}}=\frac{\mu_{r}^{\prime}}{\mu_{r}} \frac{T_{r}+C_{\mu 2}}{\bar{T}+C_{\mu 2}}\left(\frac{\bar{T}}{T_{r}}\right)^{3 / 2}
$$

where the overbar indicates a dimensional value, and μ_{r}^{\prime} is the laminar viscosity cocfficient at $\bar{T}=T_{n}$, given by

$$
\mu_{r}^{\prime}=C_{\mu 1} \frac{T^{3 / 2}}{T+C_{\mu 2}}
$$

Depending on the namelist input values of MLR and RER, μ_{r}^{\prime} may or may not be equal to μ_{r}. These formulas are valid for air for temperatures from 300 to $3420^{\circ} \mathrm{R}$ (167 to 1900 K). The value of the constants $C_{\mu 1}$ and $C_{\mu 2}$ depend on whether reference values are being specified by the user in English units (IL $\backslash I T S=0)$ or SI units (IUNITS $=1$). The values are presented in Table 4-1. The laminar second coefficient of viscosity λ_{i} is set equal to $-2 \mu_{/} / 3$. The formula for the laminar thermal conductivity coefficient k_{t} is

$$
k_{l}=\frac{\bar{k}_{l}}{k_{r}}=\frac{k_{r}^{\prime}}{k_{r}} \frac{T_{r}+C_{k 2}}{\bar{T}+C_{k 2}}\left(\frac{\bar{T}}{T_{r}}\right)^{3 / 2}
$$

$\underline{w h e r e}$ the overbar indicates a dimensional value, and k_{r}^{\prime} is the laminar thermal conductivity coefficient at $\bar{T}=T_{r}$, given by

$$
k_{r}^{\prime}=C_{k 1} \frac{T^{3 / 2}}{T+C_{k 2}}
$$

Depending on the namelist input values of KTR and PRIR, k_{r}^{\prime} may or may not be equal to k_{r}. These formulas are valid for air for temperatures from 300 to $1800^{\circ} \mathrm{R}$ (167 to 1000 K). The value of the constants $C_{k 1}$ and $C_{k 2}$ depend on whether reference values are being specified by the user in linglish units (IUNITS $=0$) or SI units (IUNITS $=1$). The values are presented in Table 4-1.

There are also two options available for the specific heat coefficients c_{p} and c_{v}. If the flag IGAM $=1$, a value of the specific heat ratio γ has been specified by the user. In this case c_{p} and c_{v} are treated as constants, and computed from

$$
\begin{aligned}
& c_{v}=\frac{R}{\gamma-1} \\
& c_{p}=c_{v}+R
\end{aligned}
$$

If IGA.M $=0$, the user did not specify a value of γ. In this case, the specific heat coefficient c_{ρ} is computed as a function of temperature from the empirical formula of Hesse and Mumford (1964), and c_{2} is computed from that value assuming a thermally perfect gas. The ratio $\gamma=c_{p} / c_{v}$ will then vary with temperature. The equations for c_{ρ} and c_{v} are:

$$
\begin{gathered}
c_{p}=\bar{c}_{p} \frac{T_{r}}{u_{r}^{2}}=\frac{T_{r}}{u_{r}^{2}}\left(C_{r_{p} 1}-C_{c_{p} 2} T^{-1 / 2}-C_{c_{p} 3} T+C_{c_{p} 4} T^{2}\right) \\
c_{v}=c_{p}-R
\end{gathered}
$$

This formula is valid for air for temperatures from 540 to $9000{ }^{\circ} \mathrm{R}(300$ to 5000 K$)$. The values of the constants $C_{c_{p}}$ through $C_{c_{p}}$ are presented in Table 4-1.

TABLE 4-1. - EMPIRICAL CONSTANTS FOR μ_{i}, k_{l}, AND c_{p}

CONSTANT	ENGLISH CNITS	SI LNITS
$C_{\mu 1}$	7.3035×10^{-7}	1.4582×10^{-6}
$C_{\mu 2}$	198.6	110.3
$C_{k 1}$	7.4907×10^{-3}	1.8641×10^{-3}
$C_{k 2}$	350.0	194.4
$C_{c_{p} 1}$	8.53×10^{3}	1.4264×10^{3}
$C_{p_{p}}$	3.12×10^{4}	3.8888×10^{3}
$C_{c_{p}}$	2.065×10^{6}	1.9184×10^{5}
$C_{c_{p}}$	7.83×10^{8}	4.0413×10^{7}

Remarks

1. The formulas used with the ILAMV $=1$ option are for air. For other fluids, different formulas should be used to compute μ_{i}, λ_{i}, and k_{t}. These could easily be programmed as additional ILAMV options. Or, if the flow being computed is such that μ_{l} and k_{l} may be considered constant, simply set ILAMV $=0$ and read in the appropriate values for μ_{r} and k_{r}. Note, however, that the ILAMV $=0$ option still sets $\lambda_{l}=-2 \mu_{l} / 3$.
2. The formula used to compute c_{ρ}, when a value of y is not specified by the user, is for air. For other gases, a different formula should be programmed. Or, if c_{p} and c_{v} may be considered constant, a value of γ should be read in.
3. An error message is generated and execution is stopped if an illegal value is specified for ILAMV.

Subroutine GEOM		
Called by	Calls	Purpose
MAIN	METS PAK	Manage computation of grid and metric parameters.

Input

* IPACK
* NGEOM
* NGRID
* NOUT
* $\mathrm{N} 1, \mathrm{~N} 2$

NIP, N2P

* RMIN, RMAX
* THMIN, THMAX
* XMIN, XMAX
* YMIN, YMAX

Flags for grid packing option.
Flag for type of computational coordinates.
Unit number for input mesh file.
Unit number for standard output.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Cray PARAMETERs specifying the DIMENSION sizes in the ξ and η directions.
Minimum and maximum r-coordinates for polar grid.
Minimum and maximum θ^{\prime}-coordinates for polar grid.
Minimum and maximum x-coordinates for Cartesian grid.
Minimum and maximum y-coordinates for Cartesian grid.

Output

DXI, DETA
X, Y

Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Description

Subroutine GEOM manages the computation of the grid and metric parameters. There are currently three coordinate system options built into PROTEUS, as follows:

NGEOM	Computational Coordinates
1	
2	Cartesian $(x-y)$
10	

Subroutine GEOM first computes the grid spacing in computational space in the ξ and η directions as $\Delta \xi=1 /\left(N_{1}-1\right)$ and $\Delta \eta=1 /\left(N_{2}-1\right)$. Note that grid points in computational space are always evenly distributed along the $(\xi-\eta)$ coordinate lines.

Cartesian $(x-y)$ Coordinates (NGEOM $=1$)

For the Cartesian coordinate option, an evenly spaced set of physical Cartesian $(x-y)$ coordinates are related to the computational $(\xi-\eta)$ coordinates by

$$
\begin{aligned}
& x=x_{\text {min }}+\left(x_{\text {max }}-x_{\text {min }}\right) \xi \\
& y=y_{\text {min }}+\left(y_{\text {max }}-y_{\text {min }}\right) \eta
\end{aligned}
$$

These equations also apply to axisymmetric flow, with y representing the radius r. If grid packing is used, subroutine PAK is called to redistribute these points according to the packing parameters specified by the
user, and to interpolate to get the new physical Cartesian $(x-y)$ coordinates in the computational mesh. Subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.
Polar $\left(r^{\prime}-\theta^{\prime}\right)$ Coordinates (NGEOM $=2$)
For the polar coordinate option, an evenly spaced set of physical polar ($r^{\prime}-\theta^{\prime}$) coordinates are related to the computational ($\xi-\eta$) coordinates by

$$
\begin{aligned}
& \theta^{\prime}=\theta_{\text {min }}^{\prime}+\left(\theta_{\text {max }}^{\prime}-\theta_{\text {min }}^{\prime}\right) \xi \\
& r=r_{\text {min }}^{\prime}+\left(r_{\text {max }}^{\prime}-r_{\text {min }}^{\prime}\right) \eta
\end{aligned}
$$

The Cartesian ($x-y$) coordinates are simply given by

$$
\begin{aligned}
& x=r^{\prime} \cos \theta^{\prime} \\
& y=r^{\prime} \sin \theta^{\prime}
\end{aligned}
$$

The above equations also could be used in axisymmetric flow, with y representing the radius r. As in the NGEOM = 1 option, if grid packing is used, subroutine PAK is called to redistribute these points according to the packing parameters specified by the user, and to interpolate to get the new physical Cartesian $(x-y)$ coordinates in the computational mesh. Subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.

Coordinates Read From Separate File (NGEOM $=10$)

The third option for specifying the computational coordinate system is to read it from a separate file, as described in Section 3.2 of Volume 2. The computational $(\xi-\eta)$ coordinate system is determined by a set of $N_{G 1} \times N_{G 2}$ points whose physical Cartesian $(x-y)$ coordinates are specified. Here $N_{G 1}$, and $N_{G 2}$ are the number of points in the ξ and η directions used to specify the computational coordinate system. Note that they do not have to be equal to N_{1} and N_{2}, the number of points in the computational mesh used for the finite-difference method ${ }^{25}$ Note also that the points do not have to be equally distributed in physical space along the ξ and η coordinate lines.

If grid packing is being used, subroutine PAK is called to distribute $N_{1} \times N_{2}$ computational mesh points in physical space according to the packing parameters SQ specified by the user, and to interpolate among the $N_{G 1} \times N_{G 2}$ points in the input computational coordinate system to get the new physical Cartesian coordinates of the points in the computational mesh.

If grid packing is not being used, but $N_{G 1}$ and $N_{G 2}$ are not equal to N_{1} and N_{2} respectively, then subroutine PAK is still called. In this case, however, PAK distributes the $N_{1} \times N_{2}$ computational mesh points evenly in physical space and then interpolates among the $N_{G 1} \times N_{G 2}$ points in the input computational coordinate system to get the new physical Cartesian coordinates of the points in the computational mesh.

In either case, subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.

Remarks

1. There may be some confusion between the axisymmetric flow option and the polar coordinate system option, or between the axisymmetric radius r and the polar coordinate r. They are not the same thing. The governing flow equations were originally developed by writing them in Cartesian $(x-y)$ coordinates, then transforming them into generalized $(\xi-\eta)$ coordinates. Therefore, any computational coordinate system that is used, including the polar coordinate system, must be related to the original Cartesian system through the transformation metrics and Jacobian. The parameters r^{\prime} and θ^{\prime} are used only to initially define the coordinates in the NGEOM $=2$ option. Now, if the $(x-y)$ coordinates, no matter how they are obtained, are rotated about the Cartesian x axis, the result is a cylindrical coordinate co-

[^21]ordinate system with y representing the radius r. Thus, the axisymmetric flow option can be used with any of the coordinate system options. The polar coordinate option would be useful, for instance, for flow over a sphere.
2. An error message is generated and execution is stopped if an illegal coordinate system option is specified.
3. With the $N G E O M=10$ option, an error message is generated and execution is stopped if $N_{G 1}$ and/or $N_{G_{2}}$ are greater than the dimensions N 1 P and or N 2 P .

Subroutine INIT		
Called by	Calls	Purpose
INITC		Get user-defined initial flow field.

Input

* ICVARS

NIN

* NOUT
* N1, N2

Output

$\mathrm{P}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W} \quad$ Initial flow field values of static pressure p, static temperature T, and velocities u, v, and w.

Description

Subroutine INIT supplies the user-defined initial flow field. In general, this subroutine will be tailored to the problem being solved, and supplied by the user. Details on the variables to be supplied by INIT are presented in Section 5.1 of Volume 2.

A default version of INIT is supplied with PROTEUS that specifies uniform flow with constant properties everywhere in the flow field. The above list of input and output Fortran variables are for the default version of INIT. The default version assumes ICVARS $=2$ (the default value), and reads values of p_{0}, u_{0}, ν_{0}, w_{0}, and T_{0} from namelist IC. The defaults for these parameters are $1.0,0.0,0.0,0.0$, and 1.0 , respectively, resulting in an initial flow field with $\bar{p}=p_{r}, u=v=w=0$, and $\bar{T}=T_{r}$.

Remarks

1. If a value for ICVARS other than 2 is set in the input, a warning message is generated and ICVARS is reset to 2.
2. Subroutine INIT is a convenient place to specify point-by-point boundary condition types and values. It's often easier to do this using Fortran coding rather than entering each value into the namelist input file.

Subroutine INITC		
Called by	Calls	Purpose
MAIN	EQSTAT FTEMP INIT REST TURBBL	Set up consistent initial conditions based on data from INIT.

Input

* GAMR

GC

* HSTAG
* ICVARS
* IHSTAG
* IREST
* ItURB
* N1, N2

PR
RGAS

* RHOR, UR

INITIAL FLOW FIELD

Reference ratio of specific heats, γ_{r}.
Proportionality factor g_{c} in Newton's second law.
Stagnation enthalpy h_{T} used with constant stagnation enthalpy option.
Flag specifying which variables are being supplied as initial conditions by subroutine INIT.
Flag for constant stagnation enthalpy option.
Flag for reading restart file.
Flag for turbulent flow option.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Reference pressure p_{r}.
Gas constant R.
Reference density ρ_{r} and velocity u_{r}.
From the user-suppled or default version of subroutine INIT. The combination of variables supplied by INIT is specified by ICVARS. See Section 5.0 of Volume 2 for details.

Output

RHO, U, V, W, ET
RHOL, UL, VL, WL, ETL
TL

Initial flow field values of static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.
Initial flow field values of static density ρ, velocities u, v, and w, and total energy E_{T} at time level $n-1$.
Static temperature T at time level $n-1$.

Description

Subroutine INITC sets up consistent initial flow field conditions based on the data supplied by subroutine INIT. For restart cases, subroutine REST is called to read the computational mesh and the initial flow field. Otherwise, the data supplied by INIT are used to obtain the density ρ, the velocities u, v, and w, and the temperature $T .{ }^{26}$ It then calls FTE.MP to compute the laminar viscosity coefficients μ_{i} and λ_{l}, the laminar thermal conductivity coefficient k_{k}, and the specific heat coefficients c_{p} and c_{v}. EQSTAT is called next to compute the pressure p and to recompute the temperature $T .{ }^{27}$ For turbulent flow, the appropriate

[^22]subroutines are called to compute the effective viscosity and thermal conductivity coefficients using the turbulence model specified by the user. And finally, for non-restart cases, the values of the dependent variables at time level $n-1$ are set equal to the values at level 1 .

The flag ICVARS is used to specify which combination of variables are being supplied by INIT. The calculation of ρ, u, v, w, and T is described below for the different values of ICVARS. In all of the equations below, the specific heats are defined by

$$
\begin{aligned}
c_{v} & =\frac{R}{\gamma_{r}-1} \\
c_{p} & =R+c_{v}
\end{aligned}
$$

where γ, is either specified by the user or computed from the reference temperature T_{r}.

$\underline{\text { ICVARS }}=1$

With this option, the density ρ, the momentum components $\rho u, \rho v$, and ρw, and if IHSTAG $=0$ the total energy E_{T}, are supplied by INIT. Thus, the velocity components are simply

$$
\begin{aligned}
u & =\frac{\rho u}{\rho} \\
v & =\frac{\rho v}{\rho} \\
w & =\frac{\rho w}{\rho}
\end{aligned}
$$

If the energy equation is being solved (IHSTAG $=0$), the temperature is computed from

$$
T=\frac{1}{c_{v}}\left[\frac{E_{T}}{\rho}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

If the energy equation is being eliminated by assuming constant stagnation enthalpy (IIISTAG $=1$), the temperature is computed from

$$
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

$I C V A R S=2$

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy equation is being solved (IHSTAG $=0$), the temperature T is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG $=1$), the temperature is computed from

$$
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

The density is then given by

$$
\rho=\frac{p}{R T}
$$

and the total energy is

$$
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

With this option, the density ρ and the velocities u, v, and w are supplied by INIT. If the energy equation is being solved (IHSTAG $=0$), the temperature T is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG $=1$), the temperature is computed from

$$
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

The total energy is then

$$
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

$\underline{I C V A R S}=4$
With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy equation is being solved (IHSTAG $=0$), the density ρ is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG $=1$), this option is the same as the ICVARS $=2$ option. If the energy equation is being solved, then, the temperature is

$$
T=\frac{p}{\rho R}
$$

The total energy is then

$$
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

ICVARS $=5$
With this option, the static pressure coefficient c_{p} and the velocities u, v, and w are supplied by INIT. If the energy equation is being solved (IHSTAG $=0$), the temperature T is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG $=1$), the temperature is computed from

$$
T=\frac{1}{c_{p}}\left[h_{T}-\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

The pressure coefficient is defined by

$$
c_{p}=\frac{\left(\bar{p}-p_{r}\right) g_{c}}{\rho_{r} u_{r}^{2} / 2}
$$

The nondimensionalized pressure $p=\bar{p} g_{c} / \rho_{r} u_{r}^{2}$ is thus

$$
p=\frac{c_{p}}{2}+\frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}
$$

or, since $p_{r}=\rho_{r} \bar{R} T_{r} / g_{c}$ and the nondimensionalized gas constant $R=\bar{R} T_{r} / u_{r}^{2}$,

$$
p=\frac{c_{p}}{2}+R
$$

The density is then

$$
\rho=\frac{p}{R T}
$$

and the total energy is

$$
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

$\underline{I C V A R S}=6$

With this option, the pressure p, Mach number M, and flow angles α_{ν} and α_{ω} are supplied by INIT. If the energy equation is being solved (IHSTAG $=0$), the temperature T is also supplied by INIT. If it is being eliminated by assuming constant stagnation enthalpy (IHSTAG $=1$), the temperature is computed from

$$
T=T_{T}\left(1+\frac{\gamma_{r}-1}{2} M^{2}\right)^{-1}
$$

where $T_{T}=h_{T} / c_{p}$. The density is

$$
\rho=\frac{p}{R T}
$$

The flow angles are defined by $\alpha_{\nu}=\tan ^{-1}(v / u)$ and $\alpha_{w}=\tan ^{-1}(w / u)$. The Mach number is defined by

$$
M=\left(\frac{u^{2}+v^{2}+w^{2}}{\gamma_{r} R T}\right)^{1 / 2}
$$

Solving for u,

$$
u=M\left[\frac{\gamma_{r} R T}{1+(v / u)^{2}+(w / u)^{2}}\right]^{1 / 2}
$$

where $(v / u)^{2}=\tan ^{2} \alpha_{v}$ and $(w / u)^{2}=\tan ^{2} \alpha_{w}$. The remaining velocities are simply

$$
\begin{aligned}
v & =u \tan \alpha_{v} \\
w & =u \tan \alpha_{w}
\end{aligned}
$$

The total energy is

$$
E_{T}=\rho\left[c_{v} T+\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)\right]
$$

Remarks

1. If T is not supplied by INIT, it must be computed from the equation of state. The equation of state contains a specific heat coefficient (either c_{p} or c_{v}, depending on whether the stagnation enthalpy is assumed constant or not.) The first time T is computed in INITC, a constant value of specific heat is used, consistent with the reference temperature T_{r}. If the user specified constant specific heat (i.e., a value for γ, was read in), this is not a problem. However, if the temperature-dependent specific heat option is being used (i.e., a value for γ, was not read in), the equation of state and the empirical equation for specific heat are coupled. For this reason T is recomputed in EQSTAT after the specific heats are computed in FTEMP. Ideally, this coupling would be handled by iteration between FTE.MP and EQSTAT. This is not currently done in PROTELS, however.
2. For options in which the pressure p is specified (ICVARS $=2,4$, and 6), the value supplied by INIT is redefined as follows:

$$
p=p \frac{p_{r} g_{c}}{\rho_{r} u_{r}^{2}}
$$

This is necessary because input and output values of p are nondimensionalized by the reference pressure $p_{r}=\rho_{r} \bar{R} T_{r}$, while internal to the code itself p is nondimensionalized by the normalizing pressure $p_{n}=\rho_{r} u_{r}^{2}$. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.
3. With the ICVARS $=6$ option, the initial velocity u will be limited to non-negative values.
4. If non-positive pressures or temperatures were computed in EQSTAT, the Fortran variable INEG will be positive. An error message will be printed, including a table showing the location of the non-positive values. The calculation will stop in INITC.
5. An error message is generated and execution is stopped if an illegal value is specified for ICVARS.
6. An error message is generated and execution is stopped if the value of ITURB does not correspond to an existing turbulence model.

Subroutine INPUT		
Called by	Calls	Purpose
MAIN	ISAMAX	Read and print input, perform various initializations.

Input

NIN	Unit number for namelist input. Cray PARAMETER specifying the maximum number of entries in the table of time-dependent boundary condition values.
NTSEQP	Cray PARAMETER specifying the maximum number of time step sequences for the time step sequencing option.
NIP, N2P	Cray PARAMETERs specifying the DIMEXSION sizes in the ξ and η directions.

Output

GAMR
IISTAG, HSTAGR
IGAM

* IPRTIA, IPRT2A

ITDBC

MACHR

MLR, KTR

NEQ
NPRT1, NPRT2
NRW, NET
NZM, NEN

PR
PRLR
RER, PRR
RGAS
UR

Reference ratio of specific heats, γ.
Dimensionless and dimensional stagnation enthalpy h_{T} for the constant stagnation enthalpy option.
Flag for constant or variable c_{p}, c_{v}, and $\gamma ; 0$ if they are to be computed as functions of temperature, I if they are to be treated as constant.
Indices for printout in the ξ and η directions.
Flag for time-dependent boundary conditions; 0 if all boundary conditions are steady, 1 if any general unsteady boundary conditions are used, 2 if only steady and time-periodic boundary conditions are used.
Reference Mach number M_{r}.
Reference viscosity coefficient μ_{r} and thermal conductivity coefficient k_{r}.
Number of coupled equations being solved, $N_{e q}$.
Total number of indices for printout in the ξ and η directions.
Array indices associated with the dependent variables ρw and E_{T}.
Array indices associated with the swirl momentum and energy equations.
Reference pressure p_{r}.
Reference laminar Prandtl number $P_{l_{l}}$.
Reference Reynolds number $R e_{r}$ and Prandtl number $P r_{r}$.
Gas constant R.
Reference velocity u_{r}.

Description

Subroutine INPLT performs various input and initialization functions. It first reads the title and namelist input from the standard input file. Namelist RSTRT is read first, followed by namelist IO. If

IUNITS $=1$, indicating reference conditions will be specified in SI units, various default values and constants are redefined to be consistent with SI units. The remaining namelists are then read.

Next, the flags controlling the time step cycling and the convergence testing method are redefined, if necessary, to be consistent with each other. The number of equations being solved, and the array indices corresponding to the energy and swirl momentum equations, are then determined based on the values of IHSTAG and ISWIRL. A flag is set if time-dependent boundary conditions are being used. If the thinlayer option is being used, the flags ITXI and ITETA used in the Baldwin-Lomax turbulence model are automatically set equal to values consistent with the thin-layer approximation.

Next, if frequency of printout in the ξ and η directions is being set by the input arrays IPRT1 and IPRT2, the corresponding grid indices are stored in arrays IPRTIA and IPRT2A. The total number of printout locations in each direction is also determined.

A header is then written to the standard output file, followed by the input namelists. Note that, for variables not specified by the user in the input namelists, the values in this printout will be the default values

Various checks are made for inconsistent or invalid input, and appropriate error or warning messages are written. These are described in Section 7.0 of Volume 2.

Next, any reference or normalizing conditions not already defined are calculated. The reference and normalizing conditions are then written to the standard output file, with the appropriate units. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.

Remarks

1. The Cray BLAS routine ISAMAX is used in the input consistency check to determine whether any implicit artificial viscosity coefficients are non-zero.

Function ISAMAX (N,V,INC)		
Called by	Calls	Purpose
BLOUT1		Find the first index corresponding to the largest absolute value of the clements of a Fortran vector.
BLOUT2		
CONV		
FILTER		
INPUT		
RESID		

Input

N

V
INC

Number of elements to process in the vector (i.e., $\mathrm{N}=$ vector length if $\mathrm{INC}=1, \mathrm{~N}=$ (vector length) $/ 2$ if $\mathrm{INC}=2$, etc.).
Vector to be searched.
Skip distance between elements of V. For contiguous elements, $\mathrm{INC}=1$.

Output

ISAMAX
First index corresponding to the largest absolute value of the elements of V that were searched.

Description

Function ISAMAX finds the first index corresponding to the largest absolute value of the elements of a vector. For a one-dimensional vector, the use of ISAMAX is straightforward. For example,

$$
\operatorname{IMAX}=\operatorname{ISAMAX}(\mathrm{NP}, \mathrm{~V}, 1)
$$

sets IMAX equal to the index I corresponding to the maximum value of $V(I)$ for $I=1$ to $N P$.
A starting location can be specified, as in

$$
\operatorname{IMAX}=4+\operatorname{ISAMAX}(N P-4, V(5), 1)
$$

sets IMAX equal to the index I corresponding to the maximum value of $\mathrm{V}(\mathrm{I})$ for $\mathrm{I}=5$ to NP .
Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in memory, and specifying the proper vector length and skip distance. For instance, if \mathbf{A} is an array dimensioned NDIM1 by NDIM2, then

$$
\operatorname{IMAX}=\operatorname{ISAMAX}\left(\mathrm{NDIMI}^{*} \mathrm{ND}[\mathrm{M} 2, \mathrm{~A}, 1)\right.
$$

sets IMAX equal to the one-dimensional index corresponding to the maximum value of $A(I, J)$ for all I and J. The maximum value of A can then be referenced as $A(I M A X, l)$.

One dimension at a time can also be searched. For example,

$$
\operatorname{IMAX}=\operatorname{ISAMAX}(N D I M 1, A(1,5), 1)
$$

sets IMAX equal to the index I corresponding to the maximum value of $A(I, 5)$ for I varying from 1 to NDIM1. Similarly, by specifying a skip increment,

$\mathrm{JMAX}=\operatorname{ISAMAX}(\operatorname{NDIM} 2, A(5, \mathrm{~J}), \mathrm{NDIM1})$

sets JMAX equal to the index J corresponding to the maximum value of $A(5, J)$ for J varying from 1 to NDIM2.

Remarks

1. ISAMAX is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1988b).

Function ISAMIN (N,V,INC)		
Called by	Calls	Purpose
BIOOLT1 BIOUT2		Find the first index corresponding to the smallest absolute value of the elements of a Fortran vector.

Input

N

V
INC

> Number of elements to process in the vector (i.e., $\mathrm{N}=$ vector length if $\mathrm{INC}=1, \mathrm{C}=($ vector length $) / 2$ if $\mathrm{INC}=2$, etc.).
> Vector to be searched.
> Skip distance between elements of V . For contiguous elements, $\mathrm{INC}=1$.

Output

ISAMIN
First index corresponding to the smallest absolute value of the elements of V that were searched.

Description

Function ISAMIN finds the first index corresponding to the smallest absolute value of the elements of a vector. It is used in exactly the same way as ISAMAX.

Remarks

1. ISAMIN is a Cray extension to the BILAS (Basic Linear Algebra Subprograms) routines (Cray Rescarch, Inc., 1988b).

Program MAIN		
Called by	Calls	Purpose
	BCSET	Manage overall solution.
	CONV	
	EQSTAT	
	EXEC	
	FTEMP	
	GEOM	
	INITC	
	INPUT	
	OUTPUT	
	PLOT	
	PRTHST	
	REST	
	TBC	

Input

None.

Output

IT
ITEND
ITSEQ
TAU

Current time step number n.
Final time step number.
Current time step sequence number.
Current time value τ.

Description

The MAIN program is used to manage the overall solution. The steps involved are described below.

Preliminary Steps

1. Call INPUT to read and print the input, and perform various initialization procedures.
2. Unless this is a restart case, call GEOM to get the computational coordinates and metric data.
3. Call INITC to get the initial flow field.
4. Call BCSET to set various boundary condition parameters and flags, and to print the input boundary condition types and values.
5. Initialize the plot file, ${ }^{28}$ and, if requested by the user, write the initial or restart flow field into the plot file.
6. If requested by the user, print the initial or restart flow field.
7. Compute NTSLM, the maximum total number of marching steps to be taken, and ITEND, the corresponding final index on the time marching loop. Set the initial values of ITSEQ, the time step sequence number, and ITSWCH, the time index for switching to the next sequence, both to zero.
[^23]
Time murching loop

8. Begin the time marching loop. The loop index IT corresponds to the known time level n. Each iteration of the loop thus corresponds to a step from time level n to $n+1$.
9. If at the end of a time step sequence, update ITSEQ, the time step sequence number, and ITSWCH, the time index for switching to the next sequence.
10. For the first time step, and every IDTMOD'th step thereafter, call TIMSTP to compute the new time step $\Delta \tau$. For every time step update the time value τ.
11. If time-dependent boundary conditions are being used, call TBC to set the boundary condition values.
12. Call EXEC to solve the equations.
13. Call IQSTAI to compute the pressure p and temperature T from the equation of state. If either is non-positive, indicating a non-physical solution, skip forward to step 17.
14. Call FTIIIP to compute the laminar viscosities μ_{l} and λ_{l}, the laminar thermal conductivity k_{l}, and the specific heats c_{p} and c_{v}.
15. For turbulent flow, call the appropriate subroutines to compute the effective viscosity and thermal conductivity coefficients using the turbulence model specified by the user.
16. Every ICHIECK time levels, call CONV to check for convergence.
17. If requested by the user, or if the calculation is converged, or if non-positive pressures or temperatures were computed, print the flow field at time level $n+1$.
18. If requested by the user, or if the calculation is converged, or if non-positive pressures or temperatures were computed, write the flow field at time level $n+1$ into the plot file.
19. If non-positive pressures or temperatures were computed, write an error message showing the location of the non-positive values and skip forward to step 23 , ending the calculation.
20. If the calculation is converged, print a message and skip forward to step 22 , ending the calculation.
21. Find of time marching loop. Print a message indicating the calculation did not converge.

Final Steps

22. If requested by the user, call REST to write the restart file.
23. If first-order time differencing and steady boundary conditions were used, call PRTHST to print the convergence history.

Remarks

1. The starting index for the time marching loop is ITBEG. For a non-restart case ITBEG $=1$, and thus the initial starting flow field is at time level 1. For a restart case ITBEG $=n$, where n is the time level stored in the restart file, and thus the starting flow field is the previously computed flow field at time level n.
2. The ending index for the time marching loop is ITEND $=$ ITBEG + NTSUM -1 , where NTSUM is the total number of time steps to be taken. For a non-restart case, then, the time marches from level 1 to level $1+N$ TSCM. For a restart case, the time marches from level ITBEG to level IIBEG + NISCM.
3. The logic involving NTSUM, ITSEQ, and ITSWCH is used to implement the time step sequencing option. This allows one CFL number or time increment to be used for a specified number of steps, followed by another CFL number or time increment for another specified number of steps, etc. ${ }^{29}$ If this option is not used, NTSU.M is simply equal to NTIME(1) and ITSEQ is always 1 .

[^24]4. An error message is generated and execution is stopped if the value of ITURB does not correspond to an existing turbulence model.
5. Although the calculation will stop if p or $T \leq 0$, as noted above in step 19 , the standard output and plot file will include the time level with the non-positive values, if that is consistent with the IPRT and IPLT input parameters in namelist 10 . The restart file will not be written.

Subroutine METS		
Called by	Calls	Purpose
GEOM REST	OLTPET	Compute metrics of nonorthogonal grid transformation.

Input

* ALPHA1, ALPHA2

DXI, DETA

* IDEBUG
* IVOUT
* N1, N2

X, Y

Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Debug flags.
Flags specifying variables to be printed.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Output

ETAX, ETAY, ETAT
IVOUT

JI
XIX, XIY, XIT

Metric coefficients η_{x}, η_{y} (or η_{t} if axisymmetric), and η_{t}.
Flags specifying variables to be printed (temporarily redefined for debug output of metrics.)
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.

Description

Subroutine METS computes the metric coefficients and the Jacobian for the generalized nonorthogonal coordinate transformation. The metric coefficients are defined in terms of the known $(x-y)$ coordinates of the computational mesh as:

$$
\begin{gathered}
\xi_{x}=J y_{\eta} \\
\xi_{y}=-J x_{\eta} \\
\eta_{x}=-J y_{\xi} \\
\eta_{y}=J x_{\xi} \\
\xi_{t}=-x_{\tau} \xi_{x}-y_{\tau} \xi_{y} \\
\eta_{t}=-x_{\tau} \eta_{x}-y_{\tau} \eta_{y}
\end{gathered}
$$

where J is the Jacobian of the transformation, given by

$$
J=\frac{1}{J^{-1}}=\left(x_{\xi} y_{\eta}-x_{\eta} y_{\xi}\right)^{-1}
$$

The derivatives of x and y with respect to the computational coordinates are computed numerically using the same difference formulas as used for the governing equations. At interior points the variably centered difference formula presented in Section 6.0 of Volume 1 is used. At boundaries three-point one-sided differencing is used. For ξ-derivatives at the $\xi=0$ and $\xi=1$ boundaries,

$$
\frac{\partial f}{\partial \xi} \simeq \pm \frac{-3 f_{w}+4 f_{w \pm 1}-f_{w \pm 2}}{2 \Delta \xi}
$$

where w represents the ξ-index at the boundary (i.e., either 1 or N_{1}). Where a \pm sign appears, the + sign is used at the $\xi=0$ boundary, and the $-\operatorname{sign}$ is used at the $\xi=1$ boundary. An analogous formula is used for η-derivatives at the $\eta=0$ and $\eta=1$ boundaries.

Remarks

1. Since the current version of PROTEUS is limited to meshes that do not vary with time, the derivatives x_{τ} and y_{τ} are set equal to zero.
2. This subroutine generates the output for the IDEBUG(7) option.
3. An error message is generated and execution is stopped if the grid transformation Jacobian J changes sign or equals zero. This indicates that the computational mesh contains crossed or coincident grid lines. The error message is followed by a printout of the Cartesian coordinates, the Jacobian, and the metric coefficients.

Subroutine OUTPLT (LEVEL)		
Called by	Calls	Purpose
MAIN PRTOCT Manage printing of output.		

Input

* ALPHA1, ALPHA2

CP, CV
DTAU
DUMMY
DXI, DETA
ETAX, ETAY, ETAT

* GAMR

GC

* IVOUT

JI
LEVEL

* MACHR

MU, LA, KT
MUT

* Nout
* N1, N2

P, T
PR
PRR

* PRT

RGAS
RHO, U, V, W, ET

* RHIOR, TR, UR

TAU
X, Y
XIX, XIY, XIT

Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Specific heats c_{p} and c_{v}.
Time step $\Delta \tau$.
A two-dimensional scratch array DIMENSION'ed (N1P,N2P).
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Metric coefficients η_{x}, η_{y} (or η, if axisymmetric), and η_{t}.
Reference ratio of specific heats, γ_{r}.
Proportionality factor g_{c} in Newton's second law.
Flags specifying variables to be printed.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Time level to be printed.
Reference Mach number M_{r}.
Effective coefficient of viscosity μ, effective second coefficient of viscosity λ, and effective coefficient of thermal conductivity k.
Turbulent viscosity coefficient μ_{r}.
Unit number for standard output.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Static pressure p and temperature T.
Reference pressure p_{r}.
Reference Prandtl number P_{r}.
Turbulent Prandtl number Pr $_{i}$.
Gas constant R.
Static density ρ, velocities u, v, and w, and total energy E_{T}.
Reference density ρ_{r}, temperature T_{r}, and velocity u_{r}.
Time value τ.
Cartesian coordinates x and y, or cylindrical coordinates x and r.
Metric coefficients ξ_{x}, ξ_{y} (or ξ, if axisymmetric), and $\xi_{\text {. }}$.

Output

ATITLE
DUMMY

A 20 -character title for variable being printed.

A two-dimensional array containing the variable to be printed.

Description

Subroutine OLTPUT manages the printing of the standard output. The variables available for printing are listed and defined in Table 3-3 of Volume 2. The user-specified array IVOUT controls which variables are printed.

Each variable to be printed is stored, in turn, in the scratch array DUMMY, from the common block DLMMY1. The title printed with the variable is stored in the character array ATITLE. Subroutine PRTOLT is then called to execute the actual write statements.

Remarks

1. A warning message is printed if a non-existent output variable is requested. The printout will continue with the next requested output variable.
2. For output options $30,31,34$, and 35 , involving the pressure p, the value stored internally in the PROTEUS code is redefined as follows:

$$
p=p \frac{\rho_{r} u_{r}^{2}}{p_{r} g_{c}}
$$

This is necessary because input and output values of p are nondimensionalized by the reference pressure $p_{r}=\rho_{r} \bar{R} T_{r}$, while internal to the code itself p is nondimensionalized by the normalizing pressure $p_{n}=\rho, u_{2}^{2}$. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.
3. The definitions of k_{t} and k_{t} (IVOUT $=92$ and 102) assume a constant turbulent Prandtl number is being specified in namelist TLRB. If the input value of PRT ≤ 0, indicating the use of a variable turbulent Prandtl number, the printed values of k_{l} and k_{t} will be incorrect.

Subroutine PAK (IDIR,NOLD1,NOLD2)		
Called by	Calls	Purpose
GFOM	CLBIC ROBTS	Manage packing and/or interpolation of grid points.

Input

IDIR

* IPACK

NOLD1, NOLD2

* $\mathrm{N} 1, \mathrm{~N} 2$
* SQ
X, Y

Direction flag; 1 if grid points are being redistributed in the ξ direction, 2 if in the η direction.
Flags for grid packing option.
Number of grid points in the ξ and η directions in the original grid.
Number of grid points N_{1} and N_{2}, in the ξ and η directions in the new grid.
An array specifying the location and amount of packing.
Cartesian coordinates x and y, or cylindrical coordinates x and r, in the old grid.

Output

$$
\mathrm{X}, \mathrm{Y}
$$

Cartesian coordinates x and y, or cylindrical coordinates x and r, in the new grid.

Description

Subroutine PAK manages the redistribution of-the user-specified points in the computational coordinate system. It is called whenever grid packing is used. It is also called when interpolation is necessary because the computational coordinates are specified by reading them from a separate file (the NGEOM $=10$ option in subroutine JEOM), and the number of points in the file is different from the number of points to be used in the calculation. PAK is called once for each direction in which points are being redistributed.

The steps involved in subroutine PAK are described below. For clarity, this discussion assumes IDIR $=1$ (i.e., we are redistributing points in the ξ direction.) An exactly analogous procedure is used for $\operatorname{IDIR}=2$.

1. Set NNEW and NOLD equal to the index limits in the ξ direction for the new and old grids. Also set NOPP equal to the index limit in the η direction for the old grid.
2. Get $\left(a_{p}\right)_{\text {, }}$, the normalized physical arc length along a coordinate line in the ξ direction, from the beginning of the line to each grid point in the new grid. The normalizing distance is the total arc length of the line, and thus these arc lengths apply to any coordinate line in the ξ direction. If the points are not being packed in the ξ direction, but only interpolated, then

$$
\left(a_{P}\right)_{i}=\frac{i-1}{\text { NNEW }-1}
$$

for $i=1$ to NNEW. In the new grid, the points will thus be evenly distributed in physical space along each coordinate line in the ξ direction. If the grid points are being packed in the ξ direction, subroutine ROBTS is called to compute ($\left.a_{p}\right)_{\text {i }}$ from the packing parameters specified by the user.
3. Begin loop from IOPP $=1$ to NOPP. This loop thus runs over the points in the η direction in the old grid. We will be redistributing points in the ξ direction for each η value in the old grid.
4. Get $\left(a_{U P}\right)$, the normalized physical arc length along a coordinate line in the ξ direction, from the beginning of the line to each grid point in the old grid. These values are found by first computing the non-normalized arc lengths, as follows:

$$
\begin{gathered}
\left(a_{U P}\right)_{1}=0 \\
\left(a_{U P}\right)_{i}=\left(a_{U P}\right)_{i-1}+\sqrt{\left(x_{i, j}-x_{i-1, j}\right)^{2}+\left(y_{i, j}-y_{i-1, j}\right)^{2}}
\end{gathered}
$$

for $i=2$ to NOLD1. These values are normalized by setting

$$
\left(a_{U P}\right)_{i}=\frac{\left(a_{U P}\right)_{i}}{\left(a_{U P}\right)_{\mathrm{NOLD} 1}}
$$

for $i=1$ to NOLD1. To eliminate any problems with roundoff error, $\left(a_{U P}\right)_{\text {NOLD } 1}$ is explicitly set equal to 1 .
5. Given x and $a_{U P}$ for the old grid, and a_{P} for the new grid, call CUBIC to interpolate for x in the new grid. Similarly interpolate for y.
6. Redefine the Fortran variables X and Y as the x and y coordinates in the new grid.
7. End of loop over the points in the η direction in the old grid.

Remarks

1. In the Fortran code, the comments sometimes refer to the "packing" direction. This terminology actually means the direction in which grid points are being redistributed, even if they are not being packed but only interpolated. Similarly, references to the "packed" and "unpacked" grid actually mean the new and old grids.

Subroutine PERIOD		
Called by	Calls	Purpose
EXEC		Define extra line of data for use in computing coefficients for spatially periodic boundary conditions.

Input

CP, CV
ETAX, ETAY, ETAT
JI
KBCPER

MU, LA, KT

NPT1

* $\mathrm{N} 1, \mathrm{~N} 2$

P, T
RHO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL
XIX, XIY, XIT

Specific heats c_{ρ} and c_{v} at time level n.
Metric coefficients η_{x}, η_{y} (or η, if axisymmetric), and η_{t}.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Flags for spatially periodic boundary conditions in the ξ and η directions; 0 for non-periodic, 1 for periodic.
Effective coefficient of viscosity μ, effective second coefficient of viscosity λ, and effective coefficient of thermal conductivity k.
N_{1} for non-periodic boundary conditions, $N_{1}+1$ for spatially periodic boundary conditions in ξ.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Static pressure p and temperature T at time level n.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.
Static density ρ, velocities u, v, and w, and total energy E_{T} from previous ADI sweep.
Static temperature T from previous ADI sweep.
Metric coefficients ξ_{x}, ξ_{y} (or ξ, if axisymmetric), and ξ_{r}.

Output

All of the flow and metric-related input parameters listed above, at $i=N_{1}+1$ for periodic boundary conditions in the ξ direction, and at $j=N_{2}+1$ for periodic boundary conditions in the η direction.

Description

Subroutine PERIOD adds, in effect, an additional set of points at $i=N_{\mathrm{t}}+1$ for periodic boundary conditions in the ξ direction, and at $j=N_{2}+1$ for periodic boundary conditions in the η direction. This allows us to use central differencing in the periodic direction, at $i=N_{1}$ and/or $j=N_{2}$, computing the coefficient submatrices and source term subvector in the same way as at the interior points. ${ }^{30}$

For periodic boundary conditions in the ξ direction, the extra points are added by setting

$$
f_{N_{1}+1, j}=f_{2, j}
$$

where $j=1$ to N_{2}, and f represents one of the flow variables or metrics. Similarly, extra points are added at ($i, N_{2}+1$) for periodic boundary conditions in the η direction.

[^25]
Remarks

1. The loop defining the extra points for periodic boundary conditions in the direction runs in the η direction from 1 to N 2 . For periodic boundary conditions in the η direction, however, the corresponding loop runs in the ξ direction from 1 to XPT 1 , not N 1 . If the ξ boundary conditions are non-periodic, $\mathrm{NPTI}=\mathrm{N}$. If periodic boundary conditions are being used in both directions, however, $\mathrm{MPT1}=\mathrm{N} 1+1$, and using NPT1 as the upper limit on the loop is necessary to define the new corner point at $\left(N_{1}+1, N_{2}+1\right)$.

Subroutine PLOT (LEVEL)		
Called by	Calls	Purpose
MAIN		Write files for post-processing by CONTOUR or PLOT3D plotting programs.

Input

CP, CV
ETAX, ETAY

- GAMR

GC

* IPLOT

LEVEL

* LR, UR, RHOR, TR
* MACHR
* NPLOT
* NPLOTX
* NSCRI
* N1, N2

P, T
PR

* RER
* RG

RGAS
RHO, U, V, W, ET
TAU

* TITLE

X, Y
XIX, XIY

Specific heats c_{ρ} and c_{v}.
Metric coefficients η_{x} and η_{y} (or η_{r} if axisymmetric).
Reference ratio of specific heats, γ_{r}.
Proportionality factor g_{c} in Newton's second law.
Flag specifying type of plot file to be written.
Time level to be written into the file (0 for initialization, and -1 to read the scratch file and write XYZ and Q files with the IPLOT $=-3$ option).
Reference length L_{r}, velocity u_{r}, density ρ_{r}, and temperature T_{r}.
Reference Mach number M_{r}.
Unit number for writing CONTOUR file, or PLOT3D Q file.
Unit number for writing PLOT3D XYZ file.
Unit number for scratch file.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Static pressure p and temperature T.
Reference pressure p_{r}.
Reference Reynolds number $R e_{r}$.
Dimensional gas constant \bar{R}.
Dimensionless gas constant R.
Static density ρ, velocities u, v, and w, and total energy E_{r}.
Current time value τ.
Case title.
Cartesian coordinates x and y, or cylindrical coordinates x and r.
Metric coefficients ξ_{x} and ξ_{y} (or $\xi_{\text {, if axisymmetric). }}$

Output

None.

Description

Subroutine PLOT writes a file or files, commonly called plot files, for post-processing by the CONTOUR or PLOT3D plotting programs. The type of files written is controlled by the user-specified parameter IPLOT. The format and contents of the different types of plot files are described in detail in Section 4.2 of Volume 2. They are therefore described only briefly here.

If IPLOT $=1$, a CONTOLR plot file is written with the title and reference conditions included at each time level. The value of n is written into the header for each time level, but τ, the time itself, is not written into the file. No initialization step is necessary.

If IPLOT $=-1$, a CONTOLR plot file is also written, but the title and reference conditions are written only at the beginning of the file. In addition the time $\tau_{i,}$, is written into the file at each time level. In this case the initialization step consists of writing the title and reference conditions at the beginning of the file.

PLOT3DWIOLE Plot Files (IPLOT $=2$)

If $\mathrm{IPLOT}=2, \mathrm{XYZ}$ and Q files are written in PLOT3D WHOLE format. The $\mathrm{XY} /$ file is written only during the initialization step. The Q file is written at each time level requested by the user. The Q file will thus consist of multiple sets of data, each containing the computed results at a single time level. The time $\tau_{1,1}$ is written into the header for each set of data in the Q file. Since PROTELS 2-D is two-dimensional, $\therefore 3$, the number of points in the z direction in the $X Y Z$ and Q files, is set equal to 1 .

PLOT3DIPLANES Plot Files (IPLOT $=3$)

If IPI,OT $=3, \mathrm{XYZ}$ and Q files are written in PLOT3DPPIAN1S format. Since PROTEUS 2-D is two-dimensional, $N 3$, the number of points in the z direction in the $X Y Z$ and Q files, is set equal to 1 . This makes the XYZ and Q files identical to those created using the IPI OT $=2$ option.

PLOT3D PLANES Plot Files (IPLOT $=-3$)

The files created with this option are similar to those created with the IPIOT $=3$ option, except the time $\tau_{i, j}$ is written into the z slot in the $X Y Z$ file, and the number of points in the " z " direction is set equal to the number of time levels in the $\mathrm{XY} /$ and Q files.

However, because the calculation may converge or become non-physical, the number of time levels that end up being written into the files is not known until the end of the PROTEUS run. Therefore, as the calculation proceeds the results are actually written into a scratch file. N3, the counter for the number of time levels, is set equal to zero in the initialization step and updated each time a time level is added to the scratch file. At the end of the PROTEUS run the scratch file is read and the XY\% and Q files are written.

PLOT2D Plot Files (IPLOT = 4)

If IPLOT $=4, \mathrm{XYZ}$ and Q files are written in PLOT3D's 2D format. The XYZ file is written only during the initialization step. The Q file is written at each time level requested by the user. The Q file will thus consist of multiple sets of data, each containing the computed results at a single time level. The time $\tau_{1,1}$ is written into the header for each set of data in the Q file.

Remarks

1. For the CONTOLR plot file, the IPLOT $=-1$ option is the better one to use. The IPI OT = 1 option is included only to be consistent with the various PLOT3D options.
2. In defining the pressure to be written into the CONTOLR plot file, the value stored internally in the PROTEUS code is redefined as follows:

$$
p=p \frac{\rho_{r} u_{r}^{2}}{p_{r} g_{c}}
$$

This is necessary because input and output values of p are nondimensionalized by the reference pressure $p_{r}=\rho_{r} \bar{R} T_{r}$, while internal to the code itself p is nondimensionalized by the normalizing pressure $p_{r}=\rho_{r} u_{r}^{2}$. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.
3. The current version of PLOT3D does not work for multiple time levels, although future versions might. Thus the IPLOT $=2,3$, and 4 options, while containing multiple time levels, cannot easily be used to create plots showing the time development of the flow. You can, however, fake it out using the IPLOT $=-3$ option. With this option, plots can be generated at different time levels by plotting at different PLOT3D " z " stations.
4. Note that the time $\tau_{1,1}$ written into the Q file header with the IPLOT $=2,3$, and 4 options is the time at the point $\xi=\eta=0$. If the input variable IDTAU $=5$ or $6, \tau$ will vary in space and therefore $\tau_{i, j} \neq \tau_{1,1}$.
5. To save storage, the Fortran variable S, which is normally used for the source term subvector in the block tridiagonal system of equations, is used to store the Q variables that are written into the PLOT3D Q file.
6. PLOT3D assumes that velocity is nondimensionalized by the reference speed of sound $a_{r}=(\gamma, \bar{R} T)^{1 / 2}$, and that energy is nondimensionalized by $\rho_{1} a_{r}^{2}$. In PROTEUS these variables are nondimensionalized by u_{r} and $\rho_{r} u_{r}^{2}$. That is why the reference Mach number M_{r} appears in the definitions of $S(,, 2)$ through $S(,, 5)$.
7. An error message is generated and execution is stopped if an illegal plot file option is requested.

Subroutine PRTHST

Called by	Calls	Purpose
MAI		Print convergence history.

Input

* ICHECK
* IREST

IT

ITBEG
NC, NXM, NYM, NZM, NEN

NEQ

* NHIST
* NHMAX
* NOUT

Convergence checking interval.
Flag for restart file; 0 for no restart file, 1 to write a restart file, 2 to read and write a restart file.
I ast computed time step number n.
The time level n at the beginning of a run.
Array indices associated with the continuity, x-momentum, y-momentum (or r-momentum if axisymmetric), swirl momentum, and energy equations.
Number of coupled equations being solved, $N_{e q}$.
Unit number for convergence history file.
Maximum number of time levels allowed in the printout of the convergence history file (not counting the first two, which are always printed.)

Output

None.

Description

Subroutine PRTHST prints the convergence history as part of the standard output. The information is obtained from the unformatted convergence history file written in subroutine RESID. The parameters printed are described in Section 4.1 .5 of Volume 2, and the unformatted convergence history file is described in Section 4.3 of Volume 2. To avoid undesirably long tables, the convergence parameters are printed at an interval that limits the printout to NHMAX time levels. As described in Section 4.1.5 of Volume 2, however, they are always printed at the first two time levels.

Subroutine PRTOUT (ATITLE,LEVEL,AVAR)		
Called by	Calls	Purpose
OUTPLT		Print output.

Input

ATITLE
AVAR
DTAU

* IDTAU
* IPRT1A, IPRT2A

LEVEL

* LR, UR
* Nout

NPRT1, NPRT2
TAU

A 20 -character title for variable being printed.
A two-dimensional array containing the variable to be printed.
Time step $\Delta \tau$.
Flag for time step selection method.
Indices for printout in the ξ and η directions.
Time level to be printed.
Reference length L_{r} and velocity u_{r}.
Unit number for standard output.
Total number of indices for printout in the ξ and η directions.
Current time value τ.

Output

None.

Description

Subroutine PRTOUT performs the actual printing of the standard output file. It prints the variable AVAR, with the title ATITLE. The output is printed in columns running in the η direction. The rows run in the ξ direction. If the results at every grid point are printed, there will be a total of N_{1} columns, each with N_{2} rows. The columns are grouped in super-rows of up to 10 columns each.

The steps involved are as follows:

1. Set the total number of columns, and rows per super-row.
2. Redefine $A V A R$, the input array containing the variable to be printed, including only the elements requested.
3. Determine the number of super-rows. If NCOL is not exactly divisible by 10 , the last super-row will have less than 10 columns.
4. Print the title for the variable. If the time step is constant in space, the dimensional time t and time step Δt are printed with the title.
5. Begin loop over the number of super-rows.
6. Set NCI and NC 2 equal to the number of the first and last column in this super-row. (I.e, for the first super-row NC1 and NC2 will be 1 and 10 , for the second they will be 11 and 20, etc. For the last super-row, NC2 will be NCOL.)
7. Print the heading for the super-row, labeling each column with the proper ξ index.
8. Print the super-row itself, labeling each row with the proper η index.
9. End of loop over the number of super-rows.

Subroutine RESID (IAVR)		
Called by	Calls	Purpose
EXEC	ISAMAX SASSCM1 S.iRM2	Compute residuals and write convergence history file.

Input

CHGAVG

CHG.MAX

DTAU
DUMMY

* EPS

IAVR

* IAV2E, IAV4E
* ICHECK
* ICTEST
* IDTAU
* IIISTAG
* ISWIRI.

IT
ITBEG

* IR, UR

NEQ

* NHIST
* NITAVG

NPT1, NPT2

* N1, N2

S
TAU

Output

RESAVG
RESI 2

LRMAX Grid indices i and j, in the ξ and η directions, corresponding to the location of RESMAX.
Maximum change in absolute value of the dependent variables, averaged over the last NITAVG time steps, $\Delta \mathbf{Q}_{\text {avo }}$.
Maximum change in absolute value of the dependent variables over previous time step (or NITAVG-1 time steps if $\operatorname{ICTEST}=2), \Delta Q_{\text {max }}$.

Time step $\Delta \tau$.
A two-dimensional scratch array.
Convergence level to be reached, ε.
Flag specifying whether residual is computed without or with the artificial viscosity terms; 1 for without, 2 for with.
Flags for second- and fourth-order explicit artificial viscosity.
Convergence checking interval.
Flag for convergence criteria to be used.
Flag for time step selection method.
Flag for constant stagnation enthalpy option.
Flag for swirl in axisymmetric flow.
Current time step number n.
The time level n at the beginning of a run.
Reference length I, and velocity u_{r}.
Number of coupled equations being solved, $N_{e q}$.
Unit number for convergence history file.
Number of time steps in moving average convergence test.
N_{1} and N_{2} for non-periodic boundary conditions, $N_{1}+1$ and $N_{2}+1$ for spatially periodic boundary conditions in ξ and η.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Source term subvector S for first ADI sweep.
Current time value τ.

The average absolute value of the residual, $\mathrm{R}_{\text {avg }}$.
The L_{2} norm of the residual, $\mathrm{R}_{L_{2}}$.

RES.MAX
The maximum absolute value of the residual, $\mathrm{R}_{\text {max }}$.

Description

Subroutine RESID computes various measures of the residual, and writes the convergence history file.
For problems without artificial viscosity, the steady-state form of the governing partial differential equations can be written as

$$
0=-\frac{\partial \hat{\mathbf{E}}}{\partial \xi}-\frac{\partial \hat{\mathbf{F}}}{\partial \eta}+\frac{\partial \hat{\mathbf{E}}_{V}}{\partial \xi}+\frac{\partial \hat{\mathbf{F}}_{V}}{\partial \eta}
$$

The residual is defined as the number resulting from evaluating the right hand side of the above equation. For first-order time differencing, this is simply the source term for the first ADI sweep, divided by the time step $\Delta \tau .{ }^{31}$ The residual at a specific grid point and time level is thus

$$
\mathrm{R}_{i, j}^{n}=\mathrm{S}_{i, j}^{n} /(\Delta \tau)_{i, j}^{n}
$$

where S is the source term for the first ADI sweep. Separate residuals are computed for each governing equation.

Adding artificial viscosity, however, changes the governing equations. With artificial viscosity, the difference equations actually correspond to the following differential equations at steady state. ${ }^{32}$

$$
\begin{aligned}
0= & -\frac{\partial \hat{\mathbf{E}}}{\partial \xi}-\frac{\partial \hat{\mathbf{F}}}{\partial \eta}+\frac{\partial \hat{\mathbf{E}}_{V}}{\partial \xi}+\frac{\partial \hat{\mathbf{F}}_{V}}{\partial \eta} \\
& +\frac{\varepsilon_{E}^{(2)}}{J}\left[(\Delta \xi)^{2} \frac{\partial^{2}(J \hat{\mathbf{Q}})}{\partial \xi^{2}}+(\Delta \eta)^{2} \frac{\partial^{2}(J \hat{\mathbf{Q}})}{\partial \eta^{2}}\right] \\
& -\frac{\varepsilon_{E}^{(4)}}{J}\left[(\Delta \xi)^{4} \frac{\partial^{4}(J \hat{\mathbf{Q}})}{\partial \xi^{4}}+(\Delta \eta)^{4} \frac{\partial^{4}(J \hat{\mathbf{Q}})}{\partial \eta^{4}}\right]
\end{aligned}
$$

For cases run with artificial viscosity, therefore, the residual should include the explicit artificial viscosity terms. The implicit terms do not appear, since they difference $\Delta \hat{\mathbf{Q}}$, and in the steady form of the equations $\Delta \hat{\mathbf{Q}}=0$. Since the explicit artificial viscosity terms are added to the source term for the first ADI sweep, they are automatically included in the residual.

Three measures of the residual are computed for each governing equation - the L_{2} norm of the residual, the average absolute value of the residual, and the maximum absolute value of the residual. In addition, the (ξ, η) indices corresponding to the location of the maximum residual are saved. The L_{2} norm of the residual is defined as

$$
\mathrm{R}_{L_{2}}=\left(\sum\left(\mathrm{R}_{i, j}\right)^{2}\right)^{1 / 2}
$$

In computing the residuals, the summations, maximums, and averages are over all interior grid points, plus points on spatially periodic boundaries.

[^26]For cases run with artificial viscosity, subroutine RESID is called from EXEC both before and after the artificial viscosity terms have been added to the equations. The residuals are thus computed both with and without the artificial viscosity terms. This may provide some estimate of the overall error in the solution introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity terms included.

In addition to computing the residuals, subroutine RESID writes the convergence history file. The contents and format of this file are described in detail in Section 4.3 of Volume 2.

Remarks

1. The Cray BLAS routines SSRM2, ISAMAX, and SASUM are used in computing the I_{2} norm of the residual, the maximum absolute value of the residual, and the average absolute value of the residual, respectively.
2. The scratch array DUMMY, from the common block DCMMY1, is used to store the values of the residual at each grid point.

Subroutine REST (IOPT)		
Called by	Calls	Purpose
NITC	METS	Read and or write restart file.
MAI		

Input When Reading the Restart File

* GaMR
* IISTAG
* IHSTAG

IOPT

* NRQIN
* NRXIN

RGAS

Input When Writing the Restart File

IOPT
IT

* Machr
* NRQOUT
* NRXOUT
* $\mathrm{N}_{1}, \mathrm{~N} 2$
* RIR

RHO, U, V, W, ET
RHOI, LI, VI, WL, ETL
TAU
X, Y

Reference ratio of specific heats, γ.
Stagnation enthalpy h_{T} used with constant stagnation enthalpy option.
Flag for constant stagnation enthalpy option.
Plag specifying I () operation; 1 to read, 2 to write.
Unit number for reading the restart flow field.
Unit number for reading the restart computational mesh.
Dimensionless gas constant R.

Ilag specifying I/O operation; 1 to read, 2 to write.
Current time step number n.
Reference Mach number $M_{\text {r }}$.
I nit number for writing the restart flow field.
Init number for writing the restart computational mesh.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Reference Reynolds number $R e_{r}$.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level $n+1$.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.
Computational time τ at time level $n+1$.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Output When Reading the Restart File

DXI, DETA
ITBEG
MACHR
N1, N2
RER
RHO, U, V, W, ET
RHOI, UL, VL, WL, ETL

Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
The time level n at the beginning of the new run.
Reference Mach number M.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Reference Reynolds number $R e_{r}$.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level ITBEG.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level ITBEG-1.

T, TL
TAU
X, Y

Static temperature T at time levels ITBEG and ITBEG - 1 .
Computational time τ at time level ITBEG.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Output When Writing the Restart File

None.

Description

Subroutine REST reads and/or writes the restart files. Restarting a calculation requires two unformatted files - one containing the computational mesh and one containing the flow field.

If subroutine REST is being used to read the restart files, the computational mesh is first read from unit NRXIN. The grid increments $\Delta \xi$ and $\Delta \eta$ are then set, and subroutine METS is called to compute the metric coefficients and the Jacobian of the grid transformation.

The flow field file is read next, from unit NRQIN. It normally contains the results at the last two time levels that were computed during the previous run. If only one level is present in the file, however, the results at level $n-1$ are set equal to those at level n. The beginning time level for the time marching loop is set equal to the level stored in the restart file. The flow field variables in the restart file are the conservation variables \mathbf{Q}, nondimensionalized as in the plotting program PLOT3D. ${ }^{33}$ They therefore must be converted into the primitive variables used in PROTELS. The temperature is then computed from the perfect gas equation of state, with c_{p} and c_{ν} defined using the input reference conditions.

When writing the restart files, the file containing the computational mesh is written onto unit NRXOUT. The primitive flow variables are then redefined as conservation variables and nondimensionalized as in PLOT3D. They are then written onto unit NRQOUT.

Remarks

1. If, in the input namelist RSTRT, NRXOUT and NRQOUT are set equal to NRXIN and NRQIN, respectively, the output restart files will overwrite the input restart files.
2. Except for the variables at time level $n-1$, the restart files have the same format as the XYZ and Q files created using the IPLOT $=2$ and 3 options. These restart files can thus also be used as XYZ and Q files for the PLOT3D plotting program. Since N3 $=1$, the $n-1$ level will not be read by PLOT3D.
3. The temperature T is computed using the equation of state, which contains a specific heat coefficient (either c_{p} or c_{v}, depending on whether the stagnation enthalpy is assumed constant or not.) In subroutine REST, a constant value of specific heat is used, consistent with the reference temperature T_{r}. If the user specified constant specific heat (i.e., a value for γ, was read in), this is not a problem. However, if the temperature-dependent specific heat option is being used (i.e., a value for γ, was not read in), the equation of state and the empirical equation for specific heat are coupled. For this reason, in INITC (the routine that calls REST), T is recomputed by calling EQSTAT after the specific heats have been computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and EQSTAT. This is not currently done in PROTEUS, however.
[^27]| Subroutine ROBTS (NP,A,B,XP) | | |
| :--- | :--- | :--- |
| Called by | Calls | Purpose |
| PAK | | Pack points along a line using Roberts transformation. |

Input

A
Parameter α in Roberts transformation formula specifying location of packing: 0.0 to pack near $\mathrm{XP}=1$ only, 1.0 to pack near $X P=0$ only, and 0.5 to pack equally at $\mathrm{XP}=0$ and 1.0 .
B
Parameter β in Roberts transformation formula specifying amount of packing. A value approaching 1.0 from above gives denser packing.
NP
Number of grid points along the line.

Output

XP
Coordinates of packed grid points along the line.

Description

Subroutine ROBTS packs points along a line of length one using a transformation due to Roberts (1971). The basic transformation is given by

$$
x_{P}=\frac{(\beta+2 \alpha) \beta_{r}^{\beta_{x}}-\beta+2 \alpha}{(2 \alpha+1)\left(1+\beta_{r}^{\beta_{x}}\right)}
$$

where

$$
\begin{gathered}
\beta_{r}=\frac{\beta+1}{\beta-1} \\
\beta_{x}=\frac{x_{U P}-\alpha}{1-\alpha}
\end{gathered}
$$

and x_{p} and $x_{U p}$ are the packed and unpacked (i.e., evenly spaced) coordinates along the line. The parameter α determines the packing location. For $\alpha=0$, the points will be packed only near $x_{P}=1$, and for $\alpha=1 / 2$ the points will be packed equally near $x_{p}=0$ and $x_{p}=1$. The packing parameter β determines the amount of packing. It is a number greater than 1 , but generally 1.1 or below. The closer β is to 1 , the tighter the packing will be.

It may seem logical to set $\alpha=1$ to pack points near $x_{p}=0$. With the basic transformation, however, this doesn't work. In PROTEUS we get around this problem by replacing α in the above transformation with α_{w}, where $\alpha_{w}=\alpha$ if $\alpha=0$ or $1 / 2$, and $\alpha_{w}=0$ if $\alpha=1$. If $\alpha=0$ or $1 / 2$, no further action is necessary. If $\alpha=1$, however, we must invert the resulting x_{P} values and re-order the indices. I.e., for $i=1$ to $\lambda \mathrm{P}$, we set

$$
\left(x_{P I}\right)_{i}=1-\left(x_{P}\right)_{i}
$$

After this operation, the array $x_{P l}$ will run from 1 to 0 , packed near 1 . To re-order the indices, for $i=1$ to $\therefore P$ we set

$$
\left(x_{P}\right)_{N P_{-i+1}}=\left(x_{P I}\right)_{i}
$$

After this operation, x_{P} will run from 0 to 1 , packed near 0 .
Finally, to ensure round-off error doesn't affect the endpoint values, we set $\left(x_{P}\right)_{1}=0$ and $\left(x_{P}\right)_{V P}=1$.

Remarks

1. The namelist input variable $\operatorname{SQ}(\operatorname{IDIR}, 1)$, which is used to specify the packing location in direction IDIR, is actually equal to $1-\alpha$. Therefore, setting $\operatorname{SQ(IDIR}, 1)=0$ results in packing near the ξ or $\eta=0$ boundary, and $\mathrm{SQ}(\operatorname{ID}) \mathrm{R}, 1)=1$ results in packing near the ξ or $\eta=1$ boundary.

Function SASUM (N,V,INC)		
Called by	Calls	Purpose
RESID		Compute the sum of the absolute values of the elements of a vector.

Input

Number of elements in the vector to be summed.

INC
Vector to be summed.
Skip distance between elements of V. For contiguous elements, $I \mathrm{C}=1$.

Output

SASLM
Sum of the absolute values of the elements of V .

Description

Function SASUM computes the sum of the absolute values of the elements of a vector. For a onedimensional vector, the use of SASUM is straightforward. For example,

$$
\operatorname{SASUM}(\mathrm{NP}, \mathrm{~V}, 1)=\sum_{i=1}^{\mathrm{NP}} V_{i}
$$

A starting location can be specified, as in

$$
\operatorname{SASUM}(\mathrm{NP}-4, \mathrm{~V}(5), 1)=\sum_{i=5}^{\mathrm{NP}} V_{i}
$$

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimensioned NDIM1 by NDIM2, then

$$
\operatorname{SASUM}\left(\text { NDIM1 }^{*} \operatorname{NDIM} 2, \mathrm{~A}, 1\right)=\sum_{i=1}^{\text {NDIM1 }} \sum_{j=1}^{\text {NDIM2 }} A_{i, j}
$$

One dimension at a time can also be summed. For example,

$$
\operatorname{SASUM}(\operatorname{NDIM1,A}(1,5), 1)=\sum_{i=1}^{\text {NDIM1 }} A_{i, 5}
$$

Similarly, by specifying a skip increment,

$$
\operatorname{SASLM}(\operatorname{NDIM} 2, \mathrm{~A}(5,1), \operatorname{NDIM} 1)=\sum_{j=1}^{\mathrm{NDIM} 2} A_{5, j}
$$

Remarks

1. SASUM is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1988b).

Subroutine SGLFA (A,LDA,, IPVT,INPO)		
Called by	Calls	Purpose
BCELIM BVLP	ISA.MAX	Factor a matrix using Gaussian elimination.

Input

A

IDA
N
An array containing the matrix ito be factored, dimensioned as $\mathrm{A}(\mathrm{LDA}, \mathrm{N})$.
The leading dimension of the array A.
The order of the matrix A.

Output

A
An upper triangular matrix and the multipliers which were used to obtain it. The factorization can be written as $\mathbf{A}=\mathbf{L C}$, where L is a product of permutation and unit lower triangular matrices, and \mathbf{U} is upper triangular.
IPVT
A vector of length N containing pivot indices.
INO
An error flag: 0 for normal operation, k if $\mathrm{C}_{k k}=0$.

Description

Subroutine SGIEAA is used in combination with subroutine SGESI to solve the matrix equation $\mathbf{A x}=\mathbf{B}$. If the Fortran arrays A and B represent A and B, where A is a square \mathcal{D} by matrix and \mathbf{B} is a matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is $\mathrm{L}, \mathrm{D} A$, then the Fortran sequence

```
                                    CALL SGEFA (A,LDA,N,IPVT,INFO)
                                    DO 10 J = 1,NCOL
                                    CALL SGESL (A,LDA,N,IPVT,B(1,J),0)
CONTINUE
```

10
computes $\mathbf{A}{ }^{1} \mathbf{B}$, storing the result in \mathbf{B}.

Remarks

1. SGEFA is a Cray LINPACK routine (Cray Rescarch, Inc., 1988b).

Subroutine SGESL (A,LDA,N,IPVT,B,JOB)		
Called by	Calls	Purpose
BCELIM BVLP		Solve the matrix equation $\mathbf{A x}=\mathbf{B}$ or $\mathbf{A}^{\mathrm{T}} \mathbf{x}=\mathbf{B}$ using the factors com- puted by SGEFA.

Input

A
B
IPVT
JOB

LDA
N
Output
B

The two-dimensional output array A from SGEFA containing the factorization of matrix \mathbf{A}.
The right-hand side vector \mathbf{B}.
The output array IPVT of pivot indices from SGEFA.
Flag specifying type of matrix equation: 0 to solve $\mathbf{A x}=\mathbf{B}$; nonzero to solve $\mathbf{A}^{\top} \mathbf{x}=\mathbf{B}$.

The leading dimension of the array A .
The order of the matrix A.

Description

Subroutine SGESL is used in combination with subroutine SGEFA to solve the matrix equation $\mathbf{A x}=\mathbf{B}$. See the description of subroutine SGEFA for details.

Remarks

1. SGESL is a Cray LINPACK routine (Cray Research, Inc., 1988b).

Function SNRM2 (N,V,INC)

Called by	Calls	Purpose
RESID		Compute the L_{2} norm of a vector.

Input

N
V
INC

The number of elements in the vector V.
The vector whose norm is to be computed.
Skip distance between elements of V. For contiguous elements, INC=1.

Output

SNRM2
The L_{2} norm of the vector V .

Description

Function SNRM2 computes the I_{2} norm of a vector. For a one-dimensional vector, the use of SNRM2 is straightforward. For example,

$$
\operatorname{SNRM} 2(\mathrm{NP}, \mathrm{~V}, 1)=\left(\sum_{i=1}^{\mathrm{NP}} V_{i}^{2}\right)^{1 / 2}
$$

A starting location can be specified, as in

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in memory, and specifying the proper vector length and skip distance. For instance, if Λ is an array dimensioned NDIM1 by NDIM2, then

$$
\operatorname{SNRM} 2\left(\text { NDIM1 }^{* N D I M 2, A, 1)}=\left(\sum_{i=1}^{\text {NDIM1 }} \sum_{j=1}^{\text {NDIM1 }} A_{i, j}^{2}\right)^{1 / 2}\right.
$$

One dimension at a time can also be summed. For example,

$$
\operatorname{SNRM} 2\left(\operatorname{NDIM1,A(1,5),1)}=\left(\sum_{i=1}^{\text {NDIM1 }} A_{i, 5}^{2}\right)^{1 / 2}\right.
$$

Similarly, by specifying a skip increment,

$$
\mathrm{SNRM2}\left(\text { NDIM2,A(5,1),NDIM1) }=\left(\sum_{j=1}^{\mathrm{NDIM2}} A_{5, j}^{2}\right)^{1 / 2}\right.
$$

Remarks

1. SNRM2 is a Cray BI AS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1988b).

Subroutine TBC		
Called by	Calls	Purpose
MAIN		Set time-dependent boundary condition values.

Input

* GTBC1, GTBC2

IT
ITBEG
ITEND

* JBC1, JBC2
* JTBC1, JTBC2

NBC

NEQ

* NOUT
* NTBC
* NTBCA
* N1, N2

Output

FBC1, FBC2
$\mathrm{GBCl}, \mathrm{GBC} 2$

Time-dependent surface boundary condition values for the ξ and η directions.
Current time step number n.
The time level n at the beginning of a run.
Final time step number.
Surface boundary condition types for the ξ and η directions.
Flags for type of time dependency for boundary conditions in the ξ and η directions.
Cray PARAMETER specifying number of boundary conditions per equation.
Number of coupled equations being solved, $N_{e q}$.
Unit number for standard output.
Number of valucs in tables for general unsteady boundary conditions.
Time levels at which general unsteady boundary conditions are specified.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.

Point-by-point boundary condition values for the ξ and η directions.
Surface boundary condition values for the ξ and η directions.

Description

Subroutine TBC sets time-dependent boundary condition values. Two types of time dependency are allowed - general and periodic.

General Time-Dependent Boundary Conditions

General time-dependent boundary conditions are set using linear interpolation on an input table of boundary condition values vs. time level. Thus, the boundary condition value is

$$
g^{n+1}=g_{t}^{i}+\frac{n+1-n_{t}^{i}}{n_{t}^{i+1}-n_{t}^{i}}\left(g_{t}^{i+1}-g_{t}^{i}\right)
$$

Here n is the current known time level in the time marching scheme, g_{t} and n_{t} represent the input table of boundary condition values vs. time level, and i is the index in the table for which

$$
n_{t}^{i} \leq n+1<n_{t}^{i+1}
$$

If $n+1<n_{t}^{1}$, then g^{n+1} is set equal to the first value in the table, g_{t}^{1}. Similarly, if $n+1>n_{f}^{N}$, where N is the index of the last entry in the table, then g^{n+1} is set equal to the last value in the table, g_{t}^{N}.

In Fortran, $g=\mathrm{GBCl}$ or $\mathrm{GBC} 2, g_{t}=\mathrm{GTBCl}$ or $\mathrm{GTBC} 2, n_{t}=\mathrm{MTBCA}$, and $N=$ NTBC.

Time-Periodic Boundary Conditions

Time-periodic boundary conditions (not to be confused with spatially periodic boundary conditions) are of the form

$$
g^{n+1}=g_{t}^{1}+g_{t}^{2} \sin \left[g_{t}^{3}(n+1)+g_{t}^{4}\right]
$$

where g_{t}^{1} through g_{t}^{4} are given by the first four elements of GTBC1 or GTBC2.

Remarks

1. An error message is generated and execution is stopped if an invalid type of unsteadiness is requested for the boundary values.

Subroutine TIMSTP		
Called by	Calls	Purpose
MAIX	ISAMAX	Set computational time step.

Input

* CFLMIN, CHLMAX

CIIG.MAX

* CHGl, CHG2

CP, CV

* DT

DTAU

* DTF1, DTF2
* DTMIN, DTMAX

DXI, DETA
ETAX, ETAY, ETAT

* IDTAU

IT
ITSEQ

* NDTCYC

NEQ

* NOUT
* $\mathrm{N}, \mathrm{N} 2$

RGMS
-
U, V
XIX, XIY, XIT

Output

- CFI

DTAU

Minimum and maximum CFL numbers allowed in IDIAL = 2 and 6 options.
Maximum change in absolute value of the dependent variables over previous time step (or NITAVG-I time steps if $\operatorname{ICTEST}=2$) , $\Delta \mathbf{Q}_{\max }$.
Minimum and maximum change, in absolute value, that is allowed in any dependent variable before increasing or decreasing $\Delta \tau$ in IDTAU $=2,4$, and 6 options.
Specific heats c_{p} and c_{v} at time level n.
Time step $\Delta \tau$ in IDTAU $=3$ and 4 options.
Old computational time step $\Delta \tau$.
Factors multiplying or dividing $\Delta \tau$ if solution changes too slowly or quickly in IDTAU $=2,4$, and 6 options.
Minimum and maximum $\Delta \tau$ allowed in IDTAU $=4$ option, or used in IDTAU $=7$ option.
Computational grid spacing $\Delta \xi$ and $\Delta \eta$.
Metric coefficients η_{x}, η_{y} (or η_{r} if axisymmetric), and η_{r}.
Flag for time step selection method.
Current time step number n.
Current time step sequence number.
Number of time steps per cycle for IDTAU $=7$ option.
Number of coupled equations being solved, $N_{e q}$.
Unit number for standard output.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Gas constant R.
Static temperature T at time level n.
Velocities u and v at time level n.
Metric coefficients ξ_{x}, ξ_{y} (or ξ, if axisymmetric), and ξ_{1}.

New CFL number in IDTAU $=1,2,5$, and 6 options.
New computational time step $\Delta \tau$.

Description

Subroutine TIMSTP computes the time step size $\Delta \tau$. The following sections describe the various methods currently available for setting and/or modifying $\Delta \tau$.

This option sets a global (i.e., constant in space) time step $\Delta \tau$ equal to the minimum of the values at each grid point computed from the input parameter CFL(ITSEQ). I.e.,

$$
(\Delta \tau)_{i, j}=(\mathrm{CFL}) \min \left(\Delta \tau_{c f}\right)_{i, j}
$$

where $\Delta \tau_{c f f}$ is the inviscid CFL limit, given in generalized coordinates as (Shang, 1984).

$$
\Delta \tau_{c f l}=\left\{\left|\frac{U}{\Delta \xi}\right|+\left|\frac{V}{\Delta \eta}\right|+a\left[\left(\frac{\xi_{x}}{\Delta \xi}+\frac{\eta_{x}}{\Delta \eta}\right)^{2}+\left(\frac{\xi_{y}}{\Delta \xi}+\frac{\eta_{y}}{\Delta \eta}\right)^{2}\right]^{1 / 2}\right\}^{-1}
$$

Here $U=\xi_{t}+\xi_{x} u+\xi_{y} v$ and $V=\eta_{t}+\eta_{x} u+\eta_{y} v$ are the contravariant velocities without metric normalization, and $a=\sqrt{\gamma R T}$ is the speed of sound.

$I D T A U=2$

For the first time step, this option is identical to the IDTAU $=1$ option. After the first time step, however, CFL is modified to keep $\Delta Q_{\text {max }}$, the maximum change in absolute value of the dependent variables, within user-specified limits. The rules used to increase or decrease CFL may be summarized as follows:

$$
\begin{aligned}
\Delta \mathbf{Q}_{\max }<\mathrm{CHG1} & \Rightarrow \mathrm{CFL}=\min [(\mathrm{DTF} 1)(\mathrm{CFL}), \mathrm{CFL} \mathrm{MAX}] \\
\Delta \mathbf{Q}_{\max }>\mathrm{CHG} 2 & \Rightarrow \mathrm{CFL}=\max [\mathrm{CFL} / \mathrm{DTF} 2, \mathrm{CFLMIN}] \\
\Delta \mathbf{Q}_{\max }>0.15 & \Rightarrow \mathrm{CFL}=\mathrm{CFL} / 2
\end{aligned}
$$

The time step $\Delta \tau$ is then set using the same formulas as in the IDTAU $=1$ option.

$\underline{I D T A U}=3$

This option sets a global (i.e., constant in space) time step $\Delta \tau$ equal to the input parameter DT(ITSEQ).

$I D T A U=4$

For the first time step, this option is identical to the IDTAU $=3$ option. After the first time step, however, $\Delta \tau$ is modified to keep $\Delta Q_{\text {max }}$, the maximum change in absolute value of the dependent variables, within user-specified limits. The rules used to increase or decrease $\Delta \tau$ may be summarized as follows:

$$
\begin{aligned}
\Delta Q_{\max }<\mathrm{CHG1} & \Rightarrow \Delta \tau=\min [(\mathrm{DTF} 1) \Delta \tau, \text { DTMAX }] \\
\Delta \mathrm{Q}_{\max }>\mathrm{CHG} 2 & \Rightarrow \Delta \tau=\max [\Delta \tau /(\mathrm{DTF} 2), \text { DTMIN }] \\
\Delta \mathrm{Q}_{\max }>0.15 & \Rightarrow \Delta \tau=\Delta \tau / 2
\end{aligned}
$$

$\underline{I D T A U}=5$

This option sets a local (i.e., varying in space) time step $\Delta \tau$ computed at each grid point from the input
ameter CFL(ITSEQ). I.e., parameter CFL(ITSEQ). I.e.,

$$
(\Delta \tau)_{i, j}=(\mathrm{CFL})\left(\Delta \tau_{c f l}\right)_{i, j}
$$

where $\Delta \tau_{c f l}$ is given above in the description of the IDTAU $=1$ option.

$\underline{I D T A U}=6$

For the first time step, this option is identical to the IDTAU $=5$ option. After the first time step, however, CFL is modified to keep $\Delta \mathbf{Q}_{\text {max }}$, the maximum change in absolute value of the dependent variables, within user-specified limits. The rules used to increase or decrease CFL are the same as in the IDTAU $=2$ option.

This option sets a global (i.e., constant in space) time step $\Delta \tau$ with logarithmic cycling. The formula used is

$$
\Delta \tau=\Delta \tau_{\min }\left(\frac{\Delta \tau_{\max }}{\Delta \tau_{\min }}\right)^{N /\left(N_{c y c}-1\right)}
$$

where $N=\bmod \left(n-1, N_{c y}\right)$ and n is the current known time level. The time step $\Delta \tau$ is thus cycled repeatedly between $\Delta \tau_{\text {min }}$ and $\Delta \tau_{\text {mex }}$ every $N_{c y c}$ time steps. The values of $\Delta \tau_{\text {min }}, \Delta \tau_{\text {max }}$, and $N_{c y c}$ are given by the input parameters DTMIN, DTMAX, and NDTCYC.

Remarks

1. In $\Delta \mathbf{Q}_{\text {max }}$, used in the IDTAU $=2,4$, and 6 options, the change in E_{T} has been divided by $R /\left(\gamma_{r}-1\right)+1 / 2$. This is equivalent to dividing the dimensional value E_{T} by

$$
E_{T_{r}}=\frac{\rho_{r} \bar{R} T_{r}}{\gamma_{r}-1}+\frac{\rho_{r} u_{r}^{2}}{2}
$$

This makes the change in total energy the same order of magnitude as the other conservation variables.
2. An error message is generated and execution is stopped if an illegal time step selection option is requested.
3. A warning message is printed with the IDTAU $=2,4$, and 6 options if $\Delta \tau$ or the CFL number is cut in half because $\Delta \mathbf{Q}_{\text {max }}>0.15$.
4. The Cray BLAS routine ISAMAX is used in computing the maximum value of $\Delta \mathbf{Q}_{\text {max }}$ for all the equations.

Subroutine TURBBL		
Called by	Calls	Purpose
INITC	BLIN1	Manage computation of turbulence parameters using Baldwin-Lomax
MAI.	BLIN2	algebraic model.
	BLOUT1	
	BI.OUT2	
	VORTEX	

Input

CP

* ITETA, ITXI
* IWALL1, IWALL2
* $\mathrm{KBC1}, \mathrm{KBC} 2$

MU, LA, KT

* Nout
* N1, N2

PRR

* PRT
* RIER
* REXT1, REXT2

RHO, U, V, W
X, Y

Output

IWALLI, IWALL2
MU, IA, KT
MUT

Specific heat c_{p}.
Flags for computation of turbulent viscosity along constant η and ξ lines.
Flags indicating whether or not the ξ and η boundaries are walls.
Boundary types for the ξ and η directions.
Laminar coefficient of viscosity μ_{t}, laminar second coefficient of viscosity λ_{l}, and laminar coefficient of thermal conductivity k_{l}.
Unit number for standard output.
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Reference Prandtl number $P r_{r}$.
Turbulent Prandtl number $P r_{r}$, or, if $P R T \leq 0$, a flag indicating the use of a variable turbulent Prandll number.
Reference Reynolds number $R e$,
Transition Reynolds numbers $R e_{x_{t r}}$ in the ξ and η directions.
Static density ρ, and velocitics u, v, and w.
Cartesian coordinates x and y, or cylindrical coordinates x and r.

Flags indicating whether or not the ξ and η boundaries are walls, if not set in input.
Effective coefficient of viscosity μ, effective second coefficient of viscosity λ, and effective coefficient of thermal conductivity k.
Turbulent viscosity coefficient μ_{t}.

Description

Subroutine TURBBL manages the computation of the effective coefficient of viscosity, second coefficient of viscosity, and coefficient of thermal conductivity using the algebraic eddy viscosity model of Baldwin and Iomax (1978). It is called from MAIN during each step from time level n to $n+1$, but after the governing flow equations have been solved. The Fortran variables RHO, U, etc., are thus at the $n+1$ level. The effective viscosity coefficient to be computed will therefore also be at the $n+1$ level. This, of course, becomes the known n level for the next time step.

The steps involved in computing the effective coefficients are as follows:

1. Initialize the arrays for storing the turbulent viscosity μ_{t} on constant ξ and η lines to zero.
2. Call VORTEX to compute $|\vec{\Omega}|$, the magnitude of the total vorticity vector.
3. At each ξ location, compute $\mu_{\text {}}$ due to walls at $\eta=0$ and/or $\eta=1$, or due to a free turbulent flow in the ξ direction, using steps $3 \mathrm{a}-3 \mathrm{c}$. The result will be stored in the Fortran array MUT. If bypassing the calculation on constant ξ lines, skip to step 4 to compute μ_{t} on constant η lines.
3a. If boundary types are specified using the KBC parameters, set flags indicating which η boundaries are solid walls. (If the KBCs are not used, the IWALL flags have been set in the input.)
3b. Call BLOUT1 to compute $\left(\mu_{1}\right)_{\text {outrer }}$, at the current ξ location, for $\eta=0$ to 1 .
3c. Call BLIN1 to compute $\left(\mu_{1}\right)_{\text {inerer }}$, at the current ξ location, within the inner region for a solid wall at $\eta=0$ and or $\eta=1$.
4. At each η location, compute μ_{t} due to walls at $\xi=0$ and $/$ or $\xi=1$, or due to a free turbulent flow in the η direction, using steps $4 \mathrm{a}-4 \mathrm{c}$. The result will be stored in the Fortran array DUMMY. If bypassing the calculation on constant η lines, skip to step 5 .
4a. If boundary types are specified using the KBC parameters, set flags indicating which ξ boundaries are solid walls. (If the KBCs are not used, the IWALL flags have been set in the input.)
4b. Call BLOUT2 to compute $\left(\mu_{\mu}\right)_{\text {outer }}$, at the current η location, for $\xi=0$ to 1 .
4c. Call BLIN2 to compute $\left(\mu_{r}\right)_{\text {nerere }}$, at the current η location, within the inner region for a solid wall at $\xi=0$ and $/$ or $\xi=1$.
5. If the input is such that the computation of μ_{t} is bypassed in both directions, write an error message and stop.
6. If μ_{t} is being computed on constant ξ lines only, then MUT $=\mu_{r}$, so skip to step 9 .
7. If μ_{t} is being computed on constant η lines only, then DUMMY $=\mu_{t}$, so set MUT = DUMMY and skip to step 9.
8. If μ_{t} is being computed both on constant ξ lines and constant η lines, compute a single μ_{t} value at each grid point using the averaging formula presented in equation (3.13) of Volume 1.
9. If specified in the input, modify μ_{t} to account for laminar-turbulent transition using a model based on one given by Cebeci and Bradshaw (1984). This model is described in Section 3.4 of Volume 1.
10. Define the necessary effective coefficients as follows:

$$
\begin{aligned}
\mu & =\mu_{l}+\mu_{t} \\
\lambda & =\lambda_{l}+\lambda_{t} \\
k & =k_{l}+k_{t}
\end{aligned}
$$

where $\lambda_{t}=-2 \mu_{t} / 3$, and k_{t} is computed using Reynold's analogy as

$$
k_{t}=\frac{\mu_{t} c_{p}}{P r_{t}}
$$

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using equation (3.19) of Volume 1.

Remarks

1. In the averaging formula used when μ_{t} is computed both on constant ξ lines and constant η lines, the Fortran variables F1 and F2 are

$$
\mathbf{F} 1=\frac{\left(y_{n}\right)_{2}}{\left[\left(y_{n}\right)_{1}^{2}+\left(y_{n}\right)_{2}^{2}\right]^{1 / 2}}
$$

$$
\mathrm{F} 2=\frac{\left(y_{n}\right)_{1}}{\left[\left(y_{n}\right)_{1}^{2}+\left(y_{n}\right)_{2}^{2}\right]^{1 / 2}}
$$

If $\left(y_{n}\right)_{1}$ and $\left(y_{n}\right)_{2}$ are both close to zero, F 1 and F 2 are set equal to $1 / \sqrt{2}$, which is the limiting value in the above equations as $\left(y_{n}\right)_{1}$ and $\left(y_{n}\right)_{2}$ approach zero.
? The exponent in the definition of $\gamma_{t r}$ is limited to 20 .
2. In the Fortran equation for the effective thermal conductivity, the factor $\mathrm{PRR}=P r_{r}$ is necessary for proper nondimensionalization of k_{r}.
The distance used in the formula for $\gamma_{t r}$ is a straight-line distance from one point to another. It would probably be better to compute a curvilinear distance along the coordinate line.
5. The scratch array DUMMY, from the common block DUMMY1, is used to store the value of the turbulent viscosity along constant η lines. The array is filled in subroutines BLIN2 and BLOUT2.

Subroutine LPDATE		
Called by	Calls	Purpose
EXEC		Lpdate flow variables after each ADI sweep.

Input

IBASE, ISTEP

IV
JI
NPTS
$N R, N R L, N R V, N R W, N E T$

RHO, U, V, W, ET

S

Base index and multiplication factor used in computing onedimensional index for two-dimensional array.
Index in the "vectorized" direction, i_{v}.
Inverse Jacobian of the nonorthogonal grid transformation, J^{-1}.
Number of grid points in the sweep direction, N.
Array indices associated with the dependent variables $\rho, \rho u, \rho v$, ρw, and E_{T}.
Static density ρ, velocities u, v, and w, and total energy E_{T} at time level n.

Computed solution subvector, $\Delta \hat{\mathbf{Q}}$.

Output

RHOL, UL, VL, WL, ETL Static density ρ, velocities u, v, and w, and total energy E_{T} at end of current ADI sweep.

Description

Subroutine UPDATE computes the primitive flow variables from the dependent variables $\Delta \hat{\mathbf{Q}}$ after each ADI sweep. For the first sweep the formulas are

$$
\begin{gathered}
\rho^{*}=\rho^{n}+J \Delta \hat{Q}_{1}^{*} \\
u^{*}=\frac{1}{\rho^{*}}\left(\rho^{n} u^{n}+J \Delta \hat{Q}_{2}^{*}\right) \\
v^{*}=\frac{1}{\rho^{*}}\left(\rho^{n} v^{n}+J \Delta \hat{Q}_{3}^{*}\right) \\
w^{*}=\frac{1}{\rho^{*}}\left(\rho^{n} w^{n}+J \Delta \hat{Q}_{4}^{*}\right) \\
E_{T}^{*}=E_{T}^{n}+J \Delta \hat{Q}_{5}^{*}
\end{gathered}
$$

where $\Delta \hat{Q}_{1}$ through $\Delta \hat{Q}_{5}$ are the dependent variables in delta form for the five governing equations. ${ }^{34}$ For the second ADI sweep, the superscript * should be changed to $n+1$ on ρ, u, v, w, and E_{T}, and to n on $\Delta \hat{Q}$.

[^28]
Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

Subroutine VORTEX		
Called by	Calls	Purpose
TLRBBL		Compute magnitude of total vorticity.

Input

* ALPHAI, ALPHA2

ETAX, ETAY

* $\mathrm{N} 1, \mathrm{~N} 2$
$\mathrm{L}, \mathrm{V}, \mathrm{w}$
XIX, XIY
Y

Spatial difference centering parameters α_{1} and α_{2}, for the ξ and η directions.
Metric cocfficients η_{x} and η_{y} (or $\eta_{\text {, if axisymmetric.) }}$
Number of grid points N_{1} and N_{2}, in the ξ and η directions.
Velocities u, v, and w.
Metric coefficients ξ_{x} and ξ_{y} (or ξ, if axisymmetric.)
Radial coordinate r for axisymmetric flow.

Output

VORT
Total vorticity magnitude.

Description

Subroutine VORTEX computes the magnitude of the total vorticity vector. For two-dimensional planar flow this is defined as

$$
|\stackrel{\rightharpoonup}{\Omega}|=\left|\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right|
$$

and for axisymmetric flow,

$$
|\vec{\Omega}|=\left[\left(\frac{\partial w}{\partial r}+\frac{w}{r}\right)^{2}+\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial r}\right)^{2}\right]^{1 / 2}
$$

Note that, for flow without swirl, the definition for axisymmetric flow is the same as for two-dimensional planar flow.

Using the chain rule, these can be rewritten in generalized nonorthogonal coordinates. For twodimensional planar flow,

$$
|\vec{\Omega}|=\left|\left(\xi_{x} v_{\xi}+\eta_{x} v_{\eta}\right)-\left(\xi_{y} u_{\xi}+\eta_{y} u_{\eta}\right)\right|
$$

and for axisymmetric flow,

$$
|\vec{\Omega}|=\left[\left(\xi_{r} w_{\xi}+\eta_{r} w_{\eta}+\frac{w}{r}\right)^{2}+\left(\xi_{x} w_{\xi}+\eta_{x} w_{\eta}\right)^{2}+\left(\xi_{x} v_{\xi}+\eta_{x} \nu_{\eta}-\xi_{r} u_{\xi}-\eta_{r} u_{\eta}\right)^{2}\right]^{1 / 2}
$$

At interior points, the variably centered difference formula presented in Section 6.0 of Volume 1 is used to numerically compute the derivatives in the above equations. At boundary points, second-order one-sided difference formulas are used.

REFERENCES

Baldwin, B. S., and Lomax, H. (1978) "Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows," AIAA Paper 78-257.

Beam, R. M., and Warming, R. F. (1978) "An Implicit Factored Scheme for the Compressible NavierStokes Equations," AIAA Journal, Vol. 16, No. 4, pp. 393-402.

Briley, W. R., and McDonald, H. (1977) "Solution of the Multidimensional Compressible Navicr-Stokes Equations by a Generalized Implicit Method," Journal of Computational Physics, Vol. 24, pp. 373-397.

Cebeci, T., and Bradshaw, P. (1984) Physical and Computational Aspects of Convective Meat Transfer. Springer-Verlag, New York.

Chen, S. C., and Schwab, J. R. (1988) "Three-Dimensional Elliptic Grid Generation Technique with Application to Turbomachinery Cascades," NASA TM-101330.

Cray Research, Inc. (1988a) CFT77 Reference .Manual, Publication Number SR-0018.
Cray Research, Inc. (1988b) Programmer's Library Reference Manual, Publication Number SR-0113.
Cray Research, Inc. (1988c) UPDATE Reference Manual, Publication Number SR-0013.
Faux, I. D., and Pratt, M. J. (1979) Computational Geometry for Design and Manufacture, Ellis Horwood Limited, John Wiley \& Sons, Chichester, England.

Hesse, W. J., and Mumford, N. V. S. (1964) Jet Propulsion for Aerospace Applications Pitman Publishing Corporation, New York.

Jameson, A., Schmidt, W., and Turkel, E. (1981) "Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes," AIAA Paper 81-1259.

Kernighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-Hill Book Company, New York.

Kleinstein, G. (1967) "Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundary I ayers," AIAA Journal, Vol. 5, No. 8, pp. 1402-1407.

I aunder, B. E., and Priddin, C. H. (1973) "A Comparison of Some Proposals for the Mixing Length Near a Wall," International Journal of Heat and Mass Transfer, Vol. 16, pp. 700-702.

Pulliam, T. H. (1986b) "Artificial Dissipation Models for the Euler Equations," AIAA Journal, Vol. 24, No. 12, pp. 1931-1940.

Roberts, G. O. (1971) "Computational Meshes for Boundary Layer Problems," Proceedings of the Second Intemational Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 8, Springer-Verlag, New York, pp. 171-177.

Shang, J. S. (1984) "Numerical Simulation of Wing-Fuselage Aerodynamic Interaction," AIAA Journal, Vol. 22, No. 10, pp. 1345-1353.

Spalding, D. B. (1961) "A Single Formula for the Law of the Wall," Journal of Applied Mechanics, Vol. 28, pp. 455-457.

Steger, J. L. (1978) "Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries," AlAA Journal, Vol. 16, ㅅo. 7, pp. 679-686.

White, F. M. (1974) Viscous Fluid Flow, McGraw-I Iill Book Company, New York.

Nocre				
$\begin{aligned} & \text { 1. Repor No } \\ & \text { NASA TM- } 102553 \end{aligned}$	2. Government Accession No. ${ }^{\text {a }}$ (${ }^{\text {a }}$ Recipient's Catalog No			
4 Tithe and Subrifte PROTEUS Two-Dimensional Navier-Stokes Computer Code - Version 1.0 Volume 3-Programmer's Reference			5. Repor Date March 1990 6. Pertorming Organization Code	
7. Authorls) Charles E. Towne, John R. Schwab. Thomas J. Benson, and Ambady Suresh			8. Performing Organization Repor NoE-5368	
9. Periorming Organization Name and Address National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191			11. Contract or Grant No.	
Sponsoring Agency Name and Address National Aeronautics and Space Administration Washingtion. D.C. 20546-0001			14 Sponsoring Agency Code	
Supplementary Notes Charles E. Towne, John R. Schwab, and Thomas J. Benson, NASA Lewis Research Center. Ambady Suresh, Sverdrup Technology, Inc., NASA Lewis Research Center Group, Cleveland, Ohio 44135.				
Abstract A new computer code has been developed to solve the two-dimensional or axisymmetric. Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective in this effort has been to develop a code for aerospace applications that is easy to use and easy to modify. Code readability. modularity, and documentation have been emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Canesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3 is the Programmer's Reference, and describes the program structure, the Fortran variables stored in common blocks. and the details of each subprogram.				
17. Key Words (Suggested by Author(s)) Computational fluid dynamics: NavierEuler equations: Viscous flow; Compre Unsteady flow; Computer code	Stokes equations: ssible flow:	18 Distribution Statem Unclassified Subject Categ	Unlimited ory 34	
19. Security Classif. (of this report) Unclassified	20. Security Classif. Un	his page) sified	$\begin{gathered} \text { 21. No. of pages } \\ 249 \end{gathered}$	22. Price All

National Aeronautics and Space Administration

Lewis Research Center Cleveland, Ohio 44135

Otficial Business
Penalty for Private Use $\$ 300$

ADDRESS CORRECTION REQUESTED

FOURTH CLASS MAIL

 VA.A 4 ,

[^0]: 1 See the example in Section 8.1 of Volume 2.

[^1]: 3 For the energy equation, the change in E_{T} is divided by $E_{T_{r}}=\rho_{r} \bar{R} T_{f} /\left(y_{r}-1\right)+u_{r}^{2} / 2$, so that it is the same order of magnitude as the other conservation variables.

[^2]: 4 For the energy equation, the change in E_{T} is divided by $E_{T_{r}}=\rho, \bar{R} T /\left(y_{r}-1\right)+u_{r}^{2} / 2$, so that it is the same order of magnitude as the other conservation variables.

[^3]: s For the energy equation, the change in E_{T} is divided by $E_{T_{r}}=\rho_{r} \bar{R} T_{r} /\left(y_{r}-1\right)+u_{r}^{2} / 2$, so that it is the same order of magnitude as the other conservation variables.

[^4]: 6 In the following description, for the first ADI sweep the dependent variable should have the superscript *, representing the intermediate solution, and for the second ADI sweep it should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^5]: 7 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^6]: 8 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^7]: 9 In the following description, for the first ADI swecp the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^8]: 10 In the following description, for the first $A D I$ sweep the dependent variables should have the superscript ${ }^{*}$, representing the intermediate solution, and for the second ADI swecp they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^9]: 11 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^10]: 12 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables

[^11]: 13 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^12]: 14 In the following description, for the first ADI sweep the dependent variables should have the superscript *, representing the intermediate solution, and for the second ADI sweep they should have the superscript n, representing the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are correct as written.

[^13]: 16 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case, the total energy E_{T} would not appear as a dependent variable, and the Jacobian coefficient matrices would have only three elements.

[^14]: 18 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum ρw would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

[^15]: 19 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case, the total energy E_{T} would not appear as a dependent variable, and the Jacobian coefficient matrices would have only three elements.

[^16]: 20 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum ρw would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

[^17]: ${ }^{21}$ These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case, the total energy E_{T} would not appear as a dependent variable, and the Jacobian coefficient matrices would have only three elements.

[^18]: 22 These equations are written for the general case with swirl. For a non-5wirl case, the swirl momentum ρw would not appear as a dependent variable, and the Jacobian coeflicient matrices would have only four elements.

[^19]: 23 These equations are written assuming the encrgy equation is being solved. For a constant stagnation enthalpy case, the total energy E_{T} would not appear as a dependent variable, and the Jacobian coefficient matrices would have only four clements.

[^20]: ${ }^{24}$ These are needed for linearization of the governing equations. See Section 5.1 of Volume 1 for details.

[^21]: ${ }^{25}$ The distinction between the computational coordinate system and the computational mesh is described in Section
 2.2 of Volume 2 .

[^22]: 26 The calculation of T at this point may be approximate. See Remark 1.
 ${ }^{27}$ See Remark 1.

[^23]: 28 The initialization procedure depends on the type of plot file being written. See the description of subroutine PLOT.

[^24]: 29 See Section 3.1.9 of Volume 2 for details on how to invoke the time step sequencing option.

[^25]: ${ }^{30}$ See Section 8.2 .2 of Volume 1 for details on the solution procedure for spatially periodic boundary conditions.

[^26]: ${ }^{31}$ See equation (8.5a) in Volume 1. For first-order time differencing, $\theta_{2}=\theta_{3}=0$.
 32 These equations represent the use of the constant coefficient artificial viscosity model. The nonlinear coefficient model is more complicated, but the same principle applies.

[^27]: ${ }^{33}$ See Sections 4.2.3 and 4.4 of Volume 2.

[^28]: 34 These formulas are written for the most general case - axisymmetric flow with swirl and non-constant stagnation enthalpy. For simpler cases there may be only three or four equations.

