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ABSTRACT

THE EFFECT OF ELASTIC BOUNDARY CONDITIONS ON THE
DYNAMIC RESPONSE OF RECTANGULAR PLATES

Terry K. Brewer
0ld Dominion University
Director: Dr. Chuh Mei

Natural frequencies and forced steady-state harmonic
response for the vibration of uniform rectangular plates with
edges elastically restrained against rotation and transverse
translation are add;essed. A single mode Rayleigh-Ritz
solution is derived using functions that déscribe the normal
modes of vibration of a beam whose ends are elastically
restrained. The finite element solution is obtained for
comparison. MACSYMA symbolic manipulation system is imple-
mented as an aid to the mathematical rigor of the Ritz
approach and NASTRAN finite element code is used to model
the mechanical system. Comparisons are made to published
results and the solutions of this study are found to give
lower frequencies for some values of boundary restraint.
Steady-state harmonic amplitudes of displacement and acceler-
ation are found to agree favorably for the two solutions.
Low predictions of steady-state strain from NASTRAN result
in some cases when compared to the Ritz values. Finally, a
subjective assessment is made about the merit of using

MACSYMA and NASTRAN.
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CHAPTER 1

Introduction

Research studies cf plate vibrations under various
loadings, plate geometries and parel types have received
wide attention since the 1950°s due mainly to the appli-
cations of these studies to the fatigue failures of air-
craft structures. Until recently, design of the structures
has been largely based on empirical nomograghs (1-3) but as
new materials (including composites and high temperature
materials) gain wider applicaticns to aercspace vehicles,
the development of design charts is economically limited.
Currently, these new materials are generally reserved for
"low risk" applications. As a result, there is a need to
produce and improve analytical procedures to accurately
predict panel response:

Since the predicted and measured bending strain of
conventional aluminum rectanqgular panels can typically
differ by a factor of two or more, studies have been made

to assess the accuracy of classical linear small deflecticn

plate theory. Roussos, Heitman and Rucker (4) encountered an

even greater discrepancy in 1986 as predicted strain values

were approximately three times higher than those measured.

Although these results may be "safe" from a design standpoint,
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the optimization of design is sacrificed. This large bias
error prompted the investigation of the effect of boundary
conditions on the response of rectangular plates (5). In part-
icular, the interest was focused on edges that are restrained
by both rotational and translational boundary springs.

Previous experimentation was conducted on four panel
types including isotropic (aluminum), orthotropic and two
anisotropic plates. The mounting of the boundaries was done
utilizing a rubber gasket scheme on both sides of the panels
with double gasket thickness on the load source side. The
load source delivered an acoustic excitation at levels of
80 to 120 dB. These low levels of normally incident plane
waves were used to apply a uniform spatial load at constant
temperathre. The horn speaker produced low frequency (60 to
2000 Hz.) noise as the sound field was mapped and the pressure
spectrum was analyzed. The panels were measured for fundamental
resonance frequencies and critical damping ratio. However,
the edge restraint valués were not experimentally determined
but were considered uniform on each edge by virtue of the
rubber gaskets.

The analytical models employed for comparison of measured
acceleration and strain response displayed only rotational
boundary restraints with edges rigidly supported in the tran-
sverse direction. The accompanying analysis was performed by a
Rayleigh-Ritz frequency response formulation and a supplemental
response calculation was done on the isotropic panel-by a

finite element method. The boundary values used were
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determined by requiring good fundamental frequency prediction
and close agreement to ratios of x and y strain measurements.
The measured accelerations closely matched those predicted.
Unfortunately, the measured and predicted strain response
differed by the aforementioned bias for all panels tested.

In a search for causes, the finite element model was extended
to include the elastic transverse boundary conditions. In the
comparison to measurements, the relaxation of transverse edge
motion accompanying rotational edgelelasticity could not
account for such a large bias. Fault for the discrepancy was
tentatively placed on the strain gages chosen for testing.

To date, most of tne analysis of elastically restrained
plates has been done using the Rayleigh-Ritz energy form-
ulation although the Galerkin method and numerical techniques
have been utilized (6,7). In the Rayleigh-Ritz approach, the
maximum strain energy is equated to the maximum kinetic
energy of the plate and by assuming a finite linear series of
displacement functions that satisfy the geometric boundary
conditions , the natural frequencies, mode shapes and
consequently, the overall response may then be solved for.
Much of this work has been presented using polynomials as the
assumed displacement functions since the resulting calculations
and computations are made simpler. This approach has been
shown to be adequate to obtain natural frequencies and mode
shapes for lower modes of vibration (8). It is also advan-
tageous when the study includes nonrectangular plates, non-

uniform thickness and plates with geometric discontinuity
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because of the simplicity of the assumed polynomial functional
relation (9,10).

Since the accuracy of the Rayleigh-Ritz approximation .
depends, to a large extent, on the "closeness" of the assumed
displacement functions to the true mode shape, many analysts
feel the use of characteristic modes of beam vibration in thne
method is a better choice. The underlying assumption is that
in a given coordinate direction, a slim strip of the plate
will approximate the behavior of a viSrating beam. The plate
is then modeled as a continuous collection of beams in two
directions. This choice of functions has been demonstrated
to give greater accuracy especially for the natural frequencies
of higher modes and in the case of mixed classical boundary
conditions (11). Classical boundary conditions are traditional-

ly regarded as clamped, simply supported and free edges and can

~be mixed among the four edges to yield 21 combinations.

It should be noted that the Rayleigh-Ritz method and
other techniques used to solve probiems of rectangular plate
vibrations are merely approximations, in general._Exact
solutions to the differential equation of transverse
vibrations exist only for the cases of paired simply supported
parallel edges. Of the 21 possible combinations of classical
boundary conditions, these exact solutions comprise only six
cases. By excluding the free edge cases and imposing mounting .
constraints, the number of classical boundary exact solutions

drops to three. These three are the cases of a plate with all

boundaries simply supported, three edges simply supported with
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one end clamped and two opposite edges simply supported with
clamped conditions on the remaining two boundaries. Since, in
reality, there are no perfectly clamped or simply supported
edges, it is reasonable to restrain the boundaries with
continuous rotational and/or translational springs. The
classical edge conditions become special cases with approp-
riately assigned spring constants. For example, the simply
supported edge is achieved by imposing a rotational spring
value of zero and a transverse fouﬂdation spring value of
infinity. With these considerations included, practical
mounting of a rectangular plate is more realistically modeled.
In 1983, Warburton and Edney (12) presented the Rayleigh-
Ritz method utilizing suitable combinations of modal functions
of beams with classical boundary conditions to study elastically
restrained plates. As an example, the natural frequencies of a
panel with parallel edges restrained against rotation are inter--
mediate between those of plate with opposite edges simply
supported and those with opposing edges clamped. Tne assumed
mode shape is a summation of simply supported~simply supported,
simply supported-clamped, clamped-simply supported and clamped-
clamped characteristic beam functions in the appropriate
coordinate direction. In this way, combinations of the limiting
values of the rotational restraint parameters on each edge
are included in the analysis and the classical functions can
be weighted to give the intermediate values. By incorporating
the free edge and sliding edge conditions of beams into the

procedure, translational boundary restraints may be included
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also. This method proved to give good accuracy when compared to
the results of previous authors and was shown to be relatively
casy to use since the integrals of beam functions that result
in the Rayleigh-Ritz approach and the characteristic frequency
parameters for classical boundary conditions are well docu-
mented. The underlying purpose of Warburton and Edney was to
give designers rapid and inexpensive estimates of natural
frequencies of practical plates with applications to many modes
of vibrations, aspect ratios and edge restraint parameters.

One of the methods used for comparison by Warburton and
Edney was given by Carmichael in 1959 (13). Carmichael also
used the Rayleigh-Ritz procedure. The analysis treated plates
with rotational edge restraint only whereby all boundaries were
considered rigidly restrained against translation. Accordingly,
Carmichael assumed displacement functions that represent the
normal modes of vibration of a beam whose ends gre elastically
restrained against rotation and rigid in the transverée direc-
tion. This approach necessitated the development of integrals
of these elastically supported beam functions and he also
generated a closed form approximate frequency expression from
a single term solution. This approximate frequency was shown
to be quite accurate as compared to the frequency from a
multi-term solution.

Other studies of elastically restrained plate vibrations
are usually compared to those mentioned when relative merit
is sought. Analysts have given quick methods for natural freg-

uency calculations and tables of values for the use of a
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given approach. However, there is a loss of generality assoc-
iated with some derivations as the authors restrict themselves
to a specific problem with simplified assumptions. For
example, only recently has attention been given to the case
of edges possessing two distinct types of boundary springs.
Prior to this, a presentation might treat problems exhibiting
only symmetric rotational boundary springs and/or square
plate geometries. In order to further these methods to a
larger class of problems, it becomés necessary to "rework"
the entire problem. Thus, the application of an approach
can be long and arduous.

Another difficulty associated with the implementation
of an analytic technique is the brevity of published treatise.
Often, the answers sought and presented are limited to the
extraction of natural frequencies and mode shapes related to
free vibration of the plate so that examples of numerical
results of displacements, accelerations and strains are not
implied or referred to. As a result, the engineer using the
technique to predict forced response must finish the problem.
This is not always simple if functional expressions for
numerical calculations are desired. The mathematical manipu-
lation required to obtain a completed solution can be algeb-
raically difficult and seemingly impossible. Usually, an
assessment is made to decide if the extra analysis is practical
in both time and expense of the work. If the labor is pursued,

it becomes necessary to evaluate the results by comparison to

real problems.
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The comparisons made by many authors is a third pertinent
topic. Quite often, the evaluation of an operational algorithm
is limited to a comparison with a procedure that is similar in
derivation. Intuitively, the two approaches yield similar
results. The studies are not usually compared to dissimilar
formulations of the same problem. Since prediction of
structural behavior is the ultimate goal of these studies,
comparisons are required to different solutions and‘to
measured response from experimentation.

In order to adequately address the topics of elastically
restrained rectangular plate vibrations, the present treatise
again utilizes the Rayleigh-Ritz method. However, the
assumed displacement functions are given by the normal modes
of beams whose ends are unsymmetrically restrained against
rotation and translation. This is an extension of Carmichael s
approach and necessitates the derivation of the beam solution
and the generation of the resulting beam integrals. In this
way, unlimited combinations of distinct rotational and linear
spring parameters can be included. Variation of aspect
ratio can also be considered.

Because of the complexities in the mathematical
rigor associated with this type of solution, a symbolic
manipulation program is used as an aid in the analytic
derivation. The program chosen is MACSYMA since it is very
comprehensive in it’s mathematical capabilities and it is
well documented. The differentiation and integration required

are effectively executed as program commands. The evaluation
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of boundary conditions and simultancous equation alygorithms
are available to the user. It is possible to generate an
analytic solution and to program numerical procedures of
problems in rectangular plate vibrations completely on the
computer. This has great potential when compared to "hand-
cranking"” an analytical derivation.

The comparisons of solutions includes results from
previous authors where applicable as well as the comparison
to a finite element formulation. The wéll known finite
element code, NASTRAN, is utilized. The choice of NASTRAN
was also based on availability and comprehensive capabilities.
These comparisons allow the assessments of accuracy of
solutions and numerical results. This evaluation also gives
an estimation to the relative contribution value of
avallable engineering and mathematical computer software.

More specifically,the purpose of this thesis ié to study
the effect of elastic boundary conditions on the dynamic
di;placement and strain frequency response of rectangular
uniform plates. The loading is assumed to have a deterministic
frequency spectrum that can be represented by a finite
series of harmonic inputs. The loading amplitude is assumed
uniform over the plate surface. The direction is to normal
incidence. Parameter studies are made for plates at several
aspect ratios for predicted natural frequencies versus elastic
restraint values. Studies include trend analyses for steady-

state displacement and strain response.
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Two methods are used to conduct these studies. They are
the Rayleigh-Ritz method and the finite element method.
Comparisons are made to previous accepted results to verify
the two methods as solution techniques. The Rayleigh-Ritz
approach is aided by MACSYMA symbolic manipulation program.
NASTRAN finite element .code is utilized. A subjective assess-
ment is made of the relative contribution of MACSYMA and
NASTRAN as computational aids.

The contributions of this thesis include the use of
beam functions representative of the elastic bounhary con-
ditions in the Rayleigh-Ritz approach and the extension of
the method to predict measurable response.

Classical linear small deflection plate theory is

assumed throughout the analysis.
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CHAPTER 2

Rayleigh-Ritz Energy Formulation

Theoretical Basis

In 1877, Lord Rayleign used the pfinciple of conservation
of energy to obtain an expression for the fundamental natural
frequency of an undamped linear structure under free vib-
ration (14). He argued that as the structure vibrates har-
monically at it’s natural frequency, the potential energy
given when vibration is at maximum amplitudes is exchanged for
the eneréy of a purely kinetic state when amplitudes are zero.
The maximum potential energy of bending, Vmax,b' of a plate
is determined by the strain energy stored in the plate. It

should be noted, however, that Vv from plate bending is

max,b

not necessarily equal to the total maximum potential energy,

\Y since additional terms in Vmax ™may result from other

max'’

energy storage sources such as boundary springs, for example.
For the case of the afcrementioned classical boundary con-

ditions, V =V

max,b max °

The maximum kinetic energy, T is taken while the

max ’
plate vibrates at it’'s natural frequency and the fundamental
frequency can be calculated by minimizing the following

equation,

Tmax ~ Ymax = Stationary value (1)
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Ideally, thc expression given in equation (1) is identically
zero. However, this only occurs when the true mode displace-
ment function is used to determine V.. and T, ... Since
exact solutions to rectangular plate vibrations are not
known, in general, equation (1) is minimized with respect
to the assumed displacement functions. This reduces the
resulting nonzero error to a minimal stationary value. If
the assumed displacement functibn satisfies all the boundary
conditions, the calculated natural frequéncy obtained has
been shown to be an upper bound. That is, the true structural
frequency is lower than that calculated. The reason for this
. is that using an assumed mode in the procedure is equivalent
to an additional constraint which raises the potential
energy and calculated frequency. The Rayleigh formulation
frequency approaches the exact from above as the greater ac-
curacy criteria dictates.

For example, the bending strain of a uniform rectangular

*
plate can be shown to be given by,

alb
2 2

(w'xx +w’yy +2/i w'xx W'yy 2

o fo +2(1-,.L)w,xy )dydx

nﬂo

max

(2)
where for now it is assumed Vmax,b = Vmax ¢+ and
where the comma denotes partial differentiation with respect

to the variables following the comma.

* Notation convention is given in Appendix A.
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The maximum kinetic energy is given by,
ajb
2 2

h W W (XIY) deX
P

T - (3)

max
iWt
where w = Wi(x,y)e is the assumed transverse displacement

function over the spatial domain vibrating at the fundamental

frequency, ) . The i denotes/(-l) .

For the ideal case (stationary value=0), substituting

equations (2) and (3) into (1) and solving yields,

W =

P h Wix,y) dydx
2
oJo (4)
Equation (4) is éalled the Rayleigh Quotient.
In order to obtain frequencies beyond the fundamental,
Ritz developed an extension of the Rayleigh formulation. The
estimated mode function 1s assumed to be a finite linear series

with arbitrary constant coefficients, C The minimization of

r °
equation (1) then becomes,
__d____ (Vv-T)=0 , (r=1,2,3,...n)

o (5)
Equation (5) results in n homogeneous equations that can be
solved for n-1 constants in terms of the remaining constént.
-When the finite series is truncated at r=1, eguation (5)

reduces exactly to equation (4) for the determination of

fundamental frequency while C; is arbitrary. The remaining
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constant represents an amplitude and for free vibration of
the plate, it is dependent on the initial conditions. For the
case of steady state harmonic forced response, the amplitude
constant is dependent on the amplitude and frequency of the
forcing function. When n>1, equation (5) can be written in
matrix form and effectively becomes an eigenvalue problem
with mass and stiffness contributions arising from the
kinetic and potential energies, respectively. The natural
frequencies are obtained from the conditiﬁn that the deter-

minant of the system of equations is zero.

Considerations of Boundary Conditions

Ideally, all boundary conditions are satisfied by the
chosen displacement functions. However, previous methodology
(14) has shown that sufficient accuracy of frequency prediction
can be achieved by satisfying only the geometric boundary
conditions (ié. displacement and slope) while neglecting
the dynamic or natural boundary conditions (ie. shear and
moment). The accuracy is dependent on the true type of edge
conditions for a case under study. For example, the clamped
edge has only geometric boundary conditions, W(o,y)=0 and
W,,(o,y)=0, and the Rayleigh-Ritz method gives quite good
frequency results with appropriately chosen functions. When
the edges are restrained elastically, the boundary conditions
can be considered natural only. The choice of functions that
satisfy geometric conditions can result in loss of accuracy.

'For the plate shown in fiqgure (1), the rotational

boundary conditions are given by,
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where Ri

® -

v R

Figure (1).

Ry w,x(o,y) =

Ry, W, (a,y)
R3 w,y(XpO)

R,

Mechanical System Under Study

D(w'xx(QlY) + I-L wlyy(O'Y))
= "D(wlxx(a:Y) + l-L wryy(a'Y'))

= DI(W,,y(x,0) + o W,y (x,0))

15

(6a)

(6B)

(6C)

(6D)

is the bending moment (per unit length) for unit

rotation on the i th edge, (i=1,2,3,4).

The translational boundary conditions of the plate are

given by,
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Ky Wlo,y) = =D(W, yyl0ry) + (2= (LW, (0,y))
(77)
Ky, Wla,y) = D(W, ., (a,y) + (2- ﬁL)w'xyy(a'Y))
(7B)
K3 Wix,0) = =D(W,yyy(x,0) + (2= (1 )W,yyy(x,0))
(7C)
K4 Wix,b) = D(leyy(xlb) + (2- #)lexx(xrb))
(7D)
where K. is the transverse edge reaction (per unit length)

1

for unit displacement on the i th edge, (i=1,2,3,4).
Equations (6)-(7) are simplified if in addition to

uniform elastic stiffness, twisting on each edge is not

restrained. That is, the moments about an axis parallel to

a given edge and the vertical shear on that edge are directly

restrained by the boundary springs. The boundary conditions

become,

Ry W,,(0,y) = D(W,,,(0,y))

(6A°)
R2 wlx(aly) = -D(wrxx(ar}'))

(6B7)
R, w,y(x,o) = D(W.yy(X.O))

(6C°)
R4 W,y(x,b) = -D(wlyy(xlb))

(6D°)
Kl W(OIY) = -D(wrxxx(o'Y))

(747)
Kz W(a,y) = D(W,xxx(aay))

(7B°)
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K, W(x,0) (x,0))

-D(WI’yyy
(7C¢”)

K4 W(Xrb) (x'b))

DV, yyy
(7D7)

The boundary conditions given by equations (6°)~(77)

are assumed in this analysis and the beam functions used

are chosen so as to satisfy these conditions. All in-plane

motion at the boundaries is prohibited since the assumption

of linear small deflection theory renders these motions

negligible. That is, for small amplitude plate vibrations, the

transverse bending and the in-plane membrane oscillations

are uncoupled and independent. With this in mind, transl-

ational motion at the edges is meant as transverse motion

only.

Choice of Assumed Displacement Functions

The general form of the finite series to represent
displacement in the Rayleigh-Ritz method for harmonic steady
state rectangular plate vibrations is given by,

it
wix,y,t) = W(x,y) e
' (8)

where w(x,y,t) 1s assumed to be separable in x,y and t. The

spatial variation, W(x,y) , 1is,

Wix,y) =‘> Apn Xp(x) Y (y)

Lod
m=1 n=1 (9)

such that X (x) and Y (y) are chosen to satisfy the

boundary conditions while m and n are modal identification
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indices. The beam functions selected are given by,

a_pX a px
sinh(—&0) + C, sin(—a") +

Xp (x) B

m
qu me
D cosh(—™=a ) + cos(—a )
(10)
3 pY y
Y, (y) = Ej sinh(¥B2) + Fp sin(llﬁn') +
Y Y
Gp cosh(4g5n“) + cos(JQEn_)
/ (11)

where B, C, D , A ,E,F,Gandp are constants
obtained from the application of equations (6°)-(7°). The
results are given in Appendix B.

By noting the similarity of x to y in the equations (10)-
(11) and also in equations (6°)-(7°), the respective constants
are of like form. That is, once B , C , D and q are deter-
mined from equations (6A°), (6B°), (7A°),(7B") and (10), E ,
F , G and P result by substituting y for x, E for B, F for
C, G for D, p for q ,n for m, Ry for R; , R, for
Ry + Ky for Ky » Ky for K5 and b for a.
Derivation of Solution

The differential equation that governs the motion of a

uniform plate subject to an external loading is given by,

) .
DY:;7 w+ phi+cw=p
[ 4 (12)

where p h is mass per unit area (/>= mass density) and c is
the damping coefficient.
The pressure, p = p(x,y,t) , is assumed to be harmonic

and uniformly distributed which results in an harmonic



Brewer 19

displacement, w = wi(x,y,t). Using complex notation,

iwt iW t
P(x,y) e = Pe

p(x,y,t)

o)
]

{13)
and, it
wix,y,t) Wix,y) e

)
]

(14)

where P(x,y) and W(x,y) are the spatial amplitudes of
pressure and displacement, respectively. For a uniform
pressure, P(x,y) = P .

Since none of the boundaries are simply supported, the
approximate solution comes from an application Bf the Rayleigh-
Ritz approach. This method in dynamic response problems
involves forming the kinetic energy, T, the potential energy,
V, and the work done,(, by the pressure on the plate. The
solution for W(x,y) 1is pursued by minimizing the following
equation,

T - (V + Q)= stationary value (15)

The kinetic energy is calculated by equation (3).

The potential energy is formed by summing the contri-
butions from the plate bending strain energy and the strain
energy in the boundary springs. The bending strain energy
can be determined from equation (2). The potential energies
associated with the rotational elastic boundary conditions

are,

2 2
Vg =%1 W, (o,y) dy + _123_2 W, (a,y) dy

(o] o]
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2 ‘ 2
+_r;_3 w,y(x,o) dx + %4 W,y(x,b) dx

o o (16)

The strain energies associated with the transverse boundary

springs are,

b b
2 2
Vg =_§1 W (o,y) dy + _12<2 W (a,y) dy
o} o
a a
2 ‘2
+_§3 W (x,0) dx + =%4 W (x,b) dx
o o (17)
where all spring coefficients ( R; , K; ( i=1,2,3,4)) are

assumed constant along respective edges.
The total potential energy can then be written as,
V= Vg + Vg + Vpax,b (18)
The work done by a uniform pressure field, P , is given

as,
agb

Q = -P W(x,y) dy dx

o fJo (19)

The choice of W(x,y) was given in equation (9) so that

the minimization of equation (15) becomes,

Jr - Ov - Qg
é)Amn é)Awn é}‘Amn

Since the response of the plate is ruled by the natural

(20)

frequencies and geometric mode shapes, the calculation of
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natural frequencies is required. This is done by forming the

Rayleigh Quotient of egquation (4) so that the radian frequency

of the mnth mode is given by,
v
2 = )
“)mn a b
: 2
p_g_ W (x,y) dy dx
2
o  Jo (21)

where equation (21) can be written as ; matrix which is a
system of simultaneous equations. The natural frequencies are
obtained when the determinant is set to zero. It involves the
evaluation of many difficult integrals. For this reason,
MACSYMA is very helpful. The evaluation is given in Appéndix cC.
| Combining equations (20) and (21), the minimization

problem becomes,

Or(1- ‘*’:m)=ag_
éa Amn 0)2 é;Amn

(22)

where equation (22) is also a matrix of simultaneous equations
which allows the calculation of the constants, Ap,. by
substitution of equations (3), (9)-(11) and (19). These
results are described in Appendix D.

The calculation of the coefficients, Ay, . at this point
makes the solution for the spatial distribution of displacement,
w(x,y), complete.

The resulting strains are then calculated by the small

deflection theory as follows,
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i2 7 ft
-z W,ux ©

m
H

(23)

and,
i2 T ft

-z W,Y& e

m
[

- Z W, =
y Yy (24)

where 2T £ = W . The maximum strains are calculated at the
top and bottom surfaces of the panel at z=+h/2.
The magnitude of mean-square strains at a frequency, f,

are determined by,

2 =1 * =1 |2
€x 2 €¥ 6x 2|€x
(25)
and,
2 =1 * = ] 2
€l "5 €, € “+lel
(26)

where * denotes the complex conjugate.
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CHAPTER 3

Symbolic Manipulation as an Aid to Solution

*
Introduction and Description of MACSYMA

Historically, machine aided mathematics has experienced
an arithmetical development. The focus has been to provide a
means to process large amounts of information numerically.
This is reflected in the widely held desire to statistically
evaluate numerical data. As a result, the majority of soft-
ware systems available are designed for digital data proces-
sing. Any analytical relation related to the numbers is
usually derived prior to computer use and incorporated into
the data processing or the relation is discovered with fur-
ther numerical evaluation such as curve fitting. The computer
has proven to be very capable to perform statistical analysis
but the accuracy and efficiency are not always good. Large
sets of data require large storage space in the machine and
truncation with roundoff is not uncommon.

Since the computer combines and arranges numerical
quantities based on mathematical expressions that manipulate
variables, parameters or any general symbol, it is not

unreasonable to expect these same mathematical expressions

* Acronym for MAC’s Symbolic MAnipulation System
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to be derivable on the machine. During the execution of an
algorithm, the computer need not discriminate between num-

bers and symbols until the user so specifies with an output
request. Research and development of computer aided mathematics
is best exemplified by MACSYMA.

MACSYMA ‘s initial development was done under the
direction of Professor Joel Moses at Massachusetts Institute
of Technology in the latter part of the 1960°s (15). Since
then, it has become commercially available through Symbolics,
Inc. The history of MACSYMA's development shows continuous
contributions to improvements and system maintenance by many
authors. The system has evolved into a large and sophisticated
symbolic manipulaﬁion software package that gives the user
access to many otherwise unavailable mathematical techniques.
This has produced a library of user shared algorithms that
have been employed in such fields as experimental mathematics,’
acoustics, celestial mechanics, computer aided design,
structural mechanics and numerical analysis. The types of
problems that have been addressed include spectral analysis,
helicopter blade motion, finite element analysis and plate
vibrations, among many others (16).

MACSYMA is a lisp program (recently estimated at
300,000 lines of lisp code (16)) that has been catalogued
to include basic algorithms and axioms of mathematical thneory.
The growth of MACSYMA is not unlike the evolution of math
itself in that advanced theory is dependent on the validity

of fundamental assertions. This " building block " process
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is apparent in mathematical proofs or derivations whereby
any conclusion must logically follow preceding steps of the
argument and MACSYMA has experienced this same " building
block development. The program has attained a level of sop-
histication that offers on-screen two-dimensional represent-
ations (very éimilar to handwritten form) of advanced.cal—
culus and linear algebra. Accordingly, the program commands
for the manipulation of user defined variable expressions
are similar to the mathematical functisns desired. For
example, 1in order to factor an expression, the MACSYMA
syntax is,
factor (expression);

or to expand a rational expression by cancelling a common
divisor, multiplying out products of sums, etc, the syntax
is,

ratexpand(expresﬁion);
or to simplity a trigonometric expression by the implemen-
tation of the identity, sinz(x) + cosz(x) = 1, the command
is,

trigsimp(expression);
Also, the arithmetical operators used to enter and create
equations are the same as those used in many program languages
where ** = exponentiation, / = division, etc. As a
result, it is not difficult to begin the application of
MACSYMA capabilities and subsequent requests are user dis-

covered in a friendly manner.



Brewer 26

Perhaps the most valuable asset given by MACSYMA and
other available symbolic manipulation software is the release
from computational details of problem solutions. Many solution
defivations involve long and difficult intermediate calcu-
lations where a strong chance for error is present if the
computations are done by hand. Even commonly used tables of
integrals contain errors. A computer algebra system puts the
mathematics of solution in the hands of the practicioner.

The answers returned by MACSYMA are givenlin general form
according to the degree of generality requested. This frees

an engineer to directly define and apply general solution
techniques and algorithms to a class of problems and allows
the examination and development of theory from the definitions.
The insight to be gained from engineering theory and physical
phenomenon is not lost in the details of derivation. Since
mathematics is a tool of the engineer, it is advantageous to
let the computer assume the role of the analytic work-horse.

Examples of MACSYMA Capabilities

The capabilities of MACSYMA are too numerocus to mention
all here. Examples, with an emphasis on those related to the
current study, include the ability to perform definite and
indefinite integration, differentiation, evaluation of limits
and series summations, trigonometric and hyperbolic function
manipulation as well as matrix and tensor manipulation. The
program can also evaluate expressions numerically at inter-
mediate stages and MACSYMA is able to generate fortran code.

Collectively, these capabilities provide the means to create
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subroutines that can bhe developed and verified separately.
It is also a more efficient use of computer time to simplify
expressions prior to numerical evaluation which MACSYMA can
perform with variable precision on both fixed and floating
point calculations.

In order to illustrate an application of MACSYMA capa-
bilities to problem solution, it is pertinent to present
examples of manipulations related to the current study.

The examples include the display of MAéSYMA generated beam
functions and a description of steps necessary to form the
Rayleigh quotient for natural frequencies. The Rayleigh
guotient is applied to a simply-supported panel utilizing
beam sine functions as the assumed mode shapes. The example
using sine functions was chosen for presentation because

it is not conceptually difficult and gives an easy to follow
MACSYMA listing. Both examples have been edited to exclude
details of MACSYMA program statements and since MACSYMA
cxhibits no greek nomenclature, english abbreviations are
used. The examples will also introduce the two-dimensional
display returned by MACSYMA that is used in Appendices B, C
and D.

MACSYMA Generated Beam lFunctions

The beam functions chosen to represent the modes of
vibration of an elastically restraineda plate were given in
equations (10) and (11). The following brief listing is a
demonstration of computer generated expressions for these

beam functions. The functions are inserted into equation (9)
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and expanded in the series summation for a finite number of

terms.

The general expression for the assumed displacement

functions from equation (9) is represented by MACSYMA as,
q P

wix, y) = > (> x(m) a(m, n)) y(n)

=1

1

JUN 7~
SiIN 70
o

(27)

The expressions for X (x) and Y (y) from equations (10) and

(l11) are,
alph(m) x alph(m) x
x(m) = b(m) sinh(-~=-==~=-= ) + c(m) sin(===-===-- )
a a
alpn(m) x alph(m) x
+ d(m) cosh(-===-=e-=- ) + cos(~=—-=-m-- )
a a (28)
and,
bet(n) y bet(n) y
y(n) = e(n) sinh(-======- ) + £(n) sin(====-=-= )
b b
bet(n) y bet(n) y
+ g(n) cosh(-=====-- ) + cos(======== )
b b (29)

Substituting equations (28) and (29) into (27),

q- P
\ \
wix, y) = > (/> a(m, n)

n=1 m=1]1

alph(m) x alpn(m) x
(b{m) sinh(=======-- ) + c(m) sin(-=--=-=--=- )
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alpn(m) x alph(m) x
+ d(m) cosh(-=w==w—=-- ) + cos(-==-=-=== )))

bet(n) y bet(n) y
(e(n) sinh(--=v==w= ) + £(n) sin(-======= )

. bet(n) y bet(n) y
+ g(n) cosh(-===---- ) + cos(-===-==- ))
b b (30)

and finally expanding to show four terms ( p=2 , gq=2) we

have,
alph(2) x
wix, y) = (a(2, 2) (b(2) sinh(~=--=-==- )
a
alph(2) x alph(2) x
+ c(2) sin(-=======- ) + d(2) cosh(=-====vee- )
a a
alph(2) x alph(l) x
+ cos(-=c==v=e- )) + a(l, 2) (b(1) sinh(=-===v=-- )
a a
alph(1) x alph(1) x
+ c(l) sin(----==e=- ) + d(1) cosh(-~===ww-- )
a a
alph(l) x bet(2) y
+ cos(-===e——u- ))) (e(2) sinh(====e--- )
a b
bet(2) y bet(2) y bet(2) y
+ £(2) sin(-===e=-- ) + g(2) cosh(===-=-==- ) + cos(-=~m==u- ))
b b b
alph(2) x alph(2) x
+ (a(2, 1) (b(2) sinh(===wccea- ) + ¢(2) sin(=====eea- )
a a
) alph(2) x alph(2) x
+ d(2) cosh(--===w=e- ) + cog(~==mmneua ))
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alph(l) x alpn(l) x
+ a(l, 1) (b(1) sinh(-======-=) + c(1) sin(==----==- )

alph(1l) x alph(1l) x
+ d(l) cosh(-==w=e—=- ) + cos(==~mmwea= 1))

bet(l) y bet(l) y
(e(l) sinh(=-~>-=-~~- ) + £(1) sin(-======- )

bet(1l) y bet(l) y
+ g(l) cosh(--===--- ) + cos(~====mee )) (31)

Simply-Supported Plate Solution-

(MACSYMA), Rayleigh Quotient

The expression for the Rayleigh quotient that is formed
from the plate strain and kinetic energies was given in
equation (4). Another demonstration of MACSYMA capabilities
is provided whereby the integral expressions for the energy
terms are computer generated, the gquotient is formed and
beam functions are inserted. The partial derivatives are
evaluated for the strain energy integrand expressions and
integration is performed over the plate surface.

The simply-supported plate solution can be represented
by sine functions taken from the simply-supported beam. When
these functions are used, the equation for natural frequen-
cies reduces to the well known exact expression.

Forming the quotient from equation (4), MACSYMA gives,

| b a
/ / 2
2 [ I d 2
nfmn =4 (I I ((=--- (w(x, y)))
‘ radian 1 ] 2
/ / ay
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2 2 2
4 d d 2
+ 2 pr (=== (w(x, y))) (=== (w(x, y))) + (--= (w(x, y)))
2 2 2
dx dy dx
2 2
d 2 d 2
- 2 pr (=-=--- (wix, y))) + 2 (-==-- (wix, y))) ) dx dy)
dx dy dx dy
b a

(32)

The normal modes of vibration of a simply-supported

plate can be represented by,
Spim x $pi ny

(33)
and substituting equation (33) into (32),

2
nfmn = d
radian
b a
/ / 2
t I d tpim x $pi ny 2
(I I ((-=- (wmn sin(=====-- ) sin(------- )))
] 2 a b
/ / dy
0 0
2
d Spim x tpiny
+ 2 pr (--- (wmn sin(--=----= ) sin(====--- )))
2 a b

dx
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2
d

(--- (wmn sin(------=- ) sin(--~--~--- )))
2 a b

dy 4
2

d tpi m x tpi ny 2
+ (~-- (wmn sin(-=-=---- ) sin(

b
dx -

fpim x tpi ny 2

/
"2 %pimx [
sin (---=----) dx) }
/

{
/{h rho wmn (I
] a

/

(34)
The respective derivatives are taken and MACSYMA yields,

2
nfmn = d

radian

b a 4 2 2 2



4 4 2 2 3pimx 2 %piny
pi m wmn sin (==--~--- ) sin (-====-- )
a b
P emm e e c e crr e C e o - - ———— o - - - - -
4
a
4 2 2 2 2 %pim x 2 %piny
2%i m n pr wmn coS§ (~====—=- ) cos (~==w=-- )
a b
2 2
a b
4 2 2 2 2 %3pim x 2 %pi ny
23%i mMm n wmn COS§ (=-===-- ) cos (~===--- )
a b
Mt et Lt e ) dx dy)
2 2
a b
a b
/ / .
2 { 2 %pimx [ 2 %piny
/(h rho wmn (I sin (====<-- ) dx) I sin (==~-=--- ) dy)
) a ) b
/ o/
0
v (35)
and performing the integration,
2
nfmn =
radian
4 4 4 4 2 3 2 2 4 5 ¢4
d (¢pi - a bn +2%pi a b m n + tpi b m )
4 5
a b h rho (36)
Finally, a simplification gives,
4 2 2 2 22
2 tpi d(a n +b m)
nfmn e L
radian 4 4
a b h rho (37)

which is the exact expression.
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Considerations to Current Approach

The first consideration to the Rayleigh-Ritz approach
attempted herein is the generation of peam functions that
display unsymmetric boundary conditions. Although the algeb-
raic manipulations could be done by handa, the intermediate
calculations involved are long and cumbersome. Substitution
of the general expressions of tne peam functions into three
of the equations of the boundary conditions involves taking
derivatives (first, second and third order) and simultaneous
solution for the coefficients, B, C and D. The expressions
for these coecfficients are then inserted into the fourth
boundary equation yielding a transcendental equation for the
argument, @ . This transcendental equation is solved numer-
ically using the Newton-Raphson method. This requires the
derivative with respect to @ of that equation. Appendix B
displays thc lengthy expressions returned by MACSYMA for
these calculations. For comparisons of degree of difficulty,
the calculations were performed by hand. This comparison is
descriped in chapter six.

Once the beam functions are derived, 1t 1s necessary to
obtain exprecssions for the integrals of the energy terms for
natural frequencies. Again, these computations could be done
by hand, however without symmetric simplifying assumptions,
the manipulations are arduous. Carmichael assumed symmetric
restraint conditions on parallel edges and was rewarded with
concise easy to program results. By examining the necessary

integrals with consideration paid to displacement and slope
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on those parallel sides, the integrals were reduced to
explicit expressions in terms of the coefficients (see refer-
ence 13). Unfortunately, the assumption of unsymmetric
boundary conditions in this study does not allow the reduction
of the integrals to simple expressions. With the aid of
MACSYMA, these integrals are directly evaluated over the
plate surface resulting in the equations given in Appendix C.
Carmichael demonstrated another simplification when
considering the extraction of natural frequencies. By diagon-

th node is represented

alizing the eigenvalue problem, the mn
by the mntP term only. This was an acceptable approximation
since the off diagonal terms are much smaller than the diagonal
terms in the frequency determinant. As a result, the off diag-
onal terms make minimal contribution to the calculation of
natural frequencies. Carmichael ‘s analysis displayed an error
of less than 1% by using this type of approximation. Diagon-
alization of the frequency determinant is used in this study
also to simplify the derivation and programming of solution.
Accuracy of'the results is shown in chapter five.

Another qonsideration to the MACSYMA aided solution
method reclates to the determination of the coefficients, Ann’
of forced response. Equation (22) shows the necessary equation
for this calculation. It should be noted that equation (22)
is for an undamped structure. Damping is incorporated into
the computation in Appendix D. The damping term is inserted

once the expression for the undamped Apn is found. The

eguation for these coefficients requires the evaluation of
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the integral formed by the work done by the pressure on the
plate (equation (19)). Although this integral is not as dif-
ficult as thosc from the plate strain and kinetic energies,
MACSYMA again performs the integration conveniently.

As a final note to the determination of the coefficients,
a similar diagonalization is made to the simultaneous equations
arising from equation (22). Roussos discovered that the off
diagonal terms are again small in comparison to the terms on
the diagonal (see reference 5). This simplification aids in
the programming of the solution algorithm. The accuracy resul-

ting from this assumption is given in chapter five.
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CHAPTER 4

Finite Elements as a Solution Method

*
Introduction and Description of NASTRAN

Since the early 1960°s, the finite element method has
had an accelerated development and has gained wide accep-
tance to many engineering applications. Although it was
initially designed to be used in structural analysis, it has
been successfully employed in other engineering disciplines
such as fluid mechanics and heat transfer. Perhaps the main
reason the finite element method has experienced such rapid
advancement is the computational power given by the computer.

Essentially, the finite element method (as applied to
structural analysis) is an enerqgy formulation similar to the
Rayleigh-Ritz approach. However, rather than define admissible
functions over the entire domain, functions are chosen to
describe-tho behavior over elements or subdomains. That is,
the continuous domain is discretized into a finite number of
elements. The functions (called element interpolation functions)
are usually easier to define than admissible functions over
an entire domain. In fact, low order polynomials are often

chosen which facilitates integration of the energy terms. As

* Acronym for NASA STRuctural ANalysis Program
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a result, the method can be applied to structures of compli-
cated geometry. Once the equations are used to determine the
elemental mass matrices, stiffness matrices and force vectors,
they are assembled to describe the behavior of the entire
structure. Compatibility of displacement is required at the
grid points connecting the elements as the global matrices and
vectors are assembled. The manipulations of matrix algebra
are then used to to retrieve the solution data.

NASTRAN is a comprehensive finite element software
package that has been developed with general purpose objec-
tives (17). The program can be used to examine structures
of any size, shape and configuration. It will handle structures
that exhibit isotropic to generally anisotropic elastic
relations. The program is able to perform real or complex
matrix operations and determine vibration frequencies and
modes. Various loadings may be applied to the structural grid
points including concentrated loads and distributed loads.
The loads can be transient, sinusoidal steady state and
random. Flexibility has peen incorporated into the NASTRAN
program package in an effort to anticipate changing needs
and applications. As described, NASTRAN is quite capable to
analyze uniform rectangular plates with elastic restraining
springs on the edges. Rectanqular plates are conveniently
modeled with a cartesian coordinate grid configuration.
NASTRAN uses the displacement approach with reference to the
grid points to analyze these structures. NASTRAN uses a

polynomial representation of the displacements.
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A typical NASTRAN analysis involves an input file that
is composed of three parts (18). These are the executive cont-
rol, the case control and the bulk data. The executive control
portion defines the type of solution (i.e. static, dynamic,
heat transfer, etc.) to be used and estimates the time of
coﬁputation. Several options for special features such as
diagnostic requests are also designated in the executive
control.

The case control provides more detail of the input to
the specific problem under consideration. The selection of
eigenvalue extraction method, the specification of loading
cases to be examined and the output frequency selections are
made in the case control. Model and material properties such
as damping of the structure are referenced and grid point cons-
traints are selected from the bulk data. Requests of type,
location and sorting of the output are issued in this section.

The third and most detailed part of the NASTRAN input is
the bulk data. This section is a formatted data list that des-
cribes the model and material properties. The grid configuration
is specified by grid point location and element connectivities.
Loading is indicated with amplitude and time or frequency
variation as well as points of load application. Parameters
that control accuracy of solution are listed. The bulk data
is the "meat" of the NASTRAN input and can be a long listing.
As a result, it is the bulk data that presents the best chance

for format error.
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Figure (2). NASTRAN Finite Element Model

Description of Elements and Models

The models (figure (2)) chosen for analysis in this study
were composed of isotropic quadrilateral (CQUAD1l) elements of
uniform thickness. The CQUAD1l element possesses both in-plane
and bending stiffnesses although the in-plane motions were
neglected since the two motions are uncoupled in small deflec-
tion linear transverse vibrations. This element uses two sets

of coplanar overlapping bending triangles (figure (3)) that

3
couno1 111 . v
| ! II
2

- Figure (3). CQUADl Element Consisting of Overlapping
Pairs of Triangular Plate Elements
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each have one half the quadrilateral thickness. Line segments
joining points are assumed rigid. The stresses are computed
for each triangle at the intersection of the diagonals and
averaged (19). For rectangulér elements, this calculation is
at the center of the element. Strains are not calculated in
NASTRAN dynamic analysis. The accuracy returned by the CQUAD1
element is described in reference (19).

The other element necessary is the scalar spring element
to model elastic boundary restraints. Scalar spring elements
(CELAS]l) were attached to each grid point on the four edges
of the plates. Two spring elements were fixed to each grid
point (one for translation and one rotation). At the corners,
however, it was necessary to attach an additional rotational
spring in order to model ;he joining of two respective edges.
The connections were completed by fixing each spring from
grid point to grounded scalar points. The bulk data was
arranged so as to allow the assignment of the eight distinct
spring constants (four edges with two types of spring on each
edge).

Six models were employed to conduct the study. They
included 15"x 3", 15"x 6", 15"x 9", 15"x 12" and two square
plates at 12"x 12" and 15"x15". These models gave aspect
ratios (=b/a) of 0.2, 0.4, 0.6, 0.8 and 1.0, respectively.
The input data given to NASTRAN for each model was represen-
tative of the material properties of a typical aluminum
panel. Upon retrieval of the output data, the frequencies

and responses were nondimensionalized as described in the
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results. The analysis was conducted using NASTRAN normal
modes frequency response.

Ligenvalue Lxtraction

Once the global mass and stiffness matrices are assem-
bled, the eigenvalues and eigenvectors are extracted accor-
ding to the formula,

([K] - XM (¢} =0 (38)
where, [M] and [K] are the global mass and stiffness matrices,
X and {qb) are the desired eigenvalues and eigenvectors,
respectively. The method selected for this extraction was
the Inverse Method with Shifts (19). The NASTRAN software
package contains the algorithm for this procedure.
The inverse method is a vector iteration procedure.

Writing equation (38) as,

{viper = [D] {ul, (39)
where,

(D] = (k]! [M] (40)
and {u}, is the trail input vector (arbitrary initial trail
vector, {u};) and {V}n+1 is the vector obtained from the
nth jteration.

Then the n+15% trail vector input to the iteration is,
(uhner = Aqn+1) Vil (41)
where )\(n+1) is an appropriate scaling factor. NASTRAN
selects >\(n+1) as the inverse of the element of largest
absolute value in {v},,, so as to normalize {u},,; with +1
as the largest element. It has been proven (19) that {v} 4y

converges to the eigenvector, {qb} and >~(n+1) converges on
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the corresponding cigenvalue, X . In most cascs, the procedure
results in the lowest eigenvalue.

In order to obtain eigenvalues and eigenvectors of higher
modes, the algorithm is employed with spectrum shift. That
is, a shift point, N\, is selected that is close to a higher

eigenvalue and a shifted eigenvalue is defined as,

A= X" Xo (42)

Substituting into equation (38),I

((k*] - AIMD) (@) =0 (43)
where,
[K*] = (K} - X\o [M] (44)

Tﬁe inverse method is then applied to this shifted
cigenvalue problem. ALis solved for and the required eigen-
value 1is,

X=Ao+A (45)
The convergence criteria used’by NASTRAN is based on ortho-
gonality. A check of retrieved eigenvectors is made such that
the modal mass matrix,
(1T (M) (Pt <7 i=j (46)
where 7Y is a user supplied parameter and in the ideal case,
7 = o.

Finally, mention should be made about the use of incon-
sistent (lumped) and consistent mass formulations. The lumped
mass formulation assembles mass matrices by lumping equal
amounts of mass at the grid points. As a result, the mass
matrix 1s diagonal. This type of simplification tends to

lower the extracted eigenvalues similar to the effect of a
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larger denominator in the Rayleigh quotient (equation (4)).
Although this may seem favorable-by the argument of upper
bounded eigcnvalues, computational accuracy may suffer. The
natural frequencies obtained in this formulation converge on
the true values from below as the number of elements increases.

In the consistent mass formulation, the off diagonal
terms are nonzero. These terms couple the adjacent grid
points. The eigenvalues retrieved in this case converge more
rapidly with a smaller number of elements.

Inadvertently, initial program runs using NASTRAN were
done under the lumped mass conditions. After subsequent
éhecks of the results from NASTRAN employing the consistent
mass formulation, it was found that the finite element models
had been constructed with a sufficient number of elements
for good convergence of natural frequencies of lower modes.
A1l NASTRAN runs were done using consistent mass thereafter.

ILoading and Geometric Considerations

To properly distribute the continuous uniform elastic
boundary restraints along each edge on the finite element
modcls, equivalent discrete values must be determined. A
scalar spring was attached to each edge grid point and values
were assignea according to the formula,

R; or K; yasTran = (Rj or K, / unit length) x side length
# elements along side

(47)
t'igure (4) shows how the values were concentrated at a typical
edge grid point. Special consideration was given to the

corner points for each respective side which necessitated
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the assignment of values equal to one half those from

equation (47).

A K; or R; Continuous Ki or R; Discretized

S

@wﬂf-ﬁ’éﬂ\

Length of Continuous Spring Iength §°VefEd by Discrete
pPring vValue

Figure (4).
Similar to the discretized spring values, the uniform
pressure load must be divided and concentrated for normal
incidence application at every grid point. The equivalent
grid point load amplitude values were determined as,

P = ( P / unit area ) x total area
ASTRA
N N total # of elements

(48)

Figure (5) displays the -equivalent geometric application of

Pressure, ? Continuous Pressure, P Discretized
(Uniform)

—
Area of Uniform Loading Area Covered by Discrete

Loading Values
Figure (5).
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load at typical grid points. Again, special consideration is
required. The edge grid points carried a load amplitude of
one half the values from equation (48) and the corner points

were assigned 1/4 values.

The accuracy of results returned by this finite element

model was previously demonstrated (Sf.
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CHAPTER 5

Results and Comparisons

IFrequency and Restraint Parameters

In order to assess the validity of the single term Ritz
solution derived using elastically supported beam functions
and the results given by NASTRAN, comparisons are now made to
frequency parameter studies presented in the literature under
various selected edge conditions and aspect ratios. There is
a vast amount of literature available on the determination of
frequency tor the classical simply-supported, clamped and free
boundary conditions and the 21 possible combinations from the
mixing of these three among the four edges. In general, those
cases are considered special limiting cases for the cﬁrrent
study. Mainly, comparisons are made to the published results
that address the problem of elastically restrained plates as
most have been shown to converge on accepted values of fre-
quency for the classical cases. Therefore, the classical edge
conditions are noted only as they occur in the limiting caset
The available literature on vibration of plates with elastic

restraints is sparse, however, especially for plates possessing

both translational and rotational springs at the boundaries.

* Numerical values for zer94and infigite spring stiffness
used in this study were 10 and 10 %, respectively.
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So that the results may be generalized and considered
for all uniform isotropic panels, the frequency and restraint
parametcers are non-dimensionalized according to the formulas
given by Warburton and Edney (12). The dimensionless frequency
parameter is defined as,
fl=wo? fpn/p (49)
and the rotational and translational restraint parameters

are given as,

R = Rb/D X=0,a
= Ra/D y=0,b (50)
*
K = Kb3/D X=0,a
= Ka3/D y=0,b (51)

The method given by Carmichael (13) is generally regarded
as an acceptable Ritz approximation to determine natural freg-
uencies for the cases when edges are between simply-supported
and clamped (ie. K=inf as R varies). Table (1) shows the com-
parison of frequency for selected values of restraint. The
first three modes at three values of restraint parameter for
five aspect ratios are displayed. It is seen that the new
elastic Ritz approximation tends to default to Carmichael’s
results to within 1%. The discrepancy between the finite
element solution and the results of both Ritz solutions is
slightly greater and tends to increase as the aspect ratio
decreases. The maximum percent difference is 7% occurring at
an aspect ratio of 0.2.

Figure (6) shows the variation of fundamental frequency
parameter for a square plate as both types of restraint vary

from values of zero and infinity as given by Warburton and
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Comparison of Characteristic Frequency Parameter
Kl-KZ"KJﬂ(‘- inf ’ Rlll(2-I(3=I(4=R

b/a Rb/D mode 1 mode 2 mode 3
19.74 49.35 78.96 | *
0 19.74 49.35 78.95 | ¢
__19.56 48.90 76.64 | oee
31.16 64.52 96.17 ] ¢
1.0 20 31.16 64.52 96.15 | **
30.89 64.17 94.66 | **e
36.11 73.74 | JUB.90 ] *
ing 36.09 73.71 108.81 | =
| 35.76 73.44 106.79 | **+
16.19 35.14 45.79 ] *
0 16.19 35.13 45.79 | *»
16.03 34.81 45.63 | *e»
25.86 46.17 60.16 | *
0.8 20 25.73 46.30 60.29 | **
25.48 45.96 59,92 | *oe
29.18 ~€2.76 "68.80 ] °
inf 29.98 $2.75 68.78 | **
29.89 52.13 70.61 | 20
R 13.42 24.08 41.03] °
0 13.42 74.08 41.84 | o
13.33 23.67 41.21 | oo
22.34 32.68 S0.63 | ¢
0.6 20 21.84 32.53 50.86 | **
21.26 31.88 50.51 | ***
25.97 37.43 CT.40 [ ¢
inf 25.96 37.42 §7.17 ) *»
25.98 16.76 $6.35 | ooe
11.45 i6.19 24.08 [ ¢
0 11.45 16.18 24.08 | **
11.44 15.97 23.45 | ***
20.33 21.20 31.26[ °
0.4 20 20.42 24.54 31.98 | *¢
20.88 24.81 32.92 | oo
23.70 e7.91 35.56 ¢
inf 23.68 27.90 35.53 | *°
23.89 28.06 35.59 [ oo
10.26 11.45 13.421] ¢
0 10.26 11.44 13.41 | ¢
10.38 11.92 14.43 | *+»
19.39 20.17 21.54 ] °
0.2 20 19.39 20.22 21.67 | »e
19.71 21.34 22.98 | o0
22.66 23.49 24.92 | ¢
inf 22.59 23.42 24.85 | **
23.14 24.86 25.62 | e

® Carmichael (Ref.13)
** Ritz Solution herein
ee* Nastran F.E. models

Table (1)

Edney. All boundaries are subject to equal restraint. The
curve labeled R* =S and K* =inf shows variation from simply-
supported to clamped edges and the lowest curve marked R* =0
and K =S displays the changes between the limiting free and
simply-supported boundary conditions. Intermediate to these

two curves (marked R* =S and K* =S) is the change in frequency



Brewer 50

as the edges of the plate vary from free to clamped conditions
as both rotational and transverse boundary stiffnesses are
increased simultaneously. As stated previously, the assumed
displacement functions used by Warburton and Edney consisted
of a weighted summation of beam fuhctions displaying the

simply-supported, clamped, free and sliding end conditions.

Figure (6). Variation of fundamental frequency parameter
Sf of a sguare plate with translational and rotational
gestraint parameters. lIdentical boundary conditions on
all edges. (Taken from reference (12)).

In comparison, figure (7) displays the same study of
variation of fundamental frequency as returned by the Ritz
solution assuming beam displacement functions that satisfy
the general elastic edge conditions and results given by the
NASTRAN finite element solution. The top and bottom curves,
corresponding to changes in one type of boundary spring while
the other is held constant, show good agreement to the results
of figure (6). Indeed, the results of all upper and lower
curves agree to within 1% for both figures. The intermediate
curve of figure (7), however, displays a notable discrepancy
when compared to figure (6). The elastic Ritz and finite

elément solutions agree to within 5% but both return decidedly
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lower values of frequency for all values of S on the middle

curve except for the limiting cases of the free and clamped

boundary conditions.

44 —
42 — -
—  R'ss
%é : K.=inf.
.ﬂ.u 20

— Ritz Sol’'n
-~-- F.E. Sol°'n

?o‘i 10" 10 10 10 10 10 10°

Figure (7). Variation of fundamental frequency parameter

of a square plate with translational and rotational
restraint parameters. ldentical boundary conditions on
all edges.

Returning to discrete numerical comparisons, Filipich,
Reyes and Rossi (6) tabulated various fundamental frequency
results for selected values of rotational and translational

restraint. They assumed functions given by,

6
Wix,y)= E Ci X Yj (52)
i=1
where,
x; = Q4 x‘}/a4 + pi xz/a2 + 1 (53)
and,
Y; = cos(m; y/b) (54)

and the computations were executed using the Galerkin method.
Table (2) shows these results for the case of equal rotational
restraint on all edges for a square plate while the transverse
edge restraint is held to infinity. This case corresponds to

the top curves of figures (6) and (7). For further comparison,
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the results given by Mukhopadhyay (7) who used a semi-analytic
solution method by applying rotationally restrained beam
functions in one coordinate direction and a finite difference
approximation _in the other direction. The limiting simply-
supported and clamped frequency parameter values from Leissa
(11) are also included.‘Table (2) shows general agreement
between all solutions, however a maximum percent difference

of 10.5% exists between the results of references (6) and (7).
The elastic Ritz solution and the finite element results
differed from all by no more than 5%.

Comparison of fundamental frequency parameter
Square plate

Kl-xz-KJ.K‘.iﬂf Rl-Rz-RJ-R‘-R
Rb/D inf | 100 10 1 0.1 0
36.01 | 35.33]31.10] 22.90 ] 20.13 )] 19.74 |&
35.99°| 34.75 20.51 ] 19.84 ] 19,747 |**
Slll 36.09 | 34.78 | 29.55 (1 21.51 ] 19.94 ] 19.74 |*e**
35.76 | 34.46 | 29.32 ] 21.32| 19.75] 19.56 (o

. Filipich, Reyes & Rossi (Ref. (6))
o Mukhopadhyay (Ref. (7))

aee Ritz Solution herein

esse Nastran F.E. Solution

Leissa (Ref. (11))

Table (2)

Table (3) gives results that correspond to the curve
marked R* =0 and K* =S on figures (6) and (7). Although there
was good agreement demonstrated on the lower curves of those
graphs, the numerical data of table (3) yields a discrepancy
of as much as 50% between the Galerkin method of reference
(6) and the two solutions used in this study. Oddly, Warburton
and Edney only mentioned the comparative results stating
qualitatively that there was good agreement between their

results and those of Filipich, Reyes and Rossi. No numerical
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data was given to substantiate the statement. Again, tne
agrcement between the elastic Ritz and finite element solutions
for this case is to within 1% and the closeness of these
results to those of Warburton and Edney for R* =0 and K* =S

is seen on the bottom curve of figures (6) and (7).

Comparison of fundamental frequency parameter
Square plate
Rl.RZ.RJ.R‘l.o Klnxznkasx‘.x

xb3/D inf | 1000 100 10 1

19.74 | 19.55)18.21 }11.38 | 5.92
K1AY 19.74 | 18.93 j14.08 ) 5.97 | 1.98
19.56 | 18.59 | 14.44 | 5.99 | 1.99

'
LR A J

(- N -X -] o

* Filipich, Reyes & Rossi (Ref. (6))
T e Ritz Solution herein
tee Nastran F.E. Solution

Table (3)

As a final example of equal restraint on all of the four
edges, the rotational restraining springs are held at infinite
stiffness rather than zero shown in table (4). The transverse
edge restraint is allowed to vary and the fundamental freqg-
uency parameter is tabulated for selected values. Thié case
may be considered as a sliding boundary on foundation springs.
The results display a similar disagreement of frequency between
the Galerkin solution and the two solutions of this treatise.
Filipich, Reyes and Rossi achieved frequency calculations
that were higher than the elastic Ritz and finite element
results with a 60% discrepancy at K*=10. As before, the elastic
Ritz and NASTRAN results were in close agreement with no more
than 5% difference noted.

Tables (5), (6) and (7) address the cases where parallel

sides of a square plate are restrained to the same degree. The
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Comparison of fundamental frequency parameter
Square plate
Rl-RZ-R3-R‘-in£ KI-KZ-K3-K"K

kb3/D inf | 1000 | 100 10 1 0
36.01] 35.33]30.36}16.10 | 5.60 | 0 |
i, 36.09 1 31.52117.55| 6.24 | 1.99 | o | e
35.76{ 32.35 [ 18.31| 6.27 | 1.99 | 0 | eee

® Filipich, Reyes & Rossi (Ref. (6})
e Ritz Solution herein
oo Nastran F.E. Solution

Table (4)

solutions used for comparison and the variations of boundary
spring parameter are similar as for tables (2), (3) and (4),
respectively. First, the transverse edge restraint is held to
infinite stiffness as changes are made to the rotational
restraint. The variations of fundamental frequency are disp-
layed in table (5). The results of the top row correspond to
the case where one pair of opposite edges are clamped while
the rotational restraint on the remaining parallel sides is
relaxed to converge on the case of opposite sides clamped and
the remaining boundaries are simply-supported. An exact value
results when parallel edges are simply-supporte& and is taken
from reference (11) for comparison. The bottom row of table
(5) shows the variation of frequency as two opposite boundaries
are held at the R=0 (simply-supported)} value and the remaining
two sides change from the clamped (R=inf) to. the simply-
supported condition. All solutions show good agreement and
display at most 3% difference.

Presented in table (6) is the variation of frequency as
parallel edges are changed from simply-supported to free end
conditions. The rotational restraint is set to zero and the

transverse boundary spring is allowed to vary numerically
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Comparison of fundamental frequency parameter
Square plate
Kl-KthJ-K‘-xnf thaz"ay R;-R‘SR)‘

Ryb/D=inf
Ryb/D inf | 100 | 10 1 0.1 0
36.01 | 35.67 | 33.43| 29.46 | 28.97| 28.96 |¢
35.997 34.71 20.80| 28.22] 28.95°} e+
1y, |36.09[35.45]32.49]| 29.61| 29.05] 28.99 |eve
~ ]3s5.76 | 35.12}32.23] 29.39 28.85] 28.77 | ~eee
Ryb/D=0
Ryb/D inf | 100 | 10 1 0.1 0
28.96 | 28.54 | 26.03 | 21.38 | 19.94 ] 19.74 |¢
28.957 28.23 20.65 19.84 | 19.74%] ¢
i, 28.99 [ 28.21 | 25.53| 20.64 | 19.84 | 19.74 [eee
28.77127.99 | 25.33 20.46 | 19.66 | 19.56 |eeee

. Filipich, Reyes & Rossi (Ref. (6))
bl Mukhopadhyay (Ref. (7))
wee Ritz Solution herein
teee Nastran F.E. Solution
® . Leissa (Ref. (l1))

+ Table (5)

from infinity to zero. The elastic Ritz solution shows a more
rapid descent than either the Galerkin solution of reference
(6) or the NASTRAN frequency predictions. Intermediate to
the limiting cases of all edges simply-supported or free is
the case of opposite sides free while the other parallel
edges are simply-suppcrted. This case has an exact value and
is given by Leissa (11) as 9.6314. Although the values of the
elastic Ritz and Galerkin solutions tend to converge on this,
the finite element solution gives an inflated value with a
percent difference of 76%. Convergence of the NASTRAN results
is exhibited for only cases of equal restraint on all edges
in table (6).

For the study shown in table (7), the rotation on the
sides is completely constrained (ie. R=inf) while the trans-
lational boundéry restraint is changed for equal values on

parallel edges between infinity and zero. The results show
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good agreement between the elastic Ritz and finite element
solutions, however both are much lower than the results of

reference (6).

Comparison of fundamental freguency parameter
. Square plate
RI-R2-R3-R‘-0 Kl'Ksty KJ-K"KX

Kyb3/D=1nf
K, b3/0 inf |1000 | 100 | 10 1 o!

19.74 {19.6618.91| 14.76| 10.57}| 9.642]°
in 19.74 119.33] 16.54| 11.31} 10.03| 9.676|**
19.56 |19.03} 17.77f 17.09] 16.99] 16.98 |***

Kyb3/0=0 ,
Kyb>/D ine! {1000 | 100 [ 10 1 0
9.6421 9.49| 9.39 s.01| 3.93| o |
i 9.676 9.48) 8.28| 4.14| 1.43| o0 [fee
16.98 115.91111.08| 4.34| 1.41] 0 feee

4 Filipich, Reyes & Rossi (Ref. (6))
e Ritz Solution herein
soe Nastran F.E. Solution
1 $S-Fr-S$S-Fr Case, Value from
. Leissa (Ref. (11)) = 9.6314

Table (6)

Comparison of fundamental frequency parameter
Square plate
RI-Rz-RJ‘R‘-lnf KI-KZ-KY KJ‘K‘-KX

Kyb3/D=0
xIb3/p inf | 1000 | 100 | 10 1

22.39] 22.15| 20.15} 11.38 | 3.96
1 22.37|20.55112.38) 4.42 | 1.44
22.94 [ 21.02|13.24| 4.44 | 1.41

[~ N -N-] o

b Filipich, Reyes & Rossi (Ref. (6))
te Ritz Solution herein
eee Nastran F.E. Solution

Table (7)

Tables (8), (9) and (10) display comparisons of charac-
teristic frequency parameter for selecfed cases given by
Mukhopadhyay when edges are restrained to different degrees.
The boundaries of the plate are completely constrained in the
transverse direction (ie. K=inf). As such, edge conditions
lie between the simply-supported and clamped states. Each of

the tables presents results for plates with boundary springs
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on only one side at x=a (ie. side marked 2 on figure (1)).
The remaining three sides are held at either the clamped or
simply-supported condition. Freguency results are given for
four modes at three values of restraint parameter. The aspect
ratios selected are for b/a=1.0, 2.5 and 0.4. The ratio of
2.5 was chosen since, for the cases of unsymmetric boundary
restraints, natural frequency is dependent on the magnitude
of restraint and the side length upon which it is applied.
This ratio was achieved by interchanging the x and y coor-
dinate axes on the plate with b/a=0.4.

In table (8), three sides of the panel are held at the
simply-supported state while the fourth edge is subject to
elastic rotational support. Three select values of restraint
parameter are displayed. The agreement of comparison of
results of reference (7) are good, in general. The.NASTRAN
finite element solution gives slightly lower values for all
cases other than tne first mode at b/a=0.4. The elastic Ritz
solution agrees more closely with the results of Mukhopadhvyay.
The maximum percent difference noted is 3%.

For the cases presented in table (9), three of the sides
are clamped as the fourth edge is restrained elastically in
rotation. Again, the results of all solutions show general
agreement, however for highervmodes at b/a=2.5, the elastic
Ritz and finite element frequencies are higher than those of
reference (7). The maximum percent difference is found there

and is approximately 4%.
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Comparison of Characteristic Frequency Parameter
Kl'K2=K3-K4-inf R]‘RJ'R"O R2=R

b/a Rb/D mode 1 mode 2 mode 3 mode ¢

19.46 49.21 49.35 79.88 | o
0.001 } 19.74 49.35 49.36 78.95 | ee
19.56 48.90 48.91 77.65 | see
20.19 49.32 50.15 79.43 | ¢
1.0 1.0 20.19 49.54 50.09 79.42 | *e
20.00 49.08 49.67 78.12 | ve»
23.60 5T.30 5T. 21 85.890 [ ¢

* ]100.0 23.44 51.77 57.7% 85.39 | -
23.17 $0.85 57.57 84.91 | wee

71.66 | 101.33 | 150.04 | 219.57 | ¢
0.001 | 71.55 | 101.16 | 150.49 | 219.57 | =
71.51 | 100.02 | 147.12 | 214.18 | se»
76.30 | 104.73 | 152.41 | 218.36 | *
2.5'] 1.0 73.57 | 102.60 | 151.48 | 220.25 | **
73.55 | 101.49 | 148.1a | 214.90 | eee
102.31 | 127.08 | 170.99 | 233.99 | *
100.0 99.73 | 124.48 | 169.24 | 235.01 | *»
100.15 | 124.01 | 166.32 | 229.42 | vee

11.39 16.16 2410 3s.24 .
0.001 11.45 16.19 24.08 35.13 ve

11.44 16.01 23.54 34.27 hainind
11.42 16.22 24.21 35.35 d
0.4 1.0 11.51 16.32 24.29 35.39 e

11.49 16.13 23.75 34.56 il
11.67 17.06 25.70 37.51 .

100.0 11.81 17.17 25.81 37.62 e
11.71 16.91 25.25 36.95 wee

¢ Mukhopadhyay (Ref. (7))
** Ritz Solution herein
#+¢ Nastran P.E. Solution

Table (8)

Table (10) gives results for the case of a plate pos-
sessing clamped boundary conditions on two adjacent edges.
one of the remaining edges is simply-supported and the last
is elastically restrained in rotation. The results show
similar agreement as tables (8) and (9). It is noted that
the elastic Ritz and NASTRAN solutions give frequencies that
are not consistently higher or lower but may be either. The
maximum percent difference is approximately 6%.

The final comparison of frequency is given in table (11).
Since no data is available in literature for unsymmetric
elastic boundary conditions with both translational and

rotational springs, these results compare only the elastic
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Ritz and NASTRAN finite element solutions. The fundamental
frequency parameter is tabulated for selected values of
restraint for a square plate. The rotational and translational
dimensionless restraint parameters are held equal in mag-
nitude at 200. Edges are clamped unless specified‘with
restraining values. Except for the case of all edges clamped,
the finite element frequency prediction is higher than tae
elastic Ritz results. The agreement of the two is generally
good, however an 8.4% difference is seen for the case of
parallel edges elastically restrained with the remaining two

boundaries clamped.

Comparison of Characteristic Frequency Parameter
KI-'KZ-KJ-K‘-linf Rl-RJ-R‘-inf Rz'R

b/a Rb/D mode 1 mode 2 mode 3 mode 4

31.51 63.09 69.3) 99.42 | »
0.001 ] 31.96 63.65 71.40 | 101.22 | o
31.60 62.82 71.33 | 100.34 | #ee
31.94 63.83 69.52 59.87 1 ¢

1.0 1.0 32.36 64.38 71.52 | 101.68 | eo¢
32.02 63.59 71.49 | 100.81 | eee
35.43 71.65 T2.16 | 106.08 | *

100.0 °| 35.77 72.65 73.45 | 107.85 | e
35.43 72.32 73.22 | 106.88 | eev

106.91 138.52 190.11 259.49 .
0.001 | 107.46 | 140.37 | 195.21 | 271.79 | **
107.35 | 138.98 | 192.43 | 269.36 | w#ee
112,05 | 142.42 | 192.95 | 261.58 [ *
2.5'} 1.0 109.66 | 141.96 | 196.25 | 272.43 | e
109.5%9 140.68 193.613 270.24 e
145.25 | 170.98 | 216.53 | 281.25 [ *
100.0 142.}3 | 168.80 | 217.06 | 288.40 | #+
143.15 | 169.36 | 216.84 | 288.77 | eee

22.25 25.85 32.69 43.12 .
0.001 231.48 27.06 33.87 44.28 we
23.69 27.29 33.93 44.16 see
22.27 25.89 32.77 43.22 .
0.4 1.0 23.49 27.16 34.05 44.52 oo
23.72 27.39 34.11 44.43 oo
22.45 26.57 34.14 45.28 .
100.0 23.67 27.85 35.41 46.65 bl
23.88 28.02 35.48 46.79 ee

¢ Mukhopadhyay (Ref. (7))
*¢ Ritz Solution herein
#*¢ Nastran F.E. Solution

| aspect ratio (b/a)=2.5 achieved by
interchanqging x and y

Table (9) *
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Comparison of Characteristic Frequency Parameter

Kx.Kz-Ks'K"iﬂf Rl-RJ-inf R‘-O Hz-k
b/a Rb/D | mode 1 mode 2 | mode 3 | mode 4
26.84 58.88 60.59 91.69 .
0.001 27.21 61.01 61.02 93.13 *e
26.81 60.19 60.49 90,31 e e
27.35 59.09 61.136 92.21 bd
1.0 i.0 27.68 61.15 61.76 93.62 e
27.131 60.51 61.17 90.82 e
I el.41 70.05 55.08 | ¢
100.0 | 31.%59 63.37 70.32 100.21) LA
31.23 62.56 70.18 99.08 LA
105.43 133.17 181.15 240.41 .
0.001] 105.73 133.99 183.53 254.55 .
105.73 133.12 180.59 250.14 oo
110.67 137.32 182.24 242.75 [
2.5! 1.0 107.97 135.67 184.66 255.26 e
108.02 134.89 181.87 251.07 e e
144.09 166.76 208.55 270.01 [
100.0 140.84 163.54 206.6) 272.21 e
143.89 164.45 206.19 270.62 tod
16.29 21.11 29.24 40.11 .
0.001 16.91 21.44 29.36 40.72 .
_16.92 21.29 28.89 40.02 e
16.41 21.24 29.88 40.93 .
0.4 1.0 16.94 21.56 29.57 40.98 .o
16.95 2]1.42 29.10 40.31 see
16.69 21.85 30.53 42.55 s
100.0 17.18 22.40 31.11 43.27 ..
17.16 22.18 30.65 42.85 aee

® Mukhopadhyay (Ref. (77)
*¢ Ritz Solution herein

*s¢ Nastran P.E.

Solution

! aspect ratio (b/a)=2.5 achieved by
interchanging x and y

Table (10)

Comparison of Fundamental Prequency Parameter

Square Plate

* * 3
Ri-Rib/D Ki-Kib /D

[ ] * * * » * [ ] -
Ry=K; | Rp=K; | R3=K3 | Rg=Ky in
200.0 | 200.0 | 200.0 | 200.0 22.13 | s
23.46 | 5
200.0 | 200.0 | 200.0 int 2¢.021]s
. 25.07 | $$
200.0 int 200,0 inf 26.02| S
27.94 |
200.0 | 200.0 ing ing 28.35]s
30.73 | 58
200.0 inf int inf 32,371} 8
33.82 | SS
inf inf inf inf 36.09 S
35.76 | $§

$ Ritz Solution herein

$$ Nastran P.E.

Solution

Table (11)

60
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Displacement, Acceleration and Strain

The response calculafions necessary for design and control
of flexible structures is not limited to frequency prediction.
Although discrepancies exist between all methods used to
predict frequency and academic agreement on an accepted num-
erical or analytical approach and results can take years, the
practicing engineer needs prediction methods for measurakie
physical response such as displaceﬁent, acceleration and
strain in order to compare with testing and real applications.
Of course it is unreasonable to compare physical response
given by a method under any dynamic load if the frequency
predictions are unrealistic or disagree. To this end, sample
comparisons of the physical responses are now given.

It was stated earlier that the loading is assumed to be
a series of harmonic inputs to the mechanical system. The
additional assumption of linear small deflection plate theory
allows the use of superposition. That is, if the loading can
be represented by a harmonic series, the response from each
term in the series may be calculated individuallv and summea
over the series for total response. This summation can also
be carried out separately for contributions to total response
from otner modes of vibration that may be excited. However,
the fundamental mode is the easiest to excite and fundamental
response makes the major contribution to overall response.
This is not to say that the contribution from higher modes
should not be considered, but in many cases, it can safel&

be neglected. For the results presented, loading is taken as
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a spatially uniform discrete sinusoidal pressure with a
frequency equal to the fundamental frequency of the plate.
The single mode harmonic steady-state responses for disp-
lacement, acceleration and strain are given. Each of these
responses is inversely proportional to structural damping.
That is, if damping is doubled, the response is cut in half.
The damping used in this study is 5% critical damping.

The solution of steady state harmonic response of a
rectangular plate subject to a uniform pressure loading given
by the MACSYMA aided elastic Ritz formulation is continuous.
The root mean square displacement, acceleration and strain
expressions represent a continuous distribution over the
plate domain. By specifying coordinates of interest, these
response quantities can be examined anywhere on the plate.
As well, the strain may be calculated through the panel
thickness with the specification of the z coordinate. The
assumption of linear plate theory and the absence of shear
deformation give a linear distribution of strain through the
thickness. Maximum values of strain are found at the top and
bottom surfaces of the plate since linear theory assumes that
the midplane of the panel is the neutral surface of zero
stress/strain. The top and bottom surface strain values are
of equal magnitude.

The finite element formulation of NASTRAN does not give
a continuous distribution of response quantities. Since the
domain is divided into discrete subdomains, the distribution

of these numerical quantities is discontinuous. The
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displacement and acceleration responses are calculated at
nodal points at the corners joininé elements wnile the stresses
are obtained from the center of the rectangular quadrilateral
elements. These stresses are assumed constant over the element.
The linear distribution of stress through the thickness of
the plate is retained by NASTRAN, however.

In order to make fair comparisons of response between
the elastic Ritz and NASTRAN results, the plate domain was
discretized on the finite element models using a cartesian
mesh configuration. This configuration places a node point
exactly at the center of the plate enabling direct comparison
of center displacement and acceleration. Without mesh refine-
ment, center stress is not directly calculated by NASTRAN.
Instead, comparisons are made at a point in the center of an
element nearest the plate centér. The strain calculations
done using the elastic Ritz formulation are adjusted to
coincide with the coordinates of this near center point on
the models. Reference to figure (2) on page 39 clarifies the
location of these points.

It was stated earlier that NASTRAN dynamic analysis
does not calculate strain. Stresses are returned from cal-
culations requested on a given element. For comparison, these
stresses are converted to strains assuming plane stress by
the formulas,

€x = (Ox- WOY)/E (55)
€y

(Ty- HOx)/E (56)
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Upon retrieval of the responses from both methods of
solution, the displacement, acceleration and strain values
are non-dimensionalized. This is done for general comparison

to all isotropic uniform rectangular plates subject to a

uniform sinusoidal pressure load at the fundamental frequency.

The dimensionless displacement is given by,
%*

e = (D wo) /(P bh) (57)

w
and the dimensionless acceleration is,

*

a. = (D ag h)/(P b4 g) (58)
and finally the null-dimensional strain can be given by,
€. = (2D (14) €)/(h P b?) (59)

Figures (8) through (13) may best be interpreted by
referring to figure (7). The comparison of central pnysical
responses is given in the following figures for fundamental
resonance excitation of a square plate with identical boun-
dary conditions on all edges. These graphs may be considered
crossplots of the displacement, acceleration and strain as
they relate first to the boundary restraint values and second
to the corresponding changes in fundamental frequency. The
three zones as given in figure (7) are also marked on figures
(8) through (13). In order to distinguish between the zones

* * * *
marked R =S K =inf and R =0 K =S, the transition point is

noted as the frequency of the simply-supported frequency, slss‘

Figures (9) and (12) were separated into individual grapns
according to the zones for clarity.

The results displayed in figures (8) and (9) show com-

parison of center displacement between tne single mode elastic



Brewer 65

Ritz and the NASTRAN finite element solutions. First, figqure
(8) gives the variation of displacement with respect to res-
traint parameter. As expected, the center displacement inc-
reases as the elastic restraints are relaxed. In figure (9),
the displacement is crossplotted against the range of funda-
mental excitatioﬁ frequencies encountered from the restraint
relaxation. These two figures taken together show how centex
displacement varies over the entire domain given in figure
(7). There is very good agreement between the elastic Ritz
and NASTRAN finite element solutions as seen on the grapnhs.
The results have been truncated at w:=101 since these ap-
proach displacement values outside the region that is nor-

mally considered as small deflection.

‘oi.

-~ Ritz Sol’'n
=== P.E. Sol’n

-3
'OIO' 107 10

10" 10 10 10 10°

Figure (0). Variation of center displacement with respect to
restraint parameter, S, of a square plate with translational
and rotational restraint parameters. ldentical boundary
conditions on all edges. Sinusoidal load at fundamental
frequency, £3;.

Figures (10)and (11) show the same type of crossplots

for center acceleration. Good agreement between the NASTRAN
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Figure (9). Variation of center displacement with respect
to fundamental frequency parameter, 11+ ©f a square plate
with translational and rotational restraint parameters.
Identical boundary conditions on all edges. Sinusoidal load
at fundamental frequency, f;,.

and elastic Ritz results is again seen and may be expected
since the frequency and displacement predictions were in

close agreement. The magnitude of acceleration can be cal-
culated by multiplying radian fr'equency squared times the

displacement magriitude. Therefore, acceleration calculations
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reflect a type of combined error for frequency and displace-

ment computations.

T
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Figure (10). Variation of center acceleration with respect
to restraint parameter, S, of a square plate with trans-
lational and rotational restraint parameters. Identical
boundary conditicons on all edges. Sinusoidal load at
fundamental frequency, f;.
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Figure (11). Variation of center acceleration with respect
to fundamental frequency parameter, ?1 1+ ©of a square plaze
with tranglational and rotational restraint paravesers,
ldentical boundary conditions on ail edges. Sinusoidai load
st fundamental frequency, f);.

Figures (12) and (13) show the variation of strain at
a point near the center of the plate. Figure (12A) displays

the variation as the plate boundaries move from the clamped
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Figure (12). Variation of center strain with respec= to
gastraint parameter, S, of a sguare plate with tracslational
and rotational restraint parameters. Identical bouriary
conditions on all edges. Sinusoidal load at fundamental

frequency, ;.
to the simply-supported states. The agreement in that region
is good. In figures (12B) and (12C) it is seen that as the

plate edges are relaxed toward the free state, the agreement
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between the two solutions deteriorates. As the elastic res-
traints are relaxed to values below 103, the NASTRAN solution
gives decidedly lower results. There is , however, agreement
in trend. That is, the magnitude of strain tends to rise and
fall in similar fashion'fbr'both solutions. This>agreément

is more apparent in figure (13). The shapes of the closed
curves are very similar in the prediction of high and low

values of strain.

- Ritz SOl °n
bk r":. sol 'n
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Pigure (13). Variation of center gtrain with respect to
fundamental frequency parameter, hll‘ of a square plate
with translational and rotational restraint parameters.
Identical boundary conditions on all edges. Sinusoidal load
st fundamental frequency, £;,.

The final comparison of response is taken from the res-
ults given in reference (5). In that work, the search for
causes of a large bias error between experimentally measured
and analytically predicted strain response led to the exami-
nation of the effect of both types of boundary springs on the
response. For that study, only the finite element method was
used to model a plate whose edges were elastically restrained
in rotation and transverse translation since no other.method

was available at the time. The response was calculated for
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various combinations of selected values of restraint while
maintaining a constant fundamental frequency. At one end of
the scale, the plate possesses infinite rotational boundary
spring stiffness with a finite value of transverse boundary
spring stiffness. At the other end of the scale, the reverse
is true. Combinations of finite values for both types of
boundary spring £ill in table (12).

The NASTRAN finite element results as given in reference
(5) have been non-dimensionalized and the elastic Ritz sol-

ution has been used for comparison. The fundamental frequency

comparispn of Displacement and Strain for Various
Translational and Rotational Restraint Values
Ky=KysK =K _sK Ry=Ry=sR sR.=R
172 JSqaarh Plitez 3T

Sinusoidal Load @ £,
1 = 26.57 & 5

3 L - L]
Rb/D | Kb?/D ve €. €edge
6.349 inf 0.0237 0.3778 | 0.2250 { §
0.0256 0.3802 | 0.2233 | s$
7.619 | 3108.573 | 0.0240 0.3807 | 0.2522 | §
10.0260 0.3802 | 0.2474 | sS
9.269 {1334.86 | 0.0247 0.3869 | 0.2834 | s
0.0262 0.3782 | 0.2736 | $$
9.524 |1262.713 | 0.0248 0.3871 | 0.2873 | §
0.0264 0.3782 | 0.2776 | $$
12.698 | 731.426 | 0.0258 0.3933 | 0.3298 | §
0.0266 0.3721 | 0.3158 | $S
25.396 | 438.86 | 0.0269 0.3916 | 0.4034 | s
0.0268 0.3560 | 0.3842 { $S
38.095 | 384.0 0.0271 0.3868 | 0.4301 | S
0.0266 0.3460 | 0.410) | SS
63.492 | 338.286 | 0.0274 0.3817 | 0.4527 | S
0.0267 0.3379 | 0.4345 | §$$
int 292.573 | 0.0274 0.3685 | 0.4846 | $
0.0267 0.3198 | 0.4727 | $$

$ Ritz solution herein
$$ Nastran P.E. Solution

Table (12)
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prediction for given values of restraint varied by no more
than 5%. The results-of table (12) show good comparison for
center displacement which seems to remain relatively constant.
The near center strain given by NASTRAN tends to drop slightly
while the elastic Ritz solution gives relatively constant
values. The near edge strain from a point midway along one

of the edges increases as the translational restraint relaxes
and the rotational restraint is tightened. This comparison
validates the conclusions of reference (5), since the intro-
duction of transverse motion at the boundaries could not

account for the bias error.
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CHAPTER 6

Conclusions

Conclusions from Comparisons

Many authors have addressed the problem of free vibration
of uniform rectangular plates. An informative survey of recent
studies was given by Leissa (20). Most of the studies were
restricted to plates possessing the classical free, clamped
and simply-supported edge conditions and in some cases, the
académic agreement on accepted theoretical frequencies is
still open to debate.

Many methods have been derived and used in an effort to
calculate more accurate frequencies with ease of computation.
With the ability of the computer to perform complicated cal-
culations at high speed, the ease of computation is not as
important as it once was. In fact, one of the reasons early
derivations of solution were simplified was to yield expres-
sions that were easier to use in the absence of efficient
computer methods. The work given by Carmichael (13) in 1959
is a case in point. The assumption of symmetric boundary
conditions with equal rotational restraint on parallel edges
gave a simple explicit expressions for difficult integrals

in the application of the Rayleigh-Ritz methed.
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The Ritz method is one of the more popular approximations
used in plate vibrations since it has proven to be a straight
forward valid approach. The accuracy returned by this method
depends in large part on the functions chosen to represent
displacement. In general, the accuracy of results can not be
estimated with certainty. The frequencies can only be said
to be higher than the true values. By satisfying the shear
and moment boundary conditions, when applicable, the rate of
convergence is aided. For plates without exact solutions (ie.
no parallel simplyv-supported edges), the convergence rate
is further enhanced by the use of beam functions. The indi-
cations are that the "best" estimates of frequency result
when beam functions are selected so as to satisfy the edge
conditions exactly. This choice of functions renders good
approximations of frequency when only the single term (dia-
gonal terms) expressions are used. Even frequencies of
higher modes can be estimated with sﬁitable accuracy using
the single term solution.

For example, Young (21) discussed the use of the Ritz
method for plate vibrations and assumed beam functions to
represent displacements. For the square cantilever plate which
is a case of Qnsymmetric boundary conditions, he chose the
free-free and free-clamped beam functions for the two coor-
dinate directions, respectively. Frequency calculations were
pased on an 18 term series. For the first mode, Young gave
the value of the dimensionless frequency parameter as 3.494.

A single term approximation based on the same beam functions
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gives the fundamental parameter as 3.515 for a percent dif-
ference of 0.6%. On the fourth mode, the 18 term solution
yields a value of 27.46 and the single term approximation
gives 28.78 for a 4.8% difference. Nassar (22) extended the
single term approach to include plates with rotationally
restrained edges. The boundaries were assumed to be unsym-
metric in restraining value. Functions were chosen as a
weignted sum of clamped and simply-supported beam functions.
A single term solution was also generated assuming beam
functions of an unsymmetric rotationally restrained beam.
Both solutions gave fundamental frequency predictions that
varied from published results by no more than 0.5%.

In this study, a single term solution is again applied.
The plate was assumed to be elastically restrained in both
rotation and transverse translation. The edge spring values
were assumed unsymmetric. For the comparisons of character-
istic frequency parameter, it Qas seen that good results
were achieved for all cases when the edge translation was
completely constrained (ie. K=inf). In these cases, the edge
conditions are between the simply-supported and clamped
states, inclusively. When compared to the solution given by
Carmichael in table (1), both the new elastic Ritz and NASTRAN
finite element solutions gave good results. If an exact value
of infinity for translational edge stiffness were applied to
the new elastic Ritz solution, it would become equivalent to

Carmichael s approximation.
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The further comparisons of frequency parameter for plates
rigid in edge translation showed acceptable agreement to the
published results. The elastic Ritz and finite element results
were equally valid for cases of unequal rotational restraint.
For these cases, presented in tables (2), (5), (8), (9) and
(10), the predictions of this study never differed by more
than 1%. The frequency parameter comparisons made to available
data for higher modes were within 5%. This indicates that the
new results were soundly derived from valid approaches.

when both types of spring were activated simultaneously
at the plate boundaries so that transverse edge motion was
introduced, discrepancies in frequency prediction were encoun-
tered. Referring to figures (6) and (7), it was shown that
the elastic Ritz and NASTRAN solutions agreed with the results
of Warburton and Edney (12) when either of the two spring
types acted alone. However, when both translational and
rotational boundary springs were active, the two solutions
of this study gave significantly lower frequencies. For all
subsequent comparisons to published results for cases when
restrained transverse motion was allowed at the edges, lower
frequencies were again predicted by the methods used herein.
Assuming no numerical error was present, since double checks
uncovered none, this indicates that the choice of displacement
functions becomes increasingly important. By considering the
boundary conditions along with the choice of functions used in
reference (12), the following is noted. For cases where the

boundary conditions are between simply-supported and clamped
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(ie. top curve of figures (6) and (7)), Warburton and Edney
utilized a weighted sum of simply-supported and clamped beam
functions. As such, the zero displacement edge condition was
satisfied exactly while the moment condition is approximated
through the range of elastic values with good results. On the
lowest curve of those figures, a weignted sum of free and
simply-supported beam functions were used. These functions
satisfy the zero moment boundary condition exactly and
approximate the shear condition over the range of elastic
values. Again, by satisfying at least one of the boundary
conditions, good results were achieved. For the intermediate
curve where both types of spring were simultaneously active,
the functions used in reference (12) were a weighted sum of
simply-supported, clamped, free and sliding beam functions
and collectively satisfy neither the shear or moment edge
conditions. Rayleigh’s principle guarantees the frequency
predictions will be high by the arqument of upper bounded
eigenvalues. The weighted approximation on both types of
elastic edge condition gives inflated results to the point

of unpracticle accuracy. Unfortunately, one of the purposes
of the published article was to give quick and easy frequency
predictions with suitable accuracy.

The additional comparisons given by tables (3), (4), (6)
and (7) for cases when restrained transverse motion is allowed
at the edges showed similar results. The solutions of this
study gave lower predictions of frequency for all cases

except those of table (6) where the finite element predictiods
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were inconsistent. The reason for the inflated results was
discovered. Accidentally, the pair of parallel edges that
varied from simply-supported to free states had been over
constrained. For plates with unequal translational restraint
on boundaries, transverse edge displacement is not equal on
all edges. As a result, the boundary nodal displacements on
the finite element model must have freedom of rotation about
an axis perpendicular to the edge. This rotational freedom
was inadvertently constrained for the computer runs of table
(6). When this was corrected, the NASTRAN solution agreed
with the elastic Ritz predicticns. At a value of K*=10 in
the top row of the table, the finite element dimensionless
frequency parameter was found to be 11.25 compared to 11.31
for the elastic Ritz solution. The SS-Fr-SS-Fr case has an
exact value as given by Leissa. The finite element prediction
with corrections returned a value of 9.659 as compared to
9.676 and 9.6314 for the elastic Ritz and exact values,
respectively. Therefore, the earlier major discrepancy of
frequency prediction between NASTRAN and the elastic Ritz
solutions may be attributed to user error. The minor dif-
ferences of results between these two solutions can be
attributed to convergence considerations. It is noted that
the frequency results from the two approximations used in
this study are not consistently nigher or lower in comparison.
The single term Ritz solution is also guaranteed to be high
by Rayleigh’s principle while an insufficient number of

elements on the finite element model will slow it s
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convergence. For any given comparison, it is difficult to
predict which of these factors will take precedence to give
more agreeable estimates of frequency.

Extension of the single term Ritz solution to predict
response is generally less reliable than frequency prediction.
Warburton (23) demonstrated that the single term solution may
give very good results for displacement based on the conver-
gence rate. The stress/strain convergence is usually slower
however, especially for plates exhibiting unsymmetric boundary
conditions or aspect ratios not equal to one. In general, if
convergence of natural frequencies is slow, the convergence
for response calculations will be slower still. Therefore,
for cases deviating far from the square plate with equal or
symmetric edge conditions, a multiple mode calculation with
more terms in the Ritz series is recommended.

The fundamental resonance displacement and acceleration
results showed good comparison between the single mode Ritz
and finite element solutions in figures (8), (9), (10) and
(11). This indicates that the convergence for displacements
in the Ritz solution is rapid enough for good estimates.
Combining good natural frequency and displacement comparisons,
the accelerations predicted by both methods are expected to
agree. Figures (10) and (11) show general agreement.

The strain response values as seen in figures (12) and
(13) are not as agreeable for the two methods in all cases.
Several factors may account for this. The convergence of the

single term Ritz solution is not guaranteed, as mentioned. As
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well, the finite element solution results are only as good as
the refinementof the plate modeling and the element disp-
lacement functions chosen. The deviation of NASTRAN strain
values from the Ritz solution is seen to occur as restraining
values fall below 103 on figures (12B) and (12C). In these
regions, the displacements begin increasing at a greater rate
fsee figure (8)). The continuous distribution ofrstrain over
the plate domain can only be approximated by the finite
clement model and since stress is constant over a given
element, the distribution from NASTRAN is piecewise linear.
As a result, for larger displacements, this piecewise dist-
ribution will show greater deviation and is less reliable to
approximate the continuous distribution. By increasing the
number of elements or using mesh refinement in areas of
interest, a better approximation should result.

Another factor to help explain the disagreement.of
strain between the two solutions concerns the modeling of
edge bending. For any given element, the corners are subject
to differing magnitudes of translational and rotational disp-
lacement. These differences result in shear and moment forces
at the nodes. In the interior of the plate, continuity of
displacement at the nodes joining elements cancels out these
forces. That is, the forces on one element are equal and
opposite to those of an adjoining element. At the edges, these
effects are elastically restrained. As the stiffness of the
velastic restraints are lessened, the forces at the edges of
the model are neglected. As a result the edge elements are

.
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subject to little or no bending. To properly account for this,
it is suggested that numerically appropriate artificial support
reactions and bending moments be applied at the boundaries to
induce bending in the edge elements. This would increase the
strain values returned by NASTRAN.

Table (12) gave displacement and strain values for
various combinations of edge restraint. The agreement was
good. The NASTRAN finite element results were taken from
reference (5) and non-dimensionalized. In that article, the
edge strains were shown to increase as the transverse boundary
spring stiffness was decreased and the rotational edge flexi-
bility was increased. Since the experimental strains were
lower than those predicted by a factor of three, the introduc-
tion of restrained edge translation does not account for the
bias error. The elastic Ritz results of-this study have subs-
tantiated that claim.

For practical applications of the two approaches of
this study, the following factors to be considered are sum-
marized. The Ritz solution should be extended to a multiple
mode solution with a greater number of terms. Although, the
frequencies from a single term solution can be accurate, the
convergence of solution to predict response will be enhanced.
This will add to the complexity of solution since tne off-
diagonal terms in the frequency determinant and contributions
to response of higher modes in the determination of amplitude
cocfficients will be included in the analysis. The use of

subroutines available in math and science software libraries



Brewer 81

to solve the eigenvalue problem and matrix simultaneous
equations should ease the burden. Also, the finite element
model should be adjusted with a greater number of elements

or mesh refinement in the areas of stress calculations. An
increased number of elements would allow for a better
approximation of the mode shapes by the finite element model.
The edges should also be modeled with proper reactions.

Comments on the Use of MACSYMA and NASTRAN

MACSYMA ‘s evolution has been steady and methodical. The
capabilities are continuously being expanded so that the
program size is increasing rapidly. Tbere are many problems
in mathematics and in physical sciences to which MACSYMA has
‘nét been applied. For these reasons, it is impossible for one
person to fully understand all of MACSYMA's capabilities. To
the novice user, MACSYMA is somewhat of a "black box" that
miraculously returns answers to complicated problems in math-
ematics.

In this study, MACSYMA was used to solve the simul-
taneous eéuations of boundary conditions in order to specify
the functions that describe the normal modes of vibration of
the elastically restrained beam. This is the most difficult
part of the solution. It is assumed that this difficulty is
the reason no published material on the use of these beam
functions in plate vibrations was found. Although the deriv-
ation of the functions is difficult, it is not impossible to
derive these functions by hand. In fact, they were derived by

hand in oraer to assess that part of the contribution from
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MACSYMA. The solution, when done by hand, comprised 14 pages.
Care was taken to avoid mistakes (sign errors are a specialty)
so that with simplifications and verification, the solution to
get the beam functions took approximately 25 hours. When
MACSYMA was applied, the most time was spent on problem setup.
Once the input of the boundary equations was done and the
general expressions for tne beam functions were substituted
into those equations, MACSYMA returned the. completed solution
for coefficients and the transcendental equation to determine
the argument, alph(m), in about five minutes. Indeed, the
expressions given by MACSYMA before simplification were
fairly compact and programmable.

MACSYMA was also used to perform all integration
necessary to form the Rayleigh quotient and the work of ﬁhe
pressure load on the plate. The expressions from equations
(22) through (26) for displacement and strain were derived
completely on the computer. The entire analytical solution
was done using MACSYMA.

Once cxpressions were simplified to the desired degree,
the Fortran code was generated. Fortran routines were written
and debugged as the sclution derivation progressed. Wnen the
solution for the coefficients and argqument of the beam func-
tions was complete, the Newton-Raphson subroutine was written
and verified. The necessary Fortran subroutine for calculation
of the integral expressions and the formation of the Rayleigh
quotient was written once progress of- analytic derivation per- .

mitted. Finally the expressions for displacement and strain
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werce derived and the response routine was programmed. The
solution was complege. The derivation and programming of the
entire Ritz algorithm was done on the computer. The major role
of this user was to keep track of the necessary steps andvto
debug the Fortran program.

One of the features of MACSYMA is the share directory.
The share directory is a library of special math routines that
were written by MACSYMA users and incorporated into the soft-
ware for general use. As more physicists and engineers become
aware of symbolicvmanipulation systems, these share direc-
tories will'ﬂegin to branch out. General solution algorithms
to problems in the physical sciences will become available.
For example, the Ritz procedure for plate vibrations might be
incorporated into the system. The interactive user will input
the functions and specify the boundary conditions. The soft-
ware will grind out the necessary expressions and return a
complete solution for natural frequencies. At the touch of a
button, the Fortran code is given and numerical evaluations
begin. Of course this is an over simplification but it is not
an unrealistic concept.

NASTRAN, like MACSYMA, is a large software package that
no one user can completely grasp. It is therefore also a "black
box" system. The user must be sure to follow the rules and
format the input correctly in order to properly model the prob-
lem. The results of table (6) were not corrected in this manu-
script since they serve as an example. In the long formatted

input listing, a single digit caused erroneous results.
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One of the problems encountered in the course of this
study was the }ength of time required and amount of storage
needed by NASTRAN. Typical runs of NASTRAN, whicn required the
loading of the 15 modules that comprise the extensive packaye,
used about five minutes of CPU time on the Cyber 175 system.
In one instance, the nuhber of degrees of freedom on the plate
were increased nine-fold. That is, the number of elements was
increased to check frequency convergence. The required CPU
time was likewise increased nine-fold. Since the NASTRAN runs
were made on a time share computer system, generating results
was often frustrating and always time consuming. Runs were
required to determine natural frequencies and again to apply
an harmonic load at the fundamental frequency. As a result,
NASTRAN did not lend itself conveniently to the parametric
and reéponse analyses of this study.

An advantage of NASTRAN is that it can analyze complex
problems. The finite element method provides a means to examine
problems where no analytical method is available. The capabil-
ities of NASTRAN are extensive but they have a limit. Finite
clement formulations to problems that NASTRAN can not presently
handle are being derived by researchers everyday. It is only'a
matter of time that these solutions will be incorporated into
software packayes such as NASTRAN.

A small fraction of the capabilities of both MACSYMA
and NASTRAN were required for the analysis of this study.
Therefore, this user must be considered a novice on both

systems. The work did serve as a good introduction to the
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available software. This introduction instilled an appreciation
and respect for the capahilities of MACSYMA and NASTRAN that
allows the following conclusions.

Any engineer that is involved in complicated derivations
of solution should become aware of symbolic manipulation
systems and cbnsider their use. The time saving alone is a
valuable asset. These systems also eliminate the chances of
mistake that accompany long algebraic and calculus related
manipulations. From the point of §iew of this user, computer
aided mathematics is tremendously powefful tool for the
engineer.

Finite element software has come of age. The capab-
ilities of the available packages are always increasing. Even
for problems where analytical solutions exist and are used,

a finite element solution is a valid approach to check results

or compare with experimental data.
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APPENDIX A

Notation

It is notea here that MACSYMA does not recognize Greek

nomenclature. Therefore, english abbreviations were used for

those characters in all MACSYMA displays contained in this

manuscript. Also, MACSYMA does not allow the use of upper

and lower case characters simultaneously so that all MACSYMA

displays are in lower case. For these reasons, the notation

list below is expanded to include the MACSYMA notation used.

The MACSYMA notations are enclosed in brackets “[]°.

X,Y,Z

a,b

Cooridinate directions.

Length (x direction) and width (y direction)
of the plate, respectively.

Thickness (z direction) of the plate.
Time.

Radian and cyclic frequencies, respectively.

Density (mass/unit volume).

Damping coeficient and % critical damping
coeficient, respectively.

Poisson ‘s ratio.

Flexural stiffness constant, D=Eh3/12(1-fL2),
where E=Young’'s Modulus.

Transverse displacement (z direction) where
W(x,y) is seperated spatial variation.

. 0.




p(X:Y;t)

(x), Y, (y)
r>]r<‘(m), Qm(x)]
y(n), yn(y)]

(a(m,n)]

,lalph(m)]
g:,[bet(n)]

R1,Ki
[ri,ki]

r,i,m,
n,p.q

g.€

[ce,ss,chech
shsh,cs,cch
csh,sch,ssh
chsh]

{ xhm,xjm,xkm
x1lm,x0sq,xasq
Xposq, xpasq
xgm |

[3e, 3pi]

4

4

C_,D
B(mT.cTm),d(m
n
e

,F 'G
(nY,£%n),g(n)
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Normally incident pressure on plate surface
where P(x,y) = P is uniform spatial variation
over the surface.

Potential or strain energy and kinetic energy
of the plate, respectively. V is associated
witn elastic energy in the plate and boundary
springs.

Work done on the plate by pressure, p(x,y,t).

Beam functions in respective x and y directions
chosen for transverse displacement variation,
Wix,y).

Amplitude coeficients found in beam

]

functions representing W(x,y).

]

Characteristic values found in the arguments
of beam functions.

Rotational and transverse translational
restraint values, respectively.

Indices, (positive integers).
Stress and strain, respectively.

Integrals defined in Appendix C.

Integrals of beam functions defined in
Appendix C. .

Euler constant, e=2.17182818 and
T =3.14159265, respectively. Recognized
by MACSYMA as given.

Biharmonic differential operator defined as,

C.94 69 4 + 69 4

+2
S4  Opp Oy
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APPENDIX B

Derivation of Beam Functions

The equations defining the elastic boundary conditions
that the assumed displacement function, W(x,y) must satisfy
were given in equations (6°, 7°). These egquations may be
seperated so that X (x) must satisfy equations (6A°, GB’.
7A°, 7B") and Y,(y) must satisfy equations (6C°, 6D°, 7C”,
7ID°). Once the coefficients, (B, C, D) and argument, alph(m),
of X, are obtained, the corresponding coefficients, (E, F,

G) and argument, bet(n), of Y, can be determined by the
substitution described in chapter 2.
Rewriting the boundary condition equations for X; and

utilizing MACSYMA we get,

2
d d
(-- (xm(o))) rl =4 (--- (xm(o0))) (Bl1)
dx 2
dx
2
d d
(-- (xm(a))) r2 = = (=== (xm(a))) 4
dx 2 (B2)
dx
3
d
kl xm(o) = -« @ (=== (xm(0)))
’ 3 (B3)

dx
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3
d
xm(a) k2 = (--- (xm(a))) d
3

dax (B4)

Substituting the expression for X, given in equation (10),
differentiating and evaluating the appropriate equations at

x=0 and x=a, equations (Bl, B2, B3, B4) become,

. 2 2
alph(m) c(m) alph(m) b(m) alph (m) d(m) alph (m)
; (mecommemmme- 4 mmem—mm———ee ) rl = d (==--cmmmcceoe o coceeee-
a a 2 2
J a a
(BS)

alph(m) d(m) sinh(alph(m)) alph(m) sin(alph(m))

(B6)

3 3
alpn (m) b(m) alph (m) c(m)
kl (d(m) + 1) = = @ (==r=c=cecccns = covcmcmccnne-- )

a a * (B7)
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k2 (b(m) sinh(alph(m)) + c(m) sin(alph{(m))

+ d(m) cosh(alph(m)) + cos(alph(m)}) =

3 3
alph (m) d(m) sinh(alph(m)) alph (m) sin(alph(m))
T + mmmceeccccc e ce e
3 3
a a
3 3
alph (m) b(m) cosh(alph(m)) alph (m) c(m) cos(alph(m})
4 —memmccceccccccccccctemreren - mceemcceccccccceccecac————= )
3 3
a a

(B8)
Using equations (B5, B7, B8) and solving simultaneously for

Bnh+ Cq and D, MACSYMA gives,

4 3
b(m) = (- (a d k1l alph (m)

(sinh(alph(m)) - sin(alph{m)))

7 .
+ a kl (k2 cos(alphi(m)) - k2 cosh(alph(m)))) rl

3 7
- d alph (m) (sinh(alph(m)) + sin(alph(m)))

6
2 a 4kl k2 alph{m) sin(alph(m))

+

3 2 4
- a a alph (m) (- k2 cosh(alph(m)) - k2 cos(alph(m))

2 k1 cos(alph(m))))/denominator
(B9)
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4 3
c(m) = ((a d k1l alph (m)

(sinh(alph(m)) - sin(alph(m)))

7
+ a kl (k2 cos(alph(m)) - k2 cosh(alph(m)))) rl

6
- 2 a d kl k2 alph(m) sinh(alph(m))

3 7
d alph (m) (- sinh(alph(m)) - sin(alph(m)))

+

3 2 4
+ a d alph (m) (k2 cosn(alph(m)) + 2 kl cosh(alph(m))

+ k2 cos(alpn(m))))/denominator (B10O)

7
d(m) = (- (a k1 (k2 sinh(alph(m)) - k2 sin(alph{(m)))

2 6
+ 2 ad alph (m).sin{(alph(m))

4 3
+ a d alph (m) (k1 (- cosh(alph(m)) - cos(alph(m)})

3 2 4
2 k2 cos(alph(m)))) rl - a 4 alph (m)

(k2 sinh(alph(m)) + k2 sin(alph(m)))

3 7
- d alph (m) (cos(alph(m)) - cosh(alph(m))))/denominator

(Bll)

where,
9
denominator = (a kl (k2 sainh(alph(m))

2 6
- k2 sin(alph(m))) + 2 a d alph (m) sinh(alph(m))

4 3
+ a d alph (m) (k1 (- cosh(alph(m)) - cos(alph(m)))
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3 2 4
- 2 k2 cosh(alphi(m)))) rl + a 4 alph (m)

(- k2 sinh(alph(m)) - k2 sin(alph(m)))

3 7
+ d alph (m) (cosh(alph(m)) - cos(alph(m))) (B12)

Equation (B6) can be rewritten as,

alph(m) d(m) sinh(alph(m)) alph(m) sin(alph(m))

alph(m) b(m) cosh(dlph(m)) alph(m) c(m) cos(alpn(m))

4 cemmccccccccccccccccccccee 4+ —mmcccccccccc e c e )
a a
2
alph (m) b(m) sinh(alph(m))
r2 + d (~--=cccccmccvmcencccccnana-
' 2
a
2 2
alph (m) c(m) sin(alph(m)) alph (m) d(m) cosh(alph(m))
- cocoscemsececercscoccecsreeceeee $ ceccccccccccmcncoees e e ee
2 2
a a
2
alph (m) cos{alph(m))
- e - - - - .- - = ()
2
a
(B13)

and substitution of equations (B9, B10, Bll, Bl2) into (Bl3)
results in the transcendental equation that is used to solve
for alph(m).

The solution of equation (Bl13) was done numerically by
Newton-Raphson method which necessitates the determination
of the derivative of the left-hand side of equation (B13)
with respect to alph(m). MACSYMA was used for this calculation,

however the expression is quite long and not included here.
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APPENDIX C

Calcuvlation of BReam Integrals

The integrals necessary in the calculation of the
Rayleigh quotient for natural frequencies and subsequently
the work done on the plate for forced response were given
in equations (2, 3, 16, 17 and 19). These integrals are
evaluated by inserting the expressions assumed for the mode
displacement functions (equations (10 and 11). Since these
functions are separable and similar in x and y, the integrals
may be evaluated independently for x and similar expressions
for y are obtained by the substitution described in chapter 2.

Inserting the expression for X; (x) into the integrands
of the appropriate integrals and expanding these integrand

expressions, the following integrals are needed.

2 alph(m) x

cc = cos (=—==—e=—e-=- ) dx

N =N

0 (c1)

2 alph(m) x

ss = sSin (~==--c=w=- ) dx

NNt =N

0 (C2)
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a
/
{ 2 alph(m) x
chch = 1 cosh (-=====--- ) dx
] a
/
0
a
/
{ 2 alph(m) x
shshn = 1 sinh (-=======- ) dx
) a
/
0
a
/
{ alph(m) x alph(m) x
cs =1 cos(--=====-- ) sin(=--==c==-- ) dx
) a a
/
0
a
/
{ alph(m) x alph(m) x
ccn = I cos(-=======- ) cosh(-==eeeem- ) dx
] a a
/
0
a
/
[ alph(m) x alph(m) x
csh = I cos(-=--==v=== ) sinh(-===vceu- ) dx
| a a
/
0
a
/
( alph(m) x alph(m) x
sch = I cosh(--======- } sin(==---=--- ) dx
] a a
/
0

97

(C3)

(C4)

(CS)

(C6)

(C7)

(C8)
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a
/
{ alph(m) x alph(m) x
ssh = I sin(-====---- ) sinh(==~e===-- ) dx
T :
0 (C9)
a
/
( alph(m) x alph(m) x
chsh = I cosh(---=c==-- ) sinp(-====-===- ) dx
] a a
/
0 (Clo)

In general, MACSYMA converts the hyperbolic sine and
hyperbolic cosine (sinh and cosh) into exponential form as
an aid to integration by the familiar identities,

u -u u - u

cosh(u) = ===-meceee-- +sinh(u) = ===-c--=e=-
2 2 (C11,Cl12)

After integration, MACSYMA does not recombine the exponential

terms and gives,

| a sin(2 alph(m)) + 2 a alpn(m)

CC & =—~—eecrcecccccccsercsacseeno-o=
4 alph(m) (Cl13)
a sin(2 alph(m)) - 2 a alph(m)
§ T = memmmsescsscsosssssosoSSsssssT
° 4 alph(m) _ (C14)
- 2 alph(m) 4 alph(m) 2 alph(m)
te (a se + 4 a alph(m) %e - a)
ACh = ==-mmm—ecc e m e e e e e e e e o S S S S S S S S ST
e 8 alph(m)
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- 2 alph(m) 4 alph(m) 2 alphim)
te (a %e - 4 a alph(m) %c - aj
shsh = ecccrcccrmcrccrr e e e s rrrrcc e e e =~ - m oo -w - -
8 alph(m)
(Cl6)
2
a sin (alph(m))
CS B ~——ecccccccecces
2 alph{m) (C17)
alph(m) - alph(m)
a te sin(alph(m)) a te sin(alph(m))
CCh = —=--ccececenneee- e R B
4 alph(m) 4 alph(m)
alph(m) - alph(m)
a te cos(alph(m)) a te cos(alph(m))
4 cmcecccccccco=—- e e o - - - " - — - - -
4 alph(m) 4 alph(m)
.o (C18)
alph(m) - alph(m)
a te sin(alph(m)) a te sin(alpn(m))
csh = ~=eccecrcccccnc—a- —————— == * Eeemc—cceecccecccccc—ec ==
4 alph(m) 4 alph(m)
alph(m) - alph(m)
a te cos(alph(m)) a te - cos(alph(m))
$ —mmmmeccccccom—mm— e O T
4 alph(m) 4 alph(m)
a
2 alph(in) (C19)
alph(m) - alph(m)
a se sin(alph(m)) a se sin(alph{(m))
SCh = --cecrccccccrcmmrrrrmrres = emrccerr e e
4 alph(m) 4 alph(m)
alph(m) . - alph(m)
a te cosf(alph(m)) a te cos(alph(m))
4 alph(m) 4 alph(m)
al |
$ cmocccmcwco=
2 alph(m)

(C20)
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alph(m) - alph(m)
a te sin(alph(m)) a te sin(alph(m))
§Sh = ~-e------recomoocecen—a— + mese-esmcr e e — e - -
4 alpn(m) 4 alph(m)
alph(m) - alph(m)
a te cos(alpn(m)) a te cos(alph(m))
R e T P Y B T T T T
4 alph(m) 4 alph(m)
(Cc21)
2
a cosh (alph(m)) a
chsph = =====-=s=—--sssssss = =Soo=omm="
2 alph(m) 2 alph(m)
(C22)

By recognizing the hyperbolic terms and simplifying
according to the identities of equations (Cll and Cl2) the

exponential expressions may be reduced to,

chch = (a/4alph(m)) (sinh(2alph(m))+2alph(m)) (c23)
shsh = (a/4alph(m)) (sinh(2alph(m))=-2alph(m)) (C24)
cch = (a/2alph(m)) (sin(alph(m))éosh(alph(m))

+cos(alph(m))sinh(alph(m))) (C25)
csh = (a/2alph(m)) (sin(alph(m))sinh(alph(m))

+cos(alpn(m))cosh(alph(m))-1) (C26)
sch = (a/2alph(m)) (sin{alph(m))sinh(alph(m))

-cos(alph(m))cosh(g}ph(m))+1) (C27)
ssh = (a/2alph(m)) (sin(alph(m))cosh(alph(m))

-cos(alph(m))sinh(alph(m))) (C28)
The integrals that result from the insertion of Xp(x)

are then defined as,
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. 0 | (C29)
a
/
1 a 2
xjm = I (-- (xm(x))) dx
dx
/
0 (C30)
a
/ 2
[ d 2
xkm = I (--- (xm(x))) dx
] 2
/ dx
0 (C31)
a
/ 2
| d
xlm = } xm(x) (-=-- (xm(x))) dx
2
/ dx
0 (C32)

and can be shown to be given by,

xhm = b(m) b(m) shsh + 2 b(m) c(m) ssh + 2 b(m) d(m) shch
+ 2 b{m) csh + c(m) c(m) ss + 2 c(m) d(m) sch
+ 2 c(m) cs + d(m) d(m) chch + 2 d(m) cch + cc
. (Cc33)
xjm = (alph(m)/a)2 (d(m) d(m) shsh - 2 d(m) ssh

+ 2 b(m) d(m) shch + 2 c¢(m) d(m) csh + ss
- 2 b(m) sch - 2 c{(m) ¢cs + b(m) b(m) chch

+ 2 b(m) c(m) cch + c(m) c(m) cc)
(C34)
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4
xkm = (alph(m)/a) (b(m) b(m) shsh - 2 b(m) c(m) ssh
+ 2 b{m) d(m) shch - 2 b(m) ¢sh + c¢(m) c{m) ss
- 2 c{m) d(m) sch + 2 c(m) cs + d(m) d(m) chch
- 2 d(m) cch + cc)
2 (C35)
xlm = (alph(m)/a) (b(m) b(m) shsh + 2 b(m) d(m) shch

- ¢c{m) c(m) ss = 2 c(m) cs + d(m) d(m) chch - cc
(C36)

The final necessary expressions for the determination of
natural frequencies arise from the elastic restraint energy
terms of equations (16 and 17). Letting [Xm(o)]2=xosq,
[xm(a)]2=xasq, [x'm(o)]2=xposq and [x'm(a)]2=xpasq where

indicates the derivative with respect to x, then,

2

xosq = (d(m) + 1) (€37)

; 2 2
xasq = b (m) sinh (alph(m))

+ 2 b(m) c(m) sin(alph(m)) sinh(alpn(m))
+ 2 b(m) d(m) cosh(alph(m)) sinh(alph(m))

, 2 2
+ 2 b(m) cos(alph(m)) sinh(alph(m)}) + c (m) sin (alph(m))

+ 2 c(m) d(m) cosh(alph{(m)) sin(alph(m))

2 2
+ 2 c(m) cos(alph(m)) sin(alpn(m)) + @ (m) cosh (alph(m))

2
-+ 2 d(m) cos(alph(m)) cosh(alph(m)) + cos (alph(m)) (C38)

2 2
alph (m) (c(m) + b(m))

(C39)
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2 2 2
xpasq = alph (m) (d (m) sinh (alph(m))

= 2 d(m) sin(alph(m)) sinh(alph{(m))
+ 2 b(m) d(m) cosh(alph(m)) sinh(alph(m))

., 2
+ 2 c(m) d(m) cos(alph(m)) sinh(alph(m)) + sin (alph(m))

- 2 b(m) coéh(alph(m)) sin(alph(m))

2 2 ‘
- 2 c(m) cos(alph(m)) sin(alph(m)) + b (m) cosh (alph(m))

+ 2 b(m) c(m) cos(alph(m)) cosh(alpﬁ(m))

2 2 2
c {(m) cos (alph(m})))/a

+

(C40)
Again, similar expressions may be obtained for integrals
of Y (y) and it’s derivatives by the substitution described
on page 18 (chapter 2}.

The Rayleigh quotient can be formed as,

2
W = [D (xkm yhn + xhm ykn + 2 g4 xlm yln + 2 (1-4) xjm yjn)

+ Ry xposq yhn + R, xpasq yhn + Ry yposq xhm + R, ypbsq xhm
+ Ky xosq yhn + K, xasq yhn + K3 yosg xhm + K4 Ybsq xhm] //

( p h xhm yhn ]
(c41l)

Finally, the integration defined by equation (19) for
the work of the uniform pressure on the plate is needed in
order to calculate the amplitude coeficients, A;,. This

integral can be written for X (x) as,

{
xqgm = } xm(x) dx
/

(C42)
0
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and is evaluated as,
xgm = a (d(m) sinh(alph(m)) + sin(alph(m))
+ b(m) cosn(alph(m)) - c(m) cos(alph(m)) + c(m) - b(m))

/alphim)
(C43)
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APPENDIX D

Solution for Coeficients of Rayleigh-Ritz Series

‘The equation used to determine the coeficients (A, ) of
the Rayleigh-Ritz series was given in chapter 2 (equation
(22)). Substitution of the assumed displacement functions
(equations (10 and 11) and the integral expressions from

Appendix C, equation (22) can be written as,

2 2 2
a (P_Lw Ayn xhm yhn)(1 -Wnn) =a

mn (-P Ap, Xgm ygn)
A 2 2 -
omn w?  Qimn (D1)
or,
2 2
(Apn P h& xhm yhn)(l - C“)mn) = -P xgm ygn
2
w (D2)
Solving for Ap.,
-P xgm yqn
= 2 2
..Amn PhW xhm yhn (1 -wmn)
a)2
~P xgm yqn
= 2
ph xhm yhn ( Wmn - W)
(D3)

Equation (D3) is for the undamped case. Damping can be

incorporated into the solution in the form of percent critical

damping by adding iZt’wmnw to (w:m -wz) in the denominator.
p



