
NASA Contractor Report 181728

w

The Computational Structural Mechanics Testbed

Generic Structural-Element Processor Manual

Gary Stanley and Shahram Nour-Omid

Lockhed Missiles and Space Company, Inc.

Palo Alto, California

Contract NAS1-18444

March 1990

m

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

,T ,_ ,/ _ , _t -i. ,_"_7 _'t_,:C ' _-,_L}_; _:_ ij_L_

L. ': L. !

https://ntrs.nasa.gov/search.jsp?R=19900012094 2020-03-19T23:28:01+00:00Z

qlm

"t-

CSM Testbed Generic Structural-Element Processor Manual Preface

Preface

The purpose of this manual is to document the usage and development of structural fi-

nite element processors based on the CSM Testbed's Generic Element Processor (GEP)

template. By convention, such processors have names of the form ESi, where i is an

integer.

This manual is therefore intended for both Testbed users who wish to invoke ES processors

during the course of a structural analysis, and Testbed developers who wish to construct

new element processors (or modify existing ones).

The contents of this manual were compiled by Gary M. Stanley of Lockheed Palo Alto

Research Laboratory, who is also the principal author. Contributors include:

Lockheed Palo Alto Research Laboratory

Bryan J. Hurlbut

Shahram Nour-Omid

Charles R. Rankin

Gary M. Stanley

Lyle W. Swenson, Jr.

David S. Kang (currently at Charles Stark Draper Laboratory Inc.)

NASA Langley Research Center

Norman F. Knight, Jr.

Analytical Services and Materials, Inc.

Mohammad A. Aminpour

Lockheed Engineering and Science Company

Christine G. Lotts

Susan L. McCleary

Revised 12/19/89 CSM Testbed Generic Structural-Element Processor Manual i

Preface CSM Testbed Generic Structural-Element Processor Manual

Update Log Date

Initial Draft January 1989

Revised Draft May 1989

ii CSM Testbed Generic Structural-Element Processor Manual Revised 12/19/89

CSM Testbed Generic Structural-Element Processor Manual Table of Contents

Table of Contents

Chapter 1 - INTRODUCTION

1.1 What is the Generic Element Processor (GEP)? 1-2

1.2 What are the key features of the GEP? 1-4

1.3 What are some of the limitations of the GEP? 1-5

1.4 tIow is the GEP organized? 1-6

1.5 How does the user perform structural analysis using the GEP? 1-7

1.6 How does the developer add new structural elements using the GEP? 1-8

1.7 How does the GEP differ from what was previously in the Testbed? 1-9

1.8 What is the purpose of this document? 1-10

Chapter 2 - USER INTERFACE (How to Invoke Element Processors}

2.1 Overview 2-2

2.2 ES Processor Commands 2-4

2.3 Procedure Interface to ES Processors 2-43

2.4 Glossary of ES Processor Macrosymbols 2-46

2.5 ES Processor/Procedure Usage Examples 2-55

Chapter 3 - DEVELOPER INTERFACE (How to Add New Element Processors)

3.1 Overview 3-2

3.2 Standard ES Kernel Routines 3-6

3.2.0 Summary 3-6

3.2.n Calling Sequences 3-10

3.3 Glossary of Standard ES Kernel Arguments 3-55

3.4 Examples of Specific Element Types 3-72

3.4.1 1-D Elements 3-74

3.4.2 2-D Elements 3-86

3.4.3 3-D Solid Continuum Elements 3-104

3.4.4 Nonstandard ("Wild") elements 3-112

3.5 Step-by-Step Installation of New ES Processors 3-113

Chapter 4 - COROTATIONAL INTERFACE (Geometric Nonlinearity)

4.1 Overview 4-2

4.2 Basic Corotational Theory 4-4

4.3 Built-in Corotational Optione 4-11

Revised 12/19/89 CSM Testbcd Generic Structural-Element Processor Manual iii

Table of Contents CSM Testbed Generic Structural-Element ProcessorManual

4..tThe CorotationalAlgorithm 4-19

,1.5CorotationalSoftwareUtilities (CR*) 4-23

Chapter 5 - CONSTITUTIVE INTERFACE (Material Nonlinearity)
5.1Overview 5-2

5.2UserInterface 5-3

5.3DeveloperInterface 5-4

5.4ProposedInterface:GenericConstitutiveProcessor 5-6

Chapter 6 - DATABASE INTERFACE (Global Data Structures/Utilities)
{_.1 Overview 6-2

6.2DatasetDescriptions 6-3
6.3DatabaseAccessUtilities 6-18

Chapter 7 - ARCHITECTURE INTERFACE (Internal Design)

7.1GEP Internal Organization 7-2
7.2GEP Use of the NICE Architecture 7-3

Chapter 8 - REFERENCES

iv CSM Testbed Generic Structural-Element Processor Manual Revised 12/19/89

INTRODUCTION

1. INTRODUCTION

CHAPTER OUTLINE

Section Title

1.1 What is the Generic Element Processor (GEP)?

1.2 What are the key features of the GEP?

1.3 What are some of the limitations of the GEP?

1.4 How is the GEP organized?

1.5 How does the user perform structural analysis using the GEP?

1.6 How does the developer add new structural elements using the

GEP?

1.7 How does the GEP differ from what was previously in the

Testbed?

1.8 What is the purpose of this document?

Revised 12/19/89 CSM Testbed Generic Structural-Element Processor Manual 1- 1

What is the Generic Element Processor (GEP)? INTRODUCTION

1.1 What is the Generic Element Processor (GEP)?

The Computational Structural Mechanics (CSM) Testbed software system is a framework

for structural and numerical methods research (see ref. 1). The CSM Testbed utilizes a

high-level command language (ref. 2) and data manager (ref. 3) and allows the coupling of

independent FORTRAN processors together such that specific structural analysis functions

may be performed. Various analysis processors and specific pre-processing, solution, post-

processing, and utility procedures are being developed by independent researchers (e.g.,

see reL 4). These processors and procedures utilize the data manager for archiving and

retrieving data to and from data libraries which may be interrogated by the user (see

ref. 5). The development, implementation, and assessment of finite element technology for

structural analysis is performed using the concept of a generic element processor.

'Fhe Generic Element Processor (GEP) is the standard (i.e., recommended) software mech-

anism for accessing and implementing structural finite elements in the CSM Testbed. Ac-

tually, the GEP is not really a "processor" at all, but rather a generic template for imple-

menting a multitude of structural-element (ES*) processors, each of which may be viewed

as an independent module in the CSM Testbed. What each of these independent ESi pro-

cessors (e.g., ES1, ES2, ES3, ...) have in common is a standard software driver, or "shell",

which ensures that they all "speak" the same command language and create the same data

structures, regardless of how different they are on the inside. It is by virtue of the generic

shell, that element users may access all ESi processors in precisely the same manner, and

that element developers may implement new elements using precisely the same interface

routines, regardless of their different internal characteristics. In summary, the GEP is

an extendible and easy-to-use vehicle for integrated element research, development, and

application within the CSM Testbed.

Note that there is no general rule regarding how many different element types may be

implemented within a specific ESi processor. For example, some element processors may

* ES is used rather than SE as an abbreviation for Structural Element, so that all element

processor names will begin with the letter E. Eventually, the Testbed will include other

element processor types besides structural; for example fluid elements (EF), thermal elements

(ET) and control -- or constraint -- elements (EC). Just think of the second letter as a

subscript (e.g., Es, Ef, Et, ...).

1- 2 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

INTRODUCTION What is the Generic Element Processor (GEP)?

Note that there is no general rule regarding how many different element types may be

implemented within a specific ESi processor. For example, some element processors may

contain only a single structural element type, while others may contain a family of elements

of a particular class (e.g., 4-, 9-, and 16-node shell elements). Still other element processors

may contain an entire library of finite elements, including various beam, shell, and solid

elements that may (or may not) be based on a common formulation. The diversity of an

ESi processor depends only on the diversity of the developer.

Revised 12/8/89 CSM Testbed Generic Structural-Element Processor Manual 1- 3

What are tile key fe_tturesof the GEP? INTRODUCTION

1.2 What are the key features of the GEP?

In addition to providing a common interface for element users and developers, the generic

ES processor shell performs the following additional features for the developer:

• It performs all system (i.e., architectural) functions required for compatibility

with the CSM Testbed.

• It handles most (if not all) of the global database transactions required by element

developers (seeChapter 6).

It can automatically perform all operations needed for large-rotation (small

strain) geometrically nonlinear analysis, using a built-in corotational algorithm

(_ee Chapter 4).

• It will provide a common generic interface to built-in constitutive utilities, which

will facilitate nonlinear material modeling (see Chapter 5).

• It performs all transformations from the element intrinsic coordinate system to

computational (nodal freedom) coordinate systems.

• It has an option to suppress automatically extraneous global freedoms based on

element-type participation (see Sections 2.2 and 2.5).

It accommodates the implementation of non-standard elements, which are treated

as "black boxes" which must perform most of the above operations themselves

(as described in Section 3.4).

and, for the user, it also [a('ilitates the writing of analysis procedures by providing

A high-level procedure interface (called procedure ES), which automatically in-

vokes all pertinent ES processors with a single generic call (as described in Section

2.3).

In summary, the Generic ES processor performs many of the standard overhead functions

that would otherwise (unnecessarily) burden the element developer and, at the same time,

provides a convenient interface for the user.

1-4 CSM Testbed Generic Structural-Element Processor Manual Revised 12/8/89

INTRODUCTION What are some of the limitations of the GEP?

1.3 What are some of the limitations of the GEP?

The GEP is designed to accommodate "conventional" element types more fully than "un-

conventional" types. This means that it may be harder to implement some elements than

others; however, there is usually a way to implement just about any element. For example,

most of the built-in functions performed by the ES processor shell (listed above) only work

for standard elements, which include a variety of l-D, 2-D and 3-D element types (de-

scribed iI1 Section 3.4). Elements that do not fit within the standard mold, are referred to

as non-standard, or "wild" elements. Wild elements may be implemented either as "black

boxes" within an ES processor; or by building a custom-made ES processor shell. While

this latter option involves considerably more work, it is a viable option, and as long as

the special-purpose ES processor shell conforms to the standard command language and

output datasets used by standard ES processors, the result will look the same to the user

(e.g., at the procedure level), and hence will be compatible with the CSM Testbed.

Revised 12/8/89 CSM Testbed Generic Structural-Element Processor Manual 1-5

How is the GEP organized? INTRODUCTION

1.4 How is the GEP organized?

The organization (software design) of the GEP for structural-element (ES) processors is

illustrated in Figure 1.1, and the internal design of the Generic ES processor shell is

described in Chapter 7. The design features a standard outer software "shell" which

processes user commands (such as FORM STIFFNESS and FORM FORCE), handles all

input/output from/to the global database (through calls to the GAL data manager), and

performs the additional CSM-oriented functions described in Section 1.2. Inside this shell

is the personalized "kernel" supplied by the element developer, which may be written in

just about any style or granularity, provided that it is in FORTRAN. Finally, a standard

set of kernel routines must be completed by the developer to connect the shell and the

developer's kernel for each of tile many intrinsic element functions.

The standard kernel routines transform data structures gathered from the database by

the ES shell into a form accessible to the element developer's kernel routines, and later

transform results produced by the kernel into standard data structures which are output

by the ES shell to the global database.

Note the close correspondence between ES processor commands and standard kernel

routines. For example, commands such as FORM STIFFNESS/MATL and FORM

FORCE/INT are translated by the ES shell into calls to kernel routines, ESOKM and

ESOFI, respectively. Such correspondences are summarized in Table 3.2.

1-6 CSM Testbed Generic Structural-Element Processor Manual Revised 12/fl/89

INTRODUCTION How does the user perform structural analysis using the GEP?

1.5 How does the user perform structural analysis using the

GEP?

All structural element processors based on the GEP template which typically have names

beginning with ES should look alike to the user. The user may invoke one or more of these

processors either directly -- by running each ES processor, one at a time, and issuing the

proper commands; or indirectly -- by using the high-level ES procedure interface, which

automatically invokes all of the required ES processors for a given problem. The only

exception is for dement definition, in which case each ES processor must be run individually

(either directly or indirectly using the ES procedure interface). Also, ES processors must

be used in conjunction with Testbed processor ELD, which defines element connectivity

and initializes various global datasets.

Information on the theory and use of specific element-types within individual ES processors

is provided by the corresponding element developer. The user may find specific documen-

tation for various ESi processors in the CSM Testbed User's Manual (ref. 4). The user

interface to the GEP is described in Chapter 2 of this manual.

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 1 - 7

How does the developer add new structural elements using the GEP? INTRODUCTION

1.6 How does the developer add new structural elements using

the GEP?

To add a new element processor to the CSM Testbed, using the generic ES processor shell,

the developer should follow the "recipe" described in Section 3.5. Briefly, the procedure

consists of (i) completing the set of standard kernel routines, which for structural elements

include such functions as: element definition, stiffness formation, force formation, strain

computation, mass formation, and various transformations; (ii) linking these new routines

with the ES shell to form a new ES processor (usually a separate executable at first}; and

(iii) modifying model-definition procedures to refer to the new ES processor for testing

and application.

The main responsibility of the element developer is to supply standard kernel routines.

Templates for these routines, which contain standard (but general} argument lists and

formal declaration statements, are provided in source-code form, so that the developer only

needs to fill-in the interior of each functional routine (see Section 3.2 for a summary). The

interior of these kernel routines should do whatever is necessary to connect the standard

argument variables to the developer's personal (kernel} subroutine argument lists -- unless

the developer wishes to perform all computations directly within the kernel routines.

Once the developer has finished the standard kernel routines and underlying kernel utilities,

creation of a new ES processor simply involves linking the developer-supplied code to a

pre-existing object library corresponding to the generic ES shell. This process enables

each ES processor shell to be developed independently, in an analogous manner to the

development of the CSM Testbed architecture. The developer interface is described in

Chapter 3 of this manual.

1- 8 CSM Testbed Generic Structural-Element Processor Manual Revised 11/27/1989

INTRODUCTION How does the GEP differ from what was previously in the Testbed?

1.7 How does the GEP differ from what was previously in the

Testbed?

The initial version of the CSM Testbed (referred to as NICE/SPAR) processed elements in

an entirely different manner than the present approach. In the initial version, each element

function (e.g., stiffness, force, mass, ...) corresponded to a different element processor

(e.g., EKS, GSF, M, ...), and each of these element processors embedded all elements

implemented in the Testbed. This software architecture not only made it very difficult to

add new elements (especially more than one at a time), but because of the orientation of

these older processors toward linear analysis, it presented serious obstacles for upgrading

the Testbed to nonlinear analysis.

In the present approach, all of the older element processors, with the exception of processors

ELD and K, have been replaced by the Generic Structural-Element (ES) Processor series

(ES1, ES2, ES3, ...), each of which performs all element functions for a given element type

(or types), and each of which is usually constructed by an individual element developer.

The exceptions mentioned above, processors ELD and K, have been temporarily retained

for expediency. Processor ELD is still used to define element connectivity, and processor

K is still used as an element matrix assembler. Even though elements associated with ES

processors are viewed as "experimental elements" by processors ELD and K, the restriction

of the original experimental-element facility on the number of different ES processors that

may be employed simultaneously in the same model has been removed.

Another difference is that processor K is used strictly as an element assembler in conjunc-

tion with E S processors; i.e., it is not used to perform the various element transformations

and expansions that it performed on earlier Testbed elements. Instead, such operations

are all performed within the generic ES processor shell -- before assembly. Finally, the

generic ES processor utilizes a data structure similar to the one formerly employed by

"experimental elemen ts'.

Revised 11/27/1989 CSM Testbed Generic Structural-Element Processor Manual 1-9

What is the purpose of this document? INTRODUCTION

1.8 What is the purpose of this document?

The present document is intended to serve as a multi-purpose reference manual for the

Generic Element Processor (GEP), with special emphasis on structural-element (ES) pro-

cessors that are constructed using the GEP template. Thus, it contains chapters on: the

User Interface (Chapter 2), which provides instructions and examples on how to employ

ES processors to perform structural analysis within the Testbed; the Developer Interface

(Chapter 3), which provides instructions and examples on how to add new elements (as

ES processors) to the Testbed; the Corotational Interface (Chapter 4), which describes

the theory, implementation and usage of the built-in corotational approach to geometric

nonlinearity; the Constitutive Interface (Chapter 5), which describes the various user and

developer options for performing material constitutive calculations; the Database Interface

(Chapter 6), which describes most of the global datasets employed by ES processors for

both input and output; and the Architecture Interface (Chapter 7), which describes the

internal software design of the ES processor shell, to enable its maintenance, evolution and

customizing for advanced or special-purpose features.

1- 10 CSM Testbed Generic Structural-Element Processor Manual Revised 11/6/1989

INTRODUCTION What is the purpose of this document?

* CALL ES (FUNCTION = ' FORM STIFFNESS/MATL' , ES_PROC = ESi)

--_ PROCEDURE ES (. • .)

L---_ [XQT ES i

PROCESSOR ES/

iGENERIC ELEMENT PROCESSOR SOFTWARE "SHELL D
A
T
A
B
A
S
E

Figure 1.1 Generic Element Processor Design.

Revised 3/7/89 CSM Testbed Generic Structural-Element Processor Manual 1-11

What is the purpose of this document? INTRODUCTION

THIS PAGE LEFT BLANK INTENTIONALLY.

1- 12 CSM Testbed Generic Structural-Element Processor Manual Revised 11/6/1989

USER INTERFACE

2. USER INTERFACE

Section Title

2.1 Overview

2.2

2.3

2.4

2.5

CHAPTER OUTLINE

Description

Introduces the user to the Generic

Element processor concept and the
structural element (ES) processor
template in particular. Briefly sum-
marizes how ES processors are used
in the Testbed to perform structural

analysis.

ES Processor Commands Summarizes and describesthe usage

of standard commands used by allES

processors. Includes a listof rele-

vant macrosymbols and input/output
datasets for each command. Stan-

dard element definitionconventions

(e.g., node numbers) are also de-
scribed here.

Procedure Interface to

ES Processors

Describes a high-level procedure to
access ES processors. Enables the
user to write analysis procedures that
automatically invoke all ES proces-
sors associated with a given problem,

with a single procedure call.

Glossary of ES

Processor Macrosymbols

Detailed definitions of all standard

macrosymbols used by ES processors
-- and, equivalently, arguments used

by the generic ES procedure.

ES Processor/Procedure

Usage Examples

Examples for using ES processors,

and/or the generic ES procedure, for
pre-processing and post-processing,
linear analysis, and nonlinear analy-
sis.

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2- 1

Overview USER INTERFACE

2.1 Overview

The Generic Structural-Element (or ES) Processorprovidesa template with which many

individual finite-element processors may be developed and coexist as independent modules

in the CSM Testbed. The generic processor template for structurM elements is referred

to as ES, and all element processors built with this template have names that begin with

ES (e.g., ES1, ES2, ...). Each of these ES processors performs aH operations for all of

the elements implemented within the processor -- including element definition, stiffness,

force, mass (etc.) generation, and various pre-processing and post-processing functions.*

Since ES processors are typically built by different developers, a wide variety of user-

interface characteristics may be expected. However, because of the generic template em-

ployed, all ES processors share the same command language and global datasets. This

commonality means that a user has to learn only one convention to invoke any ES proces-

sor.

The main difference between ES processors will be in the specific elements implemented

within them. Some ES processors may have only one element type inside. Others may

have a family of elements of a certain class (e.g., 4-, 9-, and 16-node shell elements). Still

others may embed an entire library of structural elements, containing various members

of each class (e.g., beam, shell, solid). Each of these specific element types is given a

corresponding name within each ES processor, so that the combination of ES processor

name and element type is unique. Thus, to employ a particular ES processor correctly,

the user will have to consult specific documentation on the individual elements contained

within that processor. Such documentation is provided in the CSM Testbed User's Manual

(r,,f. 4).

In the tbllowing sections, the features of ES processors are described in detail. The de-

scription includes ES processor commands, macrosymbols, and the datasets required or

produced by these commands (Section 2.2); the high-level procedure interface, which makes

it possible to write analysis procedures that invoke a single, generic procedure (called ES)

* Exception: Element connectivity for all element processors is currently performed by Testbed

processor ELD, using the <ES_EXPE_CMD>.

2-2 CSM Testbed Generic Structural-Element Processor Manual Revised 12/19/89

USER INTERFACE Overview: How to Use art ES Processor

to geimrateelementarrays automatically for all ES processorsrequired in a given problem

(Section 2.3); a glossaryof ESmacrosymbols(Section2.4), which givesmore detailed defi-

nitions for the macrosymbolsand procedureargumentsreferredto throughout the chapter;

and someexplicit cxamplesof how to useES processorsdirectly or indirectly using the ES

procedure interface (Section 2.5).

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2-3

ES ProcessorCommands USER INTERFACE

2.2 ES Processor Commands

All structural element (ES) processorsbasedon the genericelement processor template

sharethe sameprocessorcommands. This feature makesit easierfor the user and enables

the construction of a generic command procedure to handle any combination of ES proces-

sors (see Section 2.3). Most of the commands recognized by ES processors fall into three

categories: DEFINE, FORM, and POST, which roughly correspond to pre-processing,

computation, and post-processing phases of analysis. The DEFINE commands are used to

prepare or reformat model definition datasets, such as element connectivity (currently de-

fined using processor ELD), freedom activity, loads, etc. The FORM commands axe used to

form element computational data, such as stiffness matrices, force vectors, etc. The POST

commands are used to post-process element-oriented results, for example, interpolation

to obtain internal node displacements, or extrapolation of stresses from element integra-

tion points to nodes. Additionally, there is an INITIALIZE command which must be

invoked once, prior to invoking any of the FORM commands. A summary of ES processor

commands and their respective functions is provided in Table 2.1.

In addition to these commands, ES processors can be controlled with a number of built-

in macrosymbols, all of which begin with ES_. The macrosymbols typically set logical

switches and/or control parameters, and allow reassignment of database names from their

default values.

The remainder of this section describes each of these commands in detail, including syntax

and a summary of relevant input/output macrosymbols and input/output datasets. For

detailed definitions of the macrosymbols and datasets, the reader is referred to Section 2.4

(Glossary of Macrosymbols) and Chapter 6 (Database Interface), respectively.

2-4 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

Table 2.1 Summary of Generic ES Processor Commands

Command Description

INITIALIZE Initialize element data for FORM

DEFINE ELEMENTS Define element parameters

FREEDOMS Perform automatic DOF suppression

LOADS Define element (distributed) loads

FORM Form element stiffness

POST

STIFFNESS

[/MATL/GEOM/LOAD/TANG]

FORCE [/INT/EXT/RES/DYN]

MASS [/CONS/DIAG]

STRAIN

STRESS

STRAIN

STRESS

DISPLACEMENTS

Form element force

Form element mass

Form element strains

Form element stresses

Postprocess strains

Postprocess stresses

Postprocess displacements

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2-5

ES ProcessorCommands USER INTERFACE

2.2.1 DEFINE Commands

The DEFINE family of ES processor commands is used for various pre-processing functions.

Included here are the following special cases:

• DEFINE ELEMENTS

• DEFINE FREEDOMS

• DEFINE LOADS

The DEFINE ELEMENTS command is used in conjunction with processor ELD to set

up database tables and macrosymbols summarizing the key attributes of all element (ES)

processors and specific element types to be employed in a given model. The DEFINE

FREEDOMS command is used to facilitate automatic element degree of freedom suppres-

sion using the generic ES procedure (see Section 2.3). The DEFINE LOADS command is

used to store distributed element load descriptions in the database, which are later used to

generate consistent nodal loads. Point forces, applied motions, and boundary conditions

are defined at the global level using processors TAB and AUS.

2-6 CSM Testbed Generic Structural-Elem_nt Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

2.2.1.1 The DEFINE ELEMENTS Command

The DEFINE ELEMENTS command is used during pre-processing to indicate that a spe-

cific element type, within a given ES processor, is going to be included in the model. This

command must currently be used in conjunction with, and generally prior to, processor

ELD -- which defines element nodal and property-table connectivity, and sets up various

element datasets.

The main function of the DEFINE ELEMENTS command is to prepare a dataset called

ES.SUMMARY (see Chapter 6), which contains a list of all active ES processors and

associated element types for a given problem. This command enables the generic ES

procedure (Section 2.3) to process all pertinent ES processors automatically during the

solution phase. A secondary function of this command is to define various intrinsic element

parameters, such as the number of element nodes, integration points, and store them in the

ES.SUMMARY dataset and also in global macrosymbols that are accessible to the user at

the procedure level. The database records are useful as a summary of element attributes

and implementation status, which the user may check at any stage of the analysis.

The standard node-numbering sequences for a variety of standard I-D, 2-D and 3-D element

topologies is shown in Figure 2.1. These conventions should be used when defining element

connectivity using Testbed processor ELD. Note that while ES processor developers may

have their own internal conventions for numbering element nodes, ES processor users

should always use the standard convention. Developers are asked to define a node re-

sequencing array (NODES} to establish the relationship between external and internal

node numbers, so that all elements with common topologies can be defined in a consistent

manner by the user or an automated pre-processor.

2.2.1.1.1 Syntax

IDEFINE ELEMENTS]

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2- ?

ES Processor Commands USER INTERFACE

2.2.1.1.2

ESANAME

ES_I-'ARS

ES_SUM_DS

2.2.1.1.3

ES_C

ES_CNS

ES_DIM

ES_ES/

Input Macrosymbols

Element-type name

Array of element research parameters

Name of element summary dataset. (Default: ES.SUMMARY)

Output Macrosymbols

Degree of inter-element continuity (e. g., 0= C o, 1= C 1)

Element constitutive processing type

Element intrinsic dimensionality (l=beam, 2=plate or shell, 3=solid)

Status indicators for various element functions (see Section 2.4)

ES_NDOF

ES_NEN

ES__NIP

ES_NEE

ES_NORO

ES_NSTR

ES_OPT

ES_SHAP

ES_STOR

Number of element freedoms per node

Number of element nodes

Number of element integration points

Number of element equations (e.g., product of <ES.-NEN> and <ES_NDOF>)

Normal rotation (drilling) freedom tolerance

Number of element stress components per integration point

Element option number

Element shape (idTRIA or idQUAD)

Number of entries stored in Segment 6 of dataset <ES./NAME>.EFIL.,

(see Chapter 6).

2-8 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

2.2.1.1.4 Input Datasets

None.

2.2.1.1.5 Output Datasets

<ES_SUM_DS> Structural element summary dataset (see Chapter 6). Con-

tains nominal record groups for each element parameter

listed under "Output Macrosymbols'.

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2-9

ES ProcessorCommands USER INTERFACE

2.2.1.2 The DEFINE FREEDOMS Command

The DEFINE FREEDOMS command can be used to generate a table of potentially active

degrees-of-freedom (dof) for elements that have been previously defined by an ES pro-

cessor. This table is output to the database as a single dataset, ES.DOFS, which may

be "accumulated" for an entire model by invoking the DEFINE FREEDOMS command

in a series of ES processor runs -- one for each processor/element-type combination as-

sociated with the model. The resulting dataset will contain a table of potentially active

degrees of freedom reflecting all elements in the model that may be merged with the ac-

tual constraint datasets (e.g., CON..icon). This merging process is performed using the

MERGE_DOF command of processor VEC to achieve automatic suppression of degrees of

freedoms superfluous to the element (e.g., eliminate the drilling freedoms). Alternatively,

a more convenient way of performing this whole sequence of operations is by calling the

generic ES procedure with the argument COMMAND - 'DEFINE FREEDOMS'.

2.2.1.2.1 Syntax

2.2.1.2.2

I DEFINE

Input Macrosymbols

FREEDOMS]

ES_DOF_DS

ESANAME

ES_PARS

ES_TGC_DS

ES_XYZ_DS

2.2.1.2.3

Name of element freedom dataset in which table of potentially ac-

tive nodal freedoms will be stored and merged with other elements.

(Default: ES.DOFS)

Element-type name

Array of element research parameters

Name of nodal transformations dataset. (Default: QJJT.BTAB.2.19)

Name of nodal coordinates dataset. (Default: JLOC.BTAB.2.5)

Output Macrosymbols

None.

2- 10 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

2.2.1.2.4 Input Datasets

DEF.<ESANAME> Element definition (connectivity) dataset.

DIR.<ES_NAME> Element directory dataset.

<ES_TGC_DS>

<ES_.XYZ_DS >

Nodal transformations dataset. (Default: QJJT.BTAB.2.19)

Nodal coordinates dataset. (Default: JLOC.BTAB.2.5)

2.2.1.2.5 Output Datasets

<ES_DOF_DS > Table of potentially active freedoms for current set of ele-

ments, or for accumulated set if other ES processors/elements

have been employed for this purpose earlier. (Default:

ES.DOFS)

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2- 11

ES Processor Commands USER INTERFACE

2.2.1.3 The DEFINE LOADS Command

The DEFINE LOADS command can be used to define element loads and store them in

the database for subsequent recovery during the analysis. By element loads, we refer to

distributed forces (e.g., line loads, pressures, body forces) which require element process-

ing to convert them into consistent nodaI forces. The purpose of the DEFINE LOADS

command is simply to store the primitive element load distributions in the database. Con-

sistent nodal forces can then be computed subsequently using the FORM FORCE/EXT

command, discussed in Section 2.2.3.2.

2.2.1.3.1 Syntax

DEFINE LOADS/Type i/LIVE} [/SYSTEM -- System]

[GROUP = grpl, grp2, grpinc]

IELEMENT = eltl, elt2, eltinc]

[Boundary = bndl, bnd2, bndinc]

[NODE = nodl, nod2, nodinc]

LOAD = load_values

END DEFINE

2.2.1.3.2 Load aType * Qualifiers

LINE

PRESSURE

SURFACE

Line loads are defined as forces (and/or moments) per unit length.

They may be applied to 1-D (e.g., beam) elements or along edges of

2-D and 3-D elements.

Pressure loads are defined as forces per unit area that are directed

normal to an element's surface. Positive pressure values are assumed

to point along the "outward" normal to the element surface (see Figure

2.1b)

Surface loads are defined as general traction vectors, (i.e., force or

moment per unit element surface area). They may be applied to 2-D

elements, and to selected surfaces of 3-D elements.

2- 12 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

BODY Body loads are defined as forces per unit mass, and may be applied

to l-D, 2-D and 3-D elements. A typical example of a body load is

gravity, where the gravitational constant, g, is the magnitude, the

direction is fixed (e.g., towards earth), and both are constant for all

nodes and elements in the structure.

2.2.1.3.3 Load "System" Qualifiers

GLOBAL Indicates that the components of the load vector, specified using the

LOAD phrase, are expressed in the global-Cartesian coordinate sys-

tem.

NODAL Indicates that the components of the load vector, specified using the

LOAD phrase, are expressed in the nodal-Cartesian (i.e., computa-

tional) coordinate system at each node. This system is the same as

that specified by processor TAB's ALTREF command, and stored in

the QJJT.BTAB dataset.

ELEMENT Indicates that the components of the load vector, specified using the

LOAD phrase, are expressed in the element-Cartesian coordinate sys-

tem. This system is the same as the element corotational (or E) frame,

shown in Figure 2.1a for various element types.

2.2.1.3.4 LIVE Load Qualifier

The LIVE load qualifier is used to designate element loads that are to be displacement

dependent. Currently, the only type of live load implemented is the live pressure load

(DEFINE LOAD//PRESSURE/LIVE), which denotes a pressure load that remains normal

to the element surface during deformation. A common example of this type of loading is

hydrostatic pressure loading of a submerged shell structure.

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2- 13

ES ProcessorCommands USER INTERFACE

2.2.1.3.5 Load GROUP Specification

GROUP = grpl, grp2, grpinc]

The GROUP specification is an optional phrase used to set a range or subset of element

groups to be loaded within the current element type. The range specification is such that

"grpl" is the first group in the range, "grp2" is the last group in the range, and "grpinc"

is the increment used to count from "grpl" to _grp2". The value of _grpinc" defaults to

1; the value of "grp2" defaults to "grpl'. The default specification is from I to the total

number of element groups.

2.2.1.3.6 Load ELEMENT Specification

ELEMENT = eltl, elt2, eltinc]

The ELEMENT specification is an optional phrase used to set a range or subset of elements

within each element group to be loaded. The range specification is such that "eltl" is the

first element in the range, "elt2" is the last element in the range, and "eltinc" is the

increment used to count from "eltl" to "elf2". The value of "eltinc" defaults to 1; the

value of "elt2" defaults to "eltl", and will automatically be reset to the total number of

elements in each specified element group if "elt2" is too large. The de£ault specification is

from 1 to the total number of elements within each element group specified by the GROUP

phrase.

2.2.1.3.7 Load "Boundary" Specification

[Boundary : bndl, bnd2, bndinc I

The "Boundary" specificationisan optional phrase used to set a range of element bound-

ariesto be loaded -- within the given range of GROUPs and ELEMENTs. The "Bound-

ary" name depends on the load "Type". The parameter, "bndl", isthe firstboundary in

the range, "bnd2" isthe lastboundary in the range, and "bndinc" isthe increment used

to count from "bndr' to "bad2". Legitimate "Boundary" names are:

LINE Specifies range of element lines to be loaded (2-D/3-D elements only)

SURFACE Specifies range of element surfaces to be loaded (3-D elements only)

2-14 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

The default specification is from I to the total number of boundaries, of type "Boundary"

within the specified range of elements. Note that the "Boundary" specification is irrelevant

for BODY forces, for LINE loads on 1-D elements, or for SURFACE loads on 2-D elements.

(see Figure 2.1b.)

2.2.1.3.8 Load NODE Specification

NODE = nodl, nod2, nodinc]

The NODE specification is an optional phrase used to set a range of element boundary

nodes to be loaded -- within the given range of GROUPs, ELEMENTs and "Boundary"s.

The integer "nodl" is the first boundary node in the range, "nod2" is the last boundary

node in the range, and "nodinc" is the increment used to count from "nodl" to "nod2".

The value of "nodinc" defaults to 1. The value of "nod2" defaults to "nodl" and is

automatically reset to the maximum of Unod2" and the total number of boundary nodes

per element boundary. The default specit_cation is from 1 to the total number of boundary

nodes for each of the boundaries specified by the "Boundary" phrase, and within the

specified range of elements. (see Figure 2.1b.)

2.2.1.3.9 LOAD Specification

[LOAD = load_values]

The LOAD specification is used to define the values of the distributed load "vector" for

the range of nodes, boundaries, elements and groups specified by the NODE, Boundary,

ELEMENT and GROUP phrases, respectively. For all load types except PRESSURE,

the number of components in "load_values" is equal to the number of degrees of freedom

per element node. For PRESSURE loads, "load_values" is just the one scalar value --

considered positive in the direction of the outward normal to the element's loaded surface

(see individual element processor conventions in Chapter 5 of the Testbed User's Manual,

ref. 4).

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2-15

ES ProcessorCommands USER INTERFACE

2.2.1.3.10 Input Macrosymbols

N_me

ES_NAME

ES_LOAD_SET

2.2.1.3.11

Description

Element-type name

Load set number

Output Macrosymbols

Nonc.

2.2.1.3.12 Input Datasets

Name Contents

GD.<ESANAME>.* Element group definition dataset.

2.2.1.3.13 Output Datasets

Name Contents

LOADS.<ES_NAME>.<ESLOAD_SET>

Element loads dataset for load set <ESLOAD_SET>.

The record groups in this dataset depend on the types

of element loads defined. They may include LINELDS,

PRES_LDS, SURF_LDS and BODYLDS. Live-load record

groups appear with the prefix LIV; for example, LIV_PRES_LDS.

2-16 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

2.2.1.3.14 Examples

Example 1. Constant Pressure Loads on 2-D Elements

,def ES_NAME -- EX47

DEFINE LOADS/PRESSURE

LOAD = 1.0

END DEFINE

In the above example a pressure magnitude of 1.0 is applied to all nodes of all 2-D elements

of type EX47.

Example 2. Constant Line Loads on 1-D Elements

,def ES_NAME = E210

DEFINE LOADS/LINE

LOAD = 1.0, 1.0, 1.0

END DEFINE

In the above example, a line load, with all three global components equal to 1.0, is applied

to all nodes of all 1-D elements of type E210.

Example 3. Constant Line Loads on Selected 2-D Elements

• def ESANAME = EX97

DEFINE LOADS/LINE/SYSTEM=NODAL

ELEMENT = 10, 100, 10

LINE = 2

LOAD = 1.0

END DEFINE

In the above example, a line load, of magnitude 1.0 and in the direction of the third nodal

(computational) basis vector, is applied to all nodes along edge 2 of EX97 (9-noded shell)

elements 10, 20, 30, 40, 50, 60, 70, 80, 90, 10.

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2- 17

ES Processor Commands USER INTERFACE

Example 4. Constant Pressure Loads on Selected 3-D Elements

• def ESANAME = SD20

DEFINE LOADS/PRESSURE

ELEMENT = 10, 1000, 10

SURFACE = 2

LOAD = 1.0

END DEFINE

In the above example, a pressure load, of magnitude 1.0 is applied to all nodes on surface

2 of SD20 (20-noded solid) elements 10, 20, 30, ..., 1000.

Example 5. Piecewise-Constant "Live" Pressure Loads on 2-D Elements

,def ESANAME = E410

DEFINE LOADS/PRESSURE/LIVE

GROUP = 1

LOAD-- 1.0

GROUP = 2

LOAD = 2.0

END DEFINE

In the above example, a live pressure load of magnitude 1.0 is applied to all elements in

GROUP 1 of element type E410 (4-noded shell), and twice that amount is applied to all

elements in GROUP 2 of element type E410.

2-18 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

2.2.1.3.15 Element Load Boundary/Node Ordering Conventions

1-D Elements:

Only line and body loads can be applied to 1-D elements. In either case, the node ordering

corresponds to that used for specification of element connectivity (see Figure 2.1a).

2-D Elements:

For surface and body loading of 2-D elements, the node ordering corresponds to that used

for specification of element connectivity (see Figure 2.1a). For line loading of 2-D elements,

the element lines (edges) are ordered as shown in Figure 2.1b, and the node order within

each line is the same as the element connectivity for 1-D elements (vertex nodes first as in

Figure 2.1a).

3-D Elements:

For body loading of 3-D elements, the node ordering corresponds to that used for spec-

ification of element connectivity (see Figure 2.1a}. For line loading of 3-D elements, the

element lines (edges) are ordered as shown in Figure 2.1b, and the node order within each

line is the same as the element connectivity for 1-D elements (Figure 2.1a). For surface

loading of 3-D elements, the element surfaces are ordered as shown in Figure 2.1b, and the

node Order within each surface is the same as the element connectivity for 2-D elements

(Figure 2.1a).

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2- 19

ES ProcessorCommands USER INTERFACE

2.2.2 The INITIALIZE Command

The INITIALIZE command must be used once to initialize computational data and to pre-

compute various element (and constitutive) quantities that remain constant throughout

the analysis. Included in the latter category are element-dependent data whose length are

given by the macrosymbol, ES_STOR, generated by the DEFINE ELEMENTS command.

All initialization data are presently stored in the database, within the <ESANAME>.EFIL

dataset for a specific element type (see Chapter 6). Note that the INITIALIZE command

is a prerequisite for using any of the FORM commands.

2.2.2.1 Syntax

[INITIALIZEJ

2.2.2.2 Input Macrosymbols

ES__NAME Element-type name (used to designate input/output datasets)

ES_PARS Array of element research parameters (optional)

ES_CORO Element corotational switch. (Default: <true>; irrelevant for linear

analysis)

ESANL_GEOM Element geometric nonlinearity switch. (Default: <false:>)

ESANL_LOAD Element load nonlinearity switch. (Default: <false>)

ESANL_MATL Element material nonlinearity switch. (Default: <false>)

ES_TGC_DS Name of computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

ES_PRP_DS Name of element section property dataset. (Default: PROP.BTAB.,)

2.2,2.3 Output Macrosymbols

None.

2-20 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

2.2.2.4 Input Datasets

DIR.<ESANAME>., Directory dataset for elements of type <ES_NAME>

DEF.<ES_NAME>., Definition dataset for elements of type <ESANAME>

<ES__NAME>.EFIL., Computational dataset for elements of type <ES_NAME>

<ES_PRP_DS>

<ES_TGC_DS>

2.2.2.5 Output Datasets

<ES_NAME>.EFIL.,

Section property dataset. (Default: PROPS.BTAB.2.n2,

where n2 is defined in processor ELD's EXPE command)

Computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

Computational dataset for elements of type <ESANAME>.

Will include initialized element storage array in Segment

6 of each element record (see Chapter 6).

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2-21

ES Processor Commands USER INTERFACE

2.2.3 FORM Commands

The FORM family of ES processor commands is used to form all of the essential ele-

ment arrays required during the computational phases of analysis. Included here are the

following special cases:

• FORM STIFFNESS

• FORM FORCE

• FORM MASS

• FORM STRAIN

• FORM STRESS

The FORM STIFFNESS command forms element stiffness matrices (material, geometric,

load and/or tangent), and saves them in the database in the so-called EFIL dataset, for

subsequent assembly. The FORM FORCE command forms element force vectors (inter-

nal, external, residual and/or dynamic), and assembles them directly into a preexisting

system force-vector dataset. The FORM MASS command forms element mass matrices

(consistent or lumped), and either stores them in the EF1L dataset, if they are consistent

(full) matrices, or assembles them directly into a system mass (_vector') dataset, if they

are lumped (diagonal). The FORM STRAIN (or STRESS) command computes element

strains (or stresses) -- continuum or resultant, depending on the element class -- and

deposits them in separate STRN (or STRS) datasets. The FORM STRAIN and FORM

STRESS commands are typically used for post-processing; they are not required during

the solution phase, as stresses and strains are automatically computed by the FORM

STIFFNESS and/or FORM FORCE commands, as needed.

2-22 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES ProcessorCommands

2.2.3.1 The FORM STIFFNESS Command

The FORM STIFFNESS command is used to form element stiffness matrices for all el-

ements associated with the current ES processor and element-type name (macrosymbol

ES_NAME).

2.2.3.1.1 Syntax

IFORM STIFFNESS [/Qualifier]J

2.2.3.1.2 Qualifiers

Valid qualifiers are given below with the default value of the qualifier underlined.

MATERIAL Indicates element material stiffness matrices are to be formed. The

material stiffness matrix is defined as that part of the tangent (total)

stiffness matrix which depends explicitly on material properties, ob-

tained by linearization of the material constitutive relation. For linear

analysis, it is equivalent to the tangent stiffness.

GEOMETRIC Indicates element geometric stiffness matrices are to be formed. The

geometric stiffness matrix is defined as that part of the tangent (total)

stiffness matrix which depends explicitly on stresses. It is obtained by

linearization of the strain-displacement relations, and is often called

the "initial stress" stiffness matrix. It is needed for both buckling

eigenvalue analysis and for nonlinear analysis.

LOAD Indicatcs element load stiffness matrices are to be formed. The load

stiffness matrix is defined as that part of the tangent (total) stiffness

matrix emanating from displacement-dependent loads (i.e., external

forces that explicitly depend on displacements). It is typically absent

except in cases involving loading by fluid pressure or other follower

forces, and in those cases may be needed for either eigenvalue or non-

linear analysis.

Revised 11/28/89 CSM Testbed Generic Structural-Element Processor Manual 2-23

ES ProcessorCommands USER INTERFACE

TANGENT Indicates element tangent stiffness matrices are to be formed. The

tangent (total) stiffness matrix is defined as the derivative of the el-

ement residual force vector with respect to the element displacement

vector. By definition, it includes all pertinent effects (material, geo-

metric, and load stiffnesses) and should be used in conjunction with

any form of nonlinear analysis.

2.2.3.1.3 Input Macrosymbols

ES_.NAME

ES_PARS

ES_CORO

ES_PROJ

ES_NL_GEOM

ESANL_LOAD

ES_NL_MATL

Element-type name (used to designate input/output datasets)

Array of element research parameters (optional)

Element corotational switch. (Default: <true>; irrelevant for linear

analysis)

Element rigid-body projection switch. (Default: <false>)

Element geometric nonlinearity switch. (Default: <false>)

Element load nonlinearity switch. If <true> and the FORM

STIFFNESS command qualifier is either /TANGENT, or /GEO-

METRIC, then the element load stitTness matrix will be added to

the tangent, or geometric, stiffness matrix, respectively. (If the com-

mand qualifier is/LOAD, the load stiffness matrix will be formed

independent of the value of <ES_NL_LOAD>.) In either case,

distributed five load values will be input from the element loads

dataset, LOADS.<ES_NAME>.<ESLOAD_SET> (i.e., records

with the prefix LIV), scaled by dES_LOAD_FACTOR>, and used

to form the element load stiffness matrices. Presently, only load

stiffness matrices corresponding to live pressure loads are imple-

mented, and only a small subset of element processors have this ca-

pability (see Chapter 5 of the Testbed User's Manuals, ref. 4, to see

which elements have load-stiffness matrices). (Default: <false>)

Element material nonlinearity switch. (Default: <false>)

2-24 CSM Testbed Generic Structural-Element Processor Manual Revised 11/28/89

USER INTERFACE ES Processor Commands

ES_DIS_DS Name of system displacement vector dataset.

(Default: STAT.DISP.I.1)

ES_ROT_DS Name of system rotation pseudo-vector dataset.

(Default: STAT.ROTA.I.1)

ES_TGC_DS Name of computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19).

ES_PRESTRESS Prestress flag. (Default: <false>)

ES_Si[l:ng] Constant prestress values for component i of element groups 1-ng,

where ng is the total number of element groups within element

type <ES_NAME>. (Note: The current prestress mechanism is

preliminary. A more general implementation scheme which employs

the database is in preparation.)

ES_PRP_DS Name of element section property dataset. (Default: PROP.BTAB.,)

ES_LOAD_SET Load set number. Indicates dataset in which external distributed

loads are to be found. The external loads dataset -- if it exists --

is called LOADS.<ESANAME>.<ES_LOAD_SET>, and is created

using the DEFINE LOADS command. (Default: 1)

ES_LOAD_FACTOR

Load factor to be applied to all external distributed loads beforce

converting to consistent nodal forces. (Default: 1.0)

2.2.3.1.4 Output Macrosymbols

None.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-25

ES ProcessorCommands USER INTERFACE

2.2.3.1.5 Input Datasets

DIR.<ES_NAME>., Directory dataset for elements of type <ES_NAME>

DEF.<ES_NAME>., Definition dataset for elements of type <ES_NAME>

<ES NAME>.EFIL., Computational dataset for elements of type <ESANAME>

<ES_PRP_DS> Section property data.set.

(Default: PROPS.BTAB.2.n2, where n2 is defined in pro-

cessor ELD's EXPE command)

<ES_DIS_DS> System displacement vector dataset.

(Default: STAT.DISP.I.1)

<ES_ROT__DS> System rotation pseudo-vector dataset.

(Default: STAT.ROTA.I.1)

<ES_TGC_DS> Computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

LOADS.<ES_NAME>.<ESLOAD_>

Element loads dataset created using the DEFINE LOADS

command. Relevant only for //LOAD stiffness, or for

/TANGENT and/GEOMETRIC stiffness if <ES_NL_LOAD>

is true.

2.2.3.1.6 Output Datasets

<ES_NAME>.EFIL., Computational dataset for elements of type <ESANAME>.

Will include updated element stiffness matrices and, in

nonlinear analysis, updated corotational geometric data.

2-26 CSM Testbed Generic Structural-Element Processor Manual Revised 12//14//89

USER INTERFACE ES ProcessorCommands

2.2.3.2 The FORM FORCE Command

The FORM FORCE command is used to form element force vectors (internal and/or

external) for all elements of a given type (as specified by macrosymbol ES_NAME) within

a given ES processor. Currently, element force vectors are immediately assembled into a

system force vector; i.e., there is no allocation for element force vectors in the database.

2.2.3.2.1 Syntax

[FORM FORCE [/Qualifier]]

2.2.3.2.2 Qualifiers

Valid qualifiers are given below with the default value of the qualifier underlined.

INTERNAL Indicates element internal force vectors are to be formed and assem-

bled. The internal force vector is defined as the set of element nodal

forces which depends explicitly on the element internal stress distribu-

tion (and or initial strains/temperatures). In the case of a conservative

system, this vector emanates from the first variation of the element

strain energy.

EXTERNAL Indicates element external force vectors are to be formed and assem-

bled. The external force vector is defined as the set of consistent

element nodal forces corresponding to the distributed loads specified

using the DEFINE LOADS command.

RESIDUAL Indicates element residual force vectors are to be formed and as-

sembled. The residual force vector is defined as the difference be-

tween the external force vector and the internal force vector (i.e.,

fres = fe_t _ fint).

DYNAMIC Indicates element dynamic (or inertial) force vectors are to be formed

and assembled. These forces are due to the product of the element

mass matrix and the element acceleration vector (in linear analysis)

and correspond to the inertial forces in d'Alembert's principle.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-27

ES ProcessorCommands USER INTERFACE

2.2.3.2.3 Input Macrosymbols

ES_NAME

ES_PARS

ES_CORO

ESPROJ

ES_NL_GEOM

ES.NL_LOAD

ES_NL_MATL

ESDIS_DS

ES_FRCDS

ES_ROTDS

ES_TGC_DS

Element-type name (used to designate input/output datasets)

Array of element research parameters (optional)

Element corotational switch. (Default: <true>; irrelevant for linear

analysis)

Element rigid-body projection switch. (Default: <:false>)

Element geometric nonlinearity switch. (Default: <false>)

Element load nonlinearity switch. If <true>, only live (displacement-

dependent) loads will be processed from the element loads dataset,

LOADS.<ES_NAME>.<ES_LOAD_SET>. This means that only

records in this dataset beginning with the prefix LIV will be in-

put (e.g., LIV_PRESLDS). Presently, only live pressure loads are

implemented (see DEFINE LOADS command). If <false>, only

_mn-live loads (i.e., records in the element load dataset that do not

have the prefix LIV) will be processed. (Default: <false>)

Element material nonlinearity switch. (Default: <false>)

Name of system displacement vector dataset.

(Default: STAT.DISP.I.1)

Name of system (assembled) force dataset.

(Default: INT.FORC.I.1)

Name of system rotation pseudo-vector dataset.

(Default: STAT.ROTA.I.1)

Name of computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

ES_PRESTRESS Prestress flag. (Default: <false>)

2-28 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES ProcessorCommands

ES_Si[l:ng] Constant prestressvalues for component i for element groups 1-

ng, where ng is the total number of element groups within element

type <ES_NAME>. (Note: The current prestress mechanism is

preliminary. A more general implementation scheme which employs

the database is in preparation.)

ES _LOAD _SET Load set number. Indicates dataset in which external distributed

loads are to be found. The external loads dataset -- if it exists --

is called LOADS.<ES_NAME>.<ES_LOAD.SET>, and is created

using the DEFINE LOADS command. (Default: 1)

ES_LOAD_FACTOR

Load factor to be applied to all external distributed loads beforce

converting to consistent nodal forces. (Default: 1.0)

2.2.3.2.4 Output Macrosymbols

None.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-29

ES ProcessorCommands USER INTERFACE

2.2.3.2.5 Input Datasets

DIR.<ESANAME>., Directory dataset for elements of type <ES_NAME>

DEF.<ES_NAME>.* Definition dataset for elements of type <ES_NAME>

<ES_NAME>.EFIL.* Computational dataset for elements of type <ESANAME>

<ES_PRP_DS> Section property dataset. (Default: PROPS.BTAB.2.n2,

where n2 is defined in processor ELD's EXPE command)

<ES_DIS_DS> System displacement vector dataset.

(Default: STAT.DISP.I.1)

<:ES ROT_DS> System rotation pseudo-vector data.set.

(Default: STAT.ROTA.I.1)

<ES_TGC_DS> Computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

LOADS. < ES-NAME>. < ES_L OAD_>

Element loads dataset created using the DEFINE LOADS

command. Not relevant for /INTERNAL loads.

2.2.3.2.6 Output Datasets

(ES NAME>.EFIL., Computational datasct for elements of type < ES_NAME >

Will include updated element corotational data if geomet-

rically nonlinear analysis.

<ES_FRC_DS> System force dataset: contains assembled element inter-

nal, external, residual, or dynamic forces, depending upon

the command qualifier used.

2-30 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES ProcessorCommands

2.2.3.3 The FORM MASS Command

The FORM MASS command is used to form element consistent mass matrices, or to form

and assemble element diagonal (lumped) mass matrices, for all elements associated with

the current ES processor and element-type as specified by macrosymbol ESANAME.

2.2.3.3.1 Syntax

[FORM MASS [/Qualifier]l

2.2.3.3.2 Qualifiers

Valid qualifiers are given below with the default value of the qualifier underlined.

CONSISTENT Indicates element consistent mass matrices are to be formed. These

mass matrices are output to the <ES_NAME>.EFIL dataset, and

may be assembled into a system mass matrix using processor K.

DIAGONAL Indicates element diagonal (i.e., lumped) mass matrices are to be

formed and assembled into a system diagonal mass "vector".

2.2.3.3.3 Input Macrosymbols

ES_NAME

ES_PARS

ES_CORO

ES_NL_GEOM

ES_MASS_DIAG First word of dataset name for diagonal mass matrix.

DEM)

ES_MASS_DS

ES_DIS_DS

Element-type name (used to designate input/output datasets)

Array of element research parameters (optional)

Element corotational switch. (Default: <true>; irrelevant for linear

analysis)

Element geometric nonlinearity switch. (Default: <false>)

(Default:

First two words of dataset name for diagonal mass matrix. (Default:

<ES_MASS_DIAG>.DIAG)

Name of system displacement vector dataset. (Default: STAT.DISP)

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-31

ES ProcessorCommands USER INTERFACE

ES_ROT_DS

ES_TGC_DS

ES_PRP_DS

Name of system rotation pseudo-vectordataset.

(Default: STAT.ROTA.I.1)

Name of computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

Nameof elementsectionproperty data.set.(Default: PROP.BTAB.,)

2.2.3.3.4 Output Macrosymbols

None.

2.2.3.3.5 Input Datasets

DIR.<ES_NAME>.,

DEF.<ES_NAME>.,

<ES_NAME>.EFIL.,

<ES_PRP_DS>

<ES_MASS_DS>

<ES_DIS_DS>

<ES ROT_DS>

Directory dataset for elements of type <ES_.NAME>

Definition dataset for elements of type <ES_NAME>

Computational dataset for elements of type <ESANAME>

Section property dataset. (Default: PROPS.BTAB.2.n2,

where n2 is defined in processor ELD's EXPE command)

System vector into which the element diagonal mass matri-

ces will be assembled if the/DIAG command qualifier was

used. This dataset is updated by the ES processor; i.e., it

is used as both input and output and must be initialized

by the user before the FORM MASS/DIAG command is

issued. (Default: <ES_MASS_DIAG>.DIAG)

System displacement vector dataset; relevant only for ge-

ometrically nonlinear analysis. (Default: STAT.DISP.I.1)

System rotation pseudo-vector dataset; relevant only for

geometrically nonlinear analysis. (Default: STAT.ROTA.I.1)

2-32 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES ProcessorCommands

<ES_TGC_DS> Computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

2.2.3.3.6 Output Datasets

<ESANAME>.EFIL., Computational dataset for elements of type < E S_NAME>.

Will include element consistent mass matrix if the/CONS

command qualifier was used; otherwise, this dataset is

used only as input.

<ES_MASS_DS> System vector into which the element diagonal mass ma-

trices will be assembled if the/DIAG command qualifier

was used; otherwise, this dataset is irrelevant. (Default:

<ES_MASS_DIAG>.DIAG)

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-33

ES ProcessorCommands USER INTERFACE

2.2.3.4 The FORM STRAIN Command

The FORM STRAIN command is used to compute strains for all elements of a given

element type as specified by macrosymbol ES_NAME within a given ES processor. It is

primarily a "post-processing" command; that is, strains do not have to be explicitly formed

for analysis purposes. They are automatically formed as needed during the processing of

other commands, such as FORM FORCE and FORM STIFFNESS.

Element strains may be computed at element integration points, at element centroids (by

averaging if the centroid is not an integration point, or at element nodes by extrapolation

from integration points. Moreover, they may be expressed in either the element stress

coordinate system, or along directions corresponding to a selected permutation of the

material coordinate axes. The selected strain quantities are output to the database in

dataset STRN. <ES_NAME>.*, using a different record group for each of the strain options

described above. Note that the element strains in this dataset correspond to resultant

quantities for beam, plate and shell elements.

2.2.3.4.1 Syntax

2.2.3.4.2

ES_NAME

ES_PARS

ES_CORO

ES_PROJ

ES_NL_GEOM

ES_NL_LOAD

[FORM STRAIN]

Input Macrosymbols

Element-type name (used to designate input/output datasets)

Array of element research parameters (optional)

Element corotational switch. (Default: <true>; irrelevant for linear

analysis)

Element rigid-body projection switch. (Default: <false>; irrelevant

for nonlinear analysis)

Element geometric nonlinearity switch. (Default: <false>)

Element load nonlinearity switch. (Default: <false>)

2-34 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES Processor Commands

ESANL_MATL Element material nonlinearity switch. (Default: <false>)

ES_DIS_DS Name of system displacement vector dataset.

(Default: STAT.DISP.I.1)

ES_ROT_DS Name of system rotation pseudo-vector dataset.

(Default: STAT.ROTA.I.1)

ES_TGC_DS Name of computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

ES__PRP_DS

ES_STRAIN_DS

ES_STR_DIR

Name of element section property dataset. (Default: PROP.BTAB.,)

Last part (subscript numbers) of element strain dataset name. The

entire data.set name is: STRN.<ESANAME>.<ES_STRAIN_DS>.

For linear problems, <ES_STRAIN_DS> corresponds to

<load_set>.<constrain_set> and for nonlinear problems it corre-

sponds to the load step number. (Default: STRN.<ES_NAME>.0.0)

Element stress/strain directions; element, material or global; same

as SREF parameter in processor ELD; see Section 2.4 Glossary.

(Default: 0 ==_ element stress basis)

ES_STR_LOC Element stress/strain evaluation points: CENTROIDS, INTEG_PTS

or NODES. (Default: CENTROIDS)

2.2.3.4.3 Output Macrosymbols

None.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-35

ES ProcessorCommands USER INTERFACE

2.2.3.4.4 Input Datasets

DIR.<ES_NAME>., Directory dataset for elements of type <ESANAME>

DEF.<ES_NAME>.* Definition dataset for elements of type <:ES_NAME>

<ES_NAME>.EFIL., Computational data.set for elements of type <ESANAME>

<ES_PRP_DS> Section property dataset. (Default: PROPS.BTAB.2.n2,

where n2 is defined in processor ELD's EXPE command)

<ES_DIS_DS> System displacement vector dataset. (Default:

STAT.DISP.I.1)

<ES_ROT_DS> System rotation pseudo-vector dataset. (Default:

STAT.ROTA.I.1)

<ES_TGC_DS> Computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

2.2.3.4.5 Output Datasets

STRN.<ESANAME>.<ES_STRAIN_DS>

Element strain dataset. One of the following record groups

is created, depending on input macrosymbols ES_STR_LOC

and ES_STR_DIR:

CENTROIDS_Sdir. l:nel

INTEG_PTS_Sdir.I:nel

NODES_Sdir. 1 :nel

where dir indicates the strain-output direction option, and

is either 0 (element strain coordinate system) or the index

of the material axis (1, 2, or 3) represents the x strain-

output direction. The y and z output axes are determined

by cyclic permutation over the remaining material axes.

2-36 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES ProcessorCommands

2.2.3.5 The FORM STRESS Command

The FORM STRESS command is used to compute stresses for all elements of a given

element type (specified by macrosymbol <ESANAME>) within a given ES processor. It is

primarily a "post-processing" command; that is, stresses do not have to be explicitly formed

for analysis purposes. They are automatically formed as needed during the processing of

other commands, such as FORM FORCE and FORM STIFFNESS.

Element stresses can be computed at element integration points, element centroids by

averaging if the centroid is not an integration point, or element nodes by extrapolation

from integration points. Moreover, they may be expressed in either the element stress

coordinate system, or along directions corresponding to a selected permutation of the

material coordinate axes. The selected stress quantities are output to the database in

dataset STRS.<ES_NAME>.*, using a different record group for each of the stress options

described above. Note that the element stresses in this dataset correspond to resultant

quantities for beam, plate, and shell elements.

2.2.3.5.1 Syntax

2.2.3.5.2

[FORM

Input Macrosymbols

STRESS [

ES_NAME

ES_PARS

ES_CORO

ES_PROJ

ES_NL_GEOM

ESANL_LOAD

Element-type name (used to designate input/output datasets)

Array of element research parameters (optional)

Element corotational switch. (Default: <true>; irrelevant for linear

analysis)

Element rigid-body projection switch. (Default: <false>; irrelevant

for nonlinear analysis)

Element geometric nonlinearity switch. (Default: <false>)

Element load nonlinearity switch. (Default: <false>)

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-37

ES ProcessorCommands USER INTERFACE

ESANL_MATL Element material nonlinearity switch. (Default: <false>)

ES_DIS_DS

ES_ROT_DS

Name of system displacementvector dataset.

(Default: STAT.DISP.I.1)

Name of system rotation pseudo-vectordataset.

(Default: STAT.ROTA.I.1)

ES_TGC_DS

ES_PRP_DS

ES_STRESS_DS

Name of computational-to-global nodal transformation dataset.

(Default: QJJT.BTAB.2.19)

Nameof elementsectionproperty dataset. (Default: PROP.BTAB.,)

Last part (subscript numbers)of elementstressdatasetname. The

entire dataset name is: STRS.<ESANAME>.<ES_STRESS_DS>.

For linear problems, <ES_STRESS_DS>correspondsto

<load_set>.<constrain_set> and for nonlinear problems it corre-

spondsto the loadstep number. (Default: STRS.<ES_NAME>.0.0)

ES_STR_DIR Element stress/strain directions; element or material; same as

SREF parameter in processorELD; seeSection2.4 Glossary.

(Default: 0 =_ element stress basis)

ES_STR_LOC Element stress/strain evaluation points: CENTROIDS, INTEG_PTS

or NODES. (Default: CENTROIDS)

2.2.3.5.3 Output Macrosymbols

None.

2-38 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES ProcessorCommands

2.2.3.5.4 Input Datasets

DIR.<ES_NAME>.,

DEF.<ESANAME>.,

<ES_NAME>.EFIL.,

<ES_PRP_DS>

<ES_DIS_DS>

<ES_ROT_DS>

<ES_TGC_DS>

2.2.3.5.5 Output Datasets

Directory dataset for elements of type <ES_NAME>

Definition dataset for elements of type <ESANAME>

Computational dataset for elements of type <ES_.NAME>

Section property dataset. (Default: PROPS.BTAB.2.n2,

where n2 is defined in rocessor ELD's EXPE command)

System displacement vector dataset.

(Default: STAT.DISP.I.1)

System rotation pseudo-vector dataset.

(Default: STAT.ROTA.I.1)

Computational-to-global nodal transformation data.set

(Default: QJJT.BTAB.2.19)

STRS.<ES_NAME>.<ES_STRESS_DS>

Element stress dataset. One of the following record groups

is created, depending on input macrosymbols ES_STR_LOC

and ES_STR_DIR:

CENTRO ID S_Sdir. 1 :net

INTEG_PTS_Sdir.I:nel

NODES_Sdir.l:nel

where dir indicates the stress-output direction option, and

is either 0 (element stress coordinate system) or the index

of the material axis (1, 2, or 3) represents the x stress-

output direction. The y and z output axes are determined

by cyclic permutation over the remaining material axes.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-39

ES ProcessorCommands USER INTERFACE

2.2.4 POST Commands

The POST family of ES processor commands is used for various element post-processing

functions. Included here are the following special cases:

• POST DISPLACEMENT

• POST STRAIN

• POST STRESS

The POST DISPLACEMENT command may be used to interpolate computed nodal dis-

placements to selected interior points, such as element integration points or element geo-

metric nodes, which are used by elements that employ a higher-order geometric description

than that reflected by their active nodes (i.e., super-parametric elements). This latter op-

tion fills in the empty slots in the system displacement vector corresponding to the geomet-

ric nodes, so that the displacement configuration can then be graphically post-processed.

The POST STRAIN and POST STRESS commands enable the user to "move" existing

element strain or stress data from one set of locations to another within an element, e.g.,

from integration points to nodes. They also enable the user to transform existing strain

or stress data from one coordinate basis to another; for example, from element local to

global cartesian axes. Thus, these two commands provide an expedient alternative to

repeated use of the FORM STRAIN and FORM STRESS commands, allowing the user to

interpolate, extrapolate or transform stress/strain data without having to recompute all

data.

CURRENTLY NO T IMPLEMENTED

2-40 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES Processor Commands

Table 2.2 CORRESPONDENCE BETWEEN ANALYSIS TYPE AND

ES PROCESSOR COMMANDS

Analysis Type

Linear Statics

Linear Dynamics

Linear Buckling

Linear Vibration

Nonlinear Statics

Nonlinear Dynamics

Processor Commands

FORM STIFFNESS/MATERIAL

FORM FORCE/EXTERNAL

FORM

FORM

FORM

S TIFFNES S/MATERIAL

MASS/CONSISTENT

FORCE/EXTERNAL

FORM

FORM

FORM

STIFFNESS/MATERIAL

STIFFNESS�GEOMETRIC

FORCE/EXTERNAL

FORM

FORM

FORM

FORM

STIFFNESS/MATERIAL

MASS/{CONS IDIAG)

STIFFNESS/GEOMETRIC

FORCE/EXTERNAL

FORM

FORM

FORM

FORM

STIFFNESS/TANGENT

FORCE/INTERNAL

FORCE/EXTERNAL

FORCE/RESIDUAL

FORM

FORM

FORM

FORM

FORM

STIFFNESS / TAN GENT

MASS/{CONS [DIAG}

FORCE/INTERNAL

FORCE/EXTERNAL

FORCE/RESIDUAL

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-41

ES Processor Commands USER INTERFACE

Table 2.2

All Pre-Processing

CORRESPONDENCE BETWEEN ANALYSIS TYPE AND

ES PROCESSOR COMMANDS, concluded.
i

DEFINE ELEMENTS

DEFINE FREEDOMS

INITIALIZE

All Post-Processing FORM { STRAIN I STRESS)

POST { DISP I STRA I STRE }

2-42 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE Procedure Interface to ES Processors

2.3 Procedure Interface to ES Processors

In most cases, it is more convenient to use a command-language procedure to invoke

ES processors, rather than invoking them directly (i.e., with the [xqt or *run direc-

tives). This is especially true in problems that involve more than one ES processor

(or element type), in which case a procedure can perform the necessary looping auto-

matically. For such problems, use of a procedure interface can reduce the chance of

introducing input errors, and can greatly simplify the task of writing generic analysis

procedures by simplifying the references to element (ES) processors. A generic proce-

dure has been developed to meet this need. It is called ES, and it may be viewed as

a high-level interface for performing element functions with a general set of ES pro-

cessors. Procedure ES can be invoked with the calling sequence given in Table 2.3-

1 where each of the arguments in the calling sequence, except for FUNCTION and

NUM_CON_DS, correspond to ES processor macrosymbols of the same name which were

introduced in Section 2.2 (ES processor commands), and are defined in Section 2.4 (Glos-

sary of ES Processor Macrosymbols).

The FUNCTION argument defines the processor function and may be set to any valid ES

processor command. For example,

FUNCTION = 'FORM STIFFNESS/MATERIAL'

would perform element stiffness formation for all element (ES) processors, and element

types, currently defined in the model. The user should consult the appropriate subsection

in Section 2.2, to determine which macrosymbols (i.e., procedure arguments) are relevant

for a particular FUNCTION (i.e., command) and which datasets are input/output as a

result of the FUNCTION.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-43

ProcedureInterface to ES Processors USER INTERFACE

Table 2.3-1 Procedure ES Call|ng Sequence

Call Argument Name Default Value Comment

*call ES (FUNCTION = none ; --

ES_PROC -- none ;

ES_NAME -- none ; --

ES_PARS = 0.0 ; --

ES_CORO = 1 ; --

ES_FIKX -- none ; --

ES_NL_GEOM -- 0 ; --

ES_NLAVIATL = 0 ; --

ES_NL_LOAD = 0 ; --

ES_DIS_DS = STAT.DISP.I.1 ; --

ES_DOF_DS = ES.DOFS ;

ES_ECC_DS = WALL.PROP ;

ES_FRC_S -- INT.FORC.I.1 ;

ES_ROT_DS = STAT.ROTA.I.1 ;

ES_SUM_DS = ES.SUMMARY ; --

ES_MASS_DIAG = DEM ; --

ES_STRAIN_DS = ' ' ;--

ES_STRESS_DS = ' ' ;--

ES_STR_LOC = 'CENTROIDS' ; --

ES_STR_DIR = 0 ; --

NUM_CON_DS = 1 ; --

ES_LOAD_SET -- 1 ; --

ES_LOAD_FACTOR = 1.0 ; ---

ES _COUNT 0 ; ---

LDI = 1 ; --

Command

Processor name

Element-type name

Research parameters

Corotational option

Geom. nonlinearity

Matl. nonlinearity

Load nonlinearity

Displacement dataset

Active-freedom dataset

Section. Eccentricity

Force-vector dataset

Rotation-vector dataset

ES summary dataset

Diagonal Mass Matrix

Elt. strain dataset index

Elt. stress dataset index

Stress/strain locations

Stress/strain directions

No. of constraint datasets

Load set number

Load factor

Element processor count

Library number

2-44 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE Procedure Interface to ES Processors

ES procedure arguments ES_PROC(processorname), ES_NAME (element-type name),

and ES_PARS(researchparameters), are required only for:

FUNCTION = 'DEFINE ELEMENTS'

in which case, only one element-processor and element-type at a time are processed by

each call to procedure ES. Thus, the DEFINE ELEMENTS calls must be made one at a

time, until all pertinent element processors/types have been defined. Thereafter, for all

other kinds of FUNCTION calls (e. g., FUNCTION = 'FORM STIFFNESS'), procedure ES

will process that FUNCTION (i.e., command) for all element processors/types previously

registered using the FUNCTION = 'DEFINE ELEMENTS' calls.

ES procedure argument NUM_CON_DS is pertinent only for:

FUNCTION = 'DEFINE FREEDOMS'

in which case, the argument indicates how many constraint (CON) datasets should be

processed for automatic degree of freedom suppression, which removes irrelevant freedoms

from the model, based on element type participation. The ES procedure assumes that

consecutive CON datasets exist from CON..1 through CON..[NUM_CON_DS].

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-45

Glossary of ES Processor Macrosymbols USER INTERFACE

2.4 Glossary of ES Processor Macrosymbols

Formal definitions for each of the macrosymbols that may be used in conjunction with ES

processors are given in Table 2.4-1. These definitions are given for both input macrosym-

bols, with which the user may set or reset various parameters associated with particular

commands, and output macrosymbols, which are defined automatically as a result of the

DEFINE ELEMENTS command (see Section 2.2).

The definitions given here also apply to the procedure arguments appearing in the generic

ES procedure interface described in Section 2.3. These arguments intentionally have the

same names as the ES processor macrosymbols.

NOTE: Macrosymbols that are output by ES processors, or otherwise defined

using the ES procedure, are underlined in the following glossary. These param-

eters must not be set by the user; they are made available to the user in order

to facilitate procedure writing. For example, macrosymbol ES_EXPE_CMD

is defined by procedure ES in response to a call with FUNCTION='DEFINE

ELEMENTS'. This macrosymbol may then be expanded directly as the EXPE

command for processor ELD. Most of these output parameters are also avail-

able to the user in the dataset ES.SUMMARY, where they are stored as nom-

inal records of the same name.

2-46 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE Glossaryof ES ProcessorMacrosymbols

Table 2.4-1

Macrosym b oi

ES_C

Type

I

ES PROCESSOR MACROSYMBOL GLOSSARY

ii I

Definition
I I

Continuity of interelement "displacement" field, e.g.,

0 _ C o (displacement continuity only)

1 =_ C 1 (displacement and slope continuity)

ES_CLAS A Element class. Currently valid classes:

BEAM, SHELL, SOLID, WILD

(See Section 3.4 for examples.)

ES_CNS I Constitutive interface option (see Chapter 5).

0 =_elements use the standard constitutive interface for

stress and tangent-modulus calculations;

1 =_elements compute their own stresses, but use standard

constitutive interface for tangent-modulus calculations;

:>2 =c-elements compute their own stresses and tangent-

moduli; standard constitutive interface is not used.

ES_CORO I Corotation switch; employed by ES processor for auto-

matic treatment of geometric nonlinearity due to large

rotations. Relevant only if problem is geometrically non-

linear. (See Chapter 4 for an explanation of these op-

tions.)

0 =_ Off: corotat]onal operations will be skipped;

1 ::_ Low-Order Option: basic corotational transforma-

tions will be employed to enable large rotations;

2 =_ High-Order Option: a more accurate (and expensive)

treatment of large rotations and consistent linearization

than option 1 will be employed.

ES_COUNT I Element processor count. Relevant only for DEFINE EL-
EMENTS command.

0 =_ First element processor to be defined; create

ES.SUMMARY dataset.

> 0 =_ Not first element processor to be defined; use ex-

isting ES.SUMMARY dataset and Increment element pro-

cessor number by one.

ES_DIM I Number of intrinsic element spatial dimensions, e.g.,

1 if ES_CLAS = BEAM

2 if ES_CLAS = SHELL

2 or 3 if ES_CLAS = SOLID

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-47

Glossaryof ES ProcessorMacrosymbols USER INTERFACE

Table 2.4-1 ES PROCESSORMACROSYMBOL GLOSSARY (continued)

Macrosymbol Type
ii ii

ES_DIS_DS h

Definition

Name of system displacement-vector dataset (SYSVEC

format). Relevant for most FORM commands and some

POST commands. (Default: STAT.DISP.I.1)

ES_DOF ._DS A Name of element freedom-table dataset (SYSVEC for-

mat). Relevant only for DEFINE FREEDOMS com-

mand. When using procedure ES, this dataset will au-

tomatically be created, initialized, and updated cumu-

latively with contributions from all pertinent ES pro-

cessors. (Default: ES.DOFS)

ES__ECC_DS h First two words of dataset name that contains section

property data including reference surface eccentricities.

(Default: WALL.PROP).

ES_._XPE_CMD A Complete EXPE command line appropriate for defin-

ing elements with processor ELD. This macrosymbol is

constructed only in response to a call to procedure ES

with FUNCTION='DEFINE ELEMENTS'.

ES_FRC._DS A Name of system force-vector dataset (SYSVEC format),

where element distributed forces (internal and/or ex-

ternal) are to be assembled. Relevant only for FORM

FORCE command, in which case this vector must be

created and initialized before issuing the command (or

calling procedure ES). Contributions from all pertinent

ES processors will be assembled into this vector if proce-

dure ES is called with argument FUNCTION = 'FORM

FORCE...'. (Default: INT.FORC.I.1)

ES_LOAD_FACTOR F Load factor. (Default: 1.0)

ES__LOAD_SET I Load set number. (Default: 1)

2-48 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

USER INTERFACE Glossaryof ES ProcessorMacrosymbols

Table 2.4-1

Macrosymbol

ES__MASS_DIAG

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Type Definition

A First word of the dataset name for a diagonal mass matrix.

(Default: DEM).

ES_MASS_DS First two words of the dataset name for a diagonal mass

matrix.

(Default: <ES_MASS_DIAG >.DIAG).

ESANAME Name of element type, within current ES processor, to

be processed by subsequent commands. (For example

EX97 would be a valid element-type name within pro-

cessor ES1.)

ES_NDOF Number of freedoms per element node.

Currently valid options (2, 3 or 6), e.g.,

2 for 2-D solid elements (u, v)

3 for 3-D solid elements (u, v, w)

6 for beam, plate or shell elements (u, v, w, 0z, 0_, Oz)

ESANEE Number of element equations;

= ES_NEN x ES_NDOF.

ES_NEN I Number of element nodes.

ES_NIP Number of element integration points; i.e., points at which

stresses (continuum or resultants, depending on element

type) are stored.

ES_NL_GEOM Geometric nonlinearity switch;

0 =_ Off: problem is geometrically linear (small displace-

ments/rotations);

1 :=_ Low-Order Option: problem is geometrically non-

linear, but elements should use linear strain-displacement

relations. Meaningful only if ES_CORO > 0, so that large

rotations can be handled automatically by the corota-

tional algorithm;

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-49

Glossaryof ES Processor Macrosymbols USER INTERFACE

Table 2.4-1 ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Macrosymbol Type Definition
I

2 _ High-0rder Option: problem is geometrically non-

linear and elements should use nonlinear element strain-

displacement relations. May be used in conjunction with

ES_CORO > 0 to obtain higher-order accuracy for beam

and shell elements that employ moderate-rotation strain-

displacement relations;

3 =:_ same as 2 plus finite strains are expected.

ES__NL_LOAD I Load nonlinearity switch;

1 =_ process displacement-dependent element loads only;

0 ==_ process displacement-independent element loads

only.

F_,S_N L_.MATL I Material nonlinearity switch;

1 _ element is materially nonlinear;

0 =_ element materially linear.

ES_NORO I Element normal-rotation parameter. Relevant only for au-

tomatic freedom suppression of plate/shell elements. In-

dicates minimum angle (in degrees) between shell element

normal vector and any computational basis vector -- at

each element node -- below which the corresponding rota-

tional freedom should be suppressed if no other elements

are attached;

--0 =_Element has normal-rotation ("drilling") stiffness;

normal rotational freedoms will automatically be sup-

pressed.

>0 =_Element does not have normal-rotation ("drilling")

stiffness; it is assumed that rotational stiffness exists

about any computational axis that makes an angle of at

least <ES_NORO> degrees with the element normal vec-
tor at an element node.

2-50 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE Glossary of ES Processor Macrosymbols

Table 2.4-1

Macrosymbol

ESANPAR

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Type Definition

I Number of element research parameters in array ES_PARS.

ESANSTR I Number of stress components per integration point. Cur-

rently valid options compatible with standard constitutive
interface:

8 for ES_CLAS = SHELL and ES_C -- 0;

6 for ES_CLAS = SOLID and ES_DIM = 3;

6 for ES_CLAS = SHELL and ES_C -- 1;

6 for ES_CLAS = BEAM and ES_C = 0;

4 for ES_CLAS = BEAM and ES_C = 1;

3 for ES_CLAS -- SOLID and ES_DIM -- 2.

ES_OPT I Element-type option number. Meaningful only to the ele-

ment developer; it is the developer's numerical equivalent
of ES_NAME.

ES_PARS D Array of element research parameters. Meaning depends

on specific element type. (Consult appropriate section in

CSM Testbed User's Manual, ref. 4).

ES_PROC A Name of element (ES) processor to be executed (e.g., ES1,

ES2, ...); currently relevant only as an argument for pro-

cedure ES, and only when argument FUNCTION -- 'DE-

FINE ELEMENTS'.

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 2-51

Glossaryof ES ProcessorMacrosymbols USER INTERFACE

Table 2.4-1

Macrosymbol

ES__PROJ

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

I

Type Definition

Rigid-body projection option. Used to automatically re-

move (most of) the spurious energy generated by some

elements during infinitesimal rigid-body motion. This is

performed by operating on the element stiffness and force

arrays with a projection matrix (or projector). The pro-

jector, and its derivative, can have a beneficial effect on

element accuracy in both linear and geometrically nonlin-

ear regimes.

0 sOft: projection will be omitted;

1 =_Low-order Option: basic projection will be included;

2 _High-order Option: basic projection plus a differential

correction to the geometric stiffness will be included.

ES_ROT_DS A Name of system rotation pseudo-vector dataset (SYSVEC

format). Relevant for most FORM commands dur-

ing geometrically nonlinesr analysis, but only if ele-

ments with rotational freedoms are involved. (Default:

STAT.ROTA.I.1)

ES_SHAP A Shape of element surface used to define coordinate triad;

currently recognized options: LINE, TRIA or QUAD.

ES_STOR

ES_STR_DIR

I Number of "private" variables to be stored/retrieved for

the element developer in dataset EFIL.<ESANAME>.

I Element stress/strain direction option. Indicates in which

coordinate system element stresses or strains in datasets

defined by <ES_STRESS_DS> or <ES_STRAIN_DS>

(respectively) will be computed. Relevant only for com-
mand = 'FORM STRAIN' or 'FORM STRESS'. Valid

options:

0 =-_ element stress coordinate system

1 =_ material axes {x,_,ym,Zm} --- {xg, yg,zg}

2 :=_ material axes {ym,z,_,xm} = {yg,zg,xg}

3 ==_ material axes {Zm,Xm,ym} = {Zg, Xg, yg}

(Note: For isotropic materials, the first material axis is

replaced by the corresponding global axis; see the SREF

command under processor ELD in the Testbed User's

Manual (ref. 4) for details. Default: 0)

--_ ,, rl'r

2-52 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE Glossary of ES Processor Macrosymbols

Table 2.4-1

Macrosymbol

ES_STR_LOC

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Type Definition

A Element stress/strain evaluation point option. Indi-

cates where stresses or strains in datasets defined by

<ES_STRESS_DS> or <ES_STRAIN_DS> (respectively)

will be computed. Relevant only for command = 'FORM

STRAIN' or 'FORM STRESS'. Currently valid options:

CENTROIDS ==>element centroids; creates record group:

CENTROIDS_<ES_STR_DIR>. l:nel

NODES =¢, element nodes; creates record group:

NODES_<ES_STR_DIR>.I:nel

INTEG_POINTS -_ element integration points; creates:
INTEG_PTS_<ES_STR_DIR>.I:nel

where "nel" is the number of elements in the dataset,

and where macrosymbol ES_STRA)IR designates the di-

rections of the stress/strain components, and is defined

elsewhere in this Glossary.

(Default: 'CENTROIDS')

ES_STRAIN_DS A Third part of element strain dataset name. The first

name is always STRN; the second name is always the

element-type name, i.e., <ES__NAME>; and the third

name, <ES_STRAIN_DS> must be a string of integers

separated by periods.

For example, if <ES_STRAIN_DS> = <step>.<iter>

where <step> -- 20 and <iter> -_ 3, and if the element-

type name were EX97, then the full dataset name would

be: STRN.EX97.20.3

Relevant only for command = 'FORM STRAIN'.

(No default; absence means that strains will be stored

(embedded) within dataset EFIL.<ESANAME> only --

currently not implemented.)

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-53

Glossaryof ES ProcessorMacrosymbols USER INTERFACE

Table 2.4-1

Macrosymbol

ES_S TRESS__DS

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Type Definition

A Third part of element stress dataset name. The first

name is always STRS; the second name is always the

element-type name, i.e., <ES_NAME>; and the third

name, <ES_STRESS_DS> must be a string of integers

separated by periods. For example, if <ES_STRESS_DS>

= <step>.<iter>,

where <step> = 20 and <iter> = 3, and if the element-

type name were EX97, then the full dataset name would
be: STRS.EX97.20.3

Relevant only for command = 'FORM STRESS'.

(No default; absence means that stresses will be stored

(embedded) within dataset EFIL.<ES_NAME> only.)

ES_SUM_DS A Name of ES summary dataset, which contains nominal

records corresponding to most of the macrosymbol pa-

rameters appearing in this Glossary -- for each ES pro-

cessor/element defined in the model. Relevant for all ES

commands. (Default: ES.SUMMARY)

ES_TWIS

ES_TGC_DS

I Sign of twisting curvature for shell elements.

+1 =>twist based on continuum definition of shear

strain;

-1 =>twist based on negative of continuum definition.

(Note: The default convention for constitutive matrices

output from processor LAU corresponds to the -1 op-

tion. Hence processor ES compensates for this reversal

if ES_TWIS - +1.)

I Name of nodal transformation dataset (QJJT.BTAB.,.,)

ES_XYZ_DS I Name of nodal coordinate dataset (JLOC.BTAB.*.*)

LDI I Logical device index or library number for archiving and

retrieving data. (Default: 1)

2-54 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES Processor/ProcedureUsageExamples

2.5 ES Processor/Procedure Usage Examples

The following examples illustrate how element processors based on the generic structural-

element (ES) processor template can be used to perform structural analysis with the CSM

Testbed. For simplicity, separate examples of pre-processing (i. e., model generation), linear

analysis, nonlinear analysis, and post-processing (i.e., stress recovery) are considered. The

differences between employing individual ES processors directly versus accessing them

indirectly using the generic ES procedure interface will be stressed, with an intended bias

towards the high-level procedure interface.

2.5.1 Pre-Processing Examples

For clarity, a very simple problem will be considered and the use of the generic structural-

element processor illustrated by showing all of the steps involved in generating a finite

element model for this problem. Both the physical problem and the discrete model to

be used is shown in Figure 2.2. The problem is a rectangular plate (10 in. by 5 in.),

cantilevered on one edge, and loaded oil tile other edge by a concentrated lateral force.

For the model, a 3 by 3 nodal grid is used, connected by a 2 by 2 mesh of 4-node plate/shell

elements. The Testbcd procedure for this model is given in Figure 2.3. The interpretation

of each line of the procedure will now be described.

The *PROCEDURE statement in Figure 2.3 shows the arguments (parameters) for the

procedure and sets default values for each of them (x-length, y-length, thickness, elastic

modulus, Poisson's ratio, and precision). Thus the dimensions and properties of the plate

model are parametrized, but the finite element discretization is fixed._ The next two lines

([xqt TAB and START 9) run the TAB processor and reserve space for a total of 9 nodes.

Then, the JLOC command and subscquent data define the global coordinates for these 9

nodes in a rectangular, 3 by 3 grid.

t In practice, it is often the other way around: The model properties and dimensions are fixed,

while the discretization is varied. We have fixed the discretization here merely to simplify
the example.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-55

ES Processor/ProcedureUsageExamples USER INTERFACE

for shell elements(seethe CSM Testbed User's Manual, ref. 4, for details on processor

LAU).

The key portion of the examplebeginswith the .call to procedure ES with FUNCTION

= 'DEFINE ELEMENTS', in which element type EX42 of processor ES1 is registered

for participation in the model. This call also causesa number of element type-oriented

macrosymbols,all beginning with ES_to be defined -- for example,ES_NEN (number of

element nodes), ES_NIP (number of element integration points), etc. Thesemacrosym-

bol valuesare automatically built into the character string macrosymbolES_EXPE_CMD

(by procedure ES), which servesas the EXPE command for processorELD. Note that

in the PLATE_MODEL example, <ES_EXPE_CMD> appears immediately after [XQT

ELD (executeprocessorELD). This sequencecausesthe ES_.EXPE_CMDmacrosymbolto

expand internally into the following commandline:

IEXPE

<ES_NAME> 4 <ES_OPT> <ES_NEN> <ES_NDOF>

<ES_NST> 1 10<ES__DIM> <CSM..PRECISION>

which would eventually decodeinto:

I EXPE EX42 4 2 4 6 0 1 102 2]

Theexecutionof processorELD with the above EXPE command is necessary for generation

of various element datasets such as DEF.EX42.* and DIR.EX42.. (see the CSM Testbed

User's and Dataset Manuals, refs. 4 and 5, respectively). Note that the ES_ macrosymbols

referenced in this example are all described in the Macrosymbol Glossary (Section 2.4).

Next, the NSECT command is used as a section property pointer. NSECT=I means that

the integrated constitutive matrix stored in the first column of dataset PROP.BTAB.2.101

will be employed by all elements whose nodal connectivity is defined on the following lines.

The element nodal connectivity is then defined for four 4-node elements. Note that the

numbering convention is counter-clockwise within each elernent. (see Figure 2.1)

Boundary conditions and loads are then defined using the CON command of processor

TAB, and the SYSVEC command of processor AUS, respectively (see Figure 2.3). The

CON command suppresses all freedoms along x = 0 (the built-in edge), and the SYSVEC

command distributes transverse nodal forces along the other edge, which add up to a unit

2-56 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

USER INTERFACE ES Processor/ProcedureUsageExamples

CON command suppressesall freedomsalong x = 0 (the built-in edge), and the SYSVEC

command distributes transverse nodal forces along the other edge, which add up to a unit

load. Note that both boundary conditions and loads have been (h'fined with respect to

no(h's rather than elem('nts.

Finally, the ES pr()c(',hm: is called again to l)crform automatic d('gree of freedom sup-

pression, using the DEFINE FREEDOMS command. In this case, the effect will be for

processor ES1 to suppress drilling rotational freedoms (i. e., the sixth degree of freedom) at

all nodes, since element type EX42 has no stiffness associated with these freedoms. If the

plate had blade stiffeners which were also modeled with EX42 elements, all six freedoms

at nodes along the plate/stiffener intersection lines would be retained, since at least one

of the intersecting elements at those nodes would possess the necessary stiffness.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-57

ES Processor/Procedure Usage Examples USER INTERFACE

2.5.2 Linear Analysis Examples

A sample linear static analysis procedure, which employs the generic ES procedure (Sec-

tion 2.3) to invoke the appropriate ES processors is shown in Figure 2.4. For purposes of

illustration, the problem has been kept simple (notice that there are no procedure argu-

ments), but keep in mind that many analysis procedures may involve more sophisticated

features.

The procedure in Figure 2.4 can be read as follows. The [xqt E directive causes processor

E to construct ..EFIL., datasets for all participating element types. Note that, while space

for these datasets is reserved in the database, meaningful data has not yet been deposited

there.

The first call to procedure ES then causes initialization data to be stored in the EFIL

datasets by all participating ES processors -- as prescribed by previous calls to procedure

ES with function equal to 'DEFINE ELEMENTS'. For example, if the pre-processing

example given in Figure 2.3 had preceded the call to procedure L_STATIC, then only

processor ES1, element type EX42, would be invoked. More information on the effect of

the 'INITIALIZE' command may be found in Section 2.2.2.

Next, the element material (linear) stiffness matrices are formed for all elements in the

model by the second call to procedure ES. That is, *call ES (function= 'FORM STIFF-

NESS/MATL'). The element matrices are deposited in Segment 5 of the EFIL dataset (see

Chapter 6). Since no other arguments are employed in this call to ES, the default values

are implied. Thus, for example, the problem is assumed to be linear (ES_NL_GEOM =

0), and there is no need for a displacement dataset (whose name is given by argument

ES_DIS_DS) to be input by the ES processors.

Next, assembly of the element stiffness matrices into a system matrix is performed by

processor K. The element matrices have already been transformed to the computational

or nodal degree of freedom bases, so that the function of processor K is merely to add

appropriate submatrices.

Finally, processors INV and SSOL are executed to factor and solve the assembled system

of equations, respectively. The displacement solution will be stored, as indicated by the

RESET command for processor SSOL, in dataset STAT.DISP.I.1.

2-58 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

USER INTERFACE ES Processor/Procedure Usage Examples

2.5.3]Nonlinear Analysis Examples

A brief example of how to employ ES processors in nonlinear analysis procedures by

included selected excerpts from an actual nonlinear static analysis procedure that will

hopefully convey the essential aspects. Typically, engineering-oriented users will invoke

an existing nonlinear analysis procedure rather than writing their own, so this example is

intended more for researchers involved in algorithm development.

The "skeleton" of a nonlinear static analysis procedure is shown in Figure 2.5, with only

those aspects involving ES processors shown. There is very little difference in the use

of the ES procedure to invoke ES processors from what was employed in the//near static

analysis procedure (compare with Figure 2.4), except that some additional arguments must

be explicitly defined.

First, the usual call to 'INITIALIZE' all ES processors is present. This call enables the

participating element processors to generate, and store, any data that will be used repeat-

edly during the analysis -- rather than having to recompute it at each iteration of every

altalysis load step.

Next, the nested load-step and iteration loops, typical of most incrcmental/iterative non-

linear solution algoritlmls for structural analysis are encountered. Within these loops, it

is necessary to compute residual force vectors (right-hand sides) at each iteration, and

tangent stiffness matrices at selected load steps/iterations.

The assembled residual force vector is computed by (i) zeroing a system internal force

vector (using processor VEC), (ii) calling ES to form/assemble all element contributions

to the internal force vector, and (iii) subtracting the assembled internal force vector from a

load-step scaled external force vector, which is assumed to have been generated elsewhere.

Notice that in the FORM FORCE/INT call to ES, arguments ES.NL_GEOM, ES_CORO,

ES DIS DS, ES_ROT.DS and ES_FRC_DS are each explicitly defined. The reader is urged

to look up these arguments up in the Macrosyrnbol Glossary, Section 2.4. These arguments

let the ES processors know that the problem is geometrically nonlinear (both globally and

at the element level). The corotational algorithm is to be employed to make the rotational

motion "appear" small at the element level, but allow it to be arbitrarily large globally

(see Chapter 4). The current displacement data.set is called TOT.DISP.<$step>, where

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-59

ES Processor/Procedure Usage Examples USER INTERFACE

<$step> is the load-step number; the current rotation (pseudo-vector) data.set is called

TOT.ROTA.<$step>; and the current system internal force vector into which the element

contributions are to be assembled is called INT.FORC.<$step>.

Finally, the formation/factorization of the tangent stiffness matrix is shown in Figure 2.5,

which involves (i) formation/transformation of the element tangent stiffness matrices by

ES processors, which are deposited in the *.EFIL.* datasets; (ii) assembly of the element

matrices into the system tangent stiffness matrix by processor K; and (iii) factorization of

the assembled (system) tangent stiffness matrix by processor INV. Note that both material

and geometric stiffness contributions have been superimposed at the element level.

2.5.4 Post-Processing Examples

Post-processing refers to functions which can be performed after the solution has been

obtained for a linear or nonlinear static structural analysis. For example, in a nonlinear

static (or transient) analysis, the user may choose not to archive the stresses and strains

which were used as intermediate variables during the process of obtaining a displacement

solution history. The user may then compute stresses and/or strains at selected load

(or time) steps and save these in the database for perusal. The end-user phase of post-

processing is of course the actual printing or display of the results (displacements, stresses,

strains, etc.); however, tile main interest here is in the prerequisite functions that are

performed by the ES processors.

An example of a post-processing procedure is given in Figure 2.6 that employs ES proces-

sors to form, and archive both stresses and strains in the database after the mainstream

analysis has already been performed. Procedure STRESS_STRAIN contains arguments to

select the stress/strain locations (the default is at element centroids), component directions

(the default is in the element local stress/strain coordinate system), geometric nonlinearity

and corotational flags, the range of load or time steps to process, and the root name of

existing displacement and rotation (for nonlinear analysis) datasets to be employed for

strain computation.

Note that there is a step loop in the procedure, and that both stresses and strains for all

participating elements are formed using a single call to procedure ES per load step. This is

because the FORM STRESS command automatically causes strains to be formed as well

2-60 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

USER INTERFACE ES Processor/Procedure Usage Examples

as stresses, and when both ES_STRAIN_DS and ES_STRESS_DS are explicitly defined,

then both of these quantities are also written to the database. The user is advised to refer

to Sections 2.3 (ES procedure) and 2.4 (Macrosymbol Glossary) for a better understanding

of the calling sequence used in Figure 2.6 for procedure ES.

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 2-61

ES Processor/Procedure Usage Examples USER INTERFACE

1
2-node beam 1 3-node beam

4
a -3

2

4-node quadrilateral

4
7

1

5 2

9-node quadrilateral

3

8 8

7 20

8-node hexadron

2

3 13 t

25° 202 14
1

19 7

15

3

I0

9

27-node hexadron

Figure 2.1a Standard Element Node Numbering Conventions.

2-62 CSM Testbed Generic Structural-Elem,,nt Processor Manual Revised 12/14/89

USER INTERFACE ES Processor/Procedure Usage Examples

L1 2

D Elements/Lines (L) 2 D Elements/Surfaces (S)

S L8$6-8N_L7 L_-_3"7 S

/ '_ I _1'6 Lo I '

L,-,/ 4,_.t_- ---_ "" "°- ,_ ID3

_/L4//" I LIO/,

_ . ;\-'V2

1 L 1 $5

3 D Elements

Figure 2.1b Standard Element Boundary Number Conventions.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-63

ES Processor/Procedure Usage Examples USER INTERFACE

z_

T
8((4),

T/°(1) (2) ,..
v

2 3 vx

Figure 2.2 Sample Problem for ES Processor Usage.

2- 64 CSM Testbed Generic StructuraJ-Element Processor Manual Revised 3/7/89

USER INTERFACE ES Processor/Procedure Usage Examples

*Procedure PLATE_MODEL (Lx=lO.; Ly=5.; h=.l; E=l.e7; PR=.3; prec=2)

[xqt TAB

START 9

GENERATE NODES (rectangular grid, 3 x 3 nodes)

JLOC

1 0., O. , O. [Lx], O. , O. 3, 1, 3

3 0., [Ly], O. [Lx], [Ly]. O.

TABULATE MATERIAL AND SECTION PROPERTIES

[xqt AUS

TABLE(NI=I6.NJ=I): OMB DATA 1 1

def G = < [E] / < 2.<i. + [PR]> > >

I=1.2,3.4,5,6 : J=l : [E] [PR] [E] <G> <G> <G>

TABLE(NI=3,NJ=I.ITYPE=O): LAM OMB 1 1

1=1.2,3 : J=l: I [h] 0.0

RUN CONSTITUTIVE PRE-PROCESSOR

[xqt LAU

GENERATE ELEMENTS

..

*call ES (function='DEFINE ELEMENTS'; ES_PROC=ESI; ES_NAME=EX42)

[xqt ELD

<ES_EXPE_CMD>

NSECT = 1

elt i elt 2 elt 3 elt 4

1254 :2365 : 4587 : 5698

IMPOSE BOUNDARY CONDITIONS

[xqt TAB

CON

ZERO 1:6 : 1 : 4 : 9

APPLY LOADS

[xqt AUS

SYSVEC : APPL FORC 1

i=3 : j=3 : .25 : i=3 : j=6 : .50 : i=3 : j=9 : .25

..

*call ES (function = 'DEFINE FREEDOMS')
..

*end

Figure 2.3 Sample Pre-Processing Procedure.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-65

ES Processor/Procedure Usage Examples USER INTERFACE

*procedure L_STATIC

...........................

Initialize Element Datasets
...........................

[xqt E

Initialize Element Computational Data
.....................................

*call ES (function = 'INITIALIZE')

Form Element Material Stiffness Matrices
..

*call ES (function = 'FORM STIFFNESS/MATERIAL')

Assemble Material Stiffness Matrix

[xqt K

.......................

Factor Stiffness Matrix
.......................

[xqt INV

Solve for Displacements
.......................

[XQT SSOL

RESET SET=I. CON=I

*end

Figure 2.4 Sample Linear Static Analysis Procedure.

2-66 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

USER INTERFACE ES Proc(,ssor/ProcedureUsageExamples
..

*procedure NL_STATIC (NUN_STEPS = I; NUN_ITERS = I0)
.....................................

Initialize Element Computational Data

.....................................

*call ES (function = 'INITIALIZE')

*do $step = i, [NUM_STEPS]

*do $iter = I, [NUN_ITERS]
..........................

FORM RESIDUAL FORCE VECTOR
..........................

[xqt VEC

INT.FORC <- O.

*call ES (function

[xqt VEC

RES.FORC

= 'FORM FORCE/INTERNAL'; --

es_nl_geom = 2; es_coro = i; --

es_dis_ds = TOT.DISP.<$step>; --

es rot_ds = TOT.ROTA.<$step>; --

es_frc ds = INT.FORC.<$step>)

<- <load_factor> * EXT.FORC

....................................

FORM/FACTOR TANGENT STIFFNESS MATRIX
------.

- INT.FORC.<$step>

*call ES (function

[xqt K

[xqt INV

*enddo

*enddo

= 'FORM STIFFNESS/TANGENT' ; --

es_nl_geom = 2; es_coro = 1; --

es_dis_ds = TOT.DISP.<$step>; --

es_rot ds = TOT.ROTA.<$step>; --

es_frc_ds = INT.FORC.<$step>)

Figure 2.5 San, pie Nonlinear Static Analysis Procedure Excerpts.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 2-67

ES Processor/Procedure Usage Examph's USER INTERFACE

*procedure STRESS STRAIN (LOCATION

NL_GEOM = 0

NUM_STEPS = 1

DIS_DS = TOT.DISP

Loop on Solution Steps
......................

*def/i steps[l:[num_steps]] =

*do Sis = I, [num_steps]

*def/i step = <steps[<$is>]>

= CENTROIDS ; DIRECTION = 0 ; --

; COKO = 0 ; --

; STEPS = i:i : --

; ROT._DS = TOT.ROTA)

[steps]

Invoke Element Processors to Form Stress/Strain
...

*call ES (function = 'FORM STRESS' ; --

es_nl_geom = [nl_geom] ; --

es_coro = [coro] ; --

es dis ds = [DIS_DS].<step> ; --

es rot_ds = [ROT DS].<step> : --

es str_dir = [DIRECTION] ; --

es str_loc = [LOCATION] ; --

es_strain_ds = <step> ; --

es_stress_ds = <step>)

*enddo
*end

Figure 2.6 Sample Post-Processlng Procedure.

2-68 CSM Testbed Gcneric Structural-Elcm,:'nt Processor Manual Rcvised 12/14/89

DEVELOPER INTERFACE

3. DEVELOPER INTERFACE

CHAPTER OUTLINE

Section

3.1

Title

Overview

Description

Introduces the developer to basic con-
cepts and overall approach for adding
new elements (i.e., ES processors) to
the CSM Testbed.

3.2 Standard ES Kernel Routines Summarizes, then describes calling
sequences for, each of the standard el-
ement functional routines that must

be supplied by the developer to com-
plete the implementation of a new el-

ement (ES) processor.

3.3 Glossary of Standard

ES Kernel Arguments

Defines, in detail, all arguments (and

related parameters) appearing in the
calling sequences described in Section
3.2. The definitions are arranged as
an alphabetical table for easy refer-
ence. (Most of the arguments are
shared by more than one standard

kernel routine.)

3.4 Examples of Specific

Element Types

Looks at some of the standard ele-

ment types ({.e., classes) recognized
by the generic structural-element pro-
cessor; for example, beam, shell and
solid elements. Indicates how the var-

ious kernel arguments, described in
Sections 3.2-3.3, should be defined
for such elements. Elements that do

not fall within this framework may
be defined as "wild" elements, which
are treated as a "black box" by the
generic structural-element processor.

3.5 Step-by-Step Installation

of New ES Processors

Gives step-by-step instructions for
creating a new structural-element
(ES) processor as a standard CSM
Testbed module, which may be used
either alone, or in conjunction with
other ES processors for general struc-

tural analysis.

I{.evised 12/19/89 CSM Testbed Generic Structural-Element Processor Manual 3- 1

Overview DEVELOPER INTERFACE

3.1 Overview

3.1.1 Basic Approach

To add a new structural clcnmnt - or family of elements -- to the CSM Testbed using the

generic element processor template, a developer needs only to provide a set of standard

element subroutines (currently in FORTRAN-77). The names and argument lists for

these so-called kernel routines, are described in Sections 3.2 and 3.3. The standard kernel

routines include such functions as formation of the element stiffness matrices (material and

geometric), the element force vectors (internal and external) and element strains. Another

important kernel routine is the basic definition routine (ESOD), in which the element

developer sets key parameters that describe the new element(s) to the generic glement

processor.

These standard kernel routim's feature extendible argument arrays that enable a broad

range of elements to be impl_unentcd. However, if your element does not fit within the

standard framework, a number of alternative options are discussed in Section 3.1.2.

After these kernel routines have been completed, the developer can create his/her own

structural element (ES) processor by simply executing a standard "link" procedure (see

Section 3.5). The link procedure will create a new ES processor by combining the de-

veloper's code with a copy of the Generic Element processor =shell" (i.e., driver). The

resulting executable will look to the CSM Testbed just like any other ES processor -- it

will automatically employ the same command language and database entities -- except

that it will contain only the developer's new element(s). Thus, the developer can safely

revise and test his/her own new ES processor (e.g., interactively, in stand-alone mode)

without having to worry about impacting other developers, or inadvertently corrupting

the integrity of preexisting element processors.

Once a new ES processor has been created, it may be used immediately to perform analysis,

using the analysis procedures that employ the generic ES procedure interface described in

Chapter 2. This fact is important. The developer should not have to make any changes

to existing analysis procedures -- except for the selection of the element proce_or/type

3-2 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Overview

during pre-processing (see Chapter 2) -- in order to be able to apply the new elements to

structural analysis problems. The developer's new ES processor immediately becomes a

standard module in the CSM Testbed, and may be used in the same analysis with other

ES processors.

Element developers who have never used the CSM Testbed before should consult Chapter

2 and the CSM Testbed User's Manual (ref. 4) for instructions on how to begin problem-

solving once the element implementation phase is completed.

3.1.2 Standard versus Non-Standard ("Wild") Elements

Implementation of element types that do not clearly fit within the standard framework

described here may require one of the following approaches: (i) straightforward extension

of the examples presented in Section 3.4.1-3.4.3 for standard elements; (ii) use of the

"wild" element approach for nonstandard elements; (iii) application of pressure on the

ES processor shell architect to extend the standard framework; or, as a last resort, (iv)

development of a special-purpose ES processor shell by the element developer, t

The terms standard and non-standard (or "wild") elements are defined as follows. Stan-

dard elements are fully recognized by the ES processor shell, so that standard operations

such as:

• Coordinate transformations

• Corotational updates (for geometric nonlinearity)

• Constitutive processing (for linear and nonlinear materials)

• Automatic Freedom Suppression

may be performed automatically -- by the shell. On the other hand, wild elements are

treated as "black boxes" that must perform all such operations on their own -- i.e., at the

t While this last option is not recommended due to the obvious effort associated with repli-

cating all of the processor overhead functions -- such as command interpretation and formal

database transactions -- it is a viable one_ and may be the only option in certain cases. In

fact, as long as the developer is careful to employ the same command language as the Generic

Element processor, this approach should produce special-purpose ES processors that are com-

pletely compatible with the standard ES processors, and may be used in existing analysis
procedures wi{,ho_lt special modifications therein.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-3

Overview DEVELOPER INTERFACE

kernel level. Thus, the elementdeveloperis facedwith the usual trade-off betweennovelty

and conformity. If the clement fits into one of the standard molds, then the developer's

responsibility will be lessthan if the.clement is very exotic (i.e., wild).

3.1.3 Special Features; Geometric/Material Nonlinearity

The reader may be entertaining all kinds of questions right now concerning how the generic

element processor will accommodate all of the complexities of his/her new element. One

of the most frequent question._ posed by prospective element developers deals with the

treatment of nonlinearity; especially geometric and material nonlinearity. The answer is

that developers are free to handle such complexities on their own; however, some intrinsic

capabilities have been built in to the Generic Element processor shell (driver) to alleviate

the developer's burden. In particular, a corotational option is available for beam, shell

and (thin) solid elements, which will either automatically upgrade a linear element to a

geometrically nonlinear element, or extend the range of applicability of a moderate-rotation

nonlinear element to handle arbitrarily large rotations.

A by-product of the built-in corotational methodology for geometric nonlinearity is its

linear counterpart -- the rigid-body projection operator. This latter option can be used

by element developers (in some cases) to correct the intrinsic element rigid-body errors

that plague some elements (e.g., non-isoparametric, curved elements) in both linear and

nonlinear analysis.

Similar interfaces are being planned to automate material nonlinearity -- and thus de-

couple the element developer's work from the constitutive modeler -- but at present the

element developer is on his/h_,r own when it comes to nonlinear materials. (Note: There

is a standard, built-in interface for linear constitutive behavior that the element developer

can exploit to get started.) _,[orc information on such special features is presented in

Chapters 4 and 5.

3-4 CSM Tcstbcd Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Overview

3.1.4 Outline of this Chapter

The following sections contain all of the information necessary for an element developer

to add a new element (or family of elements) to the CSM Testbed -- as an independent

ES processor. First in Section 3.2, we give a summary of the standard kernel routines

that need to be supplied by the element developer, followed by subsections containing

the detailed calling sequences (i.e., input/output arguments) for each of these standard

routines. However, since many of the argument variables are shared by a number of kernel-

routine entry points, the full definitions for these variables are described in the glossary

given in Section 3.3. This approach avoids needless duplication of certain explanations,

and provides both a quick-reference manual for the experienced ES processor developer,

and a more in-dcpth document for newcomers.

In Section 3.4, guidelines are given for implementation of specific classes of elements, for

example, beam, shell and solid continuum elements. Also, some preliminary provisions for

more exotic structural elements are discussed in the subsection on nonstandard elements.

Finally, in Section 3.5, specific step-by-step installation instructions are given for adding

new element (ES) processors to the CSM Testbed, including the minor variations associated

with different computer operating systems.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-5

Standard ES Kernel Routin(_s DEVELOPER INTERFACE

3.2 Standard ES Kernel Routines

The standard, developer-supplied kernel subroutines employed by the generic element (ES)

processor shell are described in the following sections. A summary of the individual entry

point names and their respective functions is given in Table 3.1. Then in Sections 3.2.1

through 3.2.15, the calling sequence for each of the entry points is given, with a brief

description of the various input/output arguments that appear in the call. Readers should

refer to Section 3.3 (Glossary of Stalldard ES Kernel Arguments) for a detailed explanation

of each argument, and of the parameters used to dimension and index them.

Table 3.1 STANDARD KERNEL ENTRY POINTS

Entry Point Description

ESOD Element DEFINITION routine. Defines basic element parameters as

a function of etemcnt name.

ESOE Element STRAIN routine. Computes element strains (linear or non-

linear) as a function of nodal displacements.

ES0FB Element BODY FORCE routine. Computes consistent element exter-

nal force vector based on distributed body loads.

ESOFI Element INTERNAL FORCE routine. Computes element internal

force vector as a function of element stresses and, optionally, nodal
displacements. (NOTE: Automatically accounts for forces due to spec-

ified displacements and thermal loads using the input stresses.)

ESOFL

ESOFP

Element l,[Nl'; FORCE routine. Computes consistent element external

force vector based on distributed line loads.

Element PRI';SSUt{I_ FORCE routine. Computes consistent element

external force vector based on distributed pressure loads.

ESOFS Element SURFACE FORCE routine. Computes consistent element

external force vector based on distributed surface loads.

ESOI Element INITIALIZATION routine. Precomputes special element
data that is to be stored in the database for subsequent retrieval and
use by other element routines.

continued...

3-6 CSM Testbed Generic Structural-Elaine nt Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

Table 3.] STANDARD KERNEL ENTRY POINTS (concluded)

Entry Point Description

ESOKG Element GEOMETRIC STIFFNESS routine. Computes element ge-

()metric stiffness matrix (linear and/or nonlinear) as a function of el-

emer_t stresses and (optionally) nodal displacements.

ESOKL Elenwr_t, I,OA1) STIFFNESS routine. Computes element load stiffness

matl'ix as a 5ruction of element live loads and displacements.

ESOKM Element MATERIAL STIFFNESS routine. Computes element mate-

rial stiffness matrix (linear and/or nonlinear) as a function of element

constitutive matrices and (optionally) nodal displacements.

ES0MC Element CONSISTENT MASS routine. Computes element consistent
mass matrix as a function of element inertial properties and nodal
coordinates.

ESOMD Element DIAGONAL MASS routine. Computes element diagonal

(lumped) mass matrix as a function of element inertial properties and
nodal coordinates.

ESON

ESOS

Element NORMAL vector routine. Computes unit normal vectors

at, element nodes for plate/shell elements. Used primarily to affect

automatic degree of freedom suppression.

Element STRESS routine. Computes element stresses as a function

of nodal displacements and constitutive matrices. (Required only for

assumed stress elements).

ESOT Element TRANSFORMATION routine. Computes orthogonal trans-
formations at element integration points from the element's local
(stress) system to the Cartesian (corotational) system in which the

element's nodal coordinates are expressed.

Remark 3.1 For additional insight, Table 3.2 shows the correspondences between

the ES processor commands discussed in Chapter 2 and the developer-supplied stan-

dard kernel routine entry points described in this chapter. This information can be

useful to the developer for determining the most important entry points to implement

-- based on the analysis requirements of prospective users -- and for prioritizing their

implementation in case there isn't time to implement them all at once.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-7

Standard ES Kernel Routines DEVELOPERINTERFACE

Command

Table 3.2 COMMAND/SUBROUTINE CORRESPONDENCE

ES Processor Commands versus Kernel Routines

Rou tines Qualifications

DEFINE ELEMENTS

DEFINE FREEDOMS

INITIALIZE

FORM STIFFNESS/MATL

FORM STIFFNESS/GEOM

FORM FORCE/INTERNAL

ESOD

ESOD

ESON

ESOD

ESOI

ESOD

ESOKM

ESOE

ESOS

ESOT

ESOD

ESOKG

ESOKL

ESOE

ESOS

ESOT

ESOD

ESOFI

ESOE

ESOS
I

ESOT

only if DEFS(pdNORO) > 0

only if materially nonlinear

only if materially nonlinear and

DEFS(pdCNS) > 0

only if nonisotropic material

only if <ESANL_LOAD> is true

only if DEFS(pdCNS) > 0

only if nonisotropic material

only if DEFS(pdCNS) > 0

only if nonisotropic material

continued ...

3-8 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Standard ES Kernel Routines

Table 3.2 COMMAND/SUBROUTINE CORRESPONDENCE (concluded)

ES Processor Commands versus Kernel Routines

Command

FORM FORCE/EXTERNAL

FORM STRAIN

FORM STRESS

FORM MASS/CONS

FORM MASS/DIAG

POST DISPLA(',EMENT

Routines

ESOD

ESOFB

ESOFL

ESOFS

ESOFP

ESOD

ESOE

ESOT

ESOD

ESOE

ESOS

ESOT

ESOD

ESOMC

ESOD

ESOMD

ESOD

ESOPD

Qualifications

:only if body loads present

only if line present

only if general surface loads present

only if pressure loads present

only if nonisotropic material or rotated axes

only if DEFS(pdCNS) > 0

only if nonisotropic material or rotated axes

Remark 3.2 For the complete picture, the developer should refer to Table 3.2

in conjunction with Table 2.2, which shows the correspondences between analysis

type and ES processor commands. Composition of Tables 2.2 and 3.2 thus indicates

the relationship between analysis type and kernel routine entry points, i.e., which

entry points the developer must supply to enable the user to perform a given type of
structural analysis.

Revised 12/12/89 CSM T('stbed Gen,_ric Structural-Element Processor Manual 3-9

Standard ES Kernel Routim_s DEVELOPER INTERFACE

3.2.1 Subroutine ESOD: Element Definition

Entry point ESOD defines element attributes for all element types implemented within a

single ES processor. This enables the ES processor shell to make logical and dimensional

decisions about how to call other standard kernel routines, as well as how to access the

database.

Calling Sequence

Icall ES0D (eltnam, eltnum, ctls, defs, dofs, nodes, pars, status) I

Input Arguments

ELTNAM Element-type name. developer may have as many different element types

implemented within an individual ES processor as desired. The element-

type name currently corresponds to the name used to define an element

with the EXPE command of processor ELD.

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS 0 List of element control parameters. Typically not relevant for this subrou-

tine; primary use is in formation routines such as ESOKM, etc.

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

3-10 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard E$ Kernel Routines

Output Arguments

DEFS 0 List of intrinsic element definition parameters for the element type speci-

fied by ELTNAM. All entries in this array must be defined by the developer

(see Section 3.3 Glossary). In particular, note that DEFS(pdOPT) -- the

element option number -- will become the developer's numerical replace-

ment for ELTNAM in calls to all other standard kernel routines.

DOFS() Table of potentially active degrees of freedom at element nodes for the

element type specified by ELTNAM.

NODES() Element node-sequence mapping (for element type specified by ELTNAM).

STATUS Subroutine return status (> 0 =_OK).

Relevant Processor Commands

All ES Processor commands

Remark 3.3 Subroutine ESOD should be the first standard kernel routine written

by the element developer. It is a prerequisite for the automatic operation of the other

entry points, and should make implementation of the other routines more straightfor-

ward, since a basic understanding of the element intrinsic parameters (e.g., the DEFS
array) will have been acquired by the developer.

Remark 3.4 Currently, the ESOD routine is only called once for a given element

type. Thus, the values of the output arguments must be representative of the entire

type (i.e., ELTNAM or DEFS(pdOPT)) rather than something that varies from ele-

ment to clement. Wc plan to remove this limitation in future implementations of the
ES shell.

Revised 12/12/89 CSM Tcstbed Generic Structural-Element Processor Manual 3-11

Standard ES Kernel Routines DEVELOPER INTERFACE

3.2.2 Subroutine ESOE: Element Strains

Entry point ESOE should compute element strains at all "integration points" within an

element. It is not requircd for elements that form their own stresses, directly, e.g., elements

based on an assumed stress formulation (see argument DEFS(pdCNS) in Section 3.3 for

details). The element strains may be either continuum quantities or resultant (section-

averaged) quantities, depending on the element type (see Section 3.4 for examples). The

strains are used either as input to constitutive routines (see Chapter 5) or simply output

to the database for post-processing.

Calling Sequence

l call ESOE eltnum, ctls, defs, dofs, nodes, d, status(pars, X, store,)e,

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS 0 List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for strain computation.

DEFS 0

DOFS()

List of elcment definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM in subroutine ESOD).

List of potentially active element nodal degrees of freedom.

NODES() Element nodal resequencing map. This mapping will ordinarily not be

necessary in this subroutine as all nodal arrays will already have been

reordered into the developer's internal sequence upon entry.

3-12 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

x0 Element nodal coordinate vectors; in initial configuration, element basis

and deveh)per's node sequence.

D0 Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame.

STORE() Element private storage array (defined using subroutine ESOI).

Output Arguments

E0 Strains (continuum or resultant, depending on element class) at element

integration points, expressed in element developer's stress bases. Linear

or nonlinear strain-displacement relations may be required, as specified by

CTLS(pcNL(-;). (See Sections 3.2 and 3.4 for details and examples.)

STATUS Subroutine return status (:> 0 =_OK).

Relevant Processor Commands

FORM STRAIN

FORM STRESS

FORM FORCE/INTERNAL

FORM STIFFNESS/GEOMETRIC

FORM STIFFNESS/MATERIAL (if materially nonlinear)

FORM STIFFNESS/TANGENT

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-13

/i

Standard ES Kernel Routines DEVELOPER INTERFACE

Remark 3.5 It is not ahvays necessary for the developer to provide nonlinear strain-

displacement relations, especially if the built-in corotational option can be employed

using the macro)symbol ES CORO. See Chapter 4 for details.

3.2.3 Subroutine ESOFI: Element Internal Force Vector

Entry point ESOFI should compute the clement internal force vector. This function is im-

portant in both linear and nonlinear analysis. In linear analysis, the element internal force

vectors may be assernbled to construct reaction forces, and/or to generate external forces

due to specified displacements, initial strains or initial stresses. In nonlinear analysis, the

element internal force vectors are assembled to compute the out-of-balance (residual) force

vector for the system, which is essential for most nonlinear iteration algorithms. Inputs

to this routine include stresses and displacements. It is strongly recommended that the

element internal force vector, which is output, be computed as an explicit function of

stresses (if possible), so that initial stress and strain effects are appropriately accounted

for. The element displacement vector is provided only for those elements that employ ex-

plicit geometric nonlinearity in the event that CTLS(pcNLG) > 1 (which is not absolutely

necessary if the automatic corotational option has been invoked by the ES processor user;

see Chapters 2 and 4).

For assumed-displacement type elements, the internal-force vector can usually be expressed

in the form:

f,nt = / B T a dV
Jv oi

where B is the incremental strain-displacement interpolation matrix, and a is the gen-

eralized stress tensor (corresponding to subroutine argument S). The volume integral is

typically approximated by numerical integration, with a evaluated only at integration

points. For beam or shell elements, the integrals may become one-dimensional (curve)

or two-dimensional (surface) domains, respectively, with the a tensor (i.e., the S array)

representing stress resultants.

Remark 3.6 The intern_l force vector is necessary for both linear and nonlinear

analysis. For nonlinear analysis, it is obviously required as a means for satisfying

equilibrium (or the equations of motion in the case of dynamics). But even in linear

analysis, internal forces are a convenient way of computing "loads" due to specified

displacements, strains, stresses and/or temperatures, which are then transferred to the

3-14 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

right-hand side of the equations and act as external forces. In order to perform this

function, internal forces must be computed as a function of stresses, rather than by

simply multiplying the element stiffness matrix times the given displacement vector.

By using the stresses, which are in input argument S, and already incorporate the

effect of specified displacements, strains, etc., the internal force routine will then

automatically include these contributions upon output.

Calling Sequence

call ES0FI (eltnum, ctls, defs, dofs, nodes, pars, x, d, s, store, fi, status)

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS 0 List of clement control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for internal-force computation.

DEFS 0 List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM in subroutine ESOD).

DOFS 0 List of potentially active element nodal degrees of freedom.

NODES() Element nodal resequencing map. (This array will ordinarily not be used

in this subroutine, as all nodal arrays have already been reordered into the

developer's internal node sequence upon entry.

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-15

Standard ES Kernel Routines DEVELOPER INTERFACE

xo Element nodal coordinate vectors; in initial configuration, element basis

and according to the developer's node sequence.

D() Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame.

so Stresses (continuum or resultant, depending on element class) at element

integration points, expressed in element-developer's stress bases (see Sec-

tions 3.3 and 3.4 for details and examples).

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

FI 0

STATUS

Element internal force vector, expressed in element basis and ordered ac-

cording to developer's node sequence (see Sections 3.3 and 3.4).

Subroutine return status (:> 0 ==>OK).

Relevant Processor Commands

FORM FORCE/INTERNAL

FORM FORCE/RESIDUAL

3-16 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.4 Subroutine ESOFB: Element Body Force Vector

Entry point ESOFB should compute contributions to the element external force vector due

to distributed body loads (forces per unit mass).

Calling Sequence

call ESOFB (eltnum, ctls, defs, dofs, nodes, pars, x, d, inert, loadb, store, fb, status)]

Input Argurnent_

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS() List of clement control parameters. Of particular importance is entry

CTLS(peNLG), which if nonzero indicates that the body loads are "live",

i.e., displacement-dependent. Currently only live pressure loads are im-

plemented; see subroutine ESOFP.

DEFS() List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM in subroutine ESOD).

DOFS 0 List of potentially active element nodal degrees of freedom.

NODES() Element nodal resequencing map. This array will ordinarily not be nec-

essary in this subroutinc, as all nodal arrays have already been reordered

into the dcw:loper's internal node sequence upon entry.

PARS() Array of"clcment-devclopcr's research parameters. Useful for defining vari-

ations oll basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_.PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and according to the developer's node sequence.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-17

Standard ES Kernel Routines DEVELOPER INTERFACE

D0 Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

franle.

INERT() Inertia coefficients at eleinent integration points; depend on element type.

For example, for shell elements, INERT is a three by DEFS(pdNIP) array

containing the results from the following three integrals through the shell

thickness: fz pdz, J" pzdz_ fz Pz2dz, at each element integration point.

LOADB 0 Body loads. An array of DEFS(pdNDOF) by DEFS(pdNEN) numbers

defining the body-force vectors (per unit mass) at element nodes, expressed

in the element-cartesian coordinate system. The nodal vectors axe ordered

in the developer's node sequence.

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

FBO Element body force vector, expressed in element basis and ordered accord-

ing to developer's node sequence (see Sections 3.3 and 3.4).

STATUS Subroutine return status (>_ 0 _OK).

Relevant Processor Commands

FORM FORCE/EXTERNAL

FORM FORCE/RESIDUAL

3-18 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.5 Subroutine ESOFL: Element Line Force Vector

Entry point ESOFL should compute contributions to the element external force vector due

to distributed line (cdg(,) forces/monmnts per unit length.

Calling Sequence

I call ESOFL (eltnum, ctls, defs, dofs, nodes, pars, x, d, loadl, store, fi, status) I

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS 0 List of clement control parameters. Of particular importance is entry

CTLS(pcNLG), which if nonzero indicates that the line loads are "live",

i.e., displacement-dependent. Currently only live pressure loads are im-

plemented; see subroutine ESOFP.

DEFS 0 List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM in subroutine ESOD).

DOFS 0 List of potentially active element nodal degrees of freedom.

NODES() Element nodal resequencing map. This array will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal node sequence upon entry.

PARS() Array of clement-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_.PARS.

xo Element nodal coordinate vectors; in initial configuration, element basis

and according to the developer's node sequence.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-19

Standard ES Kernel Routines DEVELOPER INTERFACE

D0 Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame.

LOADL() Line loads. An array of DEFS(pdNDOF) by DEFS(pdNNLT) numbers

defining the line-load vectors (force or moment per unit length} at element

nodes, for each clement line (edge) independently, and expressed in the

element-cartesian coordinate system. For 1-D elements, the nodal vectors

are ordered in the developer's node sequence. For 2-D and 3-D elements,

which have more than one line (edge), the lines, and nodes along each line,

are ordercd as depicted in Figure 2.lb.

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

FL0 Element line force vector, expressed in element basis and ordered according

to developer's nod(; sequence (see Sections 3.3 and 3.4).

STATUS Subroutine return st,_tus (> 0 =_OK).

Relevant Processor Commands

FORM FORCE, EXTERNAL

FORM FORCE/RESIDUAL

3-20 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.6 Subroutine ESOFP: Element Pressure Force Vector

Entry point ESOFP should compute contributions to the element external force vector due

to pressure loads (normal forces per unit area).

Calling Sequence

I call ESOFP (eltnunl, ctls, dcfs, dofs, nodes, pars, x, d, loadp, store, fp, status) I

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS() List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which if nonzero indicates that the pressure loads are

"live", (i.e., displacement-dependent), so that they remain normal to the

defbrmed surface.

DEFS() List of element definition parameters. The individual parameters which

arc rclew_nt here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical e_tuivalent of ELTNAM in subroutine ESOD).

DOFS 0 List of potentially active element nodal degrees of freedom.

NODES() Element nodal resequencing map. This array will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal node sequence upon entry.

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and according to the developer's node sequence.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-21

StandardES Kernel Routines DEVELOPER INTERFACE

D() Element nod_l displacementvectors; in elementbasisand developer'snode

s,,qucnc,,.[_ch,vr_t only if CTLS(pcNLL) > 0 and CTLS(pcNLG) > 0. If

(;TLS(I,cCOI_O) > {}, then displacementsare relative to current (corota-

tiered) element frame. Otherwise, they are relative to the initial element
frame.

LOADP 0 Pressureloads. An array of DEFS(pdNEN) numbersdefining the pressures

at element nodes. For 2-D elements, the nodal pressuresare ordered in

the developer'snode sequence.For 3-D elements,which have more than

one surface, the surfaces,and nodes within eachsurface, are ordered as

depicted in Figure 2.lb.

STORE() Element private storagearray definedusing subroutine ESOI.

Output Arguments

FP0 Element pressure force vector, expressed in element basis and ordered ac-

cording to developer's node sequence (see Sections 3.3 and 3.4).

STATUS Subroutine return status (>__0 ==_OK).

Relevant Processor Commands

FORM FORCE/EXTERNAL

FORM FORCE/RESIDUAL

3-22 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.7 Subroutine ESOFS: Element Surface Force Vector

Entry point ESOFS should compute contributions to the element external force vector due

to general surface forces/moments per unit area.

Calling Sequence

call ESOFS (eltnum, ctls, defs, dofs, nodes, pars, x, d, loads, store, is, status)

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS() List of element control parameters. Of particular importance is entry

CTLS (pcNLG), which if nonzero indicates that the surface loads are "live" ,

i.e., displacement-dependent. Currently only live pressure loads are im-

plemented; see subroutine ESOFP.

DEFS() List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM in subroutine ESOD).

DOFS 0 List of potentially active element nodal degrees of freedom.

NODES() Element nodal resequencing map. This array will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal node sequence upon entry.

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

xo Element nodal coordinate vectors; in initial configuration, element basis

and according to the developer's node sequence.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-23

Standard ES Kernel Routines DEVELOPER INTERFACE

D() Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational el_rrm_'llt frame. Otherwise, they are relative to initial element

frame.

LOADS() Surface loads. A_ array of DEFS(pdNDOF) by DEFS(pdNEN) numbers

defining the traction vectors at element nodes, expressed in the element-

carte'shin coordinate system. For 2-D elements, the nodal vectors are or-

dered in the developer's node sequence. For 3-D elements, which have

more than olin surface, the surfaces, and nodes within each surface, are

ordered as depicted in Figure 2.1b.

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

FS0 Element surface for(:e vector, expressed in element basis and ordered ac-

cording to dev¢_lOl)er's node sequence (see Sections 3.3 and 3.4).

STATUS Subroutine return status (_> 0 _OK).

Relevant Processor Commands

FORM FORCE/EXTERNAL

FORM FORCE/RESIDUAL

3-24 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.8 Subroutine ESOI: Element Initialization

Entry point ESOI is an ot)ti(mal mechanism for the developer to precompute selected el-

ement data at the beginning of an analysis (using the ES command INITIALIZE), and

have it automatically stored-in and retrieved-from the database by the ES processor shell.

For example, it may be convenient (or economical) for some elements to precompute basic

shape/interpolati(m function arrays that do not vary with the solution. Note, however,

that in some case_ it may be even faster (in terms of overall turn-around time) to re-

compute s_lch data in (_(:h of the other element kernel routines, rather than to have the

ES shell perforn_ the extr:_ I/O operations associated with the present subroutine.

Calling Sequence

call ESOI (eltnum, ctls, defs, dofs, nodes, pars, x, store, status)]

Input Arguments

ELTNUM Element sequence number. (Useful only for diagnostic purposes.)

CTLS() List of element control parameters. Of particular importance are entries

CTLS(pcNL.), which indicate the types of nonlinearity to be included in

subsequent calculations.

DEFS() List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular impor-

tance, however, is DEFS (pdOPT), which is the element-type number, and

DEFS (pdSTOR), which is the developer-prescribed length of output array

STORE.

DOFS() List of pot(,ntially active element nodal degrees of freedom.

NODES() Element node rcsequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into tlw developer's internal sequence upon entry.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-25

Standard ES Kernel Routines DEVELOPER INTERFACE

PARS() Array of' ¢_l_uncnt-developer's research parameters. Useful for defining vari-

ations o11 basic: c_lement types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the, command macrosymbol ES_PARS.

x0 Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

Output Arguments

STORE() Element private storage array. The length of this array, i.e., the number

of entries, should have been defined in subroutine ESOD, and hence should

be contained in DEFS(pdSTOR).

STATUS Subroutine return stratus (_ 0 ==_OK).

Relevant Processor Commands

INITIALIZE

Remark 3.7 Presently, it is necessary for all developers to provide a version of

subroutine ESOI, regardless of whether or not initialization data is to be stored. If no

data is to be stored, then simply set DEFS(pdSTOR) --- 0 in subroutine ESOD, and

insert only a RETURN statement in subroutine ESOI. (Note: This requirement will

probably be eliminated in the future.)

3-26 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPERINTERFACE Standard ES Kernel Routines

3.2.9 Subroutine ESOKG: Element Geometric Stiffness Matrix

Entry point ESOK(; should compute tile element geometric stiffness matrix in the element

intrinsic coordinaW 1)asis. This function is important in both linear buckling-eigenvalue

analysis and in nonlinear analysis (as a contribution to the tangent stiffness matrix). Inputs

to this routine include stresses and displacements. By definition, the geometric stiffness is

an explicit functio1_ of the stresses. However, the element displacement vector is provided

as well for those elements that employ explicit geometric nonlinearity (in addition to the

basic corotational oi)crations built into the ES processor shell, as described in Chapter 4.)

Calling Sequence

l call ESOKG (eltnum, ctls, defs, dofs, nodes, pars, x, d, s, store, kg, status) !

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS() List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for stiffness computation -- and hence determines whether or not the

element displacements (input argument D) should be used.

DEFS() List of element definition parameters. The individual parameters which

are relevant here. will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM).

DOFS() List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing map. This mapping will ordinarily not be

lwcessary in this subroutine, as all nodal arrays will already have been

reordert'd into the developer's internal sequence upon entry.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-27

Standard ES Kernel Routines DEVELOPER INTERFACE

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

D0 Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame. For linear analysis or low-order geometrically nonlinear analysis

(CTLS(pcNLG) < 2), displacements are typically ignored.

s() Stresses (or resultants, depending on element class) at element integration

points, expressed in element stress bases.

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

KC0 Element geometric stiffness matrix; stored in upper triangular form, and

ordered according to the developer's node sequence. Components should

be in terms of the element basis, which is the same basis as that used for the

nodal coordinates (input argument X). All resorting and transformations

required for eventual output to the database will be performed by the ES

shell. See Sections 3.3 and 3.4 for more details and examples.

STATUS Subroutine return status (_> 0 =_OK).

Relevant Processor Commands

FORM STIFFNESS/GEOM

FORM STIFFNESS/TANG

3-28 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.10 Subroutine ESOKL: Element Load Stiffness

Entry point ESOKL should compute the element load stiffness matrix in the element in-

trinsic coordinate basis. This function is important for both (i) nonlinear analyses and

(ii) linear eigenvalue (buckling or vibration) analyses, in which displacement-dependent

external loads are present (e.g., follower forces or hydrostatic pressure). While in the non-

linear regime, the inclusion of the load stiffness matrix primarily affects only the rate of

convergence to the correct solution (i.e., its absence may result in more iterations and/or

smaller load steps); in the linear regime, omission of the load stiffness may result in a sig-

nificant loss of accuracy -- especially in the lowest buckling loads or vibration frequencies.

Currently, the only type of load stiffness implemented is that due to live pressure loads.

Calling Sequence

I call ESOKL (eltnum, ctls, defs, dofs, nodes, pars, x, d, loadp, store, kl, status)

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS 0 List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for stiffness computation -- and hence determines whether or not the

element displacements (input argument D) should be used.

DEFS 0 List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM).

DOFS 0 List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing map. This mapping will ordinarily not be

necessary in this subroutine, as all nodal arrays will already have been

reordered into the developer's internal sequence upon entry.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-29

Standard ES Kernel Routines DEVELOPER INTERFACE

PARS() Array of element-developer'sresearchparameters. Useful for definingvari-

ations on basicelement types before making tb.emstandard options speci-

fied by ELTNAM. Theseparametersare currently input to ES processors

through the command macrosymbolES_PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

D() Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame. For linear analysis or low-order geometrically nonlinear analysis

(CTLS(pcNLG) < 2), displacements are typically ignored.

LOADP 0 Pressure loads. An array of DEFS(pdNEN) numbers defining the "live"

pressures at element nodes. For 2-D elements, the nodal pressures are

ordered in the developer's node sequence. For 3-D elements, which have

more than one surface, the surfaces, and nodes within each surface, are

ordered as depicted in Figure 2.lb.

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

KL() Element load stiffness matrix; stored in upper triangular form, and ordered

according to the developer's node sequence. Components should be in

terms of the element basis which is the same basis as that used for the

nodal coordinates (input argument X). All resorting and transformations

required for eventual output to the database will be performed by the ES

shell. See Sections 3.3 and 3.4 for more details and examples.

STATUS Subroutine return status (> 0 ==_OK).

Relevant Processor Commands

FORM STIFFNESS/TANGENT

3-30 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

FORM STIFFNESS/GEOMETRIC

FORM STIFFNESS/LOAD

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-31

Standard ES Kernel Routines DEVELOPER INTERFACE

3.2.11 Subroutine ESOKM: Element Material Stiffness Matrix

Entry point ESOKM should compute the element material stiffness matrix in the element

intrinsic coordinate basis. This function is important in all forms of analysis except for

explicit transient dynamics. In linear analysis, it is assembled into the primary operator

matrix; it assembles into one of the primary matrices in both buckling and vibration eigen-

value analysis, and it usually constitutes the dominant contribution to the tangent stiffness

matrix in nonlinear analysis. Inputs to this routine include the material (integrated) con-

stitutive matrix and the element displacement vector. By definition, the material stiffness

is an explicit function of the constitutive coefficients. However, the element displacement

vector is provided as well for those elements that employ explicit geometric nonlinearity.

Such nonlinearity may not be required for large-rotation analyses if the built-in corota-

tional option is invoked by the ES processor user (see Chapter 4).

For assumed-displacement type elements, the material stiffness matrix can usually be ex-

pressed in the form:

K matl :] B T C B dV

3v ol

where B is the incremental strain-displacement interpolation matrix, and C is the gener-

alized constitutive matrix (corresponding to subroutine argument C). The volume integral

is typically approximated by numerical integration, with C evaluated only at integration

points. For beam or shell elements, the integrals may become one-dimensional (curve) or

two-dimensional (surface) domains, respectively, with the C matrix representing a consti-

tutive matrix that has been preintegrated over the cross-section, and corresponding to the

tangent operator relating incremental stress and strain resultants.

Calling Sequence

call ESOKM (eltnum, ctls, defs, dofs, nodes, pars, x, d, c, store, kin, status)

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

3-32 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

CTLS 0

DEFS 0

DOFS 0

NODES()

PARS()

x()

DO

c()

List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for stiffness computation -- and hence determines whether or not the

element displacements (input argument D) are to be used.

List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element type number (the nu-

merical equivalent of ELTNAM).

List of potentially active element nodal degrees of freedom.

Element node resequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal sequence upon entry.

Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame. For linear analysis or low-order geometrically nonlinear analysis

(CTLS(pcNLG) < 2), displacements are typically ignored.

Constitutive matrices (continuum or resultant, depending on element

class), at element integration points, expressed in element developer's

stress bases. Individual constitutive matrices are stored as full, square

(dimensioned NSTR by NSTR) matrices at each integration point, with

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-33

Standard ES Kernel Routines DEVELOPER INTERFACE

rows and columns correspondingto the stressand strain arrays, S and E,

respectively. SeeSections3.3 and 3.4for details and examples.

STORE() Element private storagearray definedusing subroutine ESOI.

Output Arguments

KM() Element material stiffness matrix; stored in upper triangular form, and

ordered according to the developer's node sequence. Components should

be in terms of the element intrinsic basis, which is the same basis as that

used for the nodal coordinates (input argument X) and displacements (in-

put argument D). All resorting and transformations required for eventual

output to the database will be performed by the ES processor shell. See

Sections 3.3 and 3.4 for details and examples.

STATUS Subroutine return status (> 0 :=_OK).

Relevant Processor Commands

FORM STIFFNESS/MATL

FORM STIFFNESS/TANG

3-34 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.12 Subroutine ESOMC: Element Consistent Mass Matrix

Entry point ESOMC shouht compute the element consistent mass matrix, employing the

inertia tensor coefficients (argument INERT) as input.

Calling Sequence

call ESOMC (eltnum, ctls, defs, dofs, nodes, pars, x, d, inert, store, me, status)

Input Arguments

ELTNUM Element sequence number. (Useful only for diagnostic purposes.)

CTLS 0 List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for stiffness computation -- and hence determines whether or not the

element displacements (input argument D) are to be used.

DEFS() List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM).

DOFS() List of potentially active element nodal degrees ()f freedom.

NODES() Element node resequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal sequence upon entry.

PARS() Array of element-developer's research parameters. Useful for defining vari-

ati()ns on basic element types bcfor(_ making them standard ol)tions speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the conmmnd macrosymbol ES_PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

Revised 12/12/89 CSM Tcstbed Generic Structural-Element Processor Manual 3-35

StandardES Kernel Routines DEVELOPER INTERFACE

D0 Element nodal displacementvectors; in elementbasisand developer'snode

sequence. If CTLS(pcCORO) > 0, then displacementsare relative to

corotational element frame. Otherwise, they are relative to initial element

frame. For linear analysisor low-order geometrically nonlinear analysis

(CTLS(pcNLG) < 2), displacementsmay typically be ignored.

INERT()

STORE()

Inertia coefficientsat element integration points; dependon element type.

For example, for shellelements,INERT is a three by DEFS(pdNIP) array

containing the results from the following three integrals through the shell

thickness: fz pdz, fz pzdz, fz Pz_dz, at each element integration point.

Element private storage array defined using subroutine ESOI.

Output Arguments

Me0 Element consistent mass matrix; stored in upper triangular form, and or-

dered according to the developer's node sequence. Components should be

in terms of the element intrinsic basis --- which is the same basis as that

used for the nodal coordinates (input argument X) and displacements (in-

put argument D). All re-sorting and transformations required for eventual

output to the database will be performed by the ES processor shell. See

Sections 3.3 and 3.4 for details and examples.

STATUS Subroutine return status (> 0 --_OK).

Relevant Processor Commands

FORM MASS/CONSISTENT

3-36 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.13 Subroutine ESOMD: Element Diagonal Mass Matrix

Entry point ESOMDshould compute tile element diagonal or lumped massmatrix, em-

ploying the inertia tensor coefficents(argument INERT) as input.

Calling Sequence

call ESOMD (eltnum, ctls, defs, dofs, nodes, pars, x, d, inert, store, rod, status)

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS 0 List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for stiffness computation --- and hence determines whether or not the

element displacements (input argument D) are to be used.

DEFS 0 List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number (the nu-

merical equivalent of ELTNAM).

DOFS() List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing mat). This inapping wilt ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal sequence upon entry.

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES.PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-37

Standard ES Kernel Routines DEVELOPERINTERFACE

D0 Element nodal displacementvectors; in elementbasisand developer'snode

sequence. If CTLS(pcCORO) > 0, then displacementsare relative to

corotational element frame. Otherwise, they ar,-relative to initial element

frame. For linear analysisor low-order geometrically nonlinear analysis

(CTLS(pcNLG) < 2), displacementsare typically ignore(].

INERT() Inertia coefficientsat element integration points; dependon element type.

For example,for shell elements,INERT is a three by DEFS(pdNIP) array

containing the results from the following three integrals through the shell

thickness: fz pdz, fz pzdz, fz pz2dz, at each element integration point.

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

RID() Element diagonal mass matrix; presently stored as a vector of length equal

to the number of element equations (DEFS (pdNEE)). Components should

be in terms of tile element intrinsic basis, which is the same basis as that

used for the nodal coordinates (input argument X) and displacements (in-

put argument D). All resorting and transformations required for eventual

output to the database will be performed by the ES processor shell. (See

Sections 3.3 and 3.4 for details and examples.)

STATUS Subroutine return status (> 0 =>OK).

Relevant Processor Commands

FORM MASS/DIAGONAL

3-38 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines
.....................

3.2.14 Subroutine ESON: Element Normal Vectors

Entry point ESON should compute unit normal vectors for plate/shell elements --

at element nodes. It is required only if the developer has set DEFS(pdNORO) greater

than zero in subroutine ESOD; in which case subroutine ESON is invoked in response to

ES processor command DEFINE FREEDOMS, to suppress extraneous normal-rotation

("drilling") freedoms for shell elements that do not support such freedoms.

Calling Sequence

t eall (eltnum, ctls, defs, dofs, nodes, pars, x, n, status)ESON

Input Arguments

ELTNUM Element sequence number. (Useful only for diagnostic purposes.)

CTLS() List of element control parameters.

DEFS 0 List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element-type number.

DOFS() List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal sequence upon entry.

PARS() Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-39

Standard ES Kernel Routines DEVELOPER INTERFACE

Output Arguments

NO Unit normal vectors at element nodes. Relevant for plate and shell ele-

ments only. The unit normal at a node should be defined as a unit vec-

tor normal to the element reference surface (tangent plane) at that node,

defined in the devch)per's node sequence, and expressed in tile intrinsic

element coordinate basis. See Section 3.3 Glossary for more details.

STATUS Subroutine return status (> 0 =>OK).

Relevant Processor Commands

DEFINE FREEDOMS

3-40 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.15 Subroutine ESOPD:

Entry point ESOPD may be used to postprocess nodal displacements. This feature is useful

for superparametric elements and elements with p-extension.

Calling Sequence

I call ES0PD (eltnum, ctls, defs, dofs, nodes, pars, x, d, status)

Input Arguments

ELTNUM Element sequence number. (Useful only for diagnostic purposes.)

CTLS() List of clement control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for strain computation.

DEFS 0 List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element type number (the nu-

merical equivalent of ELTNAM).

DOFS 0 List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into th(, developer's internal sequence upon entry.

PARS() Array of clement-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3-41

Standard ES Kernel Routines DEVELOPER INTERFACE

n() Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame.

Output Arguments

STATUS Subroutine return status (_> 0 =_OK).

3-42 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Standard ES Kernel Routines

Relevant Processor Commands

FORM STRAIN

FORM STRESS

FORM FORCE/INTERNAL

FORM STIFFNESS/GEOMETRIC

FORM STIFFNESS/MATERIAL (if materially nonlinear)

FORM STIFFNESS/GEOMETRIC

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3-43

StandardES Kernel Routines DEVELOPER INTERFACE

3.2.16 Subroutine ESOPS:

Entry point ESOPS may be used to postprocess element stresses such as the recovery of the

transverse shearing stresses using the equilibrium equations rather than the constitutive

equations.

Calling Sequence

l eall ESOPS (eltnum, ctls, defs, dofs, nodes, pars, x, d, store, c, e, s, status)]

Input Arguments

ELTNUM Element sequence number. (Useful only for diagnostic p_rposes.)

CTLS() List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the levcl of geometric nonlinearity to e.-_-

ploy for strain computation.

DEFS 0

DOFS()

List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element type number (the nu-

merical equivalent of ELTNAM).

List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the devel(q)er's internal sequence upon entry.

PARS() Array of element-developer's research parameters. Usefifl for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES_PARS.

xo Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

3-44 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Standard ES Kernel Routines

D0

STORE()

c()

Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relative to initial element

frame.

Element private storage array defined using subroutine ESOI.

Constitutive matrices (pointwise, or integrated over the cross-section, de-

pending on element class), at element integration points, expressed in el-

ement stress bases. Individual constitutive matrices are stored as full,

square (NSTR by NSTR) matrices, with rows and columns corresponding

to the stress and strain arrays, S and E, respectively. See Sections 3.3-3.4

and Chapter 5 for details.

Output Arguments

E() Strains (continuum or resultant, depending on element class) at ele-

ment integration points, expressed in element stress bases. Relevant

only if DEFS(pdCNS) > 0. Input if DEFS(pdCNS) equals 3; output if

DEFS(pdCNS) equals 1 or 2.

s0 Stresses (or resultants, depending on element class) at element integration

points, expressed in element stress bases.

STATUS Subroutine return status (> 0 -_OK).

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3-45

Standard ES Kernel Routines DEVELOPER INTERFACE

Relevant Processor Commands

FORM STRAIN

FORM STRESS

3-46 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Standard ES Kernel Routines

3.2.17 Subroutine ESOS: Element Stresses

Entry point ESOS should compute stresses at clcmellt iutc:4rati()1: poillts - but only for

elements that either do not have the ability to compute str_Lin_ (e.g., as._urned stress hybrid

clclnents) or for element developer's who wish to per[_)rm t,heir owl_ constitutive calcula-

tions (see argument DEFS(pdCNS) in Section 3.3 and also in Chapter 5 for details). This

routine is not required for elements that enlploy the standard constitutive interface, and

hence provide strains using subroutine ESOE.

C_11ing Sequence

call (eltnum, ctls, defs, dofs, nodes, pars, x, d, store, c, e, s, status)ESOS

lnput Arguments

ELTNUM Element sequence number. (Us_ful only for diagnostic purposes.)

CTLS() List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifics the level of geometric nonlinearity to em-

ploy for strain computation.

DEFS() List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element type number (the nu-

merical equivalent of ELTNAM).

DOFS() List of potentially active element nodal degrees of ireedom.

NODES() Element node resequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal sequence upon entry.

VARS() Array of clement-developer's research parameters. Useful for defining vari-

ations on basic clement types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES PARS.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-47

Standard ES Kernel Routines DEVELOPER INTERFACE

x0 Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

D() Element nodal displacement vectors; in element basis and developer's node

sequence. If CTLS(pcCORO) > 0, then displacements are relative to

corotational element frame. Otherwise, they are relativ¢_ to initial element

frame.

STORE() Element private storage array defined using subroutine ESOI.

c() Constitutive matrices (pointwisc, or integrated over the cross-section, de-

pending on element class), at element integration points, expressed in el-

ement stress bases. Individual constitutive matrices are stored as full,

square (NSTR by NSTR) matrices, with rows and columns corresponding

to the stress and strain arrays, S and E, respectively. See Sections 3.3

through 3.4 and Chapter 5 for details.

Output Arguments

E() Strains (continuum or resultant, depending on element class) at element

integration points, expressed in element stress bases. Relevant only if

DEFS(pdCNS) > 0. Input ifDEFS(pdCNS) =---3; output ifDEFS(pdCNS)

= lor2.

s() Stresses (or resultants, depending on elentent class) at element integration

points, expressed in element stress bases.

STATUS Subroutine return status (_> 0 =_OK).

3-48 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

Relevant Processor Commands

FORM STRAIN

FORM STRESS

FORM FORCE/INTERNAL

FORM STIFFNESS/GEOMETRIC

FORM STIFFNESS/MATERIAL (if m_/terbdly iJonlinear)

FORM STIFFNESS/GEOMETRIC

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-49

Standard ES Kernel Routines DEVELOPER INTERFACE

3.2.18 Subroutine ESOT: Element Transformations

Entry point ESOT should compute orthogonal transformation matrices relating the element-

developer's stress basis at each element integration point to the element intrinsic basis (see

Section 3.4 for examples of these coordinate bases). It is required for problems involving

nonisotropic materials, in which strains, stresses and constitutive matrices may have to be

transformed between the element stress basis and some other basis (e. g., th(, material basis,

the gh)l)al basis). It may also be required even for isotropic materials, ['or post-processing

stresses/strains in cases where the element bases are not aligned with directions that are

of interest to the user. The developer is only required to relate the element stress bases to

the element intrinsic basis which is the fixed basis in which the element nodal coordinates

are provided as input. Subsequent transformations to other coordinate bases are handled

automatically by the ES processor shell.

Calling Sequence

call ES0T (eltnum, ctls, defs, dofs, nodes, pars, x, store, tel, status)

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS() List of element control parameters.

DEFS() List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular impor-

tance, however, is DEFS(pdOPT), which is the element type number, and

DEFS(pdSTOR), which is the developer-prescribed length of output array

STORE.

DOFS() List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing real). This mapl, ing will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal sequence upon entry.

3-50 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Standard ES Kernel Routines

PARS() Array of element-developer'sresearchtmrainwaters.Usefulfor defining vari-

ations on basicelement types before making them standard options speci-

fied by ELTNAM. Theseparameters arecurrently input to ES processors

through the command macrosymbolES.PARS.

x0 Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

STORE() Element private storage array defined using subroutine ESOI.

Output Arguments

TEL() Transformations from element stress bases at integration points to element

intrinsic basis. Dimensioned as (3,3,NIP), where NIP is the number of

integration points per element, so that TEL(i,j,p) is defined as the dot

product of the ith element intrinsic basis vector with the jth element

stress basis vector at element integration point p. In other words, at a

given integration point, the columns of TEL(3,3) are simply the element

^" ^" ^' expressed in the element intrinsic basisstress basis vectors: e_,e2,e3,

(i.e., the same basis as that used for the components of the element nodal

coordinates: input argument X).

STATUS Subroutine return status (> {] : ._OK).

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-51

Standard ES Kernel Routines DEVELOPER INTERFACE

3.2.19 Subroutine ESOXP:

Entry point ESOXP should compute extrapolation coefficients that allow quantities, such

as stresses, evaluated at the quadrature points of the clement to bc extrapolated to other

points within the element (e.g., to the element nodes).

Calling Sequence

call ESOXP (eltnum, ctls, defs, dofs, nodes, pars, x, store, extrap, status)

Input Arguments

ELTNUM Element sequence number. Useful only for diagnostic purposes.

CTLS() List of element control parameters. Of particular importance is entry

CTLS(pcNLG), which specifies the level of geometric nonlinearity to em-

ploy for strain computation.

DEFS() List of element definition parameters. The individual parameters which

are relevant here will depend on the developer. Of particular importance,

however, is DEFS(pdOPT), which is the element type number (the nu-

merical equivalent of ELTNAM).

DOFS() List of potentially active element nodal degrees of freedom.

NODES() Element node resequencing map. This mapping will ordinarily not be nec-

essary in this subroutine, as all nodal arrays have already been reordered

into the developer's internal scquence upon entry.

Array of element-developer's research parameters. Useful for defining vari-

ations on basic element types before making them standard options speci-

fied by ELTNAM. These parameters are currently input to ES processors

through the command macrosymbol ES__PARS.

x() Element nodal coordinate vectors; in initial configuration, element basis

and developer's node sequence.

3-52 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Standard ES Kernel Routines

STORE() Element private storagearray definedusing subroutine ESOI.

Output Arguments

EXTRAP 0 Extrapolation coefficients dimensioned as MAXNIP by MAXNEN.

STATUS Subroutine return status (> 0 =_OK).

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3-53

Standard ES Kernel Routines DEVELOPER INTERFACE

Relevant Processor Commands

FORM STRAIN

FORM STRESS

3-54 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Glossaryof Standard ES Kernel Arguments

3.3 Glossary of Standard ES Kernel Arguments

The following pages contain the formal definitions for each of the argument variables

appearing in the standard kernel entry points. The arguments are arranged alphabetically,

and include specification of the argument type and length. Also included in this Glossary

are definitions for the various parameters used to dimension arguments that happen to

be arrays. At the end of the Glossary is a table that shows the correspondences between

various kernel arguments and processor macrosymbols, so that the developer is better able

to trace the data flow frorn the user to the processor for purposes of software verification.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-55

Glossaryof Standard ES Kernel Arguments DEVELOPER INTERFACE

CTLS (20)

KERNEL ARGUMENT GLOSSARY

Dimension

(NSTR,NSTR,NIP)

Type

F

1

Definition
I

Constitutive matrices at element in-

tegration points. C(i, j, p) is the con-

stitutive coefficient relating the jth

incremental strain component to the

ith incremental stress component at

element integration point p.

List of element control parameters.

CTLS(pcCORO) (l) Corotation switch; employed by ES

processor shell for automatic treat-

ment of geometric nonlinearity due

to large rotations. Relevant only if

CTLS(pcNLG) > 0. (See Chapter 4

for an explanation of these options.)

0 :=> Off: corotational operations will

be skipped.

1 _ Low-Order Option: basic coro-

tational transformations will be em-

ployed to enable large rotations.

2 --> High-Order Option: a more

accurate (and expensive) treatment

of large rotations and consistent lin-

earization than option 1 will be em-

ployed.

CTLS(pcNLG) (1) Geometric nonlinearity switch.

0 =_- Off: problem is geometrically

linear (small displacements/rotations).

1 :> Low-Order Option: problem is

geometrically nonlinear, but devel-

oper should use linear element strain-

displacement relations. Meaningful

only if CTLS(pcCORO) > 0, so that

large rotations are handled automat-

ically by the corotational algorithm.

3-56 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Glossaryof Standard ES Kernel Arguments

Argument

CTLS(pcNLG)

KERNEL ARGUMENT GLOSSARY (continued)

Dimension Type Det_nition

(l) I (continued)

2 _ High-0rder Option: problem is geo-

metrically nonlinear and developer should

use nonlinear element strain-displacement

relations. May be used in conjunc-

tion with CTLS(pcCORO) > 0 to obtain

higher-order accuracy for beam and shell

elements that employ moderate-rotation

strain-displacement relations.

3 =_ same as 2 plus finite strains

are expected; hence, deformation gradi-

ents must be provided using subroutine
ESODG.

CTLS(pcNLL) (I) I Load nonlinearity switch;

1 _ element loads are displacement de-

pendent;

0 _ element loads are not displacement

dependent.

CTLS(pcNLM) (1) I

CTLS(pcSREF) (,) I

DEFS (20) I

Material nonlinearity switch;

1 ---_ element is materially nonlinear;

0 --_ element materially linear.

Stress reference frame switch;

> 0 --> stress transformation required

(nonisotropic material) ;

= 0 ==_ no stress transformation required

(isotropic material).

List of intrinsic element definition param-

eters.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-57

Glossary of Standard ES Kernel Arguments DEVELOPER INTERFACE

Argmnen t

DEFS(pdC)

KERNEL ARGUMENT GLOSSARY (continued)

Dimension Type Definition
I

(1) I Continuity of interelement displacement

field; e.g.,

0 ::_ C O (displacement continuity only)

1 =_ C1 (displacement and slope

continuity)

Currently used to indicate (i) whether
transverse shear strains are intrinsic to

beam/shell element constitutive behavior,

and (ii) how to process high-order corota-

tional option (CTLS(pcCORO)=2).

DEFS(pdCLAS) (1) Element class. Currently valid classes:

idBEAM; idSHEL, idSOLI, idWILD

(See Section 3.4 for examples.)

idBEAM ==_ Beam element; "stress" com-

ponents correspond to: {Nz (axial force),

M,,M v (bending moments), Mz (tor-

sional moment) }, plus, if DEFS (pdNSTR)

= 6, {Qy, Qz} (transverse shear forces).

idSHEL =_ Shell element; "stress" com-

ponents correspond to: {Ns,Ny,Nsy}

(membrane force resultants), {Ms, My, Msy:

(bending moment resultants), plus, if

DEFS(pdNSTR) = 8, {Q,, Qy} (transverse-

shear force resultants).

idSOLI :=_ Solid element; stress compo-

nents = {as, ay, as, aye, a_x, asy}.

idWILD :-_ Nonstandard element class.

- currently not implemented-

Note: Standard element classes can be

degenerated into special subclasses using

the stress sequence argument: STRSEQ.

For example, rod elements are a sub-

class of beam elements; plate elements are

a subclass of shell elements; and plane

stress elements are a subclass of solid

elements.

3-58 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Glossaryof Standard ES Kernel Arguments

,4 rg u men t

DEFS(pdCNS)

DEFS(pdDIM) (1)

KERNEL ARGUMENT

Dimension Type

(i)

I

GLOSSARY (continued)

Definition

Constitutive interface option.

0 =_element developer will supply strain

routine (ESOE) only; stress and constitu-

tive matrix functions will be performed

using the built-in ES constitutive utili-

ties. (Note: Current constitutive utilities

employ linear constitutive matrices gen-

erated by processor LAU. This will be

replaced by a standard interface to the

generic constitutive processor -- see Sec-

tion 5.4.)

1 =:>clement developer will supply com-

bined stress/strain routine only (ESOS);

constitutive matrix functions will be per-

formed using the built-in ES constitutive

utilities. (This option is intended primar-

ily for assumed stress hybrid elements.

2 _same as option 1, except developer

will supply a constitutive matrix routine

as well (ESOC).

3 =_elcment developer will supply strain

(ESOE), stress (ESOS) and constitutive-

matrix (ESOC) routines. This option is

for developers who prefer to supply their

own constitutive utilities, even though

their elemcnts are of the assumed dis-

placement or strain variety.

Element intrinsic spatial dimensionality;

1 if DEFS(pdCLAS) = idBEAM

2 if DEFS(pdCLAS) = idSHEL

2 or 3 if DEFS(pdCLAS) = idSOLI

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-59

Glossaryof Standard ES Kernel Arguments DEVELOPER INTERFACE

Argument

KERNEL ARGUMENT GLOSSARY (continued)

Dimension Type Definition

DEFS(pdNDOF) (1)

DEFS(pdNEE) (1) I

Number of freedoms per element node.

Currently valid options:

2 _ 2-D solid elements (u, v)

3 => 3-D solid elements (u, v, w)

6 => beam, plate or shell elements

Number of element equations;

-= DEFS(pdNEN) × DEFS(pdNDOF).

DEFS(pdNEN) (1)

DEFS(pdNIP) (1)

Number of element nodes.

Number of element integration points;

i.e., points at which stresses (or stress re-

sultants) are stored.

DEFS(pdNSTR) (1) I Number of strcss components per integra-

tion point. Currently valid options:

8 for DEFS(pdCLAS)-idSHEL

and DEFS(pdC) - 0 (or 1);

6 for DEFS(pdCLAS)--idSOLI;

6 for DEFS(pdCLAS)=idSHEL

and DEFS(pdC)=I;

6 for DEFS(pdCLAS)--idBEAM

and DEFS(pdC)--O (or 1);

4 for DEFS(pdCLAS)=idBEAM

and DEFS(pdC) = 1;

3 for DEFS(pdCLAS)=idSOLI

and DEFS(pdDIM) --- 2

3-60 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Glossary of Standard ES Kernel Arguments

Argument

DEFS(pdNORO)

KERNEL ARGUMENT GLOSSARY (continued)

Dimension Type Det_nition

(1) I Element normal-rotation parameter. Rel-

evant only for automatic degree of free-

dom suppression of plate/shell elements.

Indicates minimum angle (in degrees) be-

tween shell element normal vector and

any computational basis vector at each el-

ement node below which the correspond-

ing rotational degrees of freedom should

be suppressed if no other elements are at-
tached.

0 =_Element has normal-rotation

("drilling") stiffness; do not automati-

cally suppress any rotational degrees of

freedom.

>0 :_Element does not have normal-

rotation ("drilling') stiffness; assume nor-

mal rotational stiffness exists about any

computational axis that makes an angle

of at least DEFS(pdNORO) degrees with

the element normal vector at an element

node.

DEFS(pdOPT) (1) I Element-type option number. It is the

numerical equivalent of ELTNAM and is

provided so that the developer need only

decode the character string in ELTNAM
once in subroutine ESOD.

DEFS(pdPARS) (1) I Number of parameters in PARS array.

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 3-61

Glossary of Standard ES Kernel Arguments DEVELOPERINTERFACE

Argument

DEFS(pdPROJ)

DEFS(pdSHAP) (1)

KERNEL ARGUMENT GLOSSARY (continued)

Dimension T ypeDet]ni t ion

(1) I Rigid-body projection option. May be

used to automatically remove (most of)

the spurious energy generated by some

elements during infinitesimal rigid-body

motion. This is performed by operating

on the element stiffness and force arrays

with a projection matrix (or projector).

The projector, and its derivative, can have

a beneficial effect on element accuracy in

both linear and geometrically nonlinear

regimes.

0 =>Off: no projection.

1 =>Low-order Option: basic projection.

2 =>High-order Option: basic projection

plus a correction to the geometric stiff-

ness.

NOTE: To switch the projector on as

a function of processor macrosymbol

ES_PROJ, the developer should set:

DEFS(pdPROJ) = CTLS(pcPROJ).

Shape of element surface used to de-

fine coordinate triad; currently = id°

TRIA (triangle) or idQUAD (quadrilat,--

eral). Note that for 3-D solid elements,

idTRIA would be used for wedge or

pyramid-type elements, whose triangu-

lar surface is used to define the element

x_ - y_ plane; while idQUAD would be

used for wedge, pyramid or "brick" ele-

ments for which a quadrilateral surface is

used to define the element xe -Ye plane.

The definition of these axes is determined

by the element node sequence (NODES).

DEFS(pdSTOR) (1) I Number of variables to be stored/retrieved

for the clement developer in array STORE.
.......................

3-62 CSM Testbed Generic Structural-Element Processor Manual Revised 12//12/89

DEVELOPER INTERFACE Glossaryof Standard ES Kernel Arguments

Argument

DEFS(pdTGE)

KERNEL ARGUMENT GLOSSARY (continued)
I

Dimension Type Detlnition

(1)

DEFS(pdTWIS) (1)

I Element coordinate basis option; affects

convention used to define the transforma-

tion from the element basis to the global

basis (Tge).

0 or 1 =v Define z_ axis using corner nodes

1 and 2 (see Fig. 3.1).

2 _ Define y_ axis using corner nodes 1

and 4 (see Fig. 3.1).
.........................

I Sign of twisting curvature for shell ele-

ments.

+1 -:-twist based on continuum definition

of shear strain

-1 =>twist based on the negative of the
continuum definition

(Note: The default convention for con-

stitutive matrices output from processor

LAU corresponds to the -1 option. Hence

processor ES must compensate for this re-

versal if DEFS(pdTWIS) = +1.)

DEFS(pdES,) (1)

DEFS(pdESD) (,)

DEFS(pdESE) (,) I

DEFS(pdESFI I (E) I

Implementation status of routine ES*.

0 =_Not Yet Implemented

1 => Implemented

I Implementation status of routine ESOD.

Implementation status of routine ESOE.

hnp|ementation status of routine ESOFI.

DEFS(pdESFB) (1) I Implementation status of routine ESOFB.

DEFS(pdESFS) (1) I Implementation status of routine ESOFS.

DEFS(pdESI) (l) I Implementation status of routine ESOI.

DEFS(pdESKG) (1) I Implementation status of routine ESOKG.

DEFS(pdESKL) (1) I Implementation status of routine ESOKL.

DEFS(pdESKM) (1) I hnplementation status of routine ESOKM.
...................................

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-63

Glossaryof Standard ES Kernel Arguments DEVELOPER INTERFACE

I

Argument

KERNEL ARGUMENT GLOSSARY (continued)

Dimension Type Definition

DEFS(pdESMC) (1) I Implementation status of routine ESOMC.

DEFS (pdESMD) (1) I Implementation status of routine ESOMD.

DEFS(pdESPD) (1) I Implementation status of routine ESOPD.

DEFS(pdESS) (1) I Implcmcntation status of routine ESOS.

DEFS(pdEST) (1) I Implementation status of routine ESOT.

DEFS(pdESN) (1) I Implementation status of routine ESON.

NOTE: The above DEFS(pdES,) parameters have not yet been implemented in

the ES processor shell.

3-64 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Glossaryof Standard ES Kernel Arguments

Argument

D

KERNEL ARGUMENT GLOSSARY (continued)

Dimension Type Det_nition

(NDOF,NEN) F

DOFS (NDOF,NEN) I

E (NSTR,NIP) F

Element nodal displacement vectors. D(k,a) is

the displacement corresponding to the kth de-

gree of freedom at element node a; expressed

in the element local basis. If CTLS(pcNLC)

> 0, D is relative to the current corotated

element basis, with rigid-body motion sub-

tracted; otherwise, D is relative to the initial

element basis.

Element degree of freedom pattern at element

nodes. Set DOFS(i,a) = 1 if the ith standard

nodal degree of freedom at element node a is

supported by the element. The standard nodal

degree of freedom sequence is: u, v, w, 8z, 0_, 0z

-- all expressed in the element local basis:

{xe, ye, ze}. For most elements, DOFS is a ta-

ble full of ones. However, zeroes may be useful

for elements that do not have the same number

of degrees of freedom at every node; or those

with superfluous (e.g., geometric) nodes.

Note: This table is eventually intended to al-

low an arbitrary sequence of degrees of freeom

at each node; currently only subsets of the

standard sequence are allowed.

Strains at element integration points. E(i,p)

corresponds the ith strain component at el-

ement integration point p; expressed in the

integration-point local (stress) bases. The

order and nature of the strain components

depend on the element class (as defined in

DEFS(pdCLAS)). Engineering as opposed to

tensor shear strain components are assumed.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-65

Glossary of Standard ES Kernel Arguments DEVELOPER INTERFACE

||

Argument

ELTNAM

KERNEl, ARGUMENT GLOSSARY (continued)

Dimension Type

(1) C

ELTNUM (1) I

illl

FB (NEE) F

i i

FI (NEE) F

|l

De[inition
ii i

Element type name; input to element defini-

tion subroutine (ESOD) only, as a branch point

on which to define element parameters (e.g.,

DEFS, DOFS, NODES and PARS).

Element number. May be used by kernel rou-

tines for diagnostic t)urposcs ill case of an er-

ror.
H

Element body-force vector.

Represent consistent "nodal" forces due to ex-

ternal body loads such as gravity. FB(p) corre-

sponds to the pth element body-force compo-

nent; expressed in the element intrinsic basis

(see Section 3.4). For standard element types,

the element equations (1 through NEE) are

arranged nodally, as if tile FORTRAN array

were dimensioned (NDOF,NEN). In this case,

FB(i, a) is the force component corresponding

to tile ith degree of freedom at element node a

(according to the developer's node sequence).

Element internal-force vector.

Represent "nodal" forces due to internal stress

distribution. FI(p) corresponds to the pth el-

ement intcrnal-force component; expressed in

the element intrinsic basis (see Section 3.4).

For standard element types, the clement equa-

tions (1 through NEE) are arranged nodally,

as if the FORTRAN array were dimensioned

(NDOF,NEN). In this case, FI(i, a) is the force

component corresponding to the ith degree of

freedom at clement node a (according to the

(h;veh)per's node sequence).

3-66 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Glossaryof Standard ES Kernel Arguments

KERNEL ARGUMENT GLOSSARY (continued)

Argument Dimension

FL (NEE)

Type Definition

F

FP (NEE) F

FS (NEE) F

id, (1) I

INERT (NINERT,NIP) F

Element line-force vector.

Represents consistent nodal forces due to dis-

tributed line loads (LOADL). Stored in the

same way as FB, FI, etc.

Element pressure-force vector.

Represents consistent nodal forces due to dis-

tributed pressure loads (LOADP). Stored in

the same way as FB, FI, etc.

Element surface-force vector.

Represent consistent nodal forces due to dis-

tributed surface loads (LOADS). Stored in tile

same way as FB, FI, etc.

Parameters used to define DEFS(pdCLAS);

e.g., idBEAM, idSHEL, idSOLI. The specific

integer values for these parameters (which are

of little relevance to the element developer) are
defined in "INCLUDE" block ESOPTR.INC.

Coefficients of integrated inertia tensor evalu-

ated at clement integration points, for com-

puting element mass matrix. Depends on

clement type. For shell elements, NINERT

= 3, and INERT(1,i)= f, pdz, INERT(2,i)

= LPzdz , and INERT(3,i) = LPz2dz --

each at element integration point i, where

p is the density (mass per unit volume),

and the integral is over the shell thickness

(z is the shell thickness coordinate). For

beam elements, INERT contains the 6x6 inte-

grated cross-section inertia matrix (see dataset

PROP.BTAB.I.101) at each integration point.

For solid elements, INERT simply contains the

density (mass per unit volume) at each inte-

gration point.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-67

Glossary of Standard ES Kernel Arguments DEVELOPER INTERFACE

Argument

KG

KERNEL ARGUMENT GLOSSARY (continued)

Dimension Type Definition

(NUT) F

KM (NUT) F

KL (NUT) F

Element geometric stiffness matrix (upper tri-

angular portion).

The pth logical row and qth logical column

of this matrix is the stiffness coefficient re-

lating the element qth incremental displace-

ment component to the element pth incremen-

tal force component; expressed in the element
intrinsic basis.

The element equations (1 through NEE) are

arranged in correspondence with the element

force and displacement vectors, but only the

upper triangle of the matrix is represented

(due to symmetry). Thus, this array should

contain stiffness components in the order

K11, K12, K22, K1 s, K2a, K3 3, • • •, K,_,,,_,,e.

Element material stiffness matrix.

Stored in the same format as KG (see above).

Element load stiffness matrix.

Stored in the same format as KG (see above).

LOADB (NDOF,NEN) F Element body load vectors at nodes.

LOADL (NDOF,NNLT) F Element line load vectors at nodes.

LOADP (NNST) F Element pressures at nodes.

LOADS (NDOF,NNST) F Element surface load (traction) vectors at
node.

MC (NUT) F Element consistent mass matrix.

The pth logical row and qth logical column of

this matrix is the mass coemcient relating the

element qth acceleration component to the el-

ement pth inertial force component; expressed
in the element intrinsic basis.

Stored in the same format as KG (see above).

3-68 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

DEVELOPER INTERFACE Glossary of Standard ES Kernel Arguments

KERNEL ARGUMENT GLOSSARY (continued)

Argument Dimension

MD (NEE)

Type Definition

F

N (3,NEN) F

NDOF (1) I

NEE (1) I

i

NEN (1) I

NIP (1) I

NNLT (1) I

NNST (1) I

Element diagonal or lumped mass ma-

trix MD (p) corresponds to the mass co-

efficient relating the element pth accel-

eration component to the element pth

(inertial) force component; expressed in
the element local basis.

Unit normal vectors at element nodes;

expressed in element (xe,y_,z_) basis.

Relevant only for plate/shell elements.

Number of DOFS per element node.

(Same as DEFS(pdNDOF))

Number of element equations.

(Same as DEFS(pdNEE))

Number of element nodes.

(Same as DEFS(pdNEN))

Number of element integration points.

(Same as DEFS(pdNIP))

Total number of nodes on all element

lines; nodes are counted independently

on each element line. For example, for

a 4-node shell element, NNLT : 8 (2

nodes per line times 4 lines per ele-

ment). See Figure 2.1b for element

line/node ordering conventions.

Total number of nodes on all element

surfaces; nodes are counted indepen-

dently on each element surface. For

example, for an 8-node solid element,

NNST == 24 (4 nodes per surface times

6 surfaces per element). See Figure

2.1b for element surface/node ordering
conventions.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-69

Glossary of Standard ES Kernel Arguments DEVELOPER INTERFACE

KERNEL ARGUMENT GLOSSARY (continued)

Argument Dimension

NODES (NEN)

NSTR (1) I

NUT (1) I

i

PARS

pc*

(nPARS) F
I

(1) I

pd* (1) I

S (NSTR,NIP) F

Type Definition

Element node sequence mapping.

NODES(a) is the standard (external) element

node number corresponding to element devel-

oper's (internal) node a. See Section 3.4 for

examples of standard element node sequences.

STATUS (1) I

Number of stress components per element in-

tegration points.

(Same as DEFS(pdNSTR))

Number of entries in the upper triangle of an

element matrix (NUT = NEEx (NEE + 1)/2).

Array of element research parameters.

Pointers to CTLS array. Specific values of

these indices (which are of little relevance to

the element developer) are defined in "IN-
CLUDE" block ESOPTR.INC.

Pointers to DEFS array. Specific values of

these indices (which are of little relevance to

the element developer) are defined in "IN-
CLUDE" block ESOPTR.INC.

Stresses at element integration points.

S(i,p) = the ith stress component at element

integration point p; expressed in the element's

local integration point bases. The order and

nature of the stress components depend on the

element class (see DEFS(pdCLAS)).

Subroutine return status.

STATUS > 0 ::_ OK;

STATUS < 0 ::_ error condition.

3-70 CSM Testbed Generic Structural-Element Processor Manual Revised 12/12/89

DEVELOPER INTERFACE Glossaryof Standard ES Kernel Arguments

KERNEL ARGUMENT GLOSSARY (concluded)

Argument Dimension

STORE (nSTORE)

STRSEQ (NSTR) I

Type Definition

developer's private element storage array.

This array is computed during initialization by

subroutine ESOI automatically stored in the

database and later retrieved by the processor

shell (ES0) for use by other kernel routines.

Stress component sequence mapping.

This array allows elements to be implemented

with arbitrary subsets of the stress com-

ponents defined for the standard element

classes (sec DEFS(pdCLAS)). For example,

for a rod element, the developer would set

DEFS(pdCLAS) -- idBEAM, NSTR--1 and

STRSEQ(1)=I.

- CURRENTLY NOT IMPLEMENTED -

T (3,3,NIP) F

X (3,NEN) F

Transformations from element stress bases at

integration points to element intrinsic basis.

Element nodal coordinates.

X(i, a) corresponds to ith spatial coordinate at

element node a; expressed in the element lo-

cal basis and corresponding to the undeformed

configuration.

Revised 12/12/89 CSM Testbed Generic Structural-Element Processor Manual 3-71

Examples of Specific Element Types DEVELOPER INTERFACE

3.4 Examples of Specific Element Types

In this section, guidelines for the preparation of the standard kernel routines/arguments,

described in the preceding sections, are given for specific element types. The element

types considered here axe not meant to be exhaustive, but merely to provide examples

with which most element developers can identify. As mentioned in the Introduction to this

Chapter, implementation of other element types not mentioned here may require one of the

following approaches: (i) straightforward extension of the examples presented for standard

elements; (ii) use of the "wild" element approach for nonstandard elements; (iii) application

of pressure on the ES processor shell architect to extend the standard framework; or (iv)

development of a special-purpose ES processor shell by the element developer.

Recall that the terms standard and nonstandard (or "wild") elements are defined as follows.

Standard elements are fully recognized by the ES processor shell, so that various standard

operations, such as:

• Coordinate transformations

• Corotational updates (for geometric nonlinearity)

• Constitutive processing (for linear and nonlinear materials)

• Automatic Freedom Suppression

may be performed automatically -- by the shell. On the other hand, wild elements are

treated as "black boxes", that must perform all such operations on their own -- i.e., at the

kernel level. Thus, the developer is confronted with the usual trade-off between generality

and simplicity: If the element fits into one of the standard molds, then the developer's

responsibility will be less. If the element is too exotic ("wild") for the standard conventions,

then the developer must do it all.

The following subsections are organized according to the number of intrinsic element spatial

dimensions (l-D, 2-D, 3-D). Elements that do not fit within the framework of the standard

I-D, 2-D and 3-D elements discussed in Sections 3.4.1 through 3.4.3, may be implemented

as "wild" elements, as described in Section 3.4.4.

3-72 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

Remark 3.1 The coordinate systems and node-numbering conventions described

below for standard (i.e., non-"wild") elements should not require the developer to

make major changes to existing element computational routines. For example, the

developer may employ his/her own internal node-numbering conventions, as long as

he/she provides a mapping between the standard (user) numbering scheme and the

developer numbering scheme. This mapping is the NODES array (Section 3.3), which

is defined using kernel routine ESOD (Section 3.2) and is used by the ES processor shell

to automatically resort data as it passes to and from the standard kernel routines.

Furthermore, the intrinsic element coordinate system (xe,y_,z¢), which is defined

uniquely by the element shape and the user node numbers, may be viewed by the

element developer as a global coordinate system. The main use of this coordinate

system is by the built-in corotational utilities, which are described in Chapter 4. (For

beam elements, the intrinsic element coordinate basis is also used to orient cross-

section properties.) The only connection the developer has to make with the intrinsic

element coordinate system is through the kernel subroutine ESOT which must provide

the transformation between this frame and the element stress coordinate system,

which the developer is free to choose arbitrarily (see Chapter 5).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-73

Examples of Specific Element Types DEVELOPER INTERFACE

3.4.1 1-D Elements

One-dimensional elements are defined as those elements whose nodes lie on a common

curve, such that only one intrinsic coordinate is required to locate intermediate (e.g., in-

tegration) points. Examples of 1-D elements are rod elements (i.e., straight or curved

elements that may be generally oriented in three-dimensional space, but whose only defor-

mation mode is stretchingt and beam elements (i.e., straight or curved elements generally

oriented in three-dimensional space, which can deform by stretching, bending, and twist-

ing).

3.4.1.1 User Node Numbers and Coordinate Systems for 1-D Elements

Figure 3.1a shows how the end-point node numbers, as defined by the user, determine

the intrinsic element coordinate system (xe, Ye, ze) for standard 1-D elements. Figure 3.1b

shows complete user node-numbering sequences for various low-order and high-order 1-D

elements.

Note that the straight line connecting user nodes 1 and 2 always defines the xe axis --

regardless of whether the element is curved or not, and independent of how many nodes

the element has. The Ye and z_ axes are defined by the user, using a number of options

described in the Testbed User's Manual (under processor TAB; the MREF command).

The important convention for the developer to note is that the ze axis is expected to

lie in the plane of the element cross-section at all points along the element length --

at least in the initial configuration. If the developer uses the z. axis and the cross-

section normal vector to complete a triad defining the element stress coordinate system at

element integration points, this can avoid extraneous transformations of stress, strain and
t

jconstitutive resultants by the ES processor sheik
r

t When used for geometrically nonlinear analysis, these elements are often called cable
elements.

3-74 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.1.2 Developer Node Numbers for 1-D elements (NODES Array)

The standard (user) node numbering sequence for 1-D elements is intended to facilitate

model generation (for users). To facilitate element development, the developer may use

an internal node-numbering sequence which is different from the standard one. The cor-

respondence between the two sequences should be conveyed by the developer through the

NODES array (see Section 3.3), which must be defined in standard kernel routine ES*D.

The NODES array gives the user node index as a function of the developer node index.

The following examples show some common uses of NODES for 1-D elements.

Example 1.

If the element developer's node order is identical to the standard order (shown

in Figure 3.1b), then the developer should set

NODES(a) =a (a=I,...,NEN)

in kernel routine ESOD; where NEN = 2 or 3 or 4, etc.

Example 2.

If the developer's node sequence for a 3-node 1-D element is as shown in Figure

3.2, then the developer should set:

NODES(l) = 1

NODES(2) =3

NODES(3) = 2

in kernel routine ESOD.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-75

Examples of Specific Element Types DEVELOPERINTERFACE

3.4.1.3 Rod Elements

Distinct conventions for rod elements, i.e., 1-D elements with axial stiffness only, are

currentIy not implemented as a standard ES processor option. However, the developer is

free to implement rod elements as a special case of beam elements (Section 3.4.1.2), wherein

certain partitions of the integrated constitutive matrix are ignored, and all rotational

degrees of freedom are suppressed.

3-76 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.1.4 Beam Elements

Beam elements are defined as 1-D elements (i.e., with one intrinsic coordinate variable),

which are embedded in three-dimensional space, such that all six standard nodal degrees of

freedom (three translations and three rotations) are potentially active, and for which stress

resultants (stresses integrated over the cross-section) are employed instead of continuum

stress components. This general definition contains rod elements, cable elements and both

straight and curved beam elements as special cases.

Remark 3.2 While resultant stresses and strains are considered the intrinsic element

parameters, continuum stress and strain components may be used in the constitutive

relations -- especially for nonlinear materials (see Chapter 5).

3.4.1.4.1 Beam-Element Intrinsic Parameters (the DEFS Array)

The following settings should be used when defining the DEFS argument array (by kernel

subroutine ESOD) for beam elements:

DEFS(pdCLAS) = idBEAM

DEFS(pdDIM) = 1

DEFS(pdNDOF) = 6

DEFS(pdC)

DEFS(pdNSTR)

DEFS(pdPROJ)

={
={

1 for C 1 elemerlts

0 for C O elements

4 for C 1 elements

6 for C °, or C 1, elements

CTLS(pcPROJ) (optional)

where the array indices, pd,, and the constant, idBEAM, are defined in all of the standard

kernel routines using built-in parameter statements in the include block ESOPTR.INC.

Other DEFS array entries should be set according to the descriptions given in the standard

kernel argument glossary (Section 3.3).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-77

Examples of Specific Element Types DEVELOPER INTERFACE

3.4.1.4.2 Beam-Element Nodal Freedoms (the DOFS Array)

The DOFS array, which defines (using kernel subroutine ESOD) the potentially active

nodal freedoms for an element type, would typically be set by the developer as follows for

a beam element:

DOFS(6,NEN) --

1

u (1

v 1

w 1

Oz 1

Oy 1

Oz 1

°,,

1 ..

1 ..

1 ..

1 ..

1 ..

1 ..

NEN

1

1

1

1

1

1

where the ones in the table indicate that all translational freedoms (u, v, w) and rotational

freedoms (0z, 0_, 0z) are potentially active at every element node. The directions of these

degrees of freedom are interpreted as corresponding to the computational nodal basis used

to express the assembled system of equations. Thus, it would probably not be meaningful

to selectively turn off individual translation or rotation components at specific nodes using

the DOFS array. However, it would make sense to permanently suppress a11 translational

freedoms or a// rotational freedoms at selected nodes, or to suppress both translational

and rotational freedoms, e.g., at nodes which are used only for geometric definition.

3-78 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.1.4.3 Beam-Element Strains (The E Array)

For beam elements, the standard convention for the strain array, E(NSTR,NIP), is as

follows. For C 1 beam elements (DEFS(pdC)=I and DEFS(pdNSTR)=4):

1 2 ... NIP

1 {_(_i) _(_)

E(4,NIP) = 2 (_z(_l) _z(_2)
3 _(_1) _(_)

4 a(_l) a(_2)

• -" gx(_NIP))

"'" _z(_NIP)

• "" _u(_NIP)

... a(_NiP)

where _p is the element axial coordinate (curve parameter) at integration point p (NIP is

the total number of element integration points); and where _z is the aMal strain, _z and _y

are the bending strains (changes of curvature in the x-y plane and x-z plane, respectively),

and a is the torsional strain (i.e., unit twist).

Similarly, for C O beam elements (DEFS(pdC)=0 and Defs(pdNSTR)-=6):

E(6,NIP)

1

2

3

4

5

6

1 2 ... NIP

,_.(_,) ,_.(ez) ... '_*(_NIP)
(,) _(_)... '_(_NIP)
a(_l) a(_2) .., a(_NiP)

() _(_).-. _(_NW)
(,) zz(_:).-. _(¢NIP))

where "7_ and "Tz are some "average" measures of the transverse-shear strains in the x - y

and x - z planes, respectively, in addition to the axial, bending, and torsional strains

introduced above.

The strain directions (i.e., the orientation of the cross-section coordinates, y,z -- x is

assumed to be normal to the cross-section) and the meaning of the axial (curve) coordinate,

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-79

Examples of Specific Element Types DEVELOPER INTERFACE

(, are left to the developer's discretion, and should be documented by the developer in an

appropriate section of the Testbed User's Manual (see ref. 4).

Remark 3.3 The transverse-shear strain resultants, -_y and 7z, are interpreted as

deriving from engineering shear strains, i.e., they are a factor of two larger than the

correspcnding tensorial shear strains (e= u and exz).

Remark 3.4 The type of strain-displacement relations used (i.e., linear or nonlinear)

are also up to the developer. If the built-in corotational option is selected by the user,

then -- as long as the strains remain small -- it is not really necessary for the developer

to provide nonlinear strain-displacement relations, regardless of the magnitude of the

rotations. However, it may be desirable to include a nonlinear option for improved

accuracy (see kernel input argument CTLS(pcCORO) and Chapter 4).

3.4.1.4.4 Beam-Element Stresses (the S Array)

For beam elements, the standard convention for the stress array, S(NSTR,NIP), is a set of

stress resultants, defined by integrating the continuum stresses over the beam cross-section,

which are (incrementally) work-conjugate to the resultant strain measures described above.

Thus, the number of stress resultants depends on whether or not the element exhibits

transverse-shear strains (i.e., C o versus C 1 displacement compatibility).

Thus, for C 1 beam elements (DEFS(pdC)=I and DEFS(pdNSTR) = 4):

S(4,NIP)

1 2

1 [

3

4

... NIP

•..)

• .-5fz (_NIP)

• .. M,j (_NIP)

• .. T(_NIP)

where (p is the beam-element axial coordinate (i.e., curve parameter) at integration point

p (NIP is the total number of integration points); and where the axial force, Nx, the two

bending moments, Mz and Aiu, and the torsional moment, T, might be defined as follows:

M. = a_, y dA
_y Oxx Z

T azz g - axy z

3-80 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

Similarly, for C O beam elements (DEFS(pdC)=0 and DEFS(pdNSTR) = 6), the first four

stress resultants would be defined exactly as for C 1 elements, with the additional two

components being the transverse-shear stress resultants, i.e.,

S(6,NIP)

1

2

3

4

5

6

1 2

M=(_I) -hirz (_2)

T(_I) T((_)

NIP

Nx (_NIP) _

M,(SNIP)

M_ (_NIP)

T(_NIP)

Qy(_NIP)

Qz(_NIP) J

where the transverse-shear forces might be defined as follows:

The stress directions (i.e., the orientation of the cross-section coordinates, y,z -- x is

assumed to be normal to the cross-section) and the meaning of the axial (curve) coordinate,

(, are left to the developer's discretion, and should be documented by the developer in an

appropriate section of the Testbed User's Manual (see ref. 4).

Remark 3.5 The type of stress components assumed (e.g., nominal or true) depends

on the constitutive algorithm (see Chapter 5). For problems involving small strains,

the components can be interpreted as true (i.e., Cauchy) stresses.

Remark 3.6 It is sometimes desirable to allow C: beam elements to compute

transverse-shear stress resultants. However, since C 1 elements, by definition, lack

transverse-shear strains, the transverse-shear resultants must be recovered using a

separate equilibrium post-processing step. For convenience, such quantities are stored

in a separate array, SX, which is referred to only in kernel routine ESOPS (currently

not implemented).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-81

Examplesof Specific Element Types DEVELOPER INTERFACE

3.4.1.4.5 Beam-Element Constitutive Matrix (The C Array)

For beam elements, the standard convention for the constitutive array, C(NSTR,NSTR,NIP),

is consistent with the definitions for the stress (S) and strain (E) arrays given above. The

tangent constitutive matrix relating incremental strains to incremental stresses at integra-

tion point p is thus defined for C i beam elements by:

C(4,4,p) = I-M_

T sym.

t¢ z K,y OL

C22((p) C24(p)

and for C O beam elements by:

_z /_z /_y O_ "_y _z

Yz C-11 (_p) C12 (_p) C13(_p) C14(_p) C15 (_p) C16 (_p)

C(6,6,p)----M_ C33(_p) C-34(_p) C35(_v) C36(_p)

Qz \ .sy,,l. C66(_p)

where the Cs i are integrated (over-the-cross-section) constitutive coefficients, which de-

pend on both the material and section properties. The actual definitions will depend on

the constitutive processing option selected (see Chapter 5).

i As with the stress and strain arrays (S and E), the interpretation of the directions used

If or the components and the choice of the cross-section and axial coordinates are left up

to the element developer. The transformations between the intrinsic material coordinate

system (i.e., the system used for constitutive calculations) and the element developer's

stress/strain system (i.e., the system used for the C, S and E arrays) are performed auto-

matically by the ES processor shell, as described in Chapter 5.

3-82 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.1.4.6 Beam-Element Displacement Vector (The D Array)

The displacement vector for a beam element can be viewed as a singly dimensioned array,

of length NEE = NDOF×NEN = 6×NEN (see glossary in Section 3.3), or as a two-

dimensional array, defined as follows:

D(6,NEN)

I
W e

01

01
Ye

01
Z_

2
U e

02

02
ze

uNEN

vNEN

wNEN

0NEN
ze

0NEN
Ye

0NEN
ZC

whcre a a aU_,V e,w e are the translations in the x_,y_,z_ directions, respectively, at element

node a; and 0_e,6_e,0z_ are rotations about the corresponding axes. (See definition of

intrinsic element basis in Figure 3.1b)

The node sequence here refers to the developer's order -- not to the user's. It is assumed

for plane-elements, that the global problem is strictly two-dimensional, so that all tran-

formations between the element intrinsic basis (Xe,ye, ze) and the global Cartesian basis

(xg, y_, zg) -- or an alternate computational basis at nodes (xc, yc, Zc) are such that the

respective z axes are parallel.

Remark 3.'/ The D array is input to various standard kernel routines, such as ESOE

(strains), ESOFI (intcrnal forces)and ESOKM, ESOKG (material/geometric stiffness).

The components are always resolved into the element intrinsic basis, and for geomet-

rically nonlinear analysis, with corotation turned on, the displacements are relative to

the moving element frame and hence should be "moderately small" (see Chapter 4).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-83

Examplesof SpecificElement Types DEVELOPERINTERFACE

3.4.1.4.7 Beam-Element Force Vectors (The F Arrays)

The force vector for a beam element -- either internal (FI) or external (FB or FS) --

should be output from the standard kernel routines (ESOFI, ESOFB or ESOFS) as an array

that is in one-to-one correspondence with the element displacement vector• Thus:

F(6,NEN)
ML

• o

• o

FzNcEN

FNEN

FNEN

MNEN

MNEN
MNEN

where F_, F_e, Fa e are the forces in the xe,y_ and ze directions at element node a; and

M_e, hi_e and Mzae are the moments about the corresponding axes• The developer's node

sequence is implied•

3.4.1.4.8 Beam-Element Stiffness Matrices (The K Arrays)

The stiffness matrix for a beam-element -- either material (KM), geometric (KG) or load

(KL) -- should be output from the standard kernel routines (ESOKM, ES0KG or ESOKL)

in the following upper-triangular form:

FZI_

ZeK((NEE2+NEE)/2) = M'

MzNeEN

1 01 ... oNENoL
Kll K12 K13 K14 Kls K16 ... K1,NE E

K22 K23 K24 K25 K26 ... K2,NE E

K33 K34 K3s K36 ... K3,NE E

K44 K45 K46 ... K4,NE E

Ks5 K56 Ks,NE E

K66 ... K6,NE E

°o.

• .. KNEE,NEE)

3-84 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

where NEE ---- 6 × NEN and the numbers are stored as one partial column after another

(see glossary in Section 3.3), and the node numbers correspond to the developer's node

sequence, not the user's.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-85

Examples of Specific Element Types DEVELOPER INTERFACE

3.4.2 2-D Elements

Two-dimensional elements are defined as those elements whose nodes lie on a common

surface, such that only two intrinsic coordinates are required to locate intermediate (e.g.,

integration) points. Examples of 2-D elements are plane elements (e.g., plane-stress, plane-

strain or axi-symmetric solid elements), plate elements (i.e., elements that lie in a plane,

but whose displacement field is transverse to that plane), and general shell elements (i.e.,

elements that lie on a surface in three-dimensional space and whose deformation can involve

both translations and rotations in all three directions) -- see Figure 3.3.

3.4.2.1 User Node Numbers and Coordinate Systems for 2-D Elements

Figure 3.3a shows how the corner node numbers, as defined by the user, determine the

intrinsic coordinate system (xe,ye,ze) for standard 2-D elements. The node-numbering

sequence, which always starts with the corner nodes, for various standard 2-D elements is

shown in Figure 3.3b.

Note that all standard 2-D elements are assumed to have either a triangular or a quadrilat-

eral planform (corresponding to kernel argument DEFS(pdSHAP) = idTRIA or idQUAD),

with either the first 3 or the first 4 nodes, respectively, used to define the element intrinsic

coordinate system (xe,y_, ze). As shown in Figure 3.3, the first 3 or 4 nodes must be the

corner nodes, with a counter-clockwise convention used to define the positive ze direction.

For both triangles and quadrilaterals, there are two options for orienting the xe and Ye

axes relative to the element edges. The origin is always at node 1. Then if the developer

sets DEFS(pdTGE) = 0 or 1 (default), the xe axis is selected as the line connecting nodes

1 and 2. Alternatively, if DEFS(pdTGE) = 2, the ye axis is selected as the line connecting

nodes 1 and 4 (for quads), or 3 (for triangles). Figure 3.3c illustrates these options.

Note that for quadrilateral elements, the four corner nodes do not necessarily lie in the same

plane. Hence the ze axis is constructed as the normal to an "average" plane, given by the

cross-product of the two diagonals: 1---3and 2-_. Then, depending on the option selected

by DEFS(pdTGE), either the x_ or ye axis becomes the projection of the appropriate

edge onto this average plane. This frame adjustment is used to improve element accuracy,

especially in conjunction with the corotation/projection operators described in Chapter 4.

3-86 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.2.2 Developer Node Numbers for 2-D Elements {NODES Array).

The standard (user) node numbering sequence for 2-D elements is intended to facilitate

model generation (for users). To facilitate element development, the developer may use

an internal node-numbering sequence which is different from the standard one. The cor-

respondence between these two sequences must be conveyed by the developer through the

NODES array (see Section 3.3), which the developer is asked to define in standard kernel

routine ESOD.t

The NODES array should give the user node index as a function of the developer node

index. The following examples show some of the most common uses of the NODES array

for 2-D elements:

Example 3.

the element developer's node order is identical to the standard order (shown

in Figure 3.3b), then the developer should set

NODES(a)=a (a=I,...,NEN)

in kernel routine ESOD; where NEN = 3 or 4 or 9 or 16, etc.

t NOTE: There is no equivalent to tile NODES array for renumbering edges, or nodes within

edges, in the definition of element line loads (iuput argument LOADL in subroutine ESOFL).

There the developer must use the standard numbering conventions illustrated in Figure 2.lb.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-87

Examplesof Specific Element Types DEVELOPER. INTERFACE

Example 4.

If the developer's node sequence for a 4-node quadrilateral el('ment is as shown

in Figure 3.4a, then the developer should set:

NODES(I) = 1

NODES(2) = 2

NODES(3) =4

NODES(4) =3

in kernel routine ESOD.

Example 5.

If the developer's node sequence for a 9-node quadrilater_Ll element is as shown

in Figure 3.4b, then the developer should s(,t:

NODES(l) = 1

NODES(2) -= 3

NODES(3) =9

NODES(4)--7

NODES(5) :-- 2

NODES(6) =6

NODES(7) =8

NODES(8) =4

NODES(9) =5

in kernel routine ESOD.

3-88 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examplesof Specific Element Types

3.4.2.3 Plane (Stress/Strain) Elements

Plane elements are defined as 2-D elements that are embedded in a two-dimensional solid

continuum. Typically, such elements have (i) only two translational degrees of freedom at

each node, and (ii) only three out of the original six continuum strain/stress comp('nents

contributing to the element strain energy. Other useful possiblitics (not deseri},ed here)

include axisymmetric solid elements (which have four strain/stress components), and gen-

eralized plane strain elements (which have all six stress/strain components and all three

translational degrees of freedom per node).

3.4.2.3.1 Plane-Element Intrinsic Parameters (the DEFS Array)

The following settings should be used when dcfiaing the DEFS argument array (using

k_:rnel subroutine ESOD) for plane elements:

DEFS(pdCLAS) = idSOLI

DEFS(pdDIM) --- ,,"

DEFS (pdNDOF) --- "2

DEFS(pdNSTR) = 3

where the array indices, pd*, and the constant, idSOLI, are defined in all of the standard

kernel routines using built-in parameter statements (see include block ESOPTR.IN C).

Other DEFS array entries should be set according to the descriptions given in the standard

kernel argument glossary (Section 3.3).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-89

Examples of Specific Element Types DEVELOPER INTERFACE

3.4.2.3.2 Plane-Element Nodal Freedoms (the DOFS Array)

The DOFS array, which defines (using kernel subro,,tine ESOD) the potentially active

nodal degrees of freedoms for an element type, would typically be set by tile developer as

follows for a plane element:

DOFS(2,NEN) =

1 2 . .. NEN

v 1 1 ... 1

where the ones in the table indicate that all in-plane translational displacement freedoms

(u and v) are potentially active at every element node. The directions of these u and v

degrees of freedom are interpreted as corresponding to the computational nodal basis used

to express the assembled system of equations. Thus, it would probably not be meaningful

to turn off individual u or v element nodal degrees of freedom using the DOFS array since

the clement developer has no control over which computational basis will be selected it

is selected by the user as a global attribute. However, it may be useful to permanently

suppress both u and v at selected nodes, e.g., if some of the nodes are used only for

geometric definition.

3.4.2.3.3 Plane-Element Strains (The E Array)

For plane stress/strain elements, the standard convention for the strain array, E(3,NIP),

is as follows:

1

E(3,NIP) = 2

3

1 2 ... NIP

ezz(_i) ezz(_2) .-. exz(_NIP))
eu_(_1) %u(_2)"" %_(_NIP)

where _p = {_p, rlp} are the element surface coordinates at integration point p, and x, g

refer to the element stress basis: xs, ys; both of which are defined by the developer.

3-90 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examplesof SpecificElement Types

Retn_ark 3.8 The "nt)rm_,l" strain c,)mt)t)ncnt,,ez,, is assumed to be z(,ro for the

plane strain case, and is computed using the constitutive relations for the plane stress
c_se.

3.4.2.3.4 Plane-Element Stresses (the S Array)

For plane stress/strain elements, the standard convention for the stress array, S(3,NIP), is

as follows:

S(3,NIP)

1

: 2

3

1 2 . .. NIP

a,_,,(_) ayy(_2)... "y.v(_NIP)

a.:/({1) c:.,,(_2) ... a,y(_eNiP)

where _p = {(p,rb, } are the, element surface coordinates at integration point p, and x,y

refer to the element stress basis: x_, y,,, both of which are defined by the developer.

Remark 3.9 The "normal" stress component, a,z is assumed to be zero for the

plane stress case, and is computed using the constitutive relations for the plane strain
case.

Remark 3.10 If the developer has selected the constitutive option: DEFS(pdCNS)

equals 0 or 2, the element stress array will be computed automatically using the ES

processor shell (see Chapter 5).

3.4.2.3.5 Plane-Element Constitutive]%latrlx (The C Array)

For plane stress/strain elements, the standard convention for the constitutive array,

C(3,3,NIP), is as follows. The tangent constitutive matrix relating incremental strains

to incremental stresses at integration point p is defined by

C(3,3,NIP)

(-xx (-yy £xy

_X:z ((.Jll(_p) Cl2(_p) C13(_p))
=- _Tyy C22 (_p) C23 (_p)

sym. C3:3

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-91

Examplesof Specific Element Types DEVELOPER INTERFACE

wherethe valuesof the coefficientsCij depend on both the material properties and whether

a plane-stress or plane-strain hypothesis is employed. As with the stress and strain arrays

(S and E), the interpretation of the directions used for the components and the choice of

surface coordinates are left up to the element developer.

Remark 3.11 The transformations between the material coordinate system and

the element developer's local stress/strain system are performed automatically by the

ES processor shell (see Chapter 5).

Remark 3.12 If the developer has selected the constitutive option: DEFS(pdCNS)

equals 0 or 1, the constitutive matrix will be generated automatically by the ES

processor shell.

3.4.2.3.6 Plane-Element Displacement Vector (The D Array)

The displacement vector for a plane element can be viewed as a singly dimensioned array,

of length NEE = NDOF×NEN -- 2×NEN (see glossary in Section 3.3), or as a two-

dimensional array, defined as follows:

D(2,NEN) =

1 2 uNENIte U e •..

1 2 vNEN_;e Ye " • •

where up and v_ are the translations in the x, and Ye directions (see Figure 3.3a) at

element node a. The node sequence here refers to the developer's order -- not the user's

(Figure 3.35). It is assumed for plane elements (with DEFS(pdNDOF) = 2) that the

global problem is strictly two-dimensional, so that all tranformations between the element

intrinsic basis (xc,ye,z¢) and the global Cartesian basis (z_,yg,zg) -- or an alternate

Q _ _Qcomputational nodal basis (x_, y_, "_c) -- are such that the respective z axes are parallel.

Remark 3.13 The D array is input to various standard kernel routines, such

as ESOE (strains), ESOFI (internal forces) and ESOKM/ESOKG (material/geometric

stiffness). The components are always resolved in the element intrinsic basis, and

for geometrically nonlinear analysis with corotatiou turned on, the displacements are

relative to the moving element frame and hence should be "moderately small" in the

absence of finite strains (see Chapter 4).

3-92 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.2.3.7 Plane-Element Force Vector (The F Arrays)

The force vector for a plane-element either internal (FI) or external (FB or FS) should be

output from the standard kernel routines (ESOFI, ESOFB <)r ESOFS) as an array that is

in one-to-one correspondence with the element displacement vector. Thus,

F(2,NEN) =
FFI F 2 F N EN

'Te. _e " " " :EC

17.e ... r2EN

where Fa*e and F_e are the forces in the xe and Ye directions at element node a, and the

developer's node sequence is implied•

3.4.2.3.8 Plane-Element Stiffness Matrices (Tile K Arrays)

The stiffness matrix for a plane-element -- either material (KM), geometric (KG) or load

(KL) -- should be output from the standard kernel routines (ESOKM, ESOKG or ESOKL)

in tile following upper-triaugular form:

K((NEE2+NEE)/2) =

1
U e

F I KI1
,ze

FL

FNEN
X_

FNEN
Ye

,,_ ... u NEN vNEN

K12 "'" K1,NEE-1 KI,NEE

KNEE,NEE)

where NEE = 2 x NEN and tile numbers are stored as one partial column after another

(see glossary in Section 3.3), and the node numbers correspond to the developer's node

sequence, not the user's.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-93

Examplesof Specific Element Types DEVELOPER INTERFACE

3.4.2.4 Plate Elements

Distinct conventions for plate elements are currently not implemented as a standard ES

processor option. However, the developcr is free to implement plate elements as a special

case of shell elements (see Section 3.4.2.3), wherein ccrtabl partitions of the integrated

constitutive matrix are ignored, and certain nodal degrees of freedom are suppressed by

the user.

3-94 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examplesof Specific Element Types

3.4.2.5 Shell Elements

Shell elements are defined as 2-D elements (i.e., two intrinsic surface coordinates) that are

embedded in a three-dimensional spatial setting, such that all six standard nodal freedoms

(three translations and three rotations) are, in general, potentially active; and for which

stress resultants (i.e., stresses integrated through the shell thickness) are employed for

internal force and stiffness calculations instead of continuum stress components. This

general definition contains plate elements, membrane elements, and both flat and curved

shell elements as special cases.

Remark 3.14 While resultant stresses and strains are considered the intrinsic el-

ement parameters, continuum stress and strain components may be used in the con-

stitutive relations -- especially for nonlinear materials (see Chapter 5).

Remark 3.15 So-called degenerated solid elements, which employ rotational free-

doms -- but use continuum stress components -- would be considered 3-D elements

(see Section 3.4.3).

3.4.2.5.1 Shell-Element Intrinsic Parameters (the DEFS Array)

The following settings should be used when defining the DEFS argument array (using

kernel subroutine ESOD) for shell elements:

DEFS(pdCLAS) = idSHEL

DEFS(pdDIM) = 3

DEFS(pdNDOF) :-6

DEFS(pdC)

DEFS(pdNSTR)

DEFS(pdPROJ)

={
={
= 1

1 for C 1 elements

0 for C O elements

6 for C 1 elements

8 for C o elements

(recommended)

where the array indices, pd*, and the constant, idSHEL, are defined in all of the standard

kernel routines using built-in parameter statements (see include block ESOPTR.INC).

Other DEFS array entries should be set according to the descriptions given in the standard

kernel argument glossary (Section 3.3).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-95

Examplesof SpecificElement Types DEVELOPER INTERFACE

3.4.2.5.2 Shell-Element Nodal Freedoms (the DOFS Array)

The DOFS array, which defines (using kernel subroutine ESOD) the pc, aentially active

nodal degrees of freedom for an element type, would typically be set by tile developer as

follows for a shell element:

1 2 . .. NEN

u 1 1 ... 1 '_

v 1 1 ... 1

DOFS(6,NEN) = w 1 1 ... 1
8_ I I ... 1

8v 1 1 ... 1

gz 1 1 ... 1

where the ones in the table indicate that all translational freedoms (u, v, w) and rotational

freedoms (0z, 0 r, 8z) are potentially active at every element node. The dir,,ctions of these

freedoms are interpreted as corresponding to tile computational nodal basis used to express

the _sembled system of equations. Thus, it would probably not be meaningful to turn

off individual translation or rotation components at specific nodes using the DOFS array.

However, it would make sense to permanently supprcss all translational degrees of freedom

or all rotational degrees of freedom at selected nodes; or to suppress both translational and

rotational degrees of freedom, e.g., at nodes which are used only for geometric definition.

3-96 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Igx_mI)lesof Specific Element Types
...............................

3.4.2.5.3 Shell-Element Strains (The E Array)

For shell elements, the standard convention for the strain array, E(NSTR,NII'), is as

follows. For C 1 shell elements (DEFS(pdC)=I and DEFS(pdNSTR)=6):

E(6,NIP)

1

2

3

4

5

6

1 2 ... NIP

(_,,(tl) _,,(t2) ... _,,(_NIP)

_zy (tl) Exy(_2) "'" _z_([NIP)

,:_(_,) _.,(_)... _,,(¢NIP)

_(G) _(¢_) ... _(_NIP)

,(¢1) _,,_(¢_)..-'_,_(tN_P)

where _a_ are the reFerence-surface strains, and Ka_ are the curvature changes.

Similarly, for C O shell elements (DEFS(pdC=0) and DEFS(pdNSTR)=8):

E(8,NIP) =

1

2 _(_,)

3 _(¢_)
4 _(t,)

_(t,)

7 -_(_,)

2 °**

°°*

NIP

gzx({NIP)

gyy(tNIP)

ga:y(_N]P)

tc.x(_NIP)

n_(_hlP)

_.(¢NW)

n.(¢N_P)

where _/a are some "average" measure of the transverse-shear strains through the shell

thickness.

The strain directions (i.e., the meaning of the x and y subscripts) and the surface coordi-

nate conventions (f. e., the meaning of _, r/) are developer-selected, and should be described

in an appropriate section of the Testbcd Users Manual (see rcf. 4).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-97

Examples of Specific Element Types DEVELOPERINTERFACE

Remark 3.16 The "normal" strain component, ezz, is assumed to be irrelevant due

to the plane stress condition, azz. However, normal strains can usually be recovered

through the constitutive relations.

Remark 3.17 All shear resultants: ezy,_x_,q,,?_, are interpreted as deriving from

engineering shear strains, i.e., they are a factor of two larger than the corresponding

tensorial shear strains.

Remark 3.18 The type of strain-displacement relations used (i.e., linear or nonlin-

ear) are also up to the developer. If the built-in corotational option is selected by the

user, then -- as long as the strains remain small -- it is not really necessary for the

developer to provide nonlinear strain-displacement relations, regardless of the magni-

tude of the rotations. However, it may be desirable to include a nonlinear option for

improved accuracy (see kernel input argument CTLS(pcCORO) and Chapter 4).

3-98 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.2.5.4 Shell-Element Stresses (the S Array)

For shell-elements, the standard convention for the stress array, S(N-STR,NIP), is a set of

stress resultants, which are (incrementally) work-conjugate to the resultant strain mea-

sures described above. Thus, the number of intrinsic stress resultants depends on whether

or not the element exhibits transverse-shear strains (i.e., C o versus C 1 displacement com-

patibility).

For C 1 shell elements (DEFS(pdC)--1 and DEFS(pdNSTR)=6):

S(6,NIP) =

1

2

4

5 "lyy(_l)

6

where _p -- {_p, _p} are the element surface coordinates at integration point p, and where

the direct stress resultants, n_g_, and moment stress resultants rna_ are typically defined

as follows:t

na =fzcr zdz moa= f z. adz

in which a and/3 range between 1 and 2, corresponding to x and y, respectively.

For C O shell elements (DEFS(pdC)--0 and DEFS(pdNSTR)-S), the first six stress resul-

tants are defined exactly as for C 1 elements, with the additional two components being

It is not necessary for the developer to take these definitions literally unless the standard

constitutive interface is to be employed (see Chapter 5), in which case the precise relation-

ship between resultant arid continuum stresses and strains must adhere to the conventions
described herein.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-99

Examplesof SpecificElement Types DEVELOPER INTERFACE

the transverse-shearstressresultants, i.e.,

S(8,NIP)

I

2

3

4

5

6

7

8

1 2

qy(_,) qu(_2)

. °.

°,.

NIP

ny_(_NIP)

nz_(_NIP)

rnxz(_NIP)

rnyy(_NIP)

rn_9(_NIP)

q (NIe)

qu(_NIP)

where

qa =] azadz

The in-plane stress directions (i.e., the meaning of the x and y subscripts) and the surface

coordinate conventions (i.e., the meaning of _,r/) are developer-selected, and should be

described in an appropriate section of the Testbcd Users Manual (see ref. 4).

Remark 3.19 The "normal" stress component, az_, is assumed to be zero for

standard shell elements; hence, there is no corresponding stress resultant.

Remark 3.20 The type of stress components assumed (e.g., nominal or true) de-

pends on the constitutive algorithm. For problems involving small strains, the com-

ponents can be interpreted as true (i.e., Cauchy) stresses.

Remark 3.21 The reader may be wondering if it is allowable for C 1 shell elements to

compute transverse-shear stress resultants. The answcr is yes; but since C 1 elements,

by definition, lack transverse-shear strains, the transverse-shear resultants must be

recovered using a separate equilibrium post-processing step. For convenience, such

quantities are stored in a separate array, SX, which is referred to only in kernel routine

ESOPS (currently not implomented).

3-100 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.2.5.5 Shell-Element Constitutive Matrix (The C Array)

For shell elements, the standard convention for the constitutive array, C (NSTR,NSTR,NIP),

is consistent with the definitions for the stress (S) and strain (E) _rrays given above. The

tangent constitutive matrix relating incremental strains to incremental stresses at integra-

tion point p is thus defined for C 1 elements by:

rtyy

rt xy
c(a,6,p) =

_txx

r_,yy

??'Lxy

and for C o elements by:

c(s,s,v) =

_zx _yy _xy gxz _yy gxy

C l(p) Cl (p) C13(p) C14(.) C15(p) C16(p)

U33(p) U3.1(p) U3s(p)
C44(_p) (-7_45 (_p) U46(_p)

72. 5 U56(.)

-g:t z "_yy -gx y _¢xx _yy _ xy

nzx Cll (_p) C12 (_p) C13 (_p) C14(_p) (-]15 (_p) C16(_p) 0

-_ c_(_p) c:3(_p) c_(_p) c_(_p) c_,(_) 0

-_ _(_) c_(_) c_(_) c_6(_) 0

-_ c_(_) c45(_) c4_(_p) 0

._ _(_p) _(_) o

qx -C77 (_p)

qy sym. css(_p)

where the C,j are integrated (through-the-thickness) constitutive coefficients, which de-

pend on both material a_td section properties. The actual definitions will depend on the

constitutive processing option selected (see Chapter 5).

As with the stress and strain arrays (S and E), the interpretation of the directions used for

the components and the choice of surface coordinates are left up to the element developer.

The transformations between the material coordinate system (i.e., the system used for

constitutive calculations) and the element developer's stress/strain system (i. e., the system

used for the C array) are performed automatically by the ES processor shell, as described

in Chapter 5.

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3- 101

Examples of Specific Element Types DEVELOPERINTERFACE

3.4.2.5.6 Shell-Element Displacement Vector (The D Array)

The displacement vector for a shell element can be viewed as a singly dimensioned array,

of length NEE --- NDOF×NEN = 6xNEN (see glossary in Section 3.3), or as a two-

dimensional array, defined as follows:

D(6,NEN)

1
Ve

1
W e

01

0 l
Ye

01
- Z E

2
U e

2
Ue ""

2
W e ..

8_
2e ""

02
y¢ ""

02
Zg " "

uNEN

vNEN

wNEN

0NE N

oN EN

0NEN
ze

Q _ Qwhere ue,v e,w e are the translations in the x_,y_,ze directions, respectively, at element

node a; and Oa 8 a and 0 _ are rotations about the corresponding axes. (See definition of
X_ _ y_ ze

intrinsic element basis given in Figure 3.3a)

The node sequence here refers to the developer's order -- not the user's (Figure 3.3b).

Remark 3.22 The D array is input to various standard kernel routines, such

as ESOE (strains), ESOFI (internal forces) and ESOKM/ESOKG (material/geometric

stiffness). The components are always resolved in the elemcnt intrinsic basis, and,

for geometrically nonlinear analysis with corotation turned on, the displacements are

relative to the moving element frame and hence should be "moderately small" in the

absence of finite strains (see Chapter 4).

3.4.2.5.7 Shell-Element Force Vectors (The F Arrays)

The force vector for a shell element either internal (FI) or external (FB or FS) should be

output from the standard kernel routines (ESOFI, ESOFB or ESOFS) as an array that is

3- 102 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

in one-to-one correspondence with the element displacement vector. Thus:

F(6,NEN) =
ML

F_EN

FNEN

FzNEN

_INEN

/_IN EN

MNEN

where Faxe, F_ae, F_ze are the forces in the xe,ye,Ze (intrinsic element basis) directions, re-

spectively, at element node a; and M _ M _ M _ are the moments about the corresponding

axes. The developer's node sequence is implied.

3.4.2.5.8 Shell-Element Stiffness Matrices (The K Arrays)

The stiffness matrix for a shell-element -- either material (KM), geometric (KG), load

(KL) or tangent (KT) -- should be output from the standard kernel routines (ESOKM,

ESOKG or ESOKL) in the following upper-triangular form:

K((NEE2+NEE)/2) :

1 l W 1 01 01 01
U e _) e ._ e Ye ze

F 1 Kll K12 K13 K14 K15 K16
xe

FI_ K22 K23 K24 K25 K26

F 1ze K33 K34 K35 K36

M l K44 K45 K46

M _ K55 Ks_
Ye

M 1 K66
z_

AINEN
ze

0NEN
• " " Z_

• • • K1,NEE

K2,NEE

K3,NEE

K4,NEE

Ks,NEE

K6,NEE

*.o

KNEE,NEE)

where NEE = 6 × NEN and the numbers are stored as one partial column after another

(see glossary in Section 3.3), and the node numbers correspond to the developer's node

sequence, not the user's.

Revised 12/14/89 CSM Tcstbed Generic Structural-Element Processor Manual 3- 103

Examplesof Specific Element Types DEVELOPER. INTERFACE

3.4.3 3-D Solid Continuum Elements

Three-dimensional solid continuum elements are defined as those elements whose nodes

define a solid volume of three-dimensional space, such that three intrinsic coordinates are

required to locate intermediate (e.g., integration) points. All three transl_ttional degrees

of freedom are assumed to be present at element nodes (in general), and all six contin-

uum stress/strain components are assumed to contribute to the element strain energy.

Henceforth, these intrinsically 3-D elements will simply be referred to as solid elements.

3.4.3.1 User Node Numbers and Coordinate Systems for 3-D Elements

Figure 3.5a shows how the corner node numbers, as defined by the user, of one of the

element's surfaces determine the intrinsic element coordinate system (xe, Ye, ze) for stan-

dard 3-D elements. Figure 3.5b shows the complete user node-numbering sequence, which

always starts with the basic surface corner nodes, for various standard low-order and high-

order 3-D elements.

Note that all standard 3-D elements arc assumed to have at least one triangular or quadri-

lateral Note that all standard 3-D elements are assumed to have at least one triangular

or quadrilateral surface (corresponding to kernel argument DEFS(pdSHAP) = idTRIA

or idQUAD), with either the first 3 or the first 4 nodes, respectively, used to define the

element intrinsic coordinate system (xe, y_, z_). As shown in Figure 3.5, the first 3 or 4

nodes must be the corner nodes of that surface, with a counter-clockwise convention used

to define the positve z_ direction.

The convention for establishing the intrinsic coordinate system is identical to that used

for 2-D elements (Section 3.4.2.1), except based on the surface defined by the first 3 or 4

corner nodes. As in the 2-D case, the developer pararameter DEFS(pdTGE) can be used

to switch the relationship of the x_ or Ye axes to the element edges. Furthermore, if the

first surface of the 3-D element is a quadrilateral, an "average" plane is employed for the

xe - y_ axes, to improve tile p(_rformance of the element when used in conjunction with

the corotational or projection operators described in Chapter 4.

3-104 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.3.2 Developer Node Numbers for 3-D Elements (NODES Array).

The standard or user node-numbering sequence for 3-D elements is intended to facilitate

model generation (for users). To facilitate element development, the developer may use

an internal node-numbering sequence which is different from the standard one. The cor-

respondence between these two sequences must be conveyed by the developer through the

NODES array (see Section 3.3), which the developer is asked to define in standard kernel

routine ESOD.

The NODES array should give the user node index as a function of the developer node

index. The following examples show some of the most common uses of the NODES array

for 3-D elements:

Example 6.

If the element developer's node order is identical to the standard order (shown

in Figure 3.5b), then the developer would set

NODES(a) == a (a= 1,...,NEN)

in kernel routine ESOD; where NEN = 4 or 8 or 10 or 20, etc.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3- 105

Examples of Specific Element Types DEVELOPER INTERFACE

Example 7.

If the developer's node sequence for an 8-node "brick" element were as shown

in Figure 3.6a, then the developer would set:

NODES(I) = 1

NODES(2) =5

NODES(3) = 2

NODES(4) =6

NODES(5) =4

NODES(6) =8

NODES(7) =3

NODES(8) = 7

in kernel routine ESOD.

Example 8.

If the developer's node sequence for a 27-node quadrilateral element were as

shown in Figure 3.6b, then the developer would set:

NODES(l) = 1 NODES(10) :- 13 NODES(19) = 5

NODES(2) = 9 NODES(ll) = 26 NODES(20) = 17

NODES(3) = 2 NODES(12) : 14 NODES(21)-- 6

NODES(4) = 12 NODES(13) = 24 NODES(22) = 20

NODES(5) = 22 NODES(14) : 21 NODES(23) = 23

NODES(6) = 10 NODES(15) : 25 NODES(24) = 18

NODES(7) = 4 NODES(16) : 16 NODES(25) = 8

NODES(8) = 11 NODES(17) = 27 NODES(26) = 19

NODES(9) = 3 NODES(18) : 15 NODES(27) = 7

in kernel routine ESOD.

3- 106 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examples of Specific Element Types

3.4.3.3 Solid (Continuum) Elements

Solid elements are defined as 3-D continuum elements which have three translational free-

doms at each node, and all six stress components contributing to the strain energy at each

integration point.

3.4.3.3.1 Solid-Element Intrinsic Parameters (the DEFS Array)

The following settings should be used when defining the DEFS argument array (using

kernel subroutine ESOD) for solid elements:

DEFS(pdCLAS) = idSOLI

DEFS(pdDIM) = 3

DEFS(pdNDOF) = 3

DEFS(pdNSTR) = 6

Other DEFS array entries should be set according to the descriptions given in the standard

kernel argument glossary (Section 3.3).

3.4.3.3.2 Solid-Element Nodal Freedoms (the DOFS Array)

The DOFS array, which defines the potentially active nodal freedoms for an element type

(in kernel subroutine ESOD), would typically be set by the developer as follows for a solid

element:

1 2 ... NEN

DOFS(3,NEN) = v 1 1 ... 1

w 1 1 ... 1

where the ones in the table indicate that all translational displacement degrees of freedom

(u, v and w) are potentially active at every element node. The directions of these freedoms

are interpreted as corresponding to the comp_ltational nodal basis used to express the

assemMed system of equations. Thus, it would probably not be meaningful to selectively

turn off individual u, v or w element nodal freedoms using the DOFS array -- since the

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3-107

Examples of Specific Element Types DEVELOPER INTERFACE

element developer has zlo control ovcr which the computational basis will be selected; it

is selected by the user as a global attribute. However, it may be uscful to permanently

suppress all three freedoms at selected nodes; e.g., if some of the nodcs are used only for

g_'ometric definition.

3.4.3.3.3 Solid-Element Strains (The E Array)

For solid elements, the standard convention for the strain array, E(6,NIP), is as follows:

E(6,NIP) =

1 2

1

2
3 Ezz(_l){!zz (_2)

4
5
6

.. NIP

• . _zx(_NIP)

.. eu_(_NiP)

• - ezz(_NIP)

• - eyz(_NIP)

• . e_z(_NIP)

•.

where _p - {(p, rlp, fp} are the element natural coordinates at integration point p; and

x,y, z refer to the element stress basis, x,,ya, z6. Both coordinate systems are defined by

the developer.

Remark 3.23 The type of strain-displacement relations used (i.e., linear or nonlin-

ear) are also up to the developer. If the built-in corotational option is selected by the

user, then -- as long as the strains remain small -- it is not really necessary for the

developer to provide nonlinear strain-displacement relations, regardless of the mag-

nitude of the rotations. However, it may be desirable to include a nonlinear option

for improved accuracy (see kernel input argument CTLS(pcCORO) and Chapter 4).

This is especially truc for solid elements used to model a compact continuum, where

the corotational option may not be particularly useful unless the whole structure (or

substructure) is undergoing large rigid-body motion -- otherwise large rotations will

t)e accompanied by large strains, and a nonlinear strain measure will be mandatory.

3- 108 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examplesof SpecificElement Types

3.4.3.3.4 Solid-Element Stresses (the S Array)

For solid elements, the standard convention for the stress array, S(6,NIP), is as follows:

S(6,NIP)

1

2

3

4

5

6

1 2 . .. NIP

(azz(_l) ozz(_2) ... az_(_NIP)

ayu(t,) avy(_2) ... a_(_NiP)/

azz(¢,) g_--(t2) --. az:(eNIP)[

... % (tNIP)]

... o, (tNIP)]
azy(t,) azu(t2) ... a_:y(tNIP)]

where _p = (_p,r/pfp) are the element natural coordinates at integration point p; and

x, y, z refer to the element stress basis, x_, ys, za. Both coordinate systems are defined by

the developer.

Remark 3.24 If the developer has selected the constitutive option: DEFS(pdCNS)

equals 0 or 2, the element stress array will be computed automatically using the ES
processor shell.

Remark 3.25 The type of stress components assumed (e.g., nominal or true) de-

pends on the constitutive algorithm (see Chapter 5). For problems involving small

strains, the components can be interpreted as true (i.e., Cauchy) stresses.

3.4.3.3.5 Solid-Element Constitutive Matrix (The C Array)

For solid elements, the standard convention for the constitutive array, C(6,6,NIP), is con-

sistent with the definition of the stress (S) and strain (E) arrays. Thus, the tangent con-

stitutive matrix relating incremental strains to incremental stresses at integration point p

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3- 109

Examplesof Specific Element Types DEVELOPER INTERFACE

is defined by

c(6,64,)

a_z

O'yy

o'zz

Gyz

¢Tzx

_, :ry

(xx (yy f-zz (yz (zx

f c,,(_,.) c,_(_,,) c,_(¢,,) c,_(¢,,) Cl_(_p)

c._._(,,.,,)c_(_,,) c_(_,,) c,_(_,,)
c_.(_p) c_(_,,) c,_(_,,)

c_(_) c,_(_,,,)
css(_,,)

,sym.

1

_-xy]

c,_(¢p)

ca6(_,,) Ics6(_p)
c_(_,,)

I
I

where tile values of the coefficients Cij depend on the material properties (see Chapter 5).

As with the stress and strain arrays (S and E), the interpretation of the directions used for

the components and the choice of surface coordinates are left up to the element developer.

Remark 3.28 The transforrnations between the material coordinate system and

the clement developer's stress/strain system are performed automatically by the ES

processor shell (see Chapter 5).

Remark 3.27 If the developer has selected the constitutive option: DEFS(pdCNS)

equals 0 or 1, the constitutive matrix will be generated automatically by the ES
processor shell.

3.4.3.3.6 Solid-Element Displacement Vector (The D Array)

The displacement vector for a solid-element can be viewed as a singly dimensioned array,

of l_,ngth NEE = NDOFxNEN -: 3xNEN (see glo-_sary in Section 3.3), or as a two-

dimensional array, defined as follows:

D(3,NEN)

2 . vNEN
U 1 U, e . .

:= Ue1 U e • . .

2 wNENlt}e1 W e • . .

3-110 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

DEVELOPER INTERFACE Examplesof Specific Element Types

where u ca,vea and w e_ are the translations in the xe, Ye and ze directions, respectively, at

element node a (see definition of intrinsic element bnsis given in Figure 3.6a). The node

sequence here refers to the developer's order -- not t,) user's (Figure 3.6b).

3.4.3.3.7 Solid-Element Force Vectors (The F Arrays)

The force vector for a solid-element either internal (FI) or external (FB or FS) should be

output from the standard kernel routines (ESOFI, ESOFB or ESOFS) as an array that is

in one-to-one correspondence with the element displacement vector• Thus:

F(3,NEN)

F F 2 FNEN

= F 1 F 2 FNEN
Ye Ye " " • ye

F 1 F _ FNEN
Z e z_ " " • g

where F_¢,F? and F _ are the forces in the :r,. y_. _tn,1 z, directions at element node a._]e ze - '

The developer's node sequence is assmncd.

3.4.3.3.8 Solid-Element Stiffness Matrices (The K Arrays)

The stiffness matrix for a solid-element -- eit her material (KM), geometric (KG), load

(KL) or tangent (KT) -- should be output from the standard kernel routines (ESOKM,

ESOKG or ESOKL) in tile following upper-triatzgular form:

K((NEE + XEE)/2) =

1 1 w_ .. w NENt/,e Ue

F:e Kll K12 Kz3 ... K1,NE E "_

T_,: K'22 K23 .. • K2,NE E

F_ K33 -.- Ka,NE E

• . . . *

FNEN
ze KNEE,NEE)

where NEE = 3 × NEN and the numbers are stored as one partial column after another

(see glossary in Section 3.3), and the node numbers correspond to the developer's node

sequence, not tile user's.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 3- 111

Examplesof Specific Element Types DEVELOPER INTERFACE

3.4.4 Nonstandard ("Wild") Elements

CURRENTLY NOT IMPLEMENTED

3-112 CSM Testbed Generic Structural-Element Processor Manual Revised 12//14/89

DEVELOPER INTERFACE Step-by-StepInstallation of New ES Processors

3.5 Step-by-Step Installation of New ES Processors

The following sections describe how to create and test new structl_ral-element (ES) proces-

sors. Step-by-step instructions are provided with operating-sytem dependencies indicated

where appropriate. Currently, only UNIX and VMS opcrating systems are being sup-

t)orted.

3.5.1 Part 1: tlow to Create a New ES Processor

Step 1.1: Create a W__ork___i_ngDirectory_. This directory will be used to build and

store your new element (ES) processor. You can call it anything you like.

Step 1.2: Copy ES Processor Source-Code Template. The source code file con-

taining templates (subroutine calling sequences, argument declarations aad de-

fault error exits) for each of the standard ES kernel routines (Section 3.2) is

called es_cover.ams, and resides in a separate directory with logical name

CSM_ES. Copy it to your present working directory using:

cp $CSM ES/escover.ams on UNIX

or:

copy CSM_ES:es_cover.ams ,] on VMS

Step 1.3: Fill in Source-Code Tempi_late. This step is crucial. Chapter 3 of this

manual contains all of thc reference documentation needed to complete the

standard kernel routines contained in es_cover.ams, including a description

of each standard entry point (Section 3.2) and a glossary of standard subroutine

arguments (Section 3.3). The standard kernel routines are referred to as "cover

routines" because they are usually employed only as an interface between the

ES processor shell and the element developer's private kernel subroutines. The

most important cover routines to complete first are ESOD (element definition),

ES()KM (element material stiffness) and ESOE (element strain) -- or ESOS if

Revised 12/18/89 CSM Testt)e(t Generic Structural-Element Processor Manual 3-113

Step-by-Step Installation of New ES Processors DEVELOPER INTERFACE

it is an assumed-stress clement. These routines will enable you to perform

basic linear static analysis. Later, the element developer will need to complete

ESOKG (element geometric stiffness), ESOFI (clement internal force), etc., to

perform stability and nonlinear analysis. ESOFI is needed even for linear anal-

ysis in the presence of thermal loads or initial stress/strain effects. Note that

the mnemonic parameters, pd* and pc*, which appear in the argument glos-

sary (Section 3.3), and may be used to reference individual items in the DEFS

and CTLS arrays, respectively, are automatically defin(,.d by an "include" block

called es0ptr.lnc residing in the CSM_ES directory.

Step 1.4: Rename Source Files. Once you have begun to update the es_cover.ams

file by completing some of the cover routines, rename the file to esi_cover.ams,

where the i represents an integer processor sequence number, between 1 and

99, which will be used to uniquely identify your new element processor. (Check

with the NASA/Langley CSM staff to get a list of available processor numbers.)

For example, if you were creating processor ES10, you wouhl enter:

mv es_cover.ams esl0_cover.ams] on UNIX

or:

[rename es_cover.ams esl0_cover.ams] on VMS

Additionally, it will be convenient to consolidate your own nonstandard element

routines, i.e., the real kcrnel, into a file called esi_kernel.ams, where i again

denotes the processor number. If you need to have more than one kernel file,

or use some lowcr-l,_vel utilities that you wish to keep in a separate file, that's

okay -- but you'll have to (:(tit the makefile procedure accordingly in step 1.5.

Step 1.5: _Copy_Edit_Sta!lda_rd_ "Makefile" to Create New ES Processor. When

you have finished enough of the standard cover routines to be able to run a test

ca_e, copy the standard "makelilc" procedure residing in directory CSM_ES

to your working directory, as follows:

cp $CSM_EXE/makefile.es makefile on UNIX

3-114 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/'89

DEVELOPER INTERFACE Step-by-StepInstallation of New ES Processors
..

or:

I copy CSM_SAM:makefile. es.com • _ on VMS
.... J

If you haw; only one kernel tile, esi_kernel.ams -- and no extra utilities

you can use tile "makefile" procedure as-is. Ottwrwise, you will ha_e to add

the extra file names as indicated within the "makefile'.

Step 1.6: Execute "Makefile" to Create New ES Processor. To compile the

source code in esi_cover.ams, esi_kernel.ams and _:ly other kerm.']/utility

files, simply enter:

[make ES -- esi] on UNIX

or:

[_makefile_es esi [on VMS

where i denotes the processor sequence number. Only those source files which

have been updated will be compiled, and a new executable -- called esi -- will

be created (unless an updated one already exists). The link procedure within

the "makefile" will automatically include the necessary object code from the

standard ES processor shell and Testbed architectural utility libraries to create

the ES executable.

Step 1.7: Recompile/Link as Necessary_D_sing "Makefile'. Step 1.6 can be re-

peated as necessary to successflllly compile and test your new ES processor.

See Part 2 for instructions on how to test an ES processor once it has been

created.

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3-115

Step-by-StepInstallation of New ES Processors DEVELOPER INTERFACE

3.5.2 Part 2: How to Test a New ES Processor

Step 2.1: _Create a Working Directory. This directory can be tile same as the one

used to create your new ES processor (see Part 1, Section 3.5.1). It will be used

to store the Testbed input and output files involved in running a test case, as

well as a copy of the Testbed Procedure Database. Copy this latter file to your

working directory using:

1 cp $CSM_PRC/procllb.gal I o,l UNIX

or:

copy CSM_PRC:proclib.gal •] on VMS

Then, be sure to add the name of the directory where your 1row ES processor

executable resides (see Part l) to the PATH environment variable (on UNIX),

or logical file name (on VMS), called CSM_EXTP before yol: proceed to Step

2.2 for the first time.

Step 2.2: Copy One of the Sample Problem Directories. It is a good idea to start

with one of the existing test cases (if this is feasible) rather than creating one

from scratch. Even if you wish to create a test case from scratch, it will be

useful to look at one of the existing cases just as an example. Existing test cases

may be found under the Testbcd directory with logical name CSM_PRC. This

directory contains a subdirectory named applications with one subdirectory

for each test case. For example, you will find subdirectories with names like

pinched_cyl, hinged_cyl, elastica, etc. Copy the entire contents of one of

these sub-directories to your working directory. For example:

I cp $CSM_PRC/applications/plnched_cyl/, . I on UNIX

or:

set def CSM.PRC:

set def [.APPLICATIONS.PINCHED_CYL]

copy ,.* "file specifications for your working directory"

on VMS

3- 116 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Step-by-Step Installation of New ES Processors

Step 2.3:

would copy the necessary files for running the pinched cylinder problem to

your directory. These files include: pinched_cyl.com, pinched_cyl.clp,

pinched_cyl.log and pinched_cyl.dbr. The ,.com file is the "input" file

and • designates the name of the test case; it contains both operating system

commands to run the Testbed, and a Testbed *call directive to invoke the ac-

tual test case procedure file, ,.clp. The *.log file is the printed output file

corresponding to the ,.corn input file. It contains verbose processor and pro-

cedure printout useful for =debugging a new processor. Finally, the ,.dbr file

is a Testbed database file containing selected results from the test case and is

particularly useful for quick verification of a new processor.

Edit the "Input" File. The .call directive normally contains a number of

procedure argument definitions which define selected input parameters for the

testcase. For example, the element processor name(s), element type name(s)

and various grid and geometric parameters may be valid procedure arguments.

As a minimum, you will have to modify the element processor and element type

arguments, which are called ES_PROC and ES_NAME, respectively. For exam-

ple, if your new element processor is called ES10 and you wish to test a shell ele-

ment that you have named SHL1, you would modify the file pinched_cyl.com

so that

,call pinched_cyl (ES_PROC -- ES10; ES_NAME = SHL1; ...) I

Step 2.4:

was a part of the procedure calling sequence.

Submit/Run the Input File. Once you have modified the ,.corn file to

accommodate your new ES processor, you can run the test case by simply

"invoking" the ,.corn file. For the pinched cylinder case, this command would

take the form:

pinched_cyl.com > & pinched_cyl.LOGSz on UNIX

or:

[submit pinched_cyl.com] on VMS

where pinched_cyl.LOG is the designated output file. (Note that due to the

case sensitivity of UNIX the ,.LOG file will be treated as a different file than

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 3- 117

Step-by-Step Installation of New ES Processors DEVELOPER INTERFACE

the original ,.log file; while on VMS, the original file will be called *.LOG;1

and the new file will be called ,.LOG;2 by default.) In addition to this output

file, the computed results -- as well as most intermediate data -- will be

deposited in the global database. The name(s) of the global database file(s)

will normally be of the form *.DBC and ,.DBR where • denotes the name

of the test case, the *.DBC file contains the intermediate and bulk solution

data, and the *.DBR file contains selected results. (The database file names

usually can be reset using the procedure arguments; conventions may vary

among procedures.)

Step 2.5: Examine the Output (..LOG) Text File. Compare the *.LOG file ob-

tained using Step 2.4 with the *.log file (on UNIX), or the *.LOG;1 file (on

VMS), copied from the original applications directory in Step 2.2. Consult

the Testbed User's Manual (ref. 4) if you have trouble interpreting processor

output. The two levels of output will be intertwined in the log file (unless the

directive .echo,off is used which will suppress the procedure output).

Step 2.6: Examine the Output Database File. Consult the Testbed Data Library

Description (ref. 6) and Chapter 6 of this manual to interpret the contents of

the datasets in the database (e.g., *.DBC or *.DBR files) generated by the

test case. You may compare the contents of the ..DBR file with that of the

• .dbr file (on UNIX), or the *.DBR;1 file (on VMS), copied from the original

applications directory in Step 2.2.

Step 2.7: Go back to Part 1. New software rarely works correctly the first time. Be

prepared to iterate, and to incrementally update your new processor until it

has become functionally complete and can be used with confidence on real

applications.

3- 118 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

DEVELOPER INTERFACE Step-by-Stcp Installation of New ES Processors

Ref.erence • z,, /-- x-y plane
node -__ _ Ii, _ / - _l_'x

_ ii!iiiiiiiii_i}.:_iiii_',ii!iiiiiiii',i!II_':'.... 2 r_

-2

_ _::';__i_'.":__i_':"
_!::ii_i_ii_:..":::ii!?

2

I

Figure 3.1 Conventions for Standard 1-D Elements.

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3- 119

Step-by-StepInstallation of New ES Processors DEVELOPER INTERFACE

3

2

Nodes (1:3) = 1,2, 3 Nodes (1:3) = 1,3, 2

Figure 3.2 Examples of 1-D Elements with Non-Standard Node Numbering.

3- 120 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Step-by-Step Installation of New ES Processors

Z e

X e

Ye

2

q

3

8

4

2 5

7

6

2

3

Figure 3.3 Conventions for Standard 2-D Elements.

Revised 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3-121

Step-by-Step Installation of New ES Processors DEVELOPER INTERFACE

4 3 3

1 1

2

Nodes (1:4) = 1,2, 3, 4

4

Nodes (1:4) = 1,2, 4, 3

8

1

4

19 6

5
2

3

Nodes (1:9) = 1,2, 3, 4,
5,6,7,8,9

4

7

2

6

3

9

Nodes (1:9) = 1,3, 9, 7,
2,6,8,4,5

Figure 3.4 Examples of 2-D Elements with Non-Standard Node Numbering.

3-122 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

DEVELOPER INTERFACE Step-by-StepInstallation of New ES Processors

Ze

2

3

9

Figure 3.5 Conventions for Standard 3-D Elements.

Reviscd 12/18/89 CSM Testbed Generic Structural-Element Processor Manual 3- 123

Step-by-Step Installation of New ES Processors DEVELOPERINTERFACE

8 6

7 8

3 7

1 1

2 3

Nodes (1:8) = 1,2, 3, 4,
5,6,7,8

Nodes (1:8) = 1, 5, 2, 6,
4,8,3,7

8_IL_ 7 27

Nodes (1:27) = 1,2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21,22, 23, 24, 25, 26, 27

Nodes (1:27) -- 1,9, 2, 12, 22, 10, 4, 11,
3, 13, 26, 14, 24, 21,25, 16, 27,
5, 17, 6, 20, 23, 18, 8, 19

Figure 3.6 Examples of 3-D Elements with Non-Standard Node Numbering.

3- 124 CSM Testbed Generic Structural-Element Processor Manual Revised 12/18/89

COROTATIONAL INTERFACE

4. COROTATIONAL INTERFACE

Section Title

4.1 Overview

CHAPTER OUTLINE

Description
I

Introduces users and developers to
basic concepts of the corotational al-
gorithm employed by the generic ES
processor for handling geometric non-
linearity and intrinsic element behav-
ior.

4.2 Basic Corotational Theory Summarizes underlying mathemat-
ics of corotation, including the sub-
traction of large rigid-body rotations
from element motion, the updating of
nodal rotation triads to represent the
current configuration uniquely, and
the derivation of the rigid-body pro-
jection operator which may improve
element behavior for both linear and

nonlinear analysis.

4.3

4.4

Built-in Corotational Options

The Corotational Algorithm

Summarizes how users and develop-
ers can avail themselves of tile built-

in corotational features of the generic
ES processor. Describes the various
low-order and high-order corotational
options built into ES processors using
the generic shell, including the pro-
jection option, which can be selected

by the element developer as an auto-
matic element feature,

4.5 Corotational Software Utilities

Step-by-step outline of how the coro-
tational theory is implemented in the
Testbed.

Usage documentation is provided on
each of the low-level corotational

(CR) utilities currently employed by

the ES processor shell.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 4- 1

Overview COROTATIONAL INTERFACE

4.1 Overview

Corotation is a method initially developed for making large rotations relative to an inertial

frame look like small rotations at the element level. This is achieved by defining an element

reference coordinate frame for each element that rotates with the element -- as defined

by its nodal coordinates. The rigid body motion of this frame is then "subtracted" from

the total motion of the nodes, leaving relative translations and rotations that can be

made arbitrarily small (for small strains) by simply refining the mesh, i.e., by adding

more element frames. For the rotational degrees of freedom, "subtracting" rigid body

rotations really amounts to multiplication of orthogonal matrices (see Fig. 4.1), and the

step-to-step updating of these matrices (or nodal triads) is done in a manner that preserves

orthogonality.

Once nodal relative motions have been rendered sufficiently small, they may be used in

simplified strain-displacement relations. For example, for shell elements, either linear

strain-displacement relations or so-called moderate rotation nonlinear strain-displacement

relations may be used in conjunction with the corotational procedure. The effect of us-

ing nonlinear versus linear element strain-displacement relations usually amounts to an

increase in accuracy, which can alternately be achieved by adding more elements.

Corotation is not a new idea (references 6 and 7 and others were some of the innovators)

but some new developments have been made (see refs. 8 and 9). First, the corotational

methodology has been made more element-independent by generalizing it to beam, shell

and solid elements and generic software utilities have been developed for all three classes.

Second_ a firm mathematical foundation has been established by deriving it from variational

principles and identifying its association with a projection operator. By capitalizing on

this projection operator idea, an element-independent, higher-order stiffness matrix has

been derived through consistent linearization of the variational functional that ensures

quadratic convergence in the context of a Newton-Raphson nonlinear solution procedure.

A surprising fringe benefit is that the projection matrix that emerges from the consistent

linearization process corrects rigid body errors (e.g., warping sensitivity) even for linear

analysis (see Figure 4.2). This may have a profound effect on various old and new shell,

or shell-oriented, element formulations (e.g., certain hierarchically (p-) refined elements

4- 2 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

COROTATIONAL INTERFACE Overview

which have implicit rigid body errors due to a higher-order rcprcsentation of geometry

than of displacement).

The following sections describe the basic corotational theory (Section 4.2), the built-in

corotational options currently available in the Testbed using the generic structural-element

(ES) processor (Section 4.3), and finally the algorithmic details (Section 4.4) and software

utilities (Section 4.5) used to implement corotation in the Testbed.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 4-3

BasicCorotational Theory COROTATIONALINTERFACE

4.2 Basic Corotational Theory

There are three essential ingredients to the corotational theory. The first, and perhaps

most basic, ingredient is the subtraction oflarge overall rigid-body motion from the element

displacement field. For beam and shell elements*, this results in relative displacements

which are typically small enough to be used in conjunction with a moderate (or even small)

rotation formulation of the element strain-displacement relations regardless of the size of

total rotations. Furthermore, provided that the strains are small, the relative rotations can

be rendered smaller and smaller by increasing the number of elements in a given region.**

The second ingredient of the corotational theory is the rotation update algorithm used to

keep track of total rotations at the nodes. This procedure is necessary for computing the

relative rotations described above, and can also be useful in specifying boundary conditions

and graphically representing the deformed configuration.

The third ingredient of corotational theory is the so-called projection operator which em-

anates from consistently taking the first variation of the strain energy, expressed in terms

of relative displacements, to obtain the nonlinear equilibrium equations (i.e., the inter-

nal force vector). The projection operator also plays a prominent role in the form of the

tangent stiffness matrix (or second variation), which is obtained by consistent lineariza-

tion of the equilibrium equations. Finally, the projection operator so obtained corrects

element rigid-body defects, e.g., due to warping and non-isoparametric kinematics -- even

for linear analysis.

The following subsections summarize the mathematical theory associated with each of the

above corotational ingredients.

For solid continuum elements, the advantages of corotation are minimal except in cases where

such elements are used to model shell structures. In such cases, corotation may be used in

place of nonlinear strain-displacement relations, which may be convenient for the element

developer -- for example, in initial check-out of the element implementation.

For finite strain analysis, the corotational formulation is not quite as useful, since the sub-

traction of rigid-body motion may yield relative rotations that are still large. Nevertheless, it

may alleviate round-off errors when finite strains are superposed on large rigid-body motions,

such as in flexible space-structure dynamics.

4-4 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

COROTATIONAL INTERFACE Basic Corotational Theory

4.2.1 Subtraction of Large Rigid-Body Element Rotations

The objective here is to extract relative, or deformational, displacements at the element

level which can be used in small- or moderate-strain/displacement relations, by subtracting

the motion of a single rotation triad attached to each element. Referring to Figure 4.1,

first the deformational translation vector and rotation matrix are defined at element node

a, expressed in a fixed, global coordinate system, by

odef _tot _ rig

Rdae! = R t°t [Rrig] T = exp(0a deS) (4.1)

respectively, where the rigid-body components are defined as follows:

llrio _ Utl °t + CR2 i)CxO_ xo)
(4.2)

R = E [E°] r

In the above expressions, E is the element triad, which corotates with the element (see

Section 3.4 for its definition for specific element classes in terms of the element nodal

coordinates), x is the position vector relative to a global origin, the superscript 0 denotes

the initial configuration, and the subscript 1 denotes element node 1 -- which is the origin

of the element coordinate system attached to the element triad E. Moreover, the total

displacements are defined as follows (see Figure 4.1):

tl tot 0
a : Xa -- X a

R t:' = Sa[S°] T (4.3)

where Sa is the nodal surface triad, which rotates with the structure at node a.

Finally, it is desirable to transform the deformational displacements derived above into

the current element coordinate system, defined by the element triad, E; and for the ro-

tational components, to convert the rotation matrix to a rotation pseudo-vector that is

an appropriate measure for conventional element strain-displacement relations. Thus, the

computations for the relative translation vector are:

j(ud°I), = E -u.d'11

and for the relative rotation "vector":

(4.4)

l{0adcY)e = E T axial{ln(Rdaef)}] (4.5)

Revised 12/22/89 CSM Testbed Generic Structural-Element Processor Manual 4-5

Basic Corotational Theory COROTATIONAL INTERFACE

where ln(R) is the natural logarithm of the matrix R, which is a skew-symmetric matrix

derived by taking the inverse of the exponential in equation (4.1), and axial{} denotes the

axial vector corresponding to this latter matrix, i.e.,

axial{12} = axial{
0 --I13 [12

_3 0 --_1

1"12 _'_1 0

122

i13

An exact expression for the natural logarithm of a matrix is given in reference 9.

4.2.2 Updating of Large Nodal Rotations

An incremental nodal rotation update is used to obtain the total rotation matrix, w TM

appearing in equation (4.1). However, instead of updating Rt_ t directly, the nodal surface

triad, Sa, for the k + 1 iteration is updated as follows:

IIsk+ll°: exp(O:°')[s*l°l (4.6/

where an exact expression for the exponential of a matrix (Rodriguez' formula) is given

later in equation (4.27). Once the nodal triad has been updated, the total rotation (con-

necting the initial and current nodal surface triads) is given by equation (4.3). Note that

the incremental rotation update equation (4.5) is usually performed from one nonlinear

solution iteration to the next, so that AS t°t represents the iterative change in the rota-

tional components of displacement, and appears explicitly in the iterative solution vector

generated by the conventional Newton-Raphson solution algorithm.

4.2.3 Modification of Element Force and Stiffness (Projection)

The final ingredient of the corotational theory is more subtle than the two described previ-

ously. It arises from first substituting the expressions for the deformational displacements

given by equation (4.1) into the element strain energy, and then consistently taking the

first and second variations. The first variation leads to the element internal force vector,

and the second variation, which is equivalent to consistent linearization, leads to the ele-

ment stiffness matrix. Interestingly, by simply using the definitions introduced in equation

(4.1), a corotational projection matrix, which subtracts incremental rigid-body motion, is

also engendered by the first variation. This projection matrix modifies the basic element

4-6 CSM Testbed Generic Structural-Element Processor Manual Revised 12/22/89

COROTATIONAL INTERFACE Basic Corotational Theory

internal-force and stiffness expressions by automatically correcting elements which do not

initially satisfy the required zero rigid-body straining condition. Thus, dramatic improve-

ments can be obtained for many conventional elements; for example, shell elements that are

sensitive to warping, or any non-isoparametric elements which use higher-order geometri-

cal approximations (e.g., trigonometric) than displacement approximations (e.g., low-order

polynomials). Additionally, by incorporating the corotational theory in the derivation of

the tangent stiffness matrix, and using consistent linearization, the optimal (quadratic)

convergence rates are obtained when solving the nonlinear global equation system using a

full Newton-Raphson iteration scheme.

A simple derivation of the projection operator can be made as follows (for details, refer to

reference 9). First, express the element strain energy in conventional terms as:

U = -_ e TCe dV (4.7)

where, e, is the strain tensor, C is the constitutive tensor (assuming elastic behavior for

simplicity) and V is the element volume. Now, expressing the element strains in terms

of the deformationa/ displacements only -- which were derived in Section 4.2.1 -- the

strain-displacement relations can be written as:

• = hdde! (4.8)

where B is the element strain-displacement matrix, and ddef may be partitioned as*

d_,/}

d_c]
dd_! = . (4.9)

_4nen
Udef

where nen isthe number of element nodes, and the deformational displacement vector at

a particularnode, a, istypicallypartitioned (fora beam or shellelement) as:

* Note that B may itself be a function of dd_f, i.e., if nonlinear element strain-displacement
relations are used.

Revised 3/6/89 CSM Testbed Generic Structural-Element Processor Manual 4-7

Basic Corotational Theory COROTATIONAL INTERFACE

d_.l- {u,_.¢} (4.10)

Next, the element internal force vector is obtained by taking the first variation of the strain

energy with respect to total displacements which, by the chain rule, amounts to:

fi,t OU .Odd.! r OU (4.11)
- Odtot -[o--d_ot] Odd./

Thus,

fiat = TT_. int (4.12)

where

_.int _ OU (4.13)
Odd, !

and

OddeI _ HPI (4.14)T- Odtot

In tlle above expression, P is a projection matrix and has the property that

p2 = p (4.15)

and H is a higher-order matrix that reduces to the identity matrix for linear analysis, and

can be approximated by the identity matrix in most situations.

Remark 4.1 The higher-order matrix, H, derives from the subtle difference between

the deformational rotation pseudo-vector, 0d,!, which may be moderately large, and

its incremental counterpart, $0d,l, which is considered infinitesimal. This difference

appears when equation (4.14) is expanded into its translational and rotational patti-

4- 8 CSM Testbed Generic Structural-Element Processor Manual Revised 3/6/89

COROTATIONAL INTERFACE Basic Corotational Theory

tions, and then use the chain rule:

8$Utot 06Utot

8$Ut,,t 06Utol

06Utot

85_,1 86Utot 86Uric! 86tltot

I 0:Io / 0su,., /

L- o6u,,, J xj
H P

(4.10)

where the notation of equation (4.13) has been refined by replacing d_ot by Sdtot, to

emphasize that the differentiation is with respect to the incremental quantities, which

constitute the actual unknowns in the problem.

Note that the projection matrix, P, can be computed explicitly from equation (4.13), as

shown in reference 9 and the Testbed implementaton follows this approach.

Finally, the element stiffness matrix is obtained by taking the second variation of the strain

energy, equation (4.7), i.e.,

K O_U Ofi'_t_ -- TTKT + K(f i'_*) (4.17)
OdtotOdtot Odtot

where
02U

= (4.18)
Odde fOdde f

is the basic element tangent stiffness matrix, and

_: _ 0T T _,_,t (4.19)
adtot

is a higher-order stiffness matrix arising from the need to differentiate the matrix T. This

matrix (K) may also be viewed as an extended geometric stiffness matrix.

.=int

In summary, the basic element force vector, f , and stiffness matrix, K, are transformed

by T, and hence by the corotational projection matrix, P. The higher-order matrix, H,

which premultiplies P, should be included for consistency, but is often unnecessary for

practical applications. Additionally, a higher-order stiffness matrix, E:, emerges, which

is an explicit function of the element internal force vector, _irtt. Interestingly, E:, can be

Revised 3/6/89 CSM Testbed Generic Structural-Element Processor Manual 4-9

Basic Corotational Theory COROTATIONAL INTERFACE

substituted as an approximation to the geometric stiffness matrix for elements that do not

provide their own intrinsic version.

From an implementation standpoint, it is interesting to note that all of the above modifica-

tions to the dement force and stiffness arrays can be generated in an element-independent

manner, i.e., without knowing anything about the details of the dement formulation (ex-

cept of course the basic element type, e.g., beam, shell, solid). This has made it possible to

implement the corotational capabilities described herein as a built-in option for all elements

associated with the Testbed's generic (ES) element processor.

4- 10 CSM Testbed Generic Structural-Element Processor Manual Revised 3/6/89

COROTATIONAL INTERFACE Built-in Corotational Options

4.3 Built-in Corotational Options

Three parameters are associated with the built-in corotational options that may be

employed by ES processor users/developers. The first parameter, generically called

"NL_GEOM", indicates whether geometric nonlinearity is present, and, if so, whether

linear or nonlinear strain-displacement relations are to be used at the element level. The

second parameter,"CORO", indicates whether corotation is to be employed to subtract

out large rigid-body rotations for geometrically nonlinear analysis, and, if so, whether to

employ an exact (consistent) or an approximate form for the element stiffness and inter-

nal force arrays (see Section 4.2.3). The last parameter, "PROJ', controls the use of the

element corotational projection operator, which may improve the performance of some

elements for linear as well as nonlinear analysis (also described in Section 4.2.3).

The mechanisms for setting these parameters -- which are different and go by different

names for users and developers (see Table 4.1) -- and the various options allowed are

described in the following sections. For clarity, geometrically linear and nonlinear analysis

are discussed separately.

4.3.1 Geometrically Linear Analysis

For geometrically linear analyses, only one parameter related to corotation is relevant: the

projection parameter ("PROJ"), which governs the use of the element projection opera-

tor. The other two parameters ("NL_GEOM" and "CORO') should be set to zero. This

happens automatically if one of the standard linear analysis procedures, e.g., L_STATIC

or L_STABIL_I, is employed by the user.

4.3.1.1 The Geometric Nonlinearity Parameter {NL_GEOM}

For geometrically linear analyses, the macrosymbol ES__NL_GEOM should be set to 0 by

the user before running the ES processor, using the directive:

*def/i ES_NL_GEOM = = 0

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 4- 11

Built-inCorotational Options COROTATIONAL INTERFACE

This value is currently the default setting within all ES processors. Note that this is

equivalent to setting ESANL_GEOM equal to zero in the call to the generic ES procedure

(see Sections 2.3 and 2.4).

For element developers, the value of this parameter will be transmitted to the element

kernel routines using the argument CTLS(pcNLG) -- see Chapter 3.

4.3.1.2 The Corotation Parameter (CORO)_

For geometrically linear analysis, the corotation parameter is irrelevant also. However, to

be explicit, the user may wish to type the directive:

,def/i ES_CORO = = 0

which is the default value. This action is equivalent to setting ES_CORO equal to zero in

the call to the generic ES procedure (see Sections 2.3 and 2.4).

For element developers, the value of this parameter will be transmitted to the element

kernel routines (Chapter 3) using the argument CTLS(pcCORO).

4.3.1.3 The Prolectlon Parameter (PRO J}

For geometrically linear analysis, the projection parameter may be used to modify the

element internal force vector, stiffness matrix, and displacements by multiplication by the

projection matrix (see Section 4.2.3). This is not necessary for elements which satisfy

the zero rigid-body straining condition (or, more strongly, equilibrium) exactly. Hence,

the projection parameter is currently both a user option and a developer option; i.e., the

user may turn it on, but the developer may choose to ignore it for certain element types.

The user's mechanism for selecting the projection operator is the macrosymbol, ES_PROJ

(see Section 2.3). The developer's mechanism for allowing or inhibiting projection is the

kernel argument DEFS(pdPROJ), which is set in kernel routine ESOD (see Sections 3.2

and 3.3). The value set by the user for macrosymbol ES_PROJ is conveyed to the ES

processor kernel through the input argument CTLS(pcPROJ). Then, in standard kernel

routine ESOD, the developer may either set DEFS(pdPROJ) equal to CTLS(pcPROJ),

or set DEFS(pdPROJ) independently of CTLS(pcPROJ), depending on the developer's

judgment.

4-12 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

COROTATIONAL INTERFACE Built-in Corotational Options

The user will have to read the element developer's documentation (under the appropriate

element processor section in Chapter 5 of the Testbed User's Manual, ref. 4) to deter-

mine how the ES_PROJ macrosymbol influences a particular element type. The value of

DEFS(pdPROJ) is stored in the database, in dataset ES.SUMMARY, record ES__PROJ.i,

where i is the sequence number of the element processor.

Legitimate values for the projection operator macrosymbol ES_PROJ are:

0 - No projection.

1 - Project clement internal force, displacements, and material stiffness ma-

trix, but not geometric stiffness matrix.

2 - Same as 1, and also project geometric stiffness matrix (relevant only for

stability, analyses).

For linear analysis, projection of the element displacement, internal force and stiffness

arrays means multiplication with the projection matrix as follows:

d =Pd

fint : pT _int

Kmatt : pT _,na_lp (4.20)

KgeO._ ._ pT_'J_O'np + :_(fint)

where the barred quantities refer to the unprojected values.

details.

See Section 4.2.3 for more

The benefits of corotational projection for shell elements in linear analysis are shown in

Figure 4.2, where various shell-element types are used to model the classical pinched cylin-

der problem, analyzed with a progressively distorted mesh. Notice that without projection

most of these elements display serious degradation as the mesh is distorted (and warped);

whereas, when projection is turned on, some of these elements become virtually insensitive

to the mesh distortion.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 4-13

Built-in Corotational Options COROTATIONAL INTERFACE

4.3.2 Geometrically Nonlinear Analysis

4.3.2.1 The Geometric Nonlinearity Parameter (NL_GEOM)

For geometrically nonlinear analyses, the macrosymbol ES_NL_GEOM should be set to

either 1 or 2 by the user before running the ES processor, using the directive:

,def/i ES_NL_GEOM = = { 1 12 }

This action is equivalent to setting ESANL_GEOM equal to 1 or 2 in the call to the generic

ES procedure (Section 2.3).

The difference between options 1 (first-order nonlinearity) and 2 (second-order nonlinear-

ity) is as follows:

__ The problem is geometrically nonlinear, but that linear strain-displacement

relations are to be used at the element level. This option is meaningful

only if corotation has been selected using the "CORO" parameter (Section

4.3.2.2).

_ The problem is geometrically nonlinear, and that nonlinear strain-displacement

relations are to be used at the element level. If corotation is also selected,

this will improve accuracy; if not, the element may only be valid for mod-

erately large rotations -- depending on the element's local nonlinear for-

mulation.

The element developer recovers the value of this parameter through the standard element

kernel-routine argument CTLS (pcNLG) -- see Section 3.3.

4.3.2.2 The Corotation Parameter (CORO)

For geometrically nonlinear analyses (ES_NL_GEOM = 1 or 2), the corotation parameter is

used to invoke the corotational update algorithm described in Section 4.2. This parameter

is set by the user using the macrosymbol ES_CORO,

,def/iES_CORO = = {0[1 12}

4-14 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

COROTATIONAL INTERFACE Built-in Corotational Options

where the values have the following meaning:

O __

__

Do not perform corotational updates (i.e., do not subtract rigid body

motions), and approximate H by I in equation (4.14).

Perform corotational updates (i.e., subtract rigid body motions), and ap-

proximate H by I in equation (4.14).

2 - Perform corotational updates, and use the exact representation of H in

equation (4.14).

For element developers, the value of this parameter will be transmitted to the standard

element kernel routines (Chapter 3) through the argument CTLS(pcCORO).

4.3.2.3 The Projection Parameter (PRO J)

For geometrically nonlinear analyses, the projection parameter has essentially the same

meaning as for linear analyses, except that the projection matrix, P, is now a function of

the displacements, and the material and geometric stiffness matrices are first added to form

the tangent stiffness before projection is applied. Also, the displacements are not projected

when they are large, but instead are subjected to the nonlinear corotational algorithm for

subtracting rigid-body motion described in Section 4.2.1.

Legitimate values for the projection parameter are:

0 - No projection.

1 - Project element internal force and tangent stiffness matrix, but not the

geometric stiffness matrix.

_ Same as 1, and also project the geometric stiffness matrix (relevant only

for stability analyses, i.e., buckling eigenvalue analysis about a nonlinear

prestress state).

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 4- 15

Built-in Corotational Options COROTATIONAL INTERFACE

Projectionof the element internal force and stiffnessarraysmeansmultiplication with the

projection matrix, asfollows:

fint

I_ _anY

K georn

:-_ pT [i T _int

= pTH T_t_ngHP + _(fint)

=_- pTHTKg_°'_Hp + _(fi.t)

where the barred quantities refer to the unprojected values, and

(4.21)

g,o. : (4.22)

In the above expressions, H = I if the "CORO" parameter is less than or equal to one,

and is different from the identity matrix only if the "CORO" parameter is set to two. See

Section 4.2.3 for more details.

Furthermore, the geometric stiffness matrix, K ge°'n, is relevant as a separate entity only

for stability analysis -- in this case about a nonlinear prestress state.

4- 16 CSM Testbed Generic Structural-Element Processor Manual Revised 12/14/89

COROTATIONAL INTERFACE Built-in Corotational Options

4.3.3 Summary of Options

The corotational options described in the preceding subsections are summarized in Tables

4.1 - 4.3. Table 4.1 gives the respective user and developer names associated with the

generic parameters: NL_GEOM, CORO, and PROJ. Table 4.2 shows the consequences of

setting each of these parameters to 0 (off), 1 (low) or 2 (high). Finally, Table 4.3 shows

how the element displacement, internal force and stiffness arrays are modified as a function

of the values of the PRO J, CORO and NL_GEOM parameters.

Table 4.1
i

Parameter Type

(Generic Name))

Geometric Nonlinearity

(NL_GEOM)

Corotational Updates

(CORO)

Projection Operator

(PROJ)

Corotational Parameter Names

User Parameter Name

(Macrosymbol Name)

ES_NL_GEOM

ES_CORO

ES_PROJ

Developer Parameter Name

(Subroutine Argument)

CTLS(pcNLG)

CTLS(pcCORO)

CTLS(pcPROJ)*

DEFS(pdPROJ)*

* CTLS(pcPROJ) is input and DEFS(pdPROJ) is output in subroutine ESOD.

Table 4.2 Corotatlonal Parameter Values

Parameter Parameter Va/ue

(Generic)

NL_GEOM

0

Linear Analysis

1

Lin. Strain-Disp. Relns

No Projection

2

Nonlin. Strain-Disp. Relns

CORO Non-Corotational Corotation (H---- I) Corotation (H :_ I)

PROJ Project all but K 9e°'_ Project all incl. K 9e°m

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 4- 17

Built-in Corotational Options COROTATIONAL INTERFACE

Table 4.3

Linear Analysis

Array PROJ = 0

dde/

fint

Kmatl

Kgeom

Array

dde f

fi.t

Ktang

KgeOm

d

_int

_matl

_georn

Effect of Projection on Element Arrays
i,

(ES_NL_GEOM = ES_CORO =
|

PROJ = 1

Pd

pT _int

pT _,'nattp

_georn

Nonlinear Analysis

PROJ = 0

_int

_tang

(ES_NL_GEOM > 0

PROJ -- 1

3r(d)

pT _int

i i

Nonlinear Analysis > 0

pr _tan_p + ff_(fint)

-g_OTlrl,

(ES_NL_GEOM

Array

dde f

ifi.t

K_ang

Kgeom

PROJ = 0 PROJ = I

pT HT_ int

HT_tanaH pTHT_tangHp + _(fint)

H T _9"°m H n T _g_°'n H

0)

PROJ = 2
,i

Pd

pT_ int

pT _m_tZp

pT_ge°mp + _(fint)

; ES_CORO = 1)

PROJ = 2

z(a)
pT_ int

pT Kta"" P + _[(fint)

pT _ge°'np + _(flnt)

; ES_CORO = 2)

PROJ = 2
Jl

rCd)
pr H T _int

pT H r Kt_"_Hp + _(fi.t)

pT H T _g_o'_ H p + _:(fi,t)

Remark 4.2 z(_) is an abstract functional notation used to denote the subtraction

of rigid-body motion from the element displacement field, and corresponds to the

nonlinear algorithm described in Section 4.2.1.

Remark 4.3 If PROJ = 2 and _g,om = 0, then K g`°m ---* _,(fint), which can be

used as a crude approximation to the geometric stiffness for elements whose geometric

stiffness routine (ESOKG) has not yet been implemented.

4-18 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

COROTATIONAL INTERFACE The Corotational Algorithm

4.4 The Corotational Algorithm

The following steps constitute the "element-independent" corotational algorithm currently

implemented in the Testbed for geometrically nonlinear analysis. These steps roughly

correspond to the algorithm originally implemented in the STAGS code (ref. 8). Additional

theoretical details are presented in references 8 and 9, and references therein.

Step 1 Initialization. Construct the initial element corotational frame, E °, based on

initial element nodal coordinates, {x°} _, where g denotes the global Cartesian

basis, e denotes the element basis and a is the element node index (see Figs. 3.1
and 3.3). Thus, E is an orthogonal 3×3 matrix, or triad, whose columns are
unit vectors pointing in the directions of the element corotational axes, ze, ye, z_.
The element corotational coordinate system is defined in much the same way as
the conventional SPAR element coordinate systems, except that for quadrilateral
elements whose corner nodes do not all lie in a plane, an average plane is selected,
as described in reference 8. Note that there is some element type dependency

in that beam, plate and (curved) shell elements require different frame-selection
conventions, but there are only a small number of such cases to distinguish.

Step 2 Frame Update• Update the element corotational frame at each load-step or

iteration, to obtain E k as a function of the current element nodal coordinates,
k a

{x hg =x 90+ ug} , where k is the current step or iteration counter, and u is the

translational part of the nodal displacement vector. Note that E k is defined in

precisely the same manner as E ° except using the current set of nodal coordi-
nates.

Step 3 Relative Translations. Compute relative-translations for element node a,

{u_} _, with respect to the updated corotational frame, and expressed in the

basis, E k. That is,

{u_} a = {x_}" - {x°} a (4.23)

where

{xO} a ---- (EO) T ({x°} a - {x°} _)

,{x_} a _ (Ek) T ({xgk} a - ,{x_} 1)

(4.24)

(4.25)

in which {x_}' and {x_} 1 are the initial and current coordinates, respectively,

of the origin of the element corotational coordinate system (typically taken as

element node 1). The relative translations {u_} _ = {u_,v_,w_ }T may be in-
put directly to the element strain routine; but for beam/plate/shell elements, a
corresponding set of relative rotations axe needed first.

Step 4
• • " " _g 0, "

Relative Rotations. Compute relative-rotations, {0 e} , with respect to the

_co_frame. This step is cruc/a/. It is composed of three substeps.
First, nodal rotation triads, IS] _, defined to be tangent to the deformed surface

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 4- 19

The Corotational Algorithm COROTATIONAL INTERFACE

at each node, are updated using the incremental rotation components obtained
from the solution of the linearized equilibrium equations. Next, a relative-rotation
matrix, [Rdel] _, representing the deformationM part of the total rotation is com-

puted at each element node. Finally, [Rdel] _ is converted to an approximate rota-

tion pseudo-vector, {0_} _ = { 0_,0_,0_ }:. This pseudo-vector is the corotational
equivalent of the rotation vector used in conventional small- or moderate-rotation

beam/shell analysis. Together, {0_}" and {u_}" (from Step 3), complete the el-

ement nodal displacement vector, {d_} _, which may then be input to a standard
(e.g., linear) element strain routine.

SubStep 4.1: Global Rotation Updates. This sub-step is actually performed at
the global level, i.e., before looping on individual elements. At each
node, the transformation matrix that defines the nodal DOF direc-

tions is used as the initial surface triad, [S°] _. The nodal surface
triads are then updated at each load-step/iteration using the recur-
sion formula

[Sk+']_ = Q(A0")[St] a (4.26)

where k is the iteration counter, A0a is the incremental nodal rotation
vector emanating from the iterative solution vector (i.e., the rotational
components of Ad) and Q is an incremental rotation matrix defined
by Rodriguez's formula for the exponential of a matrix, i.e.,

Q(A0) : I + sin{Ae{ I {s/nlAe/2{_2
IAoI + lae{/2] Ao2 (4.27)

in which AO is the skew-symmetric matrix corresponding to the vec-

tor A0 = {A01,A02,A03 }T, i.e.

AO =

0 -A03 A02

0 -A01

skew 0
(4.2s)

In practice, the triad update formula in equation (4.26) involving

[Ski a and [Sk+l] _ is performed entirely in terms of equivalent ro-

tation pseudo-vector, {pk}_ and {pk+l}_, so that only 3 numbers,

rather than 9, need be stored at each node (e.g., see ref. 8).

SubStep 4.2: Element Relative-Rotation Matrix. The relative, or deforma-
tional, rotation matrix at an element node is then constructed by
"subtracting" the rigid-body contribution of the corotational frame,

E L, from the total rotation of the nodal surface triads, [Sk] a, as fol-

lows. The total rotation of an arbitrary unit vector, {i}_, attached
to the surface at element node a is by definition:

{^k _= R _ =X,o, [,°4 { o}o where:l[o,]O [sh-(Is°loT] (4.29)

and the rigid-body part of the total rotation is defined by the motion
of the corotational frame, i.e.,

^k }a
Iwhere: E L l

{x,.,, = R,-ig [R,.,g = (E°) T] (4.30)

4- 20 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

COROTATIONAL INTERFACE The Corotational Algorithm

Thus, if the total rotation is expressed as the composition of rigid-
body and deformational parts

R[IR,o,I° = [m,9] (4.31)

then the deformational part can be expressed as

[Rdes]_ [,od R_i, = [Sk]"([s°]") r (E_) T (4.32)

Finally, it is convenient to transform [Rd_I]" from the global basis to
the current element corotational basis using

[Rdef] a = (Ek) T [Rdef] a E k (4.33)

SubStep 4.3: Element Relative-Rotation Pseudo-Vector. By using the in-

verse of the triad-update formula in equation (4.27), an approximate
rotation pseudo-vector, 0_, corresponding to [Rd_f]_ may be com-
puted at each element node, a. Thus, solving

a = oa

for the skew-symmetric matrix corresponding to 0_ yields:

(4.34)

sin-'(lzl) Z,
oa - IZl

R a

Z = ([del]¢ -[Rd_f]_ T) (4.35)

V/1 + trace[Rdef]e a

from which the three vector components of 0: can be extracted ac-

cording to equation (4.28).

Step 5 Strain Computation. Given tile element nodal displacement vectors, d: =

{ u_, ®_ }T __ which are assumed to be "small" since they are measured relative
to the corotational frame -- standard element linear (infinitesimal-rotation) or

nonlinear (moderate-rotation) strain-displacement routines may be employed to
compute strains.

Step 6 Stress Computation. Either linear elastic or nonlinear (e.g., elastic-plastic)
constitutive relations can be used in conjunction with the strains obtained in

Step 5 to compute element stresses. Additional information such as deformation

gradients, would be needed to accommodate finite strains.

Step 7 Internal-Force/Stiffness Computation. Finally, the element internal-force
and stiffness arrays are formed with respect to the current element corotational

frame, E k, and are then transformed to the computational or nodal degree of free-
dom bases -- e.g., global Cartesian or shell-oriented -- using the nodal submatrix
transformations:

K: b = (T:c) T K:bT_¢ , f2 = (T:c) T f_ (4.36)

Revised 3/6/89 CSM Testbed Generic Structural-Element Processor Manual 4-21

The Corotational Algorithm COROTATIONAL INTERFACE

where a, b denote element node numbers, and e, c denote the current element and

computational bases, respectively. The transformation matrix, T_c , is obtained
by the composition

Tic = E TTg¢ (4.37)

where T_¢ is the orthogonal transformation between the computational basis and

the global Cartesian basis at node a.* The element arrays in equation (4.14) are
ready for assembly into the corresponding system arrays.

Remark 4.4 The projection operations described in Section 4.2.3 are performed

(optionally) on the element stiffness and internal force arrays before performing the

transformations indicated in equation (4.32). For linear analysis, projection is the

only corotational aspect of the solution algorithm (see Table 4.3).

* It is possible to use either a fixed or a moving computational basis at the nodes, i.e.,

one that follows the surface -- like [S] a (see Step 4.1). However, in the present Testbed

implementation, a fixed basis is assumed.

4-22 CSM Testbed Generic Structural-Element Processor Manual Revised 3/6/89

COROTATIONAL INTERFACE Corotational Software Utilities (CR*)

4.5 Corotational Software Utilities (CR,)

The following subroutine entry points (where the first two letters of each subroutine name

are CR) are employed by the generic structural-element (ES) processor shell to perform all

of the corotational functions described in the preceding sections. These utilities are invoked

automatically by" the processor shell; hence, there is no requirement that the element

developer become familiar with them. They are described here only for the curious reader,

and/or the researcher who wishes to call these utilities directly for some exotic element

formulation.

Revised 12/22/89 CSM Testbed Generic Structural-Element Processor Manual 4-23

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

Table 4.1-1

Utility Name

CRDEFD

SUMMARY OF COROTATIONAL SOFTWARE UTILITIES

I ii

Function
i

Computes deformational rotation matrices, Ra_I, at element

nodes. Tile rotation "vectors" generated by CRDEFR are ex-

tracted from these orthogonal matrices according to equation

(4.34). This routine is for elements that cail use the rotation

matrices directly (e.g., C o shell elements) to achieve greater ac-

curacy.

CRDEFR Computes deformational (strain-producing) nodal rotation "vec-

tors", {O_ey}e , relative to element corotational frame.

CRDEFT Computes deformational (strain-producing) nodal translation

vectors, {u_e/}e , relative to the element corotational frame.

CRFIC1 Modifies the internal-force vector, fins, for C 1 shell and beam

elements, to improve consistency of the "first variation" with

respect to the corotational hypothesis, using the matrix H in

equation (4.21).

CRKC1 Modifies the tangent-stiffness matrix, K, for C 1 shell and beam

elemeats, to obtain consistent linearization with respect to the

corotational hypothesis; using the matrix tt in equation (4.21).

CRPDEF Projects the element displacement vector, _e, using the matrix

P in equation (4.20), to obtain deformationally consistent dis-

placements, d_¢f, for linear analysis only.

CRPRFB

CRPRKB

Same as CRPROF, but for beam elements.

Same as CRPROK, but for beam elements.

CRPROF Projects the element internal-force vector, using the matrix P

in cqu_tions (4.20) and (4.21), to eliminate tile differential rigid-

body motion of tile elemcnt corotational frame. This can improve

eh'ment performance for elemeltts that do not satisfy rigid body

invariance in advance.

4-24 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

COROTATIONAL INTERFACE Corotational Software Utilities (CR,)

Table 4.1-1

Utility Name
I

CRPROK

SUMMARY OF COROTATIO_AL SOFTWARE UTILITIES

Function

Projects the element stiffness matrix (for plate/shell elements),

using the matrix P in equations (4.20) and (4.21), to eliminate

the differential rigid-body motion of the element corotational

frame. Also, adds the effect of the derivative of the projection

matrix in the consistent linearization of the element internal force

vector, to obtain the higher order stiffness matrix: _(fint).

CRTGE Constructs/updates the clement corotational frame (or triad), E,

for plate, shell and solid elements.

CRTGEB Updates the element corotational triad for beam elements.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 4- 25

C,,rotational Software Utilities (CR*) COROTATIONAL INTERFACE

4.5.1 Subroutine CRDEFD: Deformational Rotation Vector

Subroutine CRDEFD computes the orthogonal matrix at element nodes r(,presenting the

dcformational (strain-producing) part of nodal rotations.

Calling Sequence

call CRDEFD (cO, sO, psk, ek, d)

Input Arguments

E0(3,3)

s0(3,3)

PSK(3)

EK(3,3)

Initial element triad, E °.

Initial surface triad at node a, IS°] a.

Current total-rotation pseudo-vector, 0, at node a, corresponding to

the rotation of the surface triad relative to the initial configuration,

i.e., Rtot= S IS°! T.

Current (or initial if NDOF = 0) element triad, E.

Output Arguments

D(3,3) Current deformational rotation matrix at node a. (Mathematical

notation: R_I)

4-26 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

COROTATIONAL INTERFACE Corotational SoftwareUtilities (CR,)

4.5.2 Subroutine CRDEFR: Deformational Rotation Vector

Subroutine CRDEFR computes deformational (strain-producing) nodal rotation "vectors"

relative to element corotational frame.

Calling Sequence

I call CRDEFR (ndof, eO, sO, psk, ek, omega)]

Input Arguments

NDOF

E0(3,3)

S0(3,3)

PSK(3)

EK(3,3)

Output Arguments

OMEGA(3)

Number of rotatational degrees of freedom per node; currently must

be equal to three, such that the rotational degrees of freedom cor-

respond to 01,0._, 0_.

Initial element triad, E °.

Initial surface triad at node a, [S°] =.

Current total-rotation pseudo-vector, 0, at node a.

Current (or initial if NDOF = 0) element triad, E.

Current deformational rotation "vector" at element node a. (Math-

ematical notation: 0_).

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 4-27

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

4.5.3 Subroutine CRDEFT: Deformational Translations

Subroutine CRDEFT computes the translational part of the deformational (strain-producing)

nodal displacement vectors for beam, shell or solid elements.

Calling Sequence

I call CRDEFT (ndof, xg, xe, ek, ug, ix, nen, w, udef)

Input Arguments

NDOF

XG(3,NEN)

XE(3,NEN)

EK

UG(NDOF,NEN)

Total number of degrees of freedom per node (3 or 6). If

NDOF=0, then UG is ignored and XE is output; otherwise,

UG and XE are both used to compute UDEF. (NOTE: If

NDOF> 0, then NDOF must be at least three, such that the

first three degrees of freedom are the translations, u, v, w.)

Table of initial global coordinates at element nodes; XG(i,a)

:= the ith global coordinate of element node a, where i = 1,2, 3

corresponds to x, y, z, and a -- 1 -- NEN, where NEN is the

number of element nodes. (Mathematical notation: x_)

Table of initial element-based coordinates at element nodes;

XE(i,a) defines the ith element-based coordinate of element

node a, where i = 1,2,3 corresponds to xe,Ye,Ze, and a ---- 1

-- NEN, where NEN is the number of element nodes. XE is

input only if NDOF>0. (Mathematical notation: x_:))

Current (or initial if NDOF = 0) element triad (3 x 3). (Math-

ematical notation E k)

Current global displacements at element nodes; UG(i,a) =

.{di)_, the index i ranges from 1 to NDOF and, if NDOF--6,

corresponds to u, v, w, 0x, 8_, 0_. (Irrelevant if NDOF--0.)

4-28 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational Software Utilities (CR*)

IX(NEN)

NEN

W(6*NEN)

Output Arguments

UDEF(NDOF,NEN)

Element node number list index array giving counterclockwise

order of nodes, corner nodes listed .6rst. IX(a) is the number

of the node that is the ath corner node in the standard coun-

terclockwise ordering. Additional nodes can come in any order

after the corner nodes. This array is used to establish the

correspondence between the developer's arbitrary numbering

scheme and the required ordering. (Note: triangles are treated

just like quadrilaterals.)

Number of element nodes represented in IX array.

Workspace array of at least six times NEN words.

Current deformational translations at element nodes:

UDEF(i,a) =tuil" _adefj,_,i = 1,3. Note: If NDOF > 0, UDEF

is dimensioned NDOF by NEN and rows 4--NDOF are un-

affected by the call; however, if NDOF = 0, then UDEF is

instead interpreted as the initial element-based coordinates at

element nodes, i.e., {x_} °, and is dimensioned three by NEN.

Revised 12/15/89 CSM Testbed Generic Structural-Element Processor Manual 4-29

Corotational SoftwareUtilities (CR,) COROTATIONAL INTERFACE

4.5.4 Subroutine CRFICI: C 1 Shell Element Force Correction

Subroutine CRFICI modifies the internal force vector for _,1 stwll elcmc.nts to improve

consistency of the "first variation" with rcspect to the corotational hypothesis. This cor-

responds to prernultiplication by the matrix, H T, as defined in equation (4.21).

Calling Sequence

call CRFIC1 (nen, udef, fi, hfi)]

Input Arguments

NEN

UDEF(6,NEN)

FI(6,NEN)

Output Arguments

HFI(6,NEN)

Number of element nodes with rotational degrees of freedom. Each

affected node is assumed to have three translational and three ro-

tational degrees of freedom.

Current deformational displacements at element nodes:

u,v,w,O_,6y,_z in turn for each node a = 1--NEN.

The internal force vector (frst variation of the strain energy) or-

dered in the same way as UDEF.

Modified internal force vector, i.e., premultiplied by the higher-

order matrix, H. Ordered in the same way as UDEF and FI. (May

be stored in the same array as FI)

4-30 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational SoftwareUtilities (CR*)

4.5.5 Subroutine CRKCI: C 1 Shell Element Stiffness Correction

Subroutine CRKC1 modifies the element stiffness matrix for C 1 shell elements to obtain

consistent linearization with respect to the corotational hypothesis. This corresponds to a

congruent transformation by the matrix H T, as defined in equation (4.21).

Calling Sequence

call CRKC1 (nen, istab, udef, fi, k, w, hkh)]

Input Arguments

NEN Number of nodes in element with rotational degrees of freedom.

Each node is assumed to have three translational and three rota-

tional degrees of freedom. This subroutine will not work with el-

ements with midside "deviationar' nodes that have a nonstandard

degree of freedom pattern.

ISTAB If ISTAB = O, compute modified tangent stiffness; otherwise, com-

pute modified stability matrix.

UDEF(6,NEN) Current deformational displacements at element nodes: u, v, w, 8x, 0u, 8z

in turn for each node a = 1--NEN.

FI(6,NEN) Internal force vector (first variation of strain energy)) ordered like

UDEF. This is the same FI as input to subroutine CRFIC1.

K(NSIZE) The element stiffness matrix (in local element coordinates) stored

in lower triangle form. NSIZE is equal to 6xNENx (6xNEN+I)/2.

W(18*NEN) Workspace.

Output Arguments

HKH(NSIZE) Modified element stiffness matrix ordered in the same way as K.

Obtained as HTKH. (May be stored in the same array as K).

Revised 12/15/89 CSM Testbed Generic Structural-Element Processor Manual 4-31

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

4.5.6 Subroutine CRPDEF: Project Displacements

Subroutine CRPDEF projects out spurious rigid-body contributions to the element dis-

placement vector --- for linear analysis only -- by premultiplication by the matrix P in

equation (4.20). This operation has an effect only for elements that do not satisfy the zero

rigid-body strain requirement intrinsically.

Calling Sequence

call CRPDEF (nen, ndof, inode, ix, xe, 11, uproj)

Input Arguments

NEN

NDOF

INODE

IX(NEN)

Number of element nodes. Each node must currently have

three translational and three rotational degrees of freedom.

Number of degrees of freedom per node; currently must be

equal to six.

If INODE=0, then the local x axis lies along the 1--2 line

projected on the element plane. This choice corresponds to

NODE = 2 and IXY = 1 in subroutine CRTGE. If INODE --

1, the y axis lies along the 1--4 line projected on the element

plane. This choice corresponds to NODE = 4 and IXY = 2 in

subroutine CRTGE.

Element node number index array giving counterclockwise or-

der of nodes, corner nodes listed first. IX(a) is the number of

the node that is the ath corner node in the standard counter-

clockwise ordering. Additional nodes can come in any order

after the corner nodes. This array is used to establish the

correspondence between the developer's arbitrary numbering

scheme and the required ordering. Note: triangles are treated

just like any other element.

4-32 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational SoftwareUtilities (CR*)

XE(3,NEN)

U(NDOF,NEN)

Table of initial element-based coordinates at element nodes;

XE(i,a) defines the ith element-based coordinate of element

node a, where i = 1,2,3 corresponds to xe,y_,ze, and a =I--

NEN, where NEN is the number of element nodes. (Mathe-

matical notation: x_:))

Unprojected displacements at element nodes: u, v, w, 8z, 0y,/_z

in turn for each node a = 1--NEN, expressed in the element

basis.

Output Arguments

UPROJ(ndof, nen) Projected element displacement vector. (May be the same ar-

ray as U.)

Revised 12/15/89 CSM Testbed Generic Structural-Element Processor Manual 4-33

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

4.5.7 Subroutine CRPRFB: Project Internal-Force for Beam

Subroutine CRPRFB projects the modified element internal force vector to eliminate

the differential rigid-body motion of the element corotational frame and enforces self-

equilibrium of element internal forces when the element does not initially satisfy this

condition (required by patch test). This does not affect elements whose internal forces are

self-equilibrated.

Calling Sequence

I call CRPRFB (hen, nlin, xe, udef, e0, sO, psk, ek, fi, fiproj) I

Input Arguments

NEN

NLIN

XE(3,NEN)

UDEF(6,NEN)

E0(3,3)

S0(3,3)

PSK(3)

Number of nodes in element. Each node has three trans-

lational and three rotational degrees of freedom.

Set NLIN to zero for linear analysis. For beam formula-

tions now being considered, it is unnecessary to call sub-

routine CRPRFB for linear analyses.

Table of initial element-based coordinates at element nodes;

XE(i,a) defines the ith element-based coordinate of ele-

ment node a, where i = 1,2,3 corresponds to x,,yc,z,,

and a =I--NEN, where NEN is the number of element

()_
nodes. (Mathematical notation: "ia J

Current deformational displacements at element nodes:

u,v,w,O_,8_,Sz in turn for each node a = 1--NEN.

Initial element triad, E °.

Initial surface triad at node 1, i.e., [S°] I.

Current total-rotation pseudo-vector, 8, at element node

1.

4-34 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational SoftwareUtilities (CR*)

EK(3,3)

FI(NDOF,NEN)

Output Arguments

FIPROJ(NDOF,NEN)

Current element triad, E.

Element internal force vector. For C 1 elements, use the

output of CRFIC1. Ordcrcd the same way as UDEF.

Projected internal force vector satisfying infinitesimal ro-

tational invariance. Arranged in the same way as argu-

ment FI. (FI and FIPROJ may be stored in the same ar-

ray.)

Revised 12/15/89 CSM Testbed Generic Structural-Element Processor Manual 4-35

Corotational Software Utilities (CR*) COROTATIONAL INTERFACE

4.5.8 Subroutine CRPRKB: Project Stiffness for Beam

Subroutine CRPRKB computes corrections to the element stiffness matrix in local ele-

ment coordinates, arising from the differential motion of the element corotational frame.

This step completes the consistent linearization for the element-independent corotational

method for beam elements.

Calling Sequence

[call CRPRKB (nen, nlin, istab, xe, udef, eO, sO, psk, ek, fiproj, k, kproj) J

Input Arguments

NEN

NLIN

ISTAB

XE(3,NEN)

UDEF(6,NEN)

Number of element nodes. Each node has three transla-

tional and three rotational degrees of freedom.

Set to zero for linear analysis. For beam formulations now

being considered subroutine CRPRKB need not be called

for linear analyses.

Stability flag. Set to zero only if the linear (material) stiff-

ness matrix is being projected by itself. Otherwise, set to

one to indicate that the geometric stiffness matrix is in-

cluded, and hence to add the extended geometric stiffness,

I_(fi"t).

Table of initial element-based coordinates at element nodes;

XE(i,a) defines the ith element-based coordinate of ele-

ment node a, where i = 1,2,3 corresponds to xe,ye,z,,

and a =I--NEN, where NEN is the number of element

nodes. (Mathematical notation: -(_)_ia J

Current deformational displacements at element nodes:

u, v, w, 0z, 0_, 8z in turn for each node a = 1--NEN.

4-36 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational Software Utilities (CR*)

E0(3,3)

so(3,3)

PSK(3)

EK(3,3)

Initial element triad, E °.

Initial surface triad at element node 1, i.e., S o .

Current total-rotation pseudo-vector at node 1, i.e., 8 °.

Current elcment triad, E.

FIPROJ(NDOF,NEN) Internal forces from element. Use the output of subroutine

CRPROF. Ordered the same way as UDEF.

K(NSIZE) The element stiffness in local element coordinates. For

C 1 elements, should be the output of subroutine CRKC1.

Arranged in lower triangle order. NSIZE is equal to

NDOF x NEN x (NDOF x NEN+I)/2.

Output Arguments

KPROJ(NSIZE) Projected stiffness matrix. Arranged in the same way as

K. (May even be the same array as K.)

Revised 12/15/89 CSM Testbed Generic Structural-Element Processor Manual 4-37

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

4.5.9 Subroutine CRPROF: Project Internal-Force Vector

Subroutine CRPROF projects the element internal force vector (after it has optionally

been modified using subroutine CRFIC1) to eliminate the differential rigid-body motion

of the element corotational frame and enforces self-equilibrium of element internal forces

when the element does not initially satisfy this condition (required by a patch test). This

does not affect elements whose internal forces are self-equilibrated.

Calling Sequence

I call CRPROF (nen. ndof, inode, nlin, ix, xe, udef, fi, fiproj)

Input Arguments

NEN

NDOF

INODE

NLIN

Number of element nodes.

Number of degrees of freedom per node. Degree of free-

dom pattern must be regular, i.e., the same for each node.

There must be three translational degrees of freedom per

node, and three rotational degrees of freedom per node-

i.e., currently, NDOF must equal six.

If INODE-0, then the local x axis lies along the 1--2 line

projected on the element plane. This choice corresponds

to NODE -- 2 and IXY = 1 in subroutine CRTGE. If

INODE --- 1, the y axis lies along the 1--4 line projected

on the element plane. This choice corresponds to NODE

= 4 and IXY = 2 in subroutine CRTGE.

Flag set to zero for linear analysis and set to one for ge-

ometrically nonlinear analysis. Determines whether the

displacements, UDEF, will be used in the construction of

the projection matrix, P. For linear analysis, only the

initial configuration is used; for nonlinear analysis the dis-

placements are used to update the configuration.

4-38 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational Software Utilities (CR*)

IX(NEN)

XE(3,NEN)

UDEF(NDOF,NEN)

FI(NDOF,NEN)

Element node number index array giving counterclock-

wise order of nodes, corner nodes listed _rst. IX(a) is

the number of the node that is the ath corner node in

the standard counterclockwise ordering. Additional nodes

can come in any order after the corner nodes. This ar-

ray is used to establish the correspondence between the

developer's arbitrary numbering scheme and the required

ordering. Note: Triangles are treated just like quadrilat-

erals.

Table of initial element-based coordinates at element nodes;

XE(i,a) defines the ith element-based coordinate of ele-

ment node a, where i -- 1,2,3 corresponds to xe,ye,ze,

and a =l--N, where N is the number of element nodes.

{x,)e)(Mathematical notation: a 0

Current deformational displacements at element nodes:

e.g., if NDOF equals six, the degrees of freedom are

u, v, w, Oz, 0_, 0z for each node a -- 1--NEN.

Element internal force vector. For C 1 elements, use the

output of subroutine CRFIC1. (Ordered the same way as

argument UDEF.)

Output Arguments

FIPROJ(NDOF,NEN) Projected internal force vector satisfying infinitesimal ro-

tational invariance. Arranged in the same way as FI.

(Note: FIPROJ and FI may be stored in the same array.)

Revised 12/22/89 CSM Testbed Generic Structural-Element Processor Manual 4-39

Corotational Software Utilities (CR*) COROTATIONAL INTERFACE

4.5.10 Subroutine CRPROK: Project Stiffness Matrix

Subroutine CRPROK computes corrections to the element stiffness matrix (in local dement

coordinates) arising from the differential motion of the element corotational frame. This

step completes the consistent linearization of the the element-independent corotational

formulation; and will yield an exact tangent stiffness matrix in many cases (see ref. 8).

Calling Sequence

call CRPROK (nen, ndof, inode, nlin, istab, ix, xe, udef, fiproj, k, kproj)

Input Arguments

NEN

NDOF

INODE

NLIN

Number of element nodes.

Number of degrees of freedoms per node. Degree of free-

dom pattern must be regular, i.e., the same for each node.

Currently, there must be three translational degrees of

freedom and three rotational degrees of freedom per node,

i.e., NDOF = 6.

If INODE=0, then the local x axis lies along the 1--2 line

projected on the element plane. This choice corresponds

to NODE = 2 and IXY = 1 in subroutine CRTGE. If

INODE = 1, the y axis lies along the 1--4 line projected

on the element plane. This choice corresponds to NODE

= 4 and IXY = 2 in subroutine CRTGE.

Geometric nonlinearity flag. Set to zero for linear analysis

and set to one for geometrically nonlinear analysis. De-

termines whether the displacements, UDEF, will be used

in the construction of the projection matrix, P. For linear

analysis, only the initial configuration is used; for nonlin-

ear analysis the displacements are used to update the con-

figuration. Additionally, NLIN = 1 triggers the generation

4-40 CSM Testbed Generic Structural-Element Processor Manual Revised 3/6/89

COROTATIONAL INTERFACE Corotational Software Utilities (CR*)

ISTAB

IX(NEN)

XE(3,NEN)

UDEF(NDOF,NEN)

FIPROJ(NDOF,NEN)

of the extended geometric stiffness, :K(f'"*), regardless of

the value of ISTAB, below.

Stability flag. Set to zero only if the linear (material) stiff-

ness matrix is being projected by itself. Otherwise, set to

one -- to indicate that the geometric stiffness matrix is in-

cluded, and hence to add the extended geometric stiffness,
p_

K(f_"t).

Element node number list index array giving counter-

clockwise order of nodes, corner nodes listed first. IX(a)

is the number of the node that is the ath corner node in

the standard counterclockwise ordering. Additional nodes

can come in any order after the corner nodes. This ar-

ray is used to establish the correspondence between the

developer's arbitrary numbering scheme and the required

ordering. Note: triangles are treated just like quadrilat-

eral element.

Table of initial element-based coordinates at element nodes;

XE(i,a) defines the ith element-based coordinate of ele-

ment node a, where i = 1,2,3 corresponds to xe,ye,ze,

and a --1--NEN, where NEN is the number of element

nodes. (Mathematical notation: {xi}e)a0

Current deformational displacements at element nodes:

e.g., if NDOF equals six, the degrees of freedom are

u,v,w, Ox,Oy,Oz for each node a = 1--NEN.

Internal forces from element. Use the output of CRPROF.

Ordered the same way as UDEF.

Revised 12/22/89 CSM Testbed Generic Structural-Element Processor Manual 4-41

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

K(NSIZE) The element stiffness in local element coordinates. For C 1

elements, should be the output of subroutine CRKC1. Ar-

ranged in lower triangular order. NSIZE is equal to

NDOFxNENx(NDOFxNEN+I)/2. (May be zero if

_(fi,t) is the only desired output.)

Output Arguments

t{PROJ(NSIZE) Projected stiffness matrix. Arranged in the same way as

argument K. (May even be stored in the same array as K.)

4-42 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational SoftwareUtilities (CR*)

4.5.11 Subroutine CRTGE: Construct Element Triad.

Subroutine CRTGE computes the element corotational frame (or triad) E for plate, shell,

and solid elements.

Calling Sequence

call CRTGE (ndof, xg, ix, node, ixy, ug, ek)]

Input Arguments

NDOF

XG(3,NEN)

Ix(4)

NODE

Number of degrees of freedom per node. If NDOF = 0, then the

element displacements, UG, are assumed to be zero. (NOTE: If

NDOF > 0, then it must currently be at least three, such that the

first three degrees of freedom corresponding to the translational

degrees of freedom: u, v, w.)

Table of initial global coordinates at clement nodes; XG(i, a) de-

fines the ith global coordinate of element node a, where i = 1, 2, 3

corresponds to x, y, z, and a = 1--NEN, where NEN is the number

of element nodes. (Mathematical notation: x_)

Element node number list index array giving counterclockwise or-

der of nodes, corner nodes listed /irst. IX(a) is the number of the

node that is the ath corner node in the standard counterclockwise

ordering. Only the corner nodes need to be listed for subroutine

CRTGE. For triangles, IX(3) = IX(4). This array is used to estab-

lish the correspondence between the developer's arbitrary number-

ing scheme and the required ordering.

Index in IX of corner node to which the local element x or y axis

points towards. For example, if NODE = 2, the local x or y axis

points to node IX(NODE) projected onto the local element frame.

Revised 12/15/89 CSM Testbed Generic Structural-Element Processor Manual 4-43

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

IXY Axis indicator. If IXY<I, the local x axis points to IX(NODE);

otherwise, the local y axis points to IX(NODE). The two most

common examples of the use of NODE and IXY is the combination

[2,1] and [4,2]. In the first case, the local x axis points to node

IX(2) (or the corner node to the right of the reference node, which

is Mways node IX(l)). In the second case, the local y axis points

to node IX(4), or the corner node above the reference node. For

rectangular elements, this would mean that the x axis points along

the 1--2 edge, the y axis along the 1--4 edge, with the z axis

pointing toward the viewer for both of the above definitions.

UG(NDOF,NEN) Current global displacements at clement nodes; UG(i,a) = {d_}e;

the index i ranges from 1 to NDOF and, if NDOF=6, corresponds to

u, v, w, 0_, 0u, 0z. Only the displacements corresponding to corner

nodes (as indicated by IX) arc employed by this routine. (Irrelevant

if NDOF:::0.)

Output Arguments

EK Current (or initial if NDOF = O) element triad (3 x 3). (Mathe-

matical notation E)

4-44 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational SoftwareUtilities (CR*)

4.5.12 Subroutine CRTGEB: Construct Element Triad for Beams

Subroutine CRTGEB computes the element corotational frame [or triad) E for beam

eleinents.

Catting Sequence

call CRTGEB (ndof, xg, ixy, ug, e0, sO, psk, (_k)]

Input Arguments

NDOF

XG(3,NEN)

IXY

Number of degrees of freedom p(_r re)de. NDOF = 0 implies that

this is the initial pass.

Table of initial global coordinates of nodes at the endpoints of the

beam; XG(i,a) defines the ith global coordinate of element node

a, where i = 1,2, 3 corresponds to x, y, z, and a = 1--NEN, where

NEN is the number of clement nodes used in this routine. If this

is the initial pass, then the coordinates of a third (reference) node

not lying along the line joining the endpoint nodes is expected.

(Mathema*ical notation: x_)

Controls initial selection of the beam y or z axis; has no effect on the

update option of subroutine CRTGEB. If IXY<2, the initial trial y

axis lies along the line directed from node 1 to the reference node

(see description under argument XG). The z axis is constructed

to be perpendicular to the plane containing the three nodes. The

x axis al_ ays points from node 1 to node 2. The trial y axis is

then orthogonatized to form a right-hand system. If IXY>2, the

initial trial z axis points to the reference node, with the y axis

constructed to be perpendicular to the plane containing the three

nodes. A right-hand system is then similarly constructed by or-

thogonalization.

Revised 12/15/89 CSM Testbed Generic Structural-Element Processor Manual 4-45

Corotational SoftwareUtilities (CR*) COROTATIONAL INTERFACE

{di }e;IIG(NDOF,NEN) Current global displacementsat element nodes; UG(i,a) = _ k

the index i ranges from 1 to NDOF and, if NDOF=6, corresponds

to u, v, w, 0_, Oy, 0,. (Irrelevant if NDOF=0.)

E0(3,3) Initial element triad, E °. (Irrelevant if NDOF := 0)

S0(3,3) Initial surface triad, IS0] 1 , at element node 1.

rSK(3) Current total-rotation pseudo-vector, 0, at element node 1; corre-

sponds to rotation matrix, R_ot == S IS °'T

Output Arguments

EK(3,3) Current (or initial if NDOF = 0) element triad, E.

4-46 CSM Testbed Generic Structural-Element Processor Manual Revised 12/15/89

COROTATIONAL INTERFACE Corotational Software Utilities (CR*)

C)t ot/-"'"-l Ud_ f

1 Uto tCorotl;onal Y Ut°t

1 Initial 2

E0

1
Initial

1 E

1 3
Current

Figure 4.1 Corotational Description of Motion for 1-D and 2-D Elements.

Revised 12/15/89 CSM Tcstbcd Generic Structural-Element Processor Manual 4-47

Corotational Software Utilities (CR*) COROTATIONAL INTERFACE

Normalized
displacement .6

0 10

Sq

O- O "9_HYB/p"

sym

I
20

Distortion angle (deg.)

4 ANS/p
4-ANS

9 ANS
4 HYB

4 STG

Figure 4.2 Effect of the Projection Operator for

Pinched Cylinder with Distorted Mesh.

4-48 CSM Testbed Generic Structural-Elcment Processor Manual Revised 12/15/89

CONSTITUTIVE INTERFACE

5. CONSTITUTIVE INTERFACE

CHAPTER OUTLINE

Section Title

5.1 Overview

5.2 User Interface

Description

Introduces users and developers to
the various ways in which constitu-

tive functions (i.e., material defini-
tion, stress and tangent-modulus cal-
culations required for element force

and stiffness formation) may be per-

formed using ES processors.

Describes how user selects material

fabrications and constitutive models,
associates them with pertinent ele-
ment types, and interprets stress out-

put from ES processors.

5.3 Developer Interface Describes various built-in ES options

for performing constitutive (stress
and tangent-modulus) calculations;
as well as options for developers to
provide their own.

5,4 Proposed Interface:
Generic Constitutive
Processor

Outlines general-purpose scheme (in-

progress) for upgrading the generic
ES processor to handle material non-
linearity and a growing library of con-
stitutive (and failure) models; by in-
terfacing the ES shell to a generic
constitutive library -- for "stan-
dard" structural element types only

(see Section 3.4).

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 5- 1

Overview

5.1 Overview

CONSTITUTIVE INTERFACE

Constitutive functions for structural elements include calculathm of rlr,mmt stresses (f_,r

the internal-force vector, ge.ometric stiffness matrix and result output), tangent modulii

(for the tangent stiffness matrix), and failure criteria (for result output and material degra-

dation). Currently, the Generic Structural-Element (ES) processor performs only some of

these functions automatically; the clement developer must provide others. In particular,

only linear constitutive models are currently implemented within the ES shell, and users

and developers must perform their own failure analysis (see also processor LAU in the

CSM Testbed User's Manual, ref. 4).

The constitutive functions that are currently performed by the ES processor shell rely on

pre-processing of material/fabrication properties by processors LAU (for shell and solid

elements) and LAUB (for beam elements}. Thus Sections 5.2 and 5.3 explain the database

connection between ES processors and processors LAU and LAUB, and indicate the var-

ious options that element developer have to exploit (or ignore) this built-in constitutive

capability. Section 5.4 describes plans fi_r interfacing with a generic constitutive processor,

which will replace the current element/constitutive interface, and give all ES processors

access to a growing array of advanced liilear and nonlinear constitutive models.

5-2 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

CONSTITUTIVE INTERFACE User Interface

5.2 User Interface

5.2.1 Materially Linear Analysis

To perform analysis with linear materials, the user has two options:

(1) Employ processor LAU (for shell and solid elements), or processor LAUB (for beam

elements), to define material and fabrication properties; these properties are auto-

matically converted into integrated constitutive matrices, and deposited in datasets

PROP.BTAB.*; or

(2) Define your own PROP.BTAB., datasets.

Option (1) is valid only for "standard" element types, as defined in Section 3.4 or in

Chapter 5 of the CSM Testbed User's Manual documentation for specific ES processors

(ref. 4). Option (2) is valid for both standard and "wild" element types, i.e., for all

elements implemented within ES processors. However, if option (2) is used for a standard

element type, the user must be careful to define the PROP.BTAB.* dataset in a manner

corresponding to the output of processors LAU or LAUB. This dataset is element-type

dependent, and is described both under processors LAU and LAUB in the Testbed User's

Manual (ref. 4), and in the Testbed Data Library Description (ref. 5).

In either case, the connection between the PROP.BTAB.* dataset and a particular set of el-

ements is made through the element connectivity definition processor ELD (see Chapter 2).

First, the EXPE command of processor ELD is used to define the type of PROP.BTAB.,

dataset to be generated; and second, the NSECT command of processor ELD is used to

point to the appropriate column of the PROP.BTAB.*, in case there is more than one set

of section properties defined.

5.2.2 Materially Nonlinear Analysis

CURRENTLY NOT IMPLEMENTED

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 5-3

Developer Interface CONSTITUTIVE INTERFACE

5.3 Developer Interface

5.3.1 Materially Linear Analysis

5.3.1.1 Standard Elements

Standard dements, as defined in Section 3.4 (e.9., beams, shells and solids), can employ

the built-in constitutive functionality of the ES processor shell to generate stresses and

tangent-modulii -- including all transformations between material and element stress co-

ordinate systems. Thus, in order to compute stress, the element developer need only

provide an element strain routine (ESOE) in most cases. There are exceptions, as de-

scribed below. The other prerequisite for exploiting the built-in ES constitutive routines

(for standard elements) is that an appropriate PROP.BTAB.* data.set is generated for each

section property type (see the CSM Testbed Data Library Description, ref. 5, for details).

As mentioned in Section 5.2, processors LAU (for shell and solid elements) and processor

LAUB (for beam dements) usually provide the most convenient way to generate these

datasets.

To select a built-in ES constitutive option, the element developer must set the output

argument DEFS(pdCNS) to the appropriate value, from within subroutine ESOD (see

Sections 3.2 and 3.3). Meaningful values of DEFS(pdCNS) are as follows:

DEFS(pdCNS) = 0: All stress and tangent-moduli calculations are performed by the ES

shell; the developer must supply only a strain routine (ESOE).

DEFS(pdCNS) = 1: Tangent-moduli calculations are performed by the ES shell; the de-

veloper must supply a combined stress/strain routine, which uses

the tangent-modulus (constitutive) matrix as input. This option

is intended primarily for assumed stress type elements, for which

stresses are computed directly, and strains are computed by invert-

ing the constitutive matrix.

5-4 CSM Testbed Generic Structural-Element Processor Manual Revised 3/6/89

CONSTITUTIVE INTERFACE Developer Interface

5.3.1.2 Wild Elements

Wild elements, as defined in Section 3.4, must perform their own constitutivc calculations.

However, the developer has two ways in which to perform this, which are selected using

argument DEFS(pdCNS) from within subroutine ESOD:

DEFS(pdCNS) = 2: The developer provides a tangent-modulus (i.e., constitutive ma-

trix) routine, ESOC, and a combined stress/strain routine, ESOS;

or:

DEFS(pdCNS) = 3: The developer providcs 3 routines: a tangcnt-modulus (i.e., consti-

tutive matrix) routine, ESOC, a strain routine, ESOE, and a stress

routine, ESOS.

The above 2 options arc strictly up to the developer and are usually dictated by convenience

for a particular element formulation.

In either case, all data required to construct the constitutive matrix for "wild" elements

must be provided by the user in the PROP.BTAB., dataset (see Section 5.2); and it is the

developer's responsibility to explain to the user what is expected in that dataset. The best

vehicle for that explanation is in the individual element processor's section of the CSM

Testbed User's Manual (ref. 4).

5.3.2 Materially Nonlinear Analysis

CURRENTLY NOT IMPLEMENTED

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 5-5

Proposed Interface: Generic Constitutive Processor CONSTITUTIVE INTERFACE

5.4 Proposed Interface: Generic Constitutive Processor

The Generic Constitutive Processor (GCP) is a set of software modules which are designed

to perform all constitutive functions for the Testbed. The purpose behind the design of

the GCP is to create a flexible, easy to use framework for the testing and incorporation of

new constitutive modeling capability into the Testbed. The GCP replaces and enhances

the current linear elastic constitutive capability within the Testbed, as implemented within

the Generic Element Processor (GEP).

Two functions will be served by the GCP; a stand-alone processor for use in testing of

new constitutive models, and a FORTRAN callable constitutive library directly accessed

by Testbed element processors. To enable this duality in function, the GCP is designed to

perform constitutive calculations using input received through either an interface to the

GEP during a finite element analysis, or from the GCP processor shell when operating in

stand-alone mode.

From a method developers standpoint, the GCP will allow ease of access to constitutive

functions by all element developers, and allow constitutive models incorporated by mate-

rials developers to be available to all elements implemented in the GEP framework. These

capabilities have been included through standard developer interfaces. Through a stan-

dardized interface to the GCP, the constitutive model developer will have access to all of

the higher level constitutive functions. Similarly the element developer is provided with an

interface to the GCP allowing complete access to all computational constitutive functions.

The GCP design incorporates the current functional capability of the Testbed processors

LAU and LAUB, i.e., through the thickness integration for shells, calculation of elastic

constitutive matrix coefficients, and evaluation of mass matrix coefficients. In addition,

the GCP replaces the material property input currently performed using the Testbed

processor TAB.

5-6 CSM Testbed Generic Structural-Element Processor Manual Revised 12/19/89

CONSTITUTIVE INTERFACE Proposed Interface: Generic Constitutive Processor

The intrinsic functions which the GCP performs are summarizedbelow:

• User input of data, i.e., material properties, laminate fabrications, and analysis

parameters.

• Historical data initialization.

• Non-linear analysis.

• Laminate analysis.

• Material stiffness/flexibility calculation.

• Mass and damping property calculation.

• Stress/strain calculation.

• Point-stress/strain failure predictions.

• Historical data update.

• Post-processing of constitutive data.

Each of these functions may be performcd at the material point or laminate (e.g., thickness-

integrated) levels.

The data created by the GCP functions mentioned above will be manipulated through a set

of database utilities providing the uscr/devcloper transparent access to the data without

knowledge of the database formats. Of primary concern in the design of the GCP is that of

computational efficiency and flexibility of the system to be adapted to new requirements.

Throughout the design these factors, although mutually exclusive at times, have been

considered, and when possible a balance has been achieved between them which is thought

to serve the best interests of the Testbed.

The GCP is designed with the flexibility to incorporate the functional capability currently

in ADVLAM, Lockheed's primary composite laminate code. ADVLAM embodies lin-

ear/nonlinear constitutive capability and is applicable to large displacement/infinitesimal

strain problems, where additive strain decomposition is appropriate. A summary of the

Revised 12/22/89 CSM Testbed Generic Structural-Element Processor Manual 5-7

GenericConstitutive Processor CONSTITUTIVE INTERFACE

desirablecapabilities to t)e included in the GCP is shownin Table 5.4-1. N()te that eachof

the material constitutive and failure nlo(tels shown exists as an indct)cn(tent module (i.e.,

a subroutine package) in ADVLAM ensuring case of incorporating new t'catures within the

GCP.

Table 5.4-1 - Summary of Potential GCP Capabilities

Analysis:

-- Laminate Properties

-- Stress Analysis

-- Strength Analysis

-- Hygrothermal Analysis

• Constitutive Models (Temperature/Moisture-Dependent):

-- Orthotropic Elastic

-- Nonlinear Orthotropic Elastic

-- Orthotropic Linear Viscoelastic

-- Isotropic Elastic-Plastic

-- Mechanical Sublayer

-- Isothermal Kinematic/Isotropic Hardening with Creep

-- Nonisothermal Kinematic/Isotropic Hardening Viscoptasticity

-- Micro-Mechanics Lamina Model(s) (with above material options)

• Lamina Failure Models (Temperature/Moisture-Dependent):
-- Tsai-Wu

-- Hoffman

-- Tsai-Hill

-- Maximum Stress

-- Maximum Strain

-- Hashin

Transient Hygrothermal Diffusion Options:

-- Uncoupled Linear

-- Coupled Nonlinear

Material and Post-Processing Database Access (GAL)

5-8 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

CONSTITUTIVE INTERFACE Generic Constitutive Processor

5.4.1 Overview

The Generic Constitutive Processor (GCP) contains five major functional components, an

outer processor shell, an inner processor shell, an interface b('tween the inner shell and both

the outer shell and the Generic Element Processor (GEP), a standard interface between the

inner shell and the constitutive kernel routines, and a set of constitutive kernel routines.

Figure 5.4-1 gives a graphical depiction of the structure of the GCP and the interface to

the GEP.

The outer processor shell provides a common user interface to the GCP, and enables it

to be used as a stand alone processor for single point constitutive model testing. This

shell processes user commands for input of material/fabrication data, interacts with the

database, and directs the flow of computations. The outer shell incorporates a non-linear

solution algorithm for stand-alone testing of constitutive models, and pointwise material

laminate and material failure analyses. Command interpretation and database transactions

are accomplished using the Testbed architecture. The outer shell organization is outlined

in Section 5.4-2.

The inner processor shell performs through-thickness integration for composite laminates,

interpolates state dependent material properties, performs transformations from element

to fabrication coordinate systems, calls the constitutive kernel routines, and performs

database management of the constitutive historical data, point stress/strain quantities,

and material tangent stiffnesses. The functional organization of the inner shell is detailed

in Section 5.4-3.

The unique functionality of the GCP providing both the capability for performing stand-

alone constitutive analyses and analyses integrated with the GEP requires a flexible in-

terface between the inner shell and the driving routine, either the GCP outer shell or the

GEP. This interface consists of a common set of subroutine entry points collectively termed

the generic constitutive interface. To maintabl computational efficiency this interface will

be linked with each individual element processor giving the latter access to the entire li-

brary of constitutive kernels, eliminating overhead associated with starting and stopping

separate processors within an element loop.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 5-9

GenericConstitutive Processor CONSTITUTIVE INTERFACE

A standardized interface between the inner shell and the constitutive kernel routines,

termed the constitutive developer interface, provides the developerof new kernels insula-

tion from the tasks of database management and element dependent calculations. This

interface consists of a set of standard cover routines with fixed argument lists. The devel-

oper need only provide a set of pointwise constitutive kernels, which are plugged into the

GCP using this interface.

The combination of the generic constitutive interface, inner processor shell, constitutive

developer interface, and the constitutive kernels is referred to as the constitutive utility

library. The constitutive utility library is linked with each element processor to provide

efficient element constitutive functions as shown in Figure 5.4-1.

5.4.2 Outer Processor Shell

As previously discussed the outer processor shell of the GCP performs user input, directs

the flow of computations in stand-alone mode, and provides post-processing capability for

constitutive results. These functions are supplied by three modules in the outer shell, an

input module, a solution module and a set of post processing utilities.

The input module of the GCP outer shell performs all user input of material and solution

data relevant to the analysis. User commands will be available for the input of shell

laminate fabrications, beam cross-section descriptions, material properties, and analysis

parameters. The input module perform consistency checks of all user input and upon

successful completion archives the data to the computational GAL database for subsequent

use.

The solution module of the GCP outer shell provides the mechanism for performing stand-

alone analysis of a material point. The types of analyses provided by the solution module

are, linear and non-linear stress analysis, material failure analysis, laminate analysis, and

linear thermal and diffusion analyses. For the solution of non-linear problems a modified

Newton-Raphson algorithm is employed.

A set of post-processing utilities is provided to access constitutive data from the archival

database and transform it to forms useful to the user. In addition to these utilities external

5- 10 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

CONSTITUTIVE INTERFACE Generic Constitutive Processor

programs are available for graphical representation of constitutive results in the form of

x-y plots.

Common to these modules of the outer shell are a suite of database utilities which serve

as the interface between the GCP and the database managers GAL, and DMGASP. These

utilities are shared with the inner processor shell.

5.4.3 Inner Processor Shell

The inner processor shell, which is accessible from either the GCP outer processor shell or

the GEP shell through the generic constitutive interface, consists of a set of modules de-

signed to act as the data interface between the element or material point and the pointwise

constitutive model. On queues received from the element/point the inner shell directs the

database access and flow of computations required to provide the pointwise constitutive

kernel the data necessary for the requested function, and returns the results in a form

compatible with the requesting element/point. The modules provided to perform these

functions can be categorized into, control routines, shell laminate and beam cross-section

integration routines, state variable manipulation routines, transformation routines, and

database access utilities. The function of each of these modules is detailed below.

The control routines serve as the directors of the flow of data and computations for an

element/point. The main function is to determine the sequence in which the other mod-

ules in the inner shell arc accessed, and when the data is in the appropriate format, call

the pointwise constitutive kernel (through the constitutive developer interface), or return

control to the element/point (through the generic constitutive interface).

The shell laminate and beam cross-section integration routines perform the through-

thickness integration for laminated shells, and the area integration for beams made of

arbitrary subelements. These routines transform the stress-strain resultants into point-

wise stresses/strains for use by the constitutive kernels, and subsequently integrate the

resulting pointwise quantities to form the appropriate resultant quantities to be returned

to the element/point.

The state variable manipulation routines interpret the state data passed from the ele-

ment/point into the format expected by the constitutive kernel routines. Included are a

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 5- 11

GenericConstitutive Proc(:ssor CONSTITUTIVE INTERFACE

set of routines to perform interpolation for state dependentmaterial calculations. These

routines interpolate the material constailts for a constitutive model basedon the current

state at the point and the input state dependentmaterial properties.

A set of transformation routines performs the required transformations from the element

local to the fabrication coordinate systems. These routines will transform the stresses,

material stiffnesses, mass and damping matrices based on the orientation between the

two coordinate systems and perform the transformations associated with shell and beam

eccentricities. The theory associated with these transformations is detailed in Section 6.4.

An integrated set of database access utilities are provided for the manipulation of the

relevant data entities used by the GCP. These utilities will use both the GAL and DMGASP

data managers for access to data. The database utilities are shared with the outer shell.

5- 12 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

CONSTITUTIVE INTERFACE Generic Constitutive Processor

GCP Outer Shell

I I I I
Constitutive Develo _er Interface

Constitutive Kernels

Constitutive Utility Library

GEP Shell

Element Kernels

Figure 5.4-1 Generic Constitutive Processor Overview.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 5- 13

GenericConstitutive Processor CONSTITUTIVE INTERFACE

THIS PAGE LEFT BLANK INTENTIONALLY.

5-14 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE

6. DATABASE INTERFACE

Section Title

6.1 Overview

CHAPTER OUTLINE

Description

Summarizes interaction of ES proces-

sors with the global database.

6.2 Dataset Descriptions Describes all datasets either input

or output by ES processors (using
the generic ES shell) from or to the
global database. Includes tables list-

ing datasets and showing relationship
to ES processor commands, as well as
detailed data structure descriptions
for most of the datasets mentioned.

6.3 Database Access Utilities Provides usage documentation for
several database access utilities em-

ployed by the generic ES proces-
sor shell. These utilities may be
called by other processors to conve-
niently access (input/output) many
of the datasets described in Section
6.2. In particular, one routine fa-
cilitates access of the EFIL dataset,
which is a rather complex data struc-
ture containing element stiffness ma-

trices, coordinate information, con-
nectivity, etc. -- all combined within
each individual element data record.

Another utility, EL*, manipulates el-
ement load datasets.

Revised 12/14/89 CSM Testbed Generic Structural-Element Processor Manual 6- 1

Overview DATABASE INTERFACE

6.1 Overview

In this chapter, we focus on the global database as it pertains to the generic structural-

element (ES) processor, describing datasets that are either input or output by all ES

processors. While Chapter 2 (User Interface) listed the various datasets associated with

each ES processor command, this chapter provides detailed descriptions of the contents of

those datasets. This serves two purposes: First, it enables the user to better anticipate the

operation of ES processors, and to examine some of the results produced by ES processors

(e.g., stresses and strains) by simply using the CSM Testbed *PRINT directive. Second,

it enables developers to build new processors that interface with ES processors strictly

by communicating through the database, rather than requiring detailed knowledge of the

actual software logic involved in the ES processors.

In addition to dataset descriptions, special-purpose database access utilities currently em-

ployed by the ES processor shell are also described in this chapter (Section 6.3). These

software utilities may be used by processor developers to facilitate access to complex ele-

ment datasets (such as the EFIL dataset). However, they will probably not be needed by

ES processor developers, since the ES shell performs this function for element developers

automatically.*

Finally, note that most of the dataset documentation presented in this chapter can also

be found in the CSM Testbed Data Library Description (ref. 5). Such documentation is

replicated here for the reader's convenience.

* It is also conceivable that ES processor developers may wish to access other datasets --

beyond those that are automatically accessed by the ES shell and described herein. While this

is permissible, it is currently recommended that those developers use the standard (generic)
database management utilities described in reference 2.

6-2 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

DATABASE INTERFACE Dataset Descriptions

6.2 Dataset Descriptions

Table 6.1 contains a summary of all datasets currently accessed by the generic ES processor

- using the standard processor shell. Following this summary, the contents and data

structures for many of these datasets is described in detail. Descriptions of those datasets

not described here may be found in the CSM Testbed Data Library Description (ref. 5).

Table 6.1

Dataset
i

DEF.<ES_.NAME>.,

SUMMARY OF DATASETS ACCESSED BY ES PROCESSORS

Contents Input Output

,/Element Defn. (Connectivity)

DIR.<ES..NAME>.* Element EFIL Directory _/

ES.SUMMARY.* ES Processor Status _/ _/

<ES_NAME>.EFIL.* Element Computational Data v/ v /

JLOC.BTAB.* Nodal Coordinates v /

LOADS.<ES_NAME>.* Element Loads v/ v/

PROP.BTAB.* Material/Section Properties v/

QJJT.BTAB., Nodal Transformations ,,/

STRN.<ES_NAME>.* Element Strains x/

STRS.<ES_NAME>.* Element Stresses _/

.DISP. System Displacement Vector x/

,.FORC.* System Force Vector v/ v /

.ROTA. Nodal Rotation Pseudo-vectors _/

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 6-3

Dataset Descriptions DATABASE INTERFACE

6.2.1 Dataset ES.SUMMARY (Structural Element Summary)

6.2.1.1 Contents Summary

This dataset contains a comprehensive set of parameters which collectively describe each

element type involved in the current model definition. The dataset is useful both for user

queries during pre-processing and post-processing, as well as for driving the standard ES

procedure (see Chapter 2), which cycles through all pertinent element to perform analysis

functions.

6.2.1.2 Record Descriptions

Table 6.2 describes the various record groups stored in dataset ES.SUMMARY. The reader

is also referred to the kernel argument glossary in Section 3.3, under argumei_t array DEFS.

The records stored in this dataset correspond to the individual elements of that argument

array; e.g., argument DEFS(pdNEN) corresponds to record ESANEN.

The number of structural-element (ES) processors active in the current model is denoted

nesp. The sequence of element processors/types represented in this dataset corresponds to

the sequence in which the elements were defined using the DEFINE ELEMENTS command.

Note that the ith element-processor and element-type defined in the model would be stored

in records ES_PROC.i and ES_NAME.i, respectively.

6-4 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Dataset Descriptions

Record

Table 6.2

Type

ES_C.l:nesp Integ

ES_CLAS.I:nesp Char

ES_CNS.I:ne.sp Integ

ES_DIM.I:ne_p Integ

ES__NAME.I:nesp Char

ESANDOF.I:nesp Integ

ESANEE.I:nesp Integ

ES_NEN.I:nesp Integ

ES ANIP.I:nesp Integ

ES__NORO.I:nesp Integ

ES_NSTR.I:nesp Integ

ES_OPT.l:nesp Integ

ES.ANPAR.I:nesp Integ

ES_PARS.I:ne_p Real

ES_PROC.I:nesp Char

ES__PROJ.l:nesp Integ

ES_SHAP.I:nesp Char

ES_STOR.I:nesp

ES_TGE.I:nesp

Integ
i--

Integ

Records in Dataset ES.SUMMARY

Length Description

(1) Element displacement continuity (e.g., 1=:_ C:).

(4) Element class, e.g., BEAM I SHELL [SOLID.

(1) Constitutive option (see DEFS(pdCNS)in §3.3).

(1) Number of element intrinsic dimensions (1,2,3).

(4) Element type name within processor (e.g., EX97).

(1) Number of freedoms per element node (1:6).

(1) Number of element equations (NDOF,NEN).

(1) Number of element nodes.

(1) Number of element integration (stress) points.

(1) Nodal drilling-rotation parameter (see §3.3).

(1) Number of stress components per integ, point.

(1) Element developer's option number (internal).

(1) Number of parameters stored in ES_PARS.

(npar) Element research parameters.

(4) Element processor name (e.g., ES1, ES2, ...).

(1) Corotational projection option (see §4.3).

(4) Element planform shape: TRIA [QUAD.

(1) Number of entries in Segment 6 of EFIL dataset.

(1) Element intrinsic frame option (1 or 2).

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6-5

Dataset Descriptions DATABASE INTERFACE

6.2.2 Dataset <ES]NAME:>.EFIL., (Element Computational Data)

6.2.2.1 Contents Summary

This dataset contains computational (intermediate) data for all elements of type <ESANAME:>;

stored as a single nominal record group, DATA.I:nel, where nel is the total number of

<:ES_NAME> elements defined.

Each record (i.e., element) contains mixed-type data, arranged in segments, whose offsets

(i. e., relative addresses) from the beginning of the record may be determined from dataset

DIR.<ES_NAME>.

6.2.2.2 Record Descriptions

Table 6.3 Records in Dataset <ESANAME>.]_FIL.,

Record Type Length Description
i L i,

DATA.I:nel Mixed (See Table 6.4) Primary record group.

In Table 6.3, nel is the number of elements of type <ES_NAME>.

6.2.2.3 Record DATA./Segments:

The computational data for element i is stored in record DATA.i, and is partitioned into

nine segments, as described in Table 6.4.

6-6 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Dataset Descriptions

1

2

3

4

5

6

7

8

9

Table 6.4 Segments in Record DATA./of Dataset <ES_NAME>.:EFIL

Type

Integ

Real

Real

Real

Real

Real

Real

Real

Real

Segment Item Length

Definition

Material

Geometry

XE0 (3,hen)

TEG (3,3)

TEC (3,3,hen)

:

XG0 (3,nen)

TEG0 (3,3)

DE (nee)

Property

Matrix KM nmt

Aux. Storage

Stress

Therm. Force

Therm. Stress

Description

Same as dataset DEF.<ESANAME>.

(currently unused)

Element geometric parameters.

Initial element nodal coordinates in

element basis.

Transf. from global to current element

basis (same as E T in Chapter 4).

Transfs. from computational to element

basis at element nodes.

Initial elt. nodal coords

in global basis.

Transf. from global to initial element

basis (sameas [w0]r in Chapter4).
Deformational displacements (dede/).

(currently unused)

Element matrix (stiffness/mass);

only upper triangle of nodal blocks.

Auxiliary storage for element developer.

(currently unused)

(currently unused)

(currently unused)

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6- 7

DatasetDescriptions DATABASE INTERFACE

NOTES on Table 6.4:

1) Nomenclature: hen is the number of element nodes; ndof is the number of degrees

of freedom per element node; nee is the number of element equations (usually

hen × ndof); and nmt is the number of matrix terms in the upper triangle of

the element stiffness/mass matrix, which is stored in ndof × ndof nodal blocks.

The number of matrix terms, nmt, is computed as follows:

nmt = ndof x ndof x nen x (non+l)�2

2)

3)

4)

The locations of segments 1-9 relative to the beginning of the record are given in

dataset: DIR.<ES_NAME>.

The vertical dots after item TEC in segment 3 indicate that the following items are

end-justified within the segment.

The element stiffness/mass matrix, item KM in segment 5, may be stored in either

single or double precision, as specificed in dataset DIR.<ES_.NAME> (entry 15).

However, all of the other REAL data in the <ES_NAME>.EFIL dataset are stored

exclusively in single precision.

6-8 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Dataset Descriptions

6.2.3 Dataset LOADS.<ES_NAME>.<ES_LOAD_SET> (Element Loads)

6.2.3.1 Contents Summary

This dataset contains element loads for all elements of type <ES_NAME:>, and load set

number <ES_LOAD_SET>. A variety of records and record-groups may be present in

this dataset, depending on the types of element loads that have been defined by the user.

This data.set is usually created by the ES processor's DEFINE LOADS command, and is

later used by ES processors in response to the FORM FORCE command, wherein element

distributed loads are converted to consistent nodal forces.

6.2.3.2 Record Descriptions

Table 6.5 describes the various record groups potentially stored in dataset

LOADS.<ESANAME>.<ES_LOAD SET>. A glossary of dimension parameters appearing

in Table 6.5 is provided in the next section.

Table 6.5

Record

CONTENTS

LINE_LDS.I:nllr

LINE_TOC.I:nel

LINE__BND

LINEANOD.I:nle

LINE_DOF

LINE_SYS

Records in Dataset LOADS.<ESANAME>.,

Type

Char

Real

Integ

Integ

Intcg

Integ

Char

Length

14

Description

'ELEMENT_LOADS '

(ndof, nnlt) Line load vectors at element nodes.

(1) Element pointers to LINE_LDS records.

(1) Number of lines per element (nle).

(1) Number of nodes per element line.

(1) Number of line-load components per node.

12 Line-load vector coordinate system*

(continued ...)

• Valid coordinate system names are GLOBAL, NODAL and ELEMENT.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6-9

Dataset Descriptions DATABASE INTERFACE

Table 6.5 (cont.) Records in Dataset LOADS.<ES_NAME:>.,

Record Type Length

SURF_LDS.I:nslr Real (ndof, nnst)

SURF_TOC.I:nel Integ (1)

SURF__BND Integ (1)

SURFANOD.I:nse Integ (1)

SURF_DOF Integ (1)

SURF_SYS Char 12

PRESLDS.I:nlIr Real (ndof, nnlt)

PRES_TOC.I:nel Integ (1)

PRES__BND Integ (1)

PRES__NOD.I:nle Integ (1)

PRES_DOF Integ (I)

BODY_LDS.I:nslr Real (ndof, nnst)

BODY_TOC.I:nel Integ (I)

BODY_BND Integ (1)

BODY_NOD.I:nse Integ (1)

BODY_DOF Integ (1)

BODY_SYS Char 12

LIV_,_LDS.I:nr Real (ndof,nnst)

LIV_,_TOC.I:nel Integ (1)

LIV_*_BND Integ (1)

LIV_,_NOD.I:nbe Intcg (1)

LIV_*_DOF Integ

LIV_,_SYS Char

Description

Surface-load vectors at element nodes.

Element pointers to SURF_LDS records.

Number of surfaces per element (nse).

Number of nodes per element surface.

Number of surface load components per node.

Surface-load vector coordinate system*
ul

Line load vectors at element nodes.

Element pointers to PRES_LDS records.

Number of lines per element (nle).

Number of nodes per element line.

Number of line-load components per node.

Surface-loadvectors at element nodes.

Element pointers to BODY_LDS records.

Number of surfaces per element (nse).

Number of nodes per element surface.

Number of surface load components per node.

Surface-load vector coordinate system*

Live-load vectors at element nodes.

Element pointers to LIV_,_LDS records.

Number of boundaries per element (nbe).

Number of nodes per element boundary.

(1) Number of live-load components per node.

12 Live-load vector coordinate system*

6- I0 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Dataset Descriptions

6.2.3.3

Variable

nbe

nblr

nel

nle

nllr

nlr

nnlt

nnst

nplr

rise

Glossary of LOADS.<ESANAME>., Dataset Parameters

Description

Number of element boundaries (generic for lines or surfaces, depending on

actual load type).

Number of body-load records; one body-load record represents a body-

load pattern for an entire element; many elements may point to the same

body-load record if they have the same load pattern.

Number of elements of type <ES_NAME>.

Number of lines per element. For example, quadrilateral shell elements

have 4 lines, and solid brick elements have 12 lines or edges.

Number of line-load records; one line-load record represents a line-load

pattern for an entire element; many elements may point to the same line-

load record if they have the same load pattern.

Number of load records; generic for line, surface, pressure or body load

records -- as appropriate.

Total number of nodes on all lines of each element. For example, for a

4-node quadrilateral element, nnlt = 8; while for an 8-node solid element,

nnlt = 24.

Total number of nodes on all surfaces of each element. For example, for a

4-node ,tuadrilateral element, nnst = 4; while for an 8-node solid element,

nnst = 6.

Number of pressure-load records; one pressure-load record represents a

pressure-load pattern for an entire element; many elements may point to

the same pressure-load record if they have the same load pattern.

Number of surfaces per element. For example, quadrilateral shell elements

have 1 surface, and solid brick elements have 6 surfaces or faces.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6- 11

DatasetDescriptions DATABASE INTERFACE

nslr Number of surface-load records; one surface-load record represents a

surface-loadpattern for an entire element; many elementsmay point to

the samesurface-loadrecord if they havethe same load pattern.

6-12 CSM Testbcd Generic Structural-Element ProcessorManual Revised12/13/89

DATABASE INTERFACE Dataset Descriptions

6.2.4 Dataset STRN.<ESANAME>.* (Element Strains)

6.2.4.1 Contents Summary

This dataset contains element strains for all elements of type <_ESANAME>. A variety

of record groups may be present in this dataset, representing different types of strain-

evaluation locations within the element, and/or different coordinate systems in which the

strain components may be resolved. All record groups contain data for one element per

record, and the number and meaning of the strain components will depend on the element

type (element type parameters are stored in, e.g., dataset ES.SUMMARY).

6.2.4.2 Record Descriptions

The following table describes the various record groups stored (potentially) in dataset

STRN.<ES_NAME>.*.

Table 6.6 Records in Dataset STRN.<ES_NAME>.,

Record Type

INTEG_PTS_S_ys.I:nel Real

CENTROIDS_Ssys.I:nel Real

NODES_Ssys.l:nel Real

Length Description

(nstr, nip) Strains at element integration points.

(nstr) Strains at element centroids.

(nstr, nen) Strains at element nodes.

where nel is the number of elements of type <:ES_NAME>; nstr is the number of strain

components at each element evaluation point (e.g., 6 for a solid continuum element); nip

is the number of element integration points; hen is the number of element nodes; and sys

is an index denoting the coordinate system in which the strain components are resolved.

The index, sys, normally ranges between 0 and 3, where sys = 0 denotes the element's

local stress coordinate system, and sys > 0 implies that material axis sys is the strain x

axis, and the y and z axes follow by cyclic permutation.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6- 13

Dataset Descriptions DATABASE INTERFACE

6.2.5 Dataset STRS.<ES_NAME>.* (Element Stresses)

6.2.5.1 Co. n_ten_t s _s u m In a ry_

This datasct contains element stresses for all elements of type <ESANAME>. A variety

of record groups may be present in this dataset, representing different types of stress-

evaluation locations within the element, and/or different coordinate systems in which the

stress components may be resolved. All record groups contain data for one element per

record, and the number and meaning of the stress components will depend on the element

type (element type parameters are stored in, e.g., dataset ES.SUMMARY).

6.2.5.2 Record Descriptions

The following table describes the various record groups stored (potentially) in dataset

STRS.<ES_NAME>...

Table 6.7 Records in Dataset STRS.<ES_NAME>._
i

Record Type

INTEG_PTS_S_ys.I:nel Real

CENTROIDS_Ssys.I:nel Real

N O D ES _sys.l:nel Real

Length Description

(nstr, nip) Stresses at element integration points.

(nstr) Stresses at element centroids.

(nstr, nen) Stresses at element nodes.

where nel is the number of elements of type <ES.NAME>; nstr is the number of stress

coiapoil(:nts at each element evaluation point (e.g., 6 for a solid continuum element); nip

is the number of element integration points; nen is the number of element nodes; and _ys

is an index denoting the coordinate system in which the stress components are resolved.

The index, sys, normally ranges between 0 and 3, where sys = 0 denotes the element's

local stress coordinate system, and ,sys > 0 implies that material axis sys is the stress x

axis, and the y and z axes follow by cyclic permutation.

6-14 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Dataset Descriptions

6.2.6 Dataset ,.DISP., (System Displacements)

6.2.6.1 Contents Summary

This data.set contains nodal displacements for the assembled structure. Depending on the

first part of the dataset name, the displacements may be total (TOT.DISP.*), incremental

(INC.DISP..), etc. The dataset name STAT.DISP.* is also used for the displacement

solution in certain linear analysis procedures (e.g., L_STATIC). The last (numeric) part

of the data.set name is used either to denote the load and constraint cases -- for linear

static analyses, or to denote the load or time step for nonlinear static analyses, or transient

analyses. For example, TOT.DISP.100 would be the total displacement solution at load

step 100 in a nonlinear static analysis performed by procedure NL_STATIC_I.

Note that for geometrically (large-rotation) nonlinear analysis, the rotational components

of TOT.DISP.* type datasets may not be physically mea_fingful. In that case, the current

orientation of the nodal (surface) triads is used to represent the rotational part of the

motion, and this is stored -- in pseudo-vector form -- in dataset TOT.ROTA.* (see

description for dataset *.ROTA.*).

6.2.6.2 Record Descriptions

Only one record is stored in this dataset, as described in Table 6.8.

Record Type

DATA.1 Real

Table 6.8 Records in Dataset ,.DISP.,

Length Description

(ndof, nnodes) Nodal displacements in computational basis.

where ndof is the number of potential freedoms at each node (see START command under

processor TAB in CSM Testbed User's Manual, ref. 4), and nnodes is the total number of

nodes defined in the structural model -- including nodes with prescribed displacements.

Typically, ndof = 6, such that the first three displacement components at each node are

translations, and the last three components are rotations (which are meaningful only for

small/moderate-rotation analysis).

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 6- 15

Dataset Descriptions DATABASE INTERFACE

6.2.7 Dataset ,.FORC., (System Forces)

6.2.7.1 Contents Summary

This dataset contains nodal forces for the assembled structure. Depending on the first part

of the dataset name, the forces may be internal (INT.FORC..), external (EXT.FORC..),

residual (RES.FORC..), etc. The dataset name REAC.FORC.* is also used for the reac-

tion forces generated in certain linear analysis procedures (e.g., L_STATIC_I). The last

(numeric) part of the dataset name is used either to denote the load and constraint cases

-- for linear analysis, or to denote the load or time step -- for nonlinear or transient

analysis. For example, INT.FORC.100 would be the internal forces at load step 100 in a

nonlinear static analysis performed by procedure NL_STATIC_I.

6.2.'/'.2 Record Descriptions

Only one record is stored in this dataset, as described in Table 6.9.

Record

DATA.I

Table 6.9 Records in Dataset *.FORC.,

Type Length Description

Real (ndo.f, nnodes) Nodal forces in computational basis.

where ndo] is the number of potential freedoms at each node (see START command under

processor TAB in CSM Testbed User's Manual, ref. 4), and nnodes is the total number of

,lodes defined in the structural model -- including nodes with prescribed displacements.

Typically, ndof = 6, such that the first three components at each node are actual forces,

and the last three components are moments.

6- 16 CSM Testbed Generic Structural-Element Processor Manual Revised 3/5/89

DATABASE INTERFACE Dataset Descriptions

6.2.8 Dataset ,.ROTA., (System Rotation Pseudo-Vectors)

6.2.8.1 Contents Summary

This dataset contains nodal pseudo-vectors representing the rotation of the nodal freedom

triad, from the initial configuration to the current configuration. These pseudo-vectors

are relevant only for large-rotation geometrically nonlinear analysis in which rotational

freedoms are used at some nodes. Otherwise, this dataset should not even appear in the

database (note that the rotational components of the *.DISP.* datasets are meaningful for

small or moderate rotation analysis).

When this dataset does exist, it is typically called TOT.ROTA.., where the last (numeric)

part of the name denotes the load (or time) step number in a nonlinear static (or dynamic)

analysis.

For a definition of the term pseudo-vector, consult Chapter 4 and references mentioned

therein. For present purposes, suffice it to say that the pseudo-vector at each node points

in the direction of the axis of rotation, and the magnitude is simply the angle of rotation

(in radians) -- where the rotation is measured from the initial configuration to the current

configuration, and the components are expressed in the global coordinate system. Note

that there is a unique correspondence between pseudo-vectors and rotation (orthogonal)

matrices, so that a full 3×3 triad can be obtained at each node from the 3-component

pseudo-vectors. The pseudo-vector storage scheme is preferred over the matrix storage

scheme for reasons of both size and computational efficiency.

6.2.8.2 Record Descriptions

Only one record is stored in this dataset, as described in Table 6.10.

Record Type

DATA.1 Real

Table 6.10 Records in Dataset ..ROTA.,

Length Description

(3, nnodes) Nodal rotation pseudo-vectors expressed in global basis.

where nnodes is the total number of nodes defined in the structural model -- including

nodes with prescribed displacements.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6- 17

DatabaseAccessUtilities DATABASE INTERFACE

6.3 Database Access Utilities

6.3.1 Subroutine NSXELT (Accessing Element Computational-EFIL-Datasets)

Calling Sequence

call NSXELT (Option, Name, IELT, NELT, NIE, ELTDIR, NEN, XE0,

TEGK, TEC, XG0, TEG0, DE, KME, STORE, NULL,

STATUS)

Input Arguments

Option

Name

IELT

'INITIALIZE' (set core boundaries)

'OPEN/OLD' (open existing dataset)

'OPEN/NEW' (open new dataset)

'GET' (get data for 1 element)

'PUT' (put data for 1 element)

'CLOSE' (flush buffer)

Name of element computational dataset (EFIL.<ESANAME>).

Number of element to be accessed within this dataset.

Input�Output Arguments (Input if OPTION='PUT', Output if OPTION='GET')

NELT Total number of elements. (I)

NIE Number of items per element. (I)

ELTDIR 0 Element directory array, from dataset DIR.<ES_NAME>.

6-18 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE DatabaseAccessUtilities

NEN Number of elementnodes(I)

XE0(3,NEN)

TEGK (3,3)

TEC (3,3,NEN)

Coordinates of element nodesin initial elementbasis. (R)

Transformation from global basis to elementbasis: Tc_ =

(T_,) T. (R)

Transformation from computational basis to element basis

at each element node. (R)

XG0 (3,NEN) Initial coordinates of element nodes in global basis. (R)

TEG0 (3,3) Transformation from global basis to initial element basis.

(R)

DE (NDOF,NEN) Current element nodal displacements (translations and ro-

tations) relative to element basis. (R)

KME (NDOF xNDOF xNEN × (NEN+I)/2)

Element material stiffness matrix in element basis. (R)

STORE (NSTOR)

NULL (NSTOR/NEE)

Element auxiliary storage data, created by INITIALIZE

command. (R)

Currently unused; previously reserved for embedded ele-

ment stresses. (R)

Output Arguments

STATUS Return status (_> 0::_OK).

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6- 19

DatabaseAccessUtilities DATABASE INTERFACE

6.3.2 Subroutine NSXTAB (Accessing Table Datasets)

Calling Sequence

call NSXTAB (Option, Name, ID, DATA, ICOL, NITEMS, NROWS,

NCOLS, ITYPE, STATUS)

Input Arguments

Option 'INITIALIZE'

'OPEN/OLD' [/GET/PUT 1

'OPEN/NEW' [/PUT]

'GET'

'PUT'

'CLOSE'

Name Data-set name. (C)

Inpu t/Output Arguments

ID Internal data.set identifier; output if option involves an 'OPEN',

otherwise input. (I)

DATA (NROWS) One column of table dataset; input if option involves a 'PUT', out-

put if option involves a 'GET', otherwise irrelevant. (R or I)

ICOL Column number in table dataset; input if option involves a 'PUT',

output if option involves a 'GET', otherwise irrelevant. (I)

NITEMS Total number of items in table dataset; input if option = 'OPEN/NEW',

output if option = 'OPEN/OLD'. (I)

6-20 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Database Access Utilities

NCOLS Number of columns in table dataset (equal to NJ in the CSM

Testbed Data Library Description, ref. 6); input if

option - 'OPEN/NEW', output if option = 'OPEN/OLD'. (I)

ITYPE Datum type; input if option = 'OPEN/NEW', output if option =

'OPEN/OLD'. (I)

Outpu_ Arguments

STATUS Return status (> 0 =_OK). (I)

Revised 3/6/89 CSM Testbed Generic Structural-Element Processor Manual 6- 21

Database Access Utilities DATABASE INTERFACE

6.3.3 Subroutine NSXNOM (Accessing Nominal Datasets)

Calling Sequence

call NSXNOM (Option, NamDS, NamRG, ID, DATA, ICOL , NITEMS,

NROWS, NCOLS, ITYPE, STATUS }

Input Arguments

Option 'INITIALIZE'

'OPEN/OLD' [/GET/PUT]

'OPEN/NEW' [/PUT]

'GET'

'PUT'

'CLOSE'

NamDS Dataset name. (C)

NamRG Record group name. (C)

Input/Output Arguments

ID Internal dataset identifier; output if option involves an 'OPEN',

otherwise input. (I)

DATA (NROWS) One column of table dataset; input if option involves a 'PUT', out-

put if option involes a 'GET', otherwise irrelevant. (R or I)

ICOL Column number in table dataset; input if option involves a 'PUT',

output if option involes a 'GET', otherwise irrelevant. (I)

NITEMS Total number of items in table dataset; input if option = 'OPEN/NEW',

output if option = 'OPEN/OLD'. (I)

6-22 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Database Access Utilities

NROWS

NCOLS

ITYPE

Number of rows in table dataset; input if option = 'OPEN/NEW',

output if option = 'OPEN/OLD'. (I)

Number of columns in table dataset (equal to NJ in the CSM

Testbed Data Library Description, ref. 6); input if option --

'OPEN/NEW', output if option = 'OPEN/OLD'. (I)

Datum type (see CSM Testbed Data Library Description); input if

option -- 'OPEN/NEW', output if option := 'OPEN/OLD'. (I)

Output Arguments

STATUS Return status (> 0 ==_OK). (I)

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6-23

Database Access Utilities DATABASE INTERFACE

6.3.4 Element-Load Data Utilities

The FORTRAN utilities given in Table 6.3-1 should be used to access the element loads

dataset. Calling sequences and argument definitions for the above utilities are given in the

following sections.

Table 6.3-1 Data Utilities for Element Loads (EL) Data Objects

S u brou tine Description

ELinit Initialize usage of EL utilities

ELopn Begin access to a particular data object (old/new)

ELget Get load data for a single element from the database

ELput Put load data for one or more elmeents into the database

ELcls Close access to a particular element loads data object

ELinf Obtain information about a particular element loads data object

6-24 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE DatabaseAccessUtilities

6.3.4.1 Subroutine ELinit

Subroutine ELinit initializes access to the element load database utility. It should be called

once before making any calls to ELopn, ELget, ELput, etc.

Calling Sequence

call ELinit (status)

Input Arguments

Name

(NONE)

Description

Output Arguments

Name Type

status I

Description

Return status; _> 0 =>OK

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6-25

DatabaseAccessUtilities DATABASE INTERFACE

6.3.4.2 Subroutine F_Lopn

Subroutine ELopn is used to begin accessing a particular element loads (EL) data object.

Calling Sequence

call ELopn (Qual, ldi, dsnam, Ldtyp, live, nel, nbndy, nnbndy, ncomp,

ldsys, begcor, endcor, ELindx, status)

lnput Arguments

Name Type

Qual C

Idi I

DSnam C

Ldtyp C

live I

ldsys I

nel I

nbndy I

nnbndy(nbndy) I

ncomp I

begcor I

endcor I

Description

Open qualifier:

'NEW' ==_Create new data object;

'OLD' =>Access existing data object.

Logical device index of data library.

Dataset name where data object resides (e.g., LOADS.eltnam.iset).

Load (object) type name;
'LINE' --->line loads
'SURF' =>surface loads

'PRES' =>pressure loads

'BODY' =>body loads

Live load switch:

0 =>off
1 :=>on

Load coordinate system (only if/NEW)

Number of elements in dataset (only if/NEW)

Number relevant boundaries per element (only if/NEW)

Number of nodes per boundary (only if//NEW)

Number of load components per node (only if/NEW)

Beginning address of workspace in blank common

Ending address of workspace in blank common

6-26 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE DatabaseAccessUtilities

Output Arguments

2_'ame

ELindx I

ldsys I

nel I

nbndy I

nnbndy(nbndy) I

ncomp I

begcor I

status I

Description

Index of current data object (for future transactions with

EL utilities)

Load coordinate system (only if/OLD)

Number of elements in dataset (only if/OLD)

Number relevant boundaries per element (only if/OLD)

Number of nodes per boundary (only if/OLD)

Number of load components per node (only if/OLD)

Beginning address of workspace in blank common

Return status; _ 0 =>OK

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6-27

DatabaseAccessUtilities DATABASE INTERFACE

6.3.4.3 Subroutine ELget

Subroutine ELget is used to get element load values for a particular load type, and par-

ticular element(s). It is assumed that subroutine ELopn has already been called, so that

the logical index for the particular data object (i.e., ELindx) is known.

Calling Sequence

call ELget (Qual, ELindx, ldrecd, load, eltnum, numelt, status)

Input Arguments

Name TY_P_

Qual c

ELindx I

eltnum I

numelt I

Output Arguments

Name _T__e

ldrecd I

load(ncomp,nnbt) F

status I

Description

Name of item to get:

'LOAD' =Vget load record (default)

Logical index of data object (from call to ELopn)

Element number for which load data is requested

Number of elements for which load data is requested

(currently restricted to 1)

Description

Load record number; 0 if no loads are found for requested

element

Load vectors at element boundary nodes; neomp = num-

ber of load components per node, which depends on the

load type (e.g., ncomp == 1 for pressure- loads); nnbt = to-
tal number of nodes on all pertinent element boundaries
(e.g., surface by surface if pressure loads, line by line if

line loads).

Return status; > 0 ==_OK

6-28 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Database Access Utilities

6.3.4.4 Subroutine ELput

Subroutine ELput is used to put element load values into the database for a particular load

type, and set of element. It is assumed that subroutine ELopn has already been called, so

that the logical index for the particular data object (i.e., ELindx) is known.

Calling Sequence

call ELput (Qual, ELindx, ldrecd, load, eltlis, numelt, status)

Input Arguments

Qual c

ELindx I

ldrecd I

load(ncomp,nnbt) F

eltlis(numelt) I

numelt I

Description

Name of item to get:

'LOAD' =_get load record (default)

Logical index of data object (from call to ELopn)

Load record number (get from ELinf)

Load vectors at element boundary nodes; ncornp = num-

ber of load components per node, which depends on the
load type (e.g., ncornp = 1 for pressure loads); nnbt = to-
tal number of nodes on all pertinent element boundaries
(e.g., surface by surface if pressure loads, line by line if

line loads).

List of element numbers associated with current load val-

ues

Number of elements asssociated with current load values

Output Arguments

Na____m____e Type

status I

Description

Return status; > 0 _OK

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6-29

DatabaseAccess Utilities DATABASE INTERFACE

6.3.4.5 Subroutine ELcls

Subroutine ELcls closes transactions with a specific element loads data object (e.g., pres-

sure loads within a given element loads dataset). It should be used after all ELget/ELput

calls are made -- and particularly if ELput has been used, to ensure that the database is

properly updated.

Calling Sequence

call ELcls (Qual, ELindx, status)

Input Arguments

Name

Qual C

ELindx I

Output Arguments

Nam_____ee Type

status I

Description

Currently unused.

Logical index of element load data object being closed.

Description

Return status; > 0 =_OK

6-30 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

DATABASE INTERFACE Database Access Utilities

6.3.4.6 Subroutine ELinf

Subroutine ELinf gets information about tile attributes of an clement loads data object.

Calling Sequence

call ELinf (Item, ELindx, ivals, fvals, chars, nvals, status)

Input Arguments

Name Type

Item C

ELindx I

Description

Name of attribute for which information is desired.

Logical index of element load data object.

Outpuf Arguments

Name Type

ivals (nvals) I

fvals (nvals) I

Chars*nvals C

status I

Description

List of integer values, if attribute is of integer type.

List of floating point values, if attribute is of floating point

type.

Character string, if attribute is of type character.

Return status; :> 0 =_OK.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 6-31

DatabaseAccessUtilities DATABASE INTERFACE

THIS PAGE LEFT BLANK INTENTIONALLY.

6-32 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

ARCHITECTURE INTERFACE

7. ARCHITECTURE INTERFACE

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 7- 1

GEP Internal Organization ARCHITECTURE INTERFACE

7.1 GEP Internal Organization

The internal organization of tile Generic Element Processor (GEP) is illustrated in Figure

7.1. As shown the processor shell (ES) is split into two layers, a top layer that is accessed

through subroutine ES0, and a bottom layer that is accessed through subroutine ESOCR.

The top layer (ES0) handles the user and database interfaces, making calls to the Testbed

architectural utilities to parse commands and input/output datasets. The bottom layer

(ESOCR) is a general-purpose interface (or cover routine) to all kernel-level functions.

ESOCR thus calls each of the individual, specific-fuuction cover routines, such as ESOE

(strains), ESOKM (material stiffness), ESOFI (internal force), etc., and coordinates them

with calls to constitutive (CS,), corotational (CR,) and matrix-algebra (GS,) utilities to

produce the desired output quantity for a given element.

7-2 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

ARCHITECTURE INTERFACE GEP Use of the NICE Architecture

7.2 GEP Use of the NICE Architecture

All GEP calls to the Testbed architecture, i.e., CLIP (command language) and GAL

(database) utilities, are made from the top layer of the ES processor shell. This means

either directly in subroutine ES0 or through various utilities that are called by ES0.

7.2.1 GEP Calls to CLIP

Procedure ES calls to CLIP for command and macrosymbol processing are made in subrou-

tines ES0, ESOCMD, and ESOLDS. CLIP subroutine CLREAD is used to read command

lines; functions ICLVAL and CCLVAL are used to parse command lines, and functions

ICLMAC, CCLMAC and DCLMAC are used to fetch macrosymbol values. Additionally,

subroutine CLGET is used to initialize macrosymbol definitions.

7.2.2 GEP Calls to GAL

Procedure ES does not call GAL directly for database management in version 1.2 of the

Testbed. Instead, it calls higher-level dataset utilities, such as NSX*, which in turn call the

SPAR database cover routine complex, DAL//RIO, which finally make the calls to GAL.

The extra layer created by DAL/RIO was required at one time for compatibility with the

Testbed. However, it is due to be removed in version 1.3 of the Testbed.

Revised 12/13/89 CSM Testbed Generic Structural-Element Processor Manual 7-3

GEP Useof the NICE Architecture ARCHITECTURE INTERFACE

Generic Element Processor Anatomy

"Local
manager"

N,(;X*

' Corot_ ttional
utilities

CR*

NICE
GAL

Shell/toPEs0 J

i
Shell/bottom

ESOCR

I
ES0-kernels I

(e.g., ESOKM)J !

!
In-core !matrix utilities
,,GS"

NICE
CLIP]

Omitted in version 1.3 of the CSM testbed

Figure 7.1 Architecture of GEP.

7-4 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

REFERENCES

8. REFERENCES

1. Knight, N.F., Jr.; GiUian, R. E.; McCleary, S.L.; Lotts, C.G.; Poole, E.L.; Over-

man, A.L.; and Macy, S.C.: CSM Testbed Development and Large.Scale Structural

Applications. NASA TM-4072, 1989.

2. Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:

Volume H - Directives. NASA CR-178385, 1988.

3. Wright, Mary A.; Regelbrugge, Marc E.; and Felippa, Carlos A.:

putational Structural Mechanics Testbed Architecture: Volume IV -

Database Manager GAL.DBM. NASA CR-178387, 1988.

The Corn-

The Global-

4. Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

5. Knight, N.F.; McCleary, S.L.; and Stanley, G.M.: The Computational Structural

Mechanics Testbed Procedures Manual. NASA TM-100646, 1989.

5. Stewart, Caroline B., Compiler: The Computational Structural Mechanics Testbed

Data Library Description. NASA TM-100645, October 1988.

o Belytschko, T. and Hsieh, B.J.: Nonlinear Transient Finite Element Analysis with

Convected Coordinates, International Journal of Numerical Methods in Engineer-

ing, vol. 7, 1973, pp. 255-271.

7. Wempner, G.: Finite Elements, Finite Rotations and Small Strains of Flexible

Shells, International Journal of Solids and Structures, vol. 5, 1969, pp. 117-153.

. Rankin, C.C. and Brogan, F.A.: An Element-Independent Corotational Procedure

for the Treatment of Large Rotations, ASME Journal of Pressure Vessel Technol.

_y, vol. 108, 1986, pp. 165-174.

9. Rankin, C.C. and Nour-Omid, B.: The Use of Projectors to Improve Finite Element

Performance, Computers and Structures,vol. 30, 1988, pp. 257-267.

Revised 3/5/89 CSM Testbed Generic Structural-Element Processor Manual 8-1

REFERENCES

THIS PAGE LEFT BLANK INTENTIONALLY.

8-2 CSM Testbed Generic Structural-Element Processor Manual Revised 12/13/89

N/LqA

1. Report No.
NASA CRo181728

Report Documentation Page

2. Government Accession No.

4. Titleand Subtitle

The Computational Structural Mechanics Testbed

Generic Structural-Element Processor Manual

7. Author(s)

Gary M. Stanley and Shahram Nour-Omid

9. Performing Organi-.ation Name and Address

Lockheed Missiles and Space Company, Inc.

Research and Development Division

3251 Hanover Street

Palo Alto, California 94304

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Report Date

March 1990

6. Performing Organisation Code

8. Performing Organiustion Report No.

LMSC-D878511

I0. Work Unit No.

505-63-01-10

11. Contract or Grant No.

NAS1-18444

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementaxy Notes

Langley TechnicM Momtor_: W. Jel[cr_a SLroud vakd Normaa F. Kaight

16. Abstract

The purpose of this manual is to document the usage and development of structural finite element

processors based on the CSM Testbed's Generic Element Processor (GEP) template. By convention,

such processors have names of the form ESi, where i is an integer.

This manual is therefore intended for both Testbed users who wish to invoke ES processors during the

course of a structural analysis, and Testbed developers who wish to construct new element processors (or

modify existing ones).

17. Key Words (Suggested by Authors(s))

Structural analysis soflwaxe

Finite Element Implementation

Corotational Formulation

CSM Testbed System

18. Distribution Statement

Unclassified--Unlimited

19. Security CIMsif.(of this report) 120. Security Clauif.(ofthis page)

Unclassified I Unclassified

_IASA FORM lg28 oct ss
For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

Subject Category 39

II-

i

