

SHADE IMAGES OF RORESTED AREAS OBTATNED FROM IAADSAT MSS DATA

Yosio Edemir Shimabukuro
Instituto de Pesquisas Espaciais - INPE
Ministério da Ciencia e Tecnologia-MCT
São José dos Campos, São Paulo, Brazil
James A. Smith
NASA/Coddard Space Filght Center
Grecubelt, Maryland, U.S.^.

Abstract

The pixel size in the present day Remote Sensing systems is large enough to include different types of land cover. Depending upon the target area, several components may be present within the pixcl, In forested areas, generally, three main components are present: tree canopy, soil (understory), and shadow. The objective of this report is to generate a shade (shadow) image of forested areas from multispectral measurements of LANDSAT NSS data by implementing a 1inear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure, i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The Constrained least Squares (CLS) method is used to gencrate shade images for furest of eucalyptus and vegetation of "cerrado" using LANDSAT MSS imagery over "itapev"" study area in Brazil. The resmbled shate images may explain the difference on ages for lurest of cucalyptus and the difference on tree crown cover for vegetation of "cerrado".

\section*{1. INTRODUCTION}

LANDSAT digital images in computer-compatible tape are represcnted by dimensionless digital numbers ranging from 0 to 127 for bands 4,5 , and 6 , and 0 to 63 for band 7 of MSS on current LANDSATs (Robinove, 1982 ; Ne1son, 1985 a,b; Markhan and Barker, 1986). The value associated with each picture element, called a pixel, represents the average radiance from a small target area on the ground in a corresponding spectral band. The spatial resolutioi of LANDSAT MSS is approximately 0.45 hectares ($57 \mathrm{~m} x 79 \mathrm{~m}$) at the earth's surface.

The radiance recorded by the satellite is an integrated sum of the radiances of all materials within the instantancous field of view (IFOV) of the sensor. Thus, the radiation detected will be caused by a mixture of many different materials plus the atmospheric contribution. The "mixture" phenomenon has been considered by several investigators (e.g., Horwitz et al., 1971; Detchmendy and pace, 1972). The non-uniformity of most natural scenes generally results in a large number of components in the mixture. The problem

[^0]is further complicated by the fact that the proportion of specific materials within a pixel may vary from pixel to pixel.

Often an important component in a mixed target's response is the shadow component. It is well known that shadowing is generally present in all natural scenes and represents a special case of the mixtures problem. Heimes (1977), in his study, stated that shadowing has an important effect on scenc spectral response, especially in corested areas. Ranson and Daughtry (1987) confirmed Heimes's conclusion showing that the spectral response from non-uniform scenes, such as forests, is greatly influenced by the shadow component.

The objective of this report is to generate a shade (shadow) image of forested area from LANUSAT MSS data by cmploying a lincar mixing model where shadow is considered as one of the primary components in a pixel. Then, the resulted shade images for forest of eucalyptus and vegetation of "cerrado". obtained by the Constrained Least Squares (CLS) method are compared with field information from the forested areas within the "Itapeva" study area.

2. LINEAR MIXTURE PROBLEM: CONSTRAIAED LEAST SQUARES METHOD

The linear mixture model for this study can be written as follows:

$$
\begin{equation*}
r_{i}=\sum_{j=1}^{n}\left(\dot{a}_{i j} x_{j}\right)+e_{i} \tag{1}
\end{equation*}
$$

where
$r_{i}=$ mean spectral reflectance for the $i t h$ spectral band of a pixel containing one or more components;
$\begin{aligned} \mathbf{a}_{\mathbf{i j}}= & \text { spectral reflectance of } \mathrm{j} \text { th component in the pixel for the } \mathrm{ith} \\ & \text { spectral band; }\end{aligned}$
$x_{j}=$ proportion value of the $j t h$ component in the pixel;
$e_{1}=$ error term for the ith spectral band:
$j=1,2, \ldots, n(n=3$ components assump for this prablem: eucalyptus or "cerrado", sail, and shadow);
$i=1,2, \ldots, m(m=4$ spectral bands for MSS/LANDSAT).
This model assumes that the spectral response of a pixel is a linear combination of the spectral response of cach one of the components within the pixel. For this problem, the reflectances r_{i} and aij are assumed to be known and the proportional values for each component (x_{j}) are the problem unknowns. The Constrained l, ast Squares (CLS) method solves the system (1) by minimizing the sum of the squares of the errors subjected to two conditions:

- Cor any pixel the proportion values x_{j} must be nonnegative;
- Cor any pixel the sum of the proportions should add to one.

Both conditions have an ohvious physical meaning.
The function to be minimized is:

Subjected to the constraints:

```
0}\leqslant\mp@subsup{x}{1}{}\leqslant
0 s x < s I
0\leqslantx, < 1
```

i
and
$x_{1}+x_{2}+x_{3}=1$
The theoretical concepts of the Constrained Least Squares method are presented in Shimabukuro (1987).

3. MATIRLAL NND METHOD

The mixture model presented in Section 2 was utilized in the "ltapeva" study area described below. LANDSAT MSS image over this study area was aciuired on July 27,1978 and was converted from digital number to reflectance values according to Markham and Barker (1986). The Constrained Least Squares method is used to generate shade images for forest of cucalyptus and vegetation of "cerrado".

3.1 - STUDY AREA "ITAPEVA"

The study area "Itapeva" is located at $20^{\circ} 30^{\prime} \mathrm{S}$ and $53^{\circ} 20^{\prime} \mathrm{W}$ in the. state of Mato Grosso do Sul (Figure 1). This site includes most of the encalyptus plantation of the Itapeva fiorestal Company (Hernandez filho et al., 1978). Besides the eucalyptus plantation, there is a large area covered by the na'ural vegetation of "cerrado".

Brazilian "cerrado" is the general name of xeronorphic woodland, scrub, savanna, and grassfield vegetation of central Brazil (Eiten, 1978). There are several types of "cerrado": "campo limpo," "campo sujo," "campo cerrado," "cerrado," and "cerradio" as described by sarmicuto (19̣83).

Some information about "cerrado" in the study area "Itapeva" can be found in the research reported by Mcdeiros (1987). As described in this work the "cerrado" present in the study area features dirferent structural patterns (varying from sparse vegetation to dense vegetation) which can yield areas with different concentrations of shadow.

The field data and forest cover maps were provided by the Itapeva Florestal Company and used to classify reforestation arcas using LANDSAT MSS data as can be seen in Hernandez filho et al. (1978). Field works in this area for checking purposes were done by the authors.

3.2 - Expiriment

The composite reflectance ($r_{\text {' }}$ s) data are obtained by converting the digital numbers on the CCTs cortesponding to the LANDSAT MSS image over the study area "Itapeva" acquired on July $27,1978$.

Based on work done by llernandez Filho et al. (1978), two experiments can be performed using the MSS image. The experiments can consider a forest composed of eucalyptus and a vegetation type called "cerrado". For the forest of eucalyptus, three primary components in the mixture were as sumed-eucaiyptus, soil, and shadow. Similarly, for the vegetation of "cerrado," three primary components-"cerrado," soil, and shadow-were assumed to be in the mixture. In this case, the reflectance of eucalyptus and "certado" are extracted from the current image based on the results presented by Hernandez Filho et al. (1978). The reflectance of soil was extracted from the current image and was assumed to be the same for the two
experiments. Also, the reflectance of shadow is considered as the same ohtalned from Heimes's data hy Shimabukurn (1987).

4. RESUITS

Figures 2 and 1 show two study sites for cucalyptus forest and two study sites for vegetation of "cerrado," respectively, in the channel 5 of MSS LANJSAT image of July 27 , i978. figures 3 and 5 show the shade images for forest of eucalyptus and vegetation of "cerrado," respectively.

The shade illages for encalyptus forest were obtained by applying the CLS method to MSS data using the component (cucalyptus, soil, and shadow) reflectances data as described in Sub-section 3.2 . Comparing figure 3 and the groumb information avaibable in llemandez filho et al. (1978), the shade images show the difference in concentration of shadow in the two age groups of eucalyptus plantations. The results shown in this figure show that the young eucalyptus (considered as the age ranging fromeight months to two years) presents a smaller amount of shadew than the old eucalyptus (the age greater than two years).

Similarly, the shade images for vegetation of "cerrado" are obtained by applying the CLS method to NSS data and using the component ("cerrado","soil, and shadow) reflectances data as described in the previous section. Figure 5 presents the variation in shadow concentration caused by canopy cover structure. This canopy structure may be associated to the difference in. tree height, tree density and/or species composition. The ground information of "cerrado" was not available at this time.

5. CONCLUSIONS

The results presented in Section 4 for forests of cucalyptus and vegetation of "cerrado" lead to the following conclusions. The shade images for forest of eucalyptus showed that young cucalyptus has smaller amounts of shatow than the old eucalyptus. This pattern is related to forest stracture since the young cucalyptus has a uniform canopy cover (i.e., it is homogeneous in tree heights and generally tree leaves cover the understory completely), while old eucalyptus presents nomuniform canopy cover caused by hixher tred heights and the maderstory is more cexposed. The shade imades for vegetation of "cerrado" have a variation in shadow concentration which is related to canopy cover structure.

6. REFERENCES

Detchmendy, D.M. and Pace, W.II. 1972. A model for Spectral Signature Variability for Mixtures, Remote Sensing of Earth Resources, Vol. I, F. Shahrokhi, editor, Tullahoina, Tennessee, pp. 596-620.

Eiten,
$169-178$.
1978. Delimitation of the Cerrado Concept, Vegetatio 30(3):
Ileimes, F.J. 1977. Effects of Scene Proportions on Spectral Reflectance in Lodgepole Fine, Naster's Thesis, Department of Earth Resources, Colorado State University, Fort Collins, Colorado.

Hernandez Filho, F.; Shimabukuro, Y.E.; Santana, C.C. de 1978. Relatório das Atividades do Projeto IBDF/INPE (Subnrojeto Reflorestamento) durante o ano de 1978, INPE, São Jose dos Campos, São Paulo, Brasil.
Horwitz, H.M.; Nalepka, R.F.; Hyde, P.D.; and Morgenstern, J.P. 1971. Estimating the Proportions of objects Within a Single Resolution Eiement of a Multispectral Scanner; Proceedings of the Seventh International Symposimm on Remote Sensing of the Environment, Ann Arbor, Michigan, กロ. 1307-1320.
 nyambe kanges, lexatmospherte Reflectances and At-Satellite Temperatures, Landsat Technical Notes, EOSAT, Landsat User Notes, l,anham, Maryland.
Medeiros, J. S. de 1987. Descenvolvimento Metodológico para a Vetecção de Alterasöes da Cobertura Vegetal Atraves de Anailise Digital de Dados MSS l,ANDSAT, Dissertacia de Mestrado, IMPE, Sāo Jose dos Campos, S. Paulo, Brasil.

Nelson, R. F. 1985a. Reducing landsat MSS Scene Variability, Photog. Eng. Rein. Sens. 51(5): 543-503.

Nelson, R. F. 19851, Sensur-laduced Temoral Varialillity of Landsat MSS Data, Rem. Sens. Env. 16(1): 35-48.

Ranson, K. J. and Daughtry, C.S.T. 1987. Scenc Shadow Effects on Multispectral Response, IEED Transactions on Geoscience and Remote Sensing CE-25(4): 502-509.

Robinove, C.J. 1982. Computation with Physical Values from Landsat Digital Data, Fhotog. Eug. Rem. Sens. 48(5): 781-784.

Sarmiento, G. 1983. The Savanas of Tropical Anerica, In: Ecosystems of the World Tropical Savannas, Edited by F. Bourliére, Eisevier Scientific. Publishing Company, Now York, pp. 215-288.
Shimabukuro, Y. E. 1987. Shade Images Derived from Linear Mixing Models of Hultispectral Measurements of Forested Areas, Ph. D. Dissertation, Colorado State University, Fort Collins, Colorado.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2 - Location of the study sites for forest of eucalyptus (lanidsat mSS-5).

Figure 3 - Shask images for Corest of eucalyptus.

ORIGINAE PAGE IS OF POOR QUALITY

Pigure 4 - Location of the stuly sites for vegetation of o "ccrrado" (1.ANDENT MSS-5).

Figure 5 - לhade images for vegetation of "cerrado".

[^0]: *Presented at the Twenty-Second International Symposiun; on Remote Sensing of Invironment, Abidjan, Côte d'Jvoire, October 20-26, 1988.

