
UAH Research Report No. 804

FINAL REPORT
COOPERATING INTELLIGENT

SYSTEMS

,,V'dd-

Prepared by:
Daniel Rochowiak

Johnson Research Center

University of Alabama in Huntsville
Huntsville, AL 35899

Prepared for:
Walt Mitchell

Systems Software Branch
Information and Electronic Systems Laboratory

Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, AL 35812

August, 1989

https://ntrs.nasa.gov/search.jsp?R=19900012213 2020-03-19T23:27:27+00:00Z

TABLE OF

CONTENTS

Introduction 1

Varieties of Distributed Artificial Intelligence 2
Introduction ... 2
PAI .. 3
DPS .. 3
MAS .°°°*, °.° °° *°°°° *°,°°° ° °.°°°° °°,.° ,,°, ° ° 4

References .. 5

Multiagent Systems 6
Organization .. 7

Task-sharing .. 7
Result-sharing .. 10

Modeling ... 11
Frames .. 12
Scripts .. 14
Paradigms .. 1.5

References ... 15

Distributed Data Systems 1 6
Introduction ... 16

DDB and Space Station ... 17
Issues .. 17

Location and replication transparency .. 18
Concurrency Transparency .. 19
Serial Equivalence ... 20
Two-phase Locking ... 21

Toward a Bureaucracy .. 23
References ... 23

Bu reaucratic Syste ms 24
Introduction ... 24

The Expert Agent ... 24
The Diagnostician ... 24
The Working Scientist ... 26

The Bureaucratic Agent .. 28
References ... 30

A Bureaucratic Model of Multiagent Systems 31
Introduction ... 3 1

B-agents ... 32
Protocols ... 32
Policies ... 33

E-agents ... 33
Diagnostic E-agents ... 33
Scientific E-agents .. 34

Agents .. 34
B-agents .. 34
E-agents .. 36

References ... 38

Conclusion 39

INTRODUCTION

This report is about cooperation among intelligent agents. It is assumed that such cooperation is

desirable and that the problem is to generate some way in which that cooperation can be generated.

An earlier report established one way in which cooperation might be achieved in the effort to

explain things. The system CHARLIE was designed to illustrate some of the principles being

developed. CHARLIE was deficient in many ways. In attempting to link the abilities of a hypertext

system to a rule based system it became clear that there should be some principled division of

labor. In particular it was clear that some communications expert was needed. In order to remedy

these sorts of difficulties the theoretical frame evolved into that of bureaucratic organizations

The central idea of the bureaucratic system is that it is structured around a distributed database that

serves as the central and coordinated information system. As in any traditional database system in

an organization it serves to provide a uniform transmission information from one agent to another.

In the ordinary case these agents are human beings that are set to some task. In the distributed

artificial intelligence environment these are intelligent computational agents. The agents are

separated into bureaucratic agents and expert agents. The bureaucratic agents deal with the

information system and the communications as well as dispense task to various expert agents. The

expert agents contain the specific reasoning strategies that are needed to solve problems where the

problems are either diagnostic, knowledge gathering, or explanation. The bureaucratic system is

presented as an abstract model an has not yet been implemented.

The Research has been color by the notion of layering cooperation onto existing agents and

facilities. This seems reasonable since it may be assumed that specialized developments will go on

in many fields, and that computational agents will be added gradually to any system. Since this is

the case some effort has also been made to provide a basis for agents to reason about other agents.

DISTRIBUTED

VARIETIES OF

ARTIFICIAL INTELLIGENCE

INTRODUCTION

Distributed artificial intelligence is beginning to grow as a field of both theoretical and practical

inquiry. Within DAI there a number of striking features, but the most striking is the shift in

paradigm or mind set from a psychological view of knowledge and knowledge based systems to a

sociological view. Traditionally, knowledge based systems (KBS) attempted to represent or

encapsulate the knowledge of some expert. The challenge of knowledge acquisition (K.A) was

marked by the effort to gain the knowledge in the individual expert's "head" or to acquire the

knowledge in several expert's "heads." Within DAI the KA effort is geared to determining the

ways in which groups interact, communicate, and come to decisions. The knowledge exists as a

sort of shared resource which all agents can use. How each agent uses the knowledge may be

particular to the agent, but the overall processing of the knowledge is a shared or social event.

Somewhat more technically DAI is concerned with issues of concurrency in artificial intelligence.

Much of DAI can be divided into three areas: Parallel AI (PAI), Distributed problem solving

(DPS), and Multiagent Systems (MAS). PAl focuses on the development of parallel architectures,

languages, and algorithms for AI. DPS focuses on how the work of solving some particular

problem can be distributed across a number of nodes that share knowledge and share in the

solution of the problem. MAS focuses on the coordination or cooperation of multiple

independently existing agents.

This report focuses on the KBS aspect of artificial intelligence, and will ignore many issues that are

of interest to the wider AI community. This report will also ignore issues concerning parallel

processors and parallel AI programming. This section of the report will motivate and clarify the

focus on multiagent DAI systems (MAS) within the KBS framework.

Varietiesof DAI 3

PAI

Muchof theimportanceof parallelAI canbefoundin

its promiseof speedandperformance.Indeedindivid-
ualistic models of cognition implemented in AI

systemswill profit greatlyfrom advancesin PAL This

mightalsobe truefor moresocialconceptionsof AI as
well. However, the key issueconcernsthe level at

PAl

Process

Distributed to

Process A Process B Process C

which the PAl efforts are placed. They are not efforts at the knowledge or agent level. Rather they

are efforts at the programming level. While the success of such efforts at the programming level

will undoubtedly have a tremendous impact on all of AI, they will not solve the problems of

cooperation at the knowledge level, and solutions to the problems of cooperation at the knowledge

level neither require the solution of problems, nor solve problems at the PAI programming level. In

this sense, the problems which PAI addresses are independent of the problems that are the focus of

those concerned with cooperating intelligent systems. Thus, this report will largely ignore this

avenue of research.

DPS

Distributed problem solving focuses on the ways in which a problem may be decomposed and

solved. The central question may be though of as, "Which agent does what when?" It should be

clearly understood that as a DAI task, this question is to be answered in a programmed, automated

way. That is, the goal of DPS is to construct an automate system that answers the question. Such a

solution would require that the tasks of the various agents be described and formulated in terms

that both account for their being distributed and allow them to be distributed. In the former case a

DPS system must take account of the already existing distribution of tasks, while in the latter case

it must take account of the potential for a decomposition and distribution of the task to several

agents. When a task requires more resources or knowledge that is possessed by any one agent,

then the task must be decomposed until the decomposed tasks can be solved by the agents with

their existing resources and knowledge. A DPS system then reconstructs the results into a solution

of the problem. However, it should be carefully noted that the system that provides for some

decomposition must also be able to allocate the tasks to the agents. The point here is that a DPS

must first construct the decomposition. That decomposition, however, must also be allocated,

since one or more of the agents in the decomposition may be such that the DPS cannot allocate the

subtask to that agent.

Varietiesof DAI 4

Problem

Agent A Agent C

Decomposition and allocation are the central elements in the

DPS, and these functions must be automated functions. In

practice one may find that rather than having some system do

the decomposition and allocation, the systems engineers, and

designers have already performed the tasks of decomposition

and allocation. In this case the decomposition and allocation are

rather rigid and inflexible. However, what constitutes a good decomposition and allocation has

already been determined and "built into" the network of systems and agents. It is not unreasonable

to think that in many practical areas, and in particular the practical applications of DAI on the Space

Station, the patterns of decomposition and allocation will be built into the system. This approach

has the advantage of specifying in advance what is to count as good, but has a disadvantage insofar

as it is not as flexible as a full and successful DPS would be. While it is to be hoped that future

research will provide such flexibility, this report will assume that the patterns of decomposition and

allocation are built into the network of agents under consideration.

MAS

Multiagent systems assume that the patterns of decomposition and allocation are already given to

the system. These patterns may be given either by some automated system or by having them built

into the network of the system. Hence, MAS while compatible with the efforts in DPS, does not

demand a solution to its problems before it can begin to solve its own.

The central issues for MAS concern organization and modeling. The former concerns both the

static (or 'snapshot' organization) of the agents, and the rules or procedures through which one

agent can communicate with another. The latter concerns what one agent knows or can know about

another. Together these issues can be thought of as the focus of cooperation, since they provide the

resources through which several agents may cooperate in either solving a problem or providing

information and knowledge that can solve a problem.

A MAS can be either a specialized system or a system

layered onto a network of already existing systems. If the

system is a specialized system, then the solutions to the

organization and modeling problems are built into the

construction of the agents of the system. If the system is a

layered system, then the problems are to be solved at a

MAS,f-- MAS

IAge.t,II*ge'nt8 I IAgent C I

II T It Task1

level more abstract than the agents and the agents may be already existing computational systems

Varieties of DAI 5

which from the MAS point of view can be understood as autonomous. In a specialized system the

agents are a product of the MAS in the sense that they are either directly generated by the MAS or

are designed to be parts of the MAS. In a layered system, already existing computational agents are

either put to a cooperative task at some higher level of abstraction or function, or are the senders

and receivers of information and knowledge that will facilitate or improve the task of the

computational agent. This report focuses on layered MAS systems since it can be reasonably

expected that MAS systems will be added to already existing collections of computational agents.

Further, the layered approach is a reasonable fin'st step toward richer DAI systems since it attacks

basic DAI problems, but would not interfere with the ordinary operations of the agents in question.

This latter point is important especially in the context of Space Station in which such systems

would be evolving systems and would be systems such the "pulling the plug" would not jeopardize

the overall system.

REFERENCES

• Readings in Distributed Artificial Intelligence, A.H. Bond and L. Gasser (eds). Morgan

Kaufman: San Mateo, 1988.

• Distributed ArOqcial Intelligence, M. N. Huhns. Pitman / Moragn Kaufman: San Mateo, 1987.

• "Distributed artificial intelligence," L. Gasser. A/Expert, Vol. 4, No. 7 (1989): 26-33.

MULTIAGENT SYSTEMS

INTRODUCTION

Organization and modeling are central concerns for multiagent systems (MAS). Organization

refers to the structure and rules through which agents communicate. Modeling refers to the ways

in which agents gain knowledge about themselves and other agents.

Organizations vary in a number of ways. Organizations may operate by sharing tasks or results.

Their structures may be static or dynamic and hierarchical or anarchic. These elements can be

intermixed so that one organization may be task-sharing, dynamic, and hierarchical while another

might be a result-sharing, static, and anarchic. It is generally accepted that in any system some

organizations are better than others. Part of the problem in building a MAS, therefore, is finding

the most satisfactory organization for the system. This requires that the purpose or purposes of

the MAS be clearly specified.

Modeling requires an agent either to have or obtain expectations about itself or other agents.

Ideally, the agent should be able to determine its function within the MAS. The expectations may

be either built into the agents or may be acquired by the agents. The expectations may be

discrete, categorical, or statistical. Agents may be able to represent the knowledge of other agents

or be unable to do so. Finally, agents may be able to have global knowledge or be restricted to

local knowledge. As in the case of the organization these aspects can be combined to form

different sots of systems.

In this section the various aspects of the organization and modeling of MAS systems will be

examined. The discussion, however, will focus upon layered MAS.

_ Multia_ent Systems 7

ORGANIZATION

In an organization an agent may or may not need to communicate with another agent. When

communication is needed, it is assumed that the agent behaves in some way that it would not

ordinarily behave if it were not part of the organization. Organizations, therefore, can be created

from either atomic agents which do not ordinarily communicate, or social agents that ordinarily

communicate with other social agents.

The patterns of communication in the organization may be geared to either task-sharing or result-

sharing.

Task-sharinq

In task-sharing, the communication between agents is designed to divide the work of a large task

among several agents. Large problems are decomposed into sub-problems until there are agents

that can solve the sub-problems. Task sharing may be imposed or evolved. Imposed task-sharing

applies to agents that are not inherently social. These agents have tasks imposed on them in

virtue of their special knowledge or information. Alternatively, social agents may come to share

a task by their own activity. In imposed task-sharing some agent imposes a task on another

agent, while in evolved task-sharing some agent accepts a task published by some other agent. In

evolved task-sharing at least some of the agents must be sufficiently general to take on different

tasks at different times.

Task sharing fits most naturally into DPS. A DPS is, in a sense, a collection of agents engaged in

task-sharing. The agents of a DPS are social and opportunistic, responding to published subtasks

when they are able. A full DPS should be constructed with these requirements in mind, and

should not be built as a compromise between inherently unsocial agents. In brief an, ideal DPS

would be composed of social and opportunistic agents, and some of the agents would be capable

of decomposing tasks and publishing subtasks.

For a full DPS, the decomposition of the task or problem is automated, and the code for the

decomposition represents some decomposition strategy. In general, strategies such as hierarchical

planning, load balancing, subgraphs, and aggregation operate on the notion that the

decomposition is built into the statement or representation of the task or problem. For example,

the task or problem might be represented as a list of lists. In such a case, the elements of the list

Multia_entSystems 8

arethesubtasksor subproblems.If theelementis a fist, thenthedecompositionis continueduntil

thetherearenomorelists.

Or again,considerthefigure to theright. A taskorproblem
can be decomposedin the way that a logical formula is
decomposed.Considertheformula ((A&B) ---)(CvD)). In

this case the problem can be decomposedinto three
elements' (A&B) ', ' ---)', and' (CvD) '. Thef'trstandlast

elementscanagainbedecomposedinto threeelements.At

thatpoint thedecompositionis terminatedsinceall of the
elementsareeitherlogical atomsor connectives.In aDPS,

theatomswould thenbepublishedandsomeagentswould

solvefor A, B, C andD.

Task: Determin the truth value

((A&B) _ (CvD))

A A
A B C D

Differing strategies for decomposition should produce logically equivalent results. Thus, the

choice of the decomposition strategy should be made on grounds other than the logical

correctness of the decomposition. These might include time, resource use, or memory space.

However, as in the case of organization in general, the decomposition strategy that produces the

most satisfactory results is a function of both the system and the task or problem to be

decomposed. An ideal DPS would contain some method for selecting the most appropriate

decomposition strategy.

In a rigid organization, task-sharing is established by the programmer-designer, and the agents in

the system may be far more atomic than social. Thus, in rigid organizations it is reasonable to

think of the decomposition as given in the construction of the system. This results in systems that

are static. The system organization is the same for every task or problem that it receives.

Task-sharing in rigid organizations represents the programmer-designer's ideas about how

problem are to be solved and which agents are best able to respond to the task or problem. The

decisions of the programmer-designer can reflect a variety of concerns that are not inherent in the

problem or task under consideration, however. For example, political problems and philosophical

differences can be adjudicated by the programmer-designer by reaching compromises or other

agreements with the human responsible for a particular computational agent. This can allow

greater flexibility in the development of the MAS. It should be noted, however, that the efforts of

the programmer-designer can be aided by automated tools, and these tools are likely to use the

same strategies as would be used in an automated DPS. Such tools can produce evidence for a

_ Multia_ent Systems 9

particular decomposition and provide the programmer-designer with arguments to be used in the

process of generating a compromise.

The advantages of rigid organizations are that the operations of the agents can be specified in

advance, the agents can be optimized to particular tasks, and the system runs the same way every

time it is given a task or problem. The disadvantages are that the system must respond in the

same manner even if a different decomposition would give more satisfactory results, and since

the agents are specialized redundancy must be built into the agents. Flexible organizations have

the advantages that they are able to select the most appropriate decomposition strategy, and that

some amount of redundancy can be built into the system of agents since at least some of the

agents are generalists. The disadvantages of flexible organizations are that they are inherently

more difficult to test since different tasks are handled in different ways, and the system is more

difficult to construct since the agents must be designed as social agents. This report will focus on

rigid organizations since it is reasonable to suppose that such organizations can be layered onto

already existing groups of agents, and that as work progresses on automated decomposition, the

results of that work can begin to be applied to static organizations. The latter point is important.

It provides an evolutionary pathway for future development without having to abandon the

existing population of agents. It is more restrictive than a full DPS system, however, since the

decompositions are still given by the programmer. Only the choice of which scheme is

automated. As noted above, the organization is still imposed on the agents since the agents do

not select the problems or tasks on which they will work.

It will be assumed that the there exists some network through which the agents of a static

organization can communicate. It should be noted that the term 'agent' is used in the sense of a

computational agent that may be a program running on the same or different physical machines.

Thus, a rigid organization might be applied to several computational agents running on the same

physical computer through multitasking. On the other hand, the computational agents may be

programs running on different physical machines. For the sake of simplicity, the communications

paths between agents will be called the network. This level of abstraction allows many

implementation issues to be put to the side.

It also will be assumed that the static organization imposed on the system will be such that the

problem or task either will be successfully terminated or the system will be able to indicate that it

cannot provide a satisfactory solution. Since the burden of decomposition is placed on the

programmer, a system that violates this assumption or produces to great a ratio of nonsolutions to

solutions must be redesigned and reprogrammed.

Multia_entS_,stems 10

Given theseassumptionsand thefocuson rigid systemsit mayappearthat there is rather little

cooperationpossibleamongthe agents.However,this is only sofrom the perspectiveof task-

sharing.For the typeof MAS that is thefocusof this report, result-sharingprovidesthe means

for cooperation.

Result-sharing

In result sharing the partial results of the agents in the system are shared. Since it is assumed the

organization is rigid and task decomposition is fixed, the agents in the system can use the partial

results of other agents as data in their own computations. In this sense a MAS that focuses on

result-sharing is data directed. The agents act on the data that they have available and share their

results with other agents.

The agents in the system may be so constructed that they either share all of their results or some

of their results with other agents. Assuming that the agents in question are more atomic than

social it will be assumed that the agents share some but not all of their results. Further, the

organization of the agents may be such that either any agent can communicate with any other or

communication is in some ways restricted. It will be assumed that the agents in the system have

restricted communication. These assumptions result in a hierarchical organization of possibly

preexisting agents. However, it does not rule out the possibility that there are local groups of

agents that are anarchic. The assumption only requires that if such local anarchies exist, they

should place their results into a hierarchy. This is consistent with the layered approach adopted in

this report.

An example will help to clarify the issues that are involved. Suppose that the task for a collection

of computational agents is to determine if there is enough water on a space craft to continue

normal operations. The simplest way to conceptualize the task is to assume that there is sufficient

water unless it can be shown that there is not. The task can then be reduced to the ways in which

the system might fail to provide enough water for normal operations. This in turn breaks into two

parts. The In'st subtask is to determine what normal operations will be in the near future, and the

amount of water needed for those operations. Here an agent in the hierarchy may need to consult

plans, schedules, and the health status of the crew. Each of these items may represent the result

of another agent. Sharing these items of information, therefore, would result in some measure of

cooperation amongst the agents. Further, the agents below the level of the agent that determines

what normal operations are may also need to communicate. For example, if a specific series of

- Multia_ent Systems 11

physical exercises are scheduled for the crew members, but one of the members of the crew is

sick, then the schedule may need to be altered. Both the new schedule and the fact that there is a

sick crew member will have an impact on what constitutes ordinary operation, and consequently

how much water is needed for normal operation. The second subtask concerns the status of the

water treatment facility itself. The status of the system, the capabilities of the system, and the

current reserves of the system are relevant to determining if the water treatment facility can meet

the demand of the future normal operations. Here a sharing of results between the systems that

monitor the equipment, and the performance trends of the system with the agent charged with

making the determination of adequacy are important. Finally it should be noted that the the the

agents in charge of the subtasks will also need to share results. For example, if the water

treatment facility cannot provide the requisite amount of water, then some rescheduling must be

done. The new schedule, then acts as a new partial result for the agent that determines if the

facility can provide the water.

In this example it is important to note that some of the agents that are at work on subtasks are

already agents that are at work on particular tasks. For example the system that monitors the

status of the treatment facility equipment is a system that can be though to be an agent that is in

continuous operation. To impose another task on this agent might force it to become less

efficient or deliver unsatisfactory results. The idea of result sharing allows the system to continue

to operate, and requires only that its results be shared. This shows the advantage of a layered

MAS. It can work with existing specialists which must have there attention focused on a

particular task.

MODELING

Agents in organizations, even in rigid organizations with relatively fixed decompositions, must

know something about the other agents in the system. The minimal knowledge requirements are:
• what other agents can receive messages
• what kinds of messages can be received by other agents
• what sorts of things the other agents do.

To these can be added several knowledge elements which, while not essential, contribute to the

actual operation of the organization. These are:

• how messages to other agents are structured
• how busy another agent is
• from what other agents messages are received.

Finally, the agent should have some idea of its own knowledge:
• from what agents it has received messages
• how busy the agent is
• what is the agent's goal

Multia_entSystems 12

• how theagentfits into theorganization.

Although therearevariouswaysin which theserequirementscanbe implemented.This section
will focuson frameand scriptstylesof representation.Thereareseveralreasonsfor this. First,

theserepresentationalschemashavealreadymeetwith somesuccessin AI applications.Second,
even if theserepresentationalschemasare not fully implementedin a system, they can be

simulatedto somedegreein classicaldatabases.Finally, this styleof representationappearsto be

extensibleandapplicableto otherproblemareas.

Frames

A Frame Structure Example

FRAME: ECLSS KB agent

TYPE:
RANGE: (water-recovery, air-recovery, fire)
DEFAULT: none

STATUS:
RANGE: (active, inactive, maintenance)
DEFAULT: active

RATE:
RANGE: (1-9)
DEFAULT: 5

MESSAGE_STATUS:
RANGE: (pending, none)
DEFAULT: none
IF_NEEDED: check-message-manager

A frame consists of a series of slots. Each slot is

identified by the name of the attribute slot, a

value or range of values, and procedural

attachments. Consider the frame structure to the

left. The name of the frame is ECLSS KB agent.

It contains slots for TYPE, STATUS, RATE, and

MESSAGE_STATUS. For each attribute a range

and allowed default is provided. The DEFAULT

slot indicates the value the slot will have if a

value is not explicitly provided. It should be

noticed that the MESSAGE_STATUS slot has a

special IF_NEEDED attribute. This is an

instance of a procedural attachment. If some

operation needs to know the value of the MESSAGE_STATUS attribute, then the procedure

check-message-manager will be used to get that value. This is one of the two forms of

attachment. The second form will be examined in the case of a sub-frame.

One of the advantages of using the frame representation is that this style of representation

supports inheritance. One frame can inherit the attributes of another by declaring it to be a

specialization of some frame. An intuitive example is the relation of a passenger car to a motor

vehicle. The concept of a passenger car contains the concept of motor vehicle. The containment

is such that the concept of the passenger car contains all of the attributes of the concept of motor

vehicle plus the attributes appropriate to the concept of a passenger car.

Multia_entSystems 13

The example to the right will further clarify

this point. The FRAME _ is a

specialization of the FRAME

itgt,._. Thus, this subframe inherits the
attributes of that frame. This meansthat the
RATE and MESSAGE_STATUS attributes

apply to this subframeimplicitly. However,the
additional attributes in this subframe

differentiatethe subframew_er recovery_ both

from other specializations of ECLSS KB agent

and other frames. Note that in this example the

GOAL attribute is uniquely specified. Further,

it should be noticed that the property

UNIT_PROBLEM has a special procedural

attachment. Unlike the IF_NEEDED

procedural attachment in the parent frame, this

attachment is used whenever a value is set for

the attribute. The attachment contains two

A Subframe Examaple

:RAME: water recovery

SPECIALIZATION_OF: ECLSS KB agent

GOAL: water-quality

IODINE:
RANGE: safe, yellow, red
DEFAULT: safe

TOC:
RANGE: safe, yellow, red
DEFAULT: safe

BIOLOGICAL:
RANGE: safe, yellow, red
DEFAULT: safe

UNIT_PROBLEM:
RANGE: component-failure, yellow-line,

red-line
DEFAULT: none
IF_ADDED: allert and advise diagnostic unit

parts. The first issues an alert and the second advises the diagnostic unit. Within the context of

this example, the message to the diagnostic unit would indicate that the water recovery system

has had some problem and that problem needs to be diagnosed.

Frames provide a useful way of modeling the agents of the MAS. Each agent would have access

to the frames and subframes appropriate to its organization. Note that the frames can be altered

and expanded to fit the the specifications presented at the beginning of this section. As it stands

the frames structure is a data structure that accords with ordinary database structures. The

novelty is in the notion of procedural attachments and inheritance. I will assume that the

mechanisms for these features are in place and that a frame-base exists. The central issue is how

reasoning about the frames-base can be incorporated into the system.

Reasoning in a frame system can proceed in two ways. In the first way the frames simply act as

databases that can be interrogated. That is, one agent can ask for the value of an attribute in a

designated frame. However, this presupposes that the second mode of reasoning has already

produced an instantiation of the frame. An instantiation of the frame converts the frame from a

template into an actual object. Consider the example above. The object _ does not

exist until it is instantiated. From the MAS point of view, this is important since not all of the

_ Multiagent Systems 14

agents of the organization will instantiate all of the frames. Further, it should be noticed that

upon the instantiation of the FRAME water recovery, all of the attributes of the frame ECLSS

_are inherited by the instantiated object. Thus, if the instantiated object, say water

recovery_ one, is interrogated about its STATUS and no explicit value has been set for this

attribute in water recovery_ one, then the response will be that water recovery_ one is active since

this is the default value. Further, the agent in which water recovery one is instantiated has

knowledge implicitly of the GOAL and UNIT_PROBLEM. The latter attribute it should be

noticed also contains the knowledge about what to do if the value of the UNIT_PROBLEM

attribute is not none.

Frames will provide useful devices for storing knowledge about the agents of the organization,

and can be further extended to a discovery process of other agents with which they are

communicating. This latter point may be important in systems that are built to configure

themselves to their circumstances. Such agents, although not social agents, would need to

discover which agents are sending and receiving messages relative to their place in the

organization. This can be done by attempting to match the information known about another

object to the frames that the agent knows or has access to. In this sense it could be claimed that

the one agent discovers the exist and type of other agents in their organization.

Scripts

Scripts can also be considered as a form of modeling. Rather than modeling the agents in the

system, however, scripts model the activities in the system. Instead of the slots for attributes and

values in an agent frame, the script representation would include features such as the entry

conditions, results, props, roles, and scenes for a typical activity. As in the case of frames the

elements of the script contain default values and features that may or may not be used in the

activity. This can be illustrated by considering the way in which an activity such as checking the

water supply on the space station can be cast in terms of a typical sequence of scenes. The

process may first check the holding tank, then check the processing equipment, and final check

the output tanks. To enter the scene in this case would be to enter the water processing loop. If

one agent were to attempt to get information from another agent in the water processing loop, the

script could provide the background information against which the activities of the quizzed agent

would be made intelligible. The use of certain processes would be codified in the props and the

various roles played by other agents would be contained in the roles.

-- Multia_ent Systems 15

The script would contain background information that can aid an agent in modeling the activity

of the system and establish reasonable defaults about what other agents are doing and why they

are doing it. As in the case of scripts one can reason either forward, when the script becomes

known, or backward, when the script is being looked for.

Paradiqms

As a general means of expressing the modeling in MAS the notion of a "paradigm" will be

helpful. A paradigm is simply a structure that provides for both defaults and procedural

attachments. A paradigm can be created from other paradigms either through inheritance

mechanism or forcing of inheritance. In this sense a paradigm can be implemented in either an

object oriented environment where the the system itself takes care of inheritance or in a modular

programing environment in which the raw materials for inheritance are available, but the

programmer must explicitly construct the inheritance.

Paradigms can be implemented in various ways. What is important is that the paradigm represent

the core the core characteristics of the entity or process it represents and provides for a way of

manipulating or gaining its own values. In this sense, frames, scripts, and objects can all be used

as paradigms. In the remainder of this report the term paradigm will be used to refer generically
to these.

REFERENCES

• "Frameworks for coopertation in distributed problem solving," R. G. Smith and R. Davis. IEEE

Transactions on Systems, Man and Cybernetics, SMC-11 (1981): 61-70.

• "An organizational view of distributed systems," M. Fox. IEEE Transactions on Systems, Man

and Cybernetics, SMC-11 (1981): 70-80.

• "Communication and interaction in multi-agent planning," M. P. Georgeff. Proceedings of

AAAI "83 (1983): 125-129.

• Principles of Artificial Intelligence and Expert Systems Development, D. W. Rolston. McGraw-

Hill, 1988.

DISTRIBUTED DATA SYSTEMS

INTRODUCTION

Distributed databases have been well researched, and a discussion of them will help to focus both

further examination of distributed knowledge based systems, and the ways in which such systems

can be implemented.

Distributed database sys-

tems (DDBMS) are systems

that support the execution of

transactions and the retrieval

and updating of data across

two or more independent

computers. The manage-

ment of DDB systems con-

sists of the collection of

distributed transaction man-

agers (DTM) and database

managers (DBM) for all the

A, B, C, and D
are processing
nodes.

B

C

A

D DDB
DDBMS

computers in the net. The DTM is a program that receives processing requests from query or

transaction programs and translates them into action commands for the DBM. The DBM is a

program that processes some portion of the DDB. Nodes in the distribution net may be either

transaction nodes or database nodes where these are differentiated by whether the node can make

transactions or queries (B,C,D), or store the database (A,B,C,). A single computer can have both

node functions (B,C), but it need not (A,D). For database nodes, the database at the node may or

may not replicate the DDB, and if it does replicate the DDB the replication may be partial or full.

For transaction nodes, the level of authority may be that of equality, in which case the node can

insert, modify, delete, or read data, or servitude, in which case the manipulations of the data are in

some way restricted. These considerations provide a basic framework for this examination of

DDBs.

DistributedDataSystems 17

The advantagesanddisadvantagesof the

DDB framework are set out in the table at

the left. Although the table may appear to

contain contradictory items, a closer

vA_dxanmg

Better performance
Increased reliability

Easily scaled in size
Rezdily tailored

Worse performance
Decreased reliability
Increased complexity
Difficult to control

inspection reveals that that the apparent

contradictions are actually functions of other constraints. For example, in a well-behaved

distributed system, the overall performance of the system will be better than for a centralized

system. This is especially so when a local transaction matches a local database. However, if the

system is not well-behaved or if there are system problems the performance can be worse than that

of a centralized system. For example, if the distributed system uses a partial replication system and

the partial distribution is not well tuned to demands of transaction and query nodes, the system per-

formance will degrade. In a similar manner, the reliability of the distributed and centralized system

can vary. Given the potential for duplication of data elements and the ability of distributed nodes to

continue operation while other nodes are "down," the distributed system would be more reliable.

On the other hand, recovering from problems may be far more difficult for a distributed system.

Attempting to determine what changes have been made to the database while a node was down is

more difficult than simply restoring the database program from as saved file.

DDB AND SPACE STATION

A distributed database system is envisaged as being part of the Standard Services of Space Station

Freedom. The Software Requirements Specification for Standard Services indicates that Standard

Services "will manage data and commands using a Distributed Data Base model." In particular, a

"Runtime Object Data Base (RODB) can be thought to exist at each node of the DMS," and that

"Standard Services will provide location transparent access to data in remote RODB's via

directories." In the RODB model data are written into the RODB by the data supplier and are read

out by data users. Further application command requests are written into the data base by command

requestors. Standard Services either issues the command to the effector or notified the effector of a

command request. Options exist within Standard Services Data Processing to perform exception

checking on data and notify applications of exception conditions. Such exceptions will include

local yellow line and red line limits.

ISSUES

Ideally, the operation of a DDB system should be location, replication, concurrency, and failure

transparent. A DDB is location transparent, if the transaction managers determine the location of

- Distributed Data Systems 18

data and issue commands to the appropriate DBMs. A DDB is replication transparent if transactions

can be processed without knowing how many time data is replicated. A DDB is concurrency

transparent, if all concurrent transactions are identical to transactions executed in serial order. A

DDB is failure transparent if all transactions are atomic in the sense that either all or none of the

transaction is processed. In this report failure transparency will not be examined, but the following

discussion will focus on transaction that are atomic

The central issues for DDB development concern the ways in which and the degree to which the

ideal can be achieved.

Location and replication transparency

Location and replication transparency are related in that data directories are used to ensure them. A

data directory can be thought of as a database about a database. It is akin to a data dictionary but

maintains a database of the locations at which data are stored. It should be remembered that in a

DDB some data elements may be replicated and some nodes may not replicate the whole database.

Before

After

Local n_e

Read D 1

Write D 1

Read D 1

Write D 1

DTM

Look at directory to
find location of D 1;

select appropriate
location

Look at directory to
find all locations of
D1

Look at directory to
find location of D 1;
select appropriate
location

Look at directory to
find all locations of
D1

Directory

D1 at N1
D1 at N2
D2 at N2
D2 at N3

D1 at N1
D1 at N2
D2 at N2
D2 at N3

D1 at N2
D1 atN3
D2 atN1
D2 at N2

D1 at N2
D1 at N3
D2 at N1
D2 at N2

Actions

DTM requests the
DBM at either N1 or

N2 for reading of the
value of D 1

DTM requests the
DBMs at N1 and N2
to write new value of
D1

DTM requests the
DBM at either N2 or

N3 for reading of the
value of D 1

DTM requests the
DBMs at N2 and N3
to write new value of
D1

Location transparency is needed to manage the DDB effectively. This is even the case where the the

database is wholly replicated. If the DTMs are responsible for determining the locations of data and

issuing actions to the appropriate DBMs, then location transparency can be supported. By allowing

Distributed Data Systems 19

the DTMs access to directories of data locations transactions can be isolated from changes in

location.

If a transaction can be processed without knowing how many times the data is replicated, then the

transaction is replication transparent. There are two cases. For reads, the DTM can pick any node

at which the data is located. The read can be optimized in many ways. The DTM could pick, for

example, the node that is the shortest distance from itself or pick the statistically least active node.

For writes the DTM must issue the write request to every node at which the data is stored. The

directory provides the information to the DTM on which nodes have which data elements. This

leads to a demand on the directory management. To avoid errors, the presence of a data item must

not be posted until the it is available (a read problem) and the item must be posted to the directory

when it is available (a write problem.)

Concurrency transparency

Concurrency and failure transparency are related. Each is far more complicated than location or

replication transparency. Further, it appears that gains in either concurrency or failure transparency

lead to losses in the other. Concurrency requires that all concurrent transactions yield results that

are identical to those which the same transactions performed serially would have yielded. Failure

transparency requires that either all of a transaction is processed or none of it is. Together these

entail the joint requirement that all transactions yield results identical to those of serial transactions

or do not yield any results. One might consider three situations. A perfect node is a node that

always processes a transaction correctly. A sane node is not perfect but fails in predictable, defined

ways. An insane or Byzantine node fails in unpredictable and undefined ways. If predictable

failures can be trapped and all nodes are either sane or perfect, then the joint requirements can be

meet. If there is any insane node, then the requirements cannot be satisfied.

A more detailed examination of the joint requirement is in order. In order to construct this

examination at bit of standard symbolism is helpful. Let 'rt(NI)' be read as 'a read by transaction i

of the value of N stored at node I.' Similarly for 'wi(NI)' where 'w' stands for a write transaction.

The arrows '_---' and '--->' are used for read the value and write the value respectively. 'rl(NA) <---

4' means 'transaction 1 reads 4 for the value of N at node A.' Unless the DDB system is well

structured inconsistencies can be generated by failures of the joint requirement. Two particular

difficulties are lost updates and inconsistent reads. An example may help to illustrate the problems.

_ Distributed Data Systems 20

In the first case consider what happens in the case where two transactions attempt to process the

data stored at node A.

Transaction

Sequence
Start

rl(NA) _ 5

r2(NA) _-- 5

wl(NA) _ 4

w2(NA) ---) 3

NA Such a situation might occur when 1 unit of water is drawn

from a tank and then another 2 units are drawn form the tank.

The fin'st transaction T1 decreases the value of N at A by 1 and

the second transaction T2 decreases the value of N at A by 2.

The final value of NA should clearly be 2 (5-1-2). However, in

this case the last value placed in NA is 3.

In the second case consider what happens when a value changes at one node, but there is a

compensating change at another node.

Such a situation might occur when one is moving 4

units of water from one tank to another. Suppose

that the volumes of water for the three tanks are

held at nodes A, B and C. Let T3 be the transaction

that moves 4 units of water from C to B. Let T4 be

the transaction the determines the total amount of

water in all three tanks. In this case the the three

reads of T4 are completed before the adjustments

caused by T3. The result would be that T4 would report

correct 12 units.

Transaction NA NB NC

Sequence
Start 5 1 6

r3(Nc) _ 6 5 1 6

w3(Nc) ---) 2 5 1 2

r4(Nc) _ 2 5 1 2

r4(NB) _ 1 5 1 2

r4(NA) _ 5 5 1 2

w3(Nc) ---) 5 5 5 2

a total of 8 units (2+ 1+5) rather than the

Both kinds of problem can be avoided if the DDB system provides only executions that are serial

equivalent.

Serial equivalence

Two transactions are serial equivalent if (1) each read reads data values produced by the same write

in both executions, and (2) the final write of a data value is the same in both executions.

Transactions may, however, conflict. Two operations conflict if they operate on the same data item

and one of the operations is a write (read-write, write-read, and write-write conflicts). Such

conflicts may be either intratransaction or inter transaction. It will be assumed that the DBM can

handle intratmnsaction conflicts.

-- Distributed Data Systems 21

A transaction executes an ordered sequence of requests by the DTM. The ordered sequence is

called a schedule, and a serial equivalent schedule is a consistent schedule. The fundamental

theorem of serialization specifies the relation between conflicts, schedules and transactions. For

any ordered list, T, of transactions, T1, T2 Tn, a schedule, S, of T is consistent if for any

two conflicting requests REQi and REQj, REQi precedes REQj in S if and only if Ti precedes Tj in

T. This theorem can be applied to the DDB case by allowing that the order of conflicting requests

must mirror the order of conflicting transactions no matter where the transaction is processed nor

how many time it is processed. This implies that all of the nodes of the DDB have the same

schedule. Since this may not be true, other problems may be generated. Two-phase locking

provides a means to satisfying the conditions of the theorem.

Two-phase locking

Two phase locking as means of concurrency control assumes that the system under consideration

uses two-phase commitment.

In a DDB system every transaction is given a private workspace. During the transactions updates a

made in the workspace, but are not committed to the database. When the transaction is completed

the results can be committed to the database. At completion the DTM sends out commit actions to

the various DBMs. However, in a DDB a problem is encountered if several DBMs are involved

and one or more of them cannot commit the changed to the database they manage. In consistency

would result if only some of the databases were updated.

In order to prevent this the DDB uses two-phase commitment. During the first phase the DTM

processing the transaction issues a pre-commit action to all DBMs holding data that is updated by

the transaction. If the DBM can commit the updates of the transaction to the database, it writes log

records and then responds with a YES to the DTM. If all of the DBMs answer YES, then the DTM

issues a commit action. If any DBM responds with NO, then the transaction is aborted. This

preserves the atomic character of transactions.

With two-phase commitment the fundamental theorem can be enforced by using distributed two-

phase locking. This method requires DTMs to obtain locks before reading or writing data. Thus,

before reading a data item the appropriate DBM must grant a read lock. When updating a data item

every DBM that stores the data item must grant the DTM a write lock. There are three rules on the

granting of locks.

DistributedDataSystems 22

(1) A readlock is grantedif nowrite lockhasbeengrantedfor thedataitem.

(2)A write lock is grantedif nootherreadorwrite lock exists for the data item.

(3) If a DTM has released a lock of either type, no further locks can be granted to the DTM.

Under these conditions a transaction has two phases. In the growing phase the transaction acquires

locks, and in the shrinking phase the transactions releases locks. It has been shown that read and

write locks will generate consistent schedules just in case they proceed in these two phases. The

clearest way to accomplish this two-phase locking is to release all locks only when the transaction

is terminated either by the results being committed or by aborting the transaction.

In a DDB system each DBM must have a subsystem that

grants and releases locks and each DTM must conform to

rules noted above. The DTM can issue a read request as

soon as any read lock has been granted but cannot issue

a write command until all DBMs have granted a write

lock. Under these conditions conflicts are avoided. If

any DBM has issued a read lock on a data item and a

new transaction requests a write lock, the DBM at issue

will not grant it. Thus, since all the DBMs have not

granted a write lock, the transaction cannot write and

read-write conflicts are avoided. If all DBMs where a

data item is stored have issued write locks, then no

transaction will be granted a read lock for that data item.

Thus, write-read conflicts are avoided. Finally, if all

DBMs where a data item is stored have granted write

locks to a transaction, then no other transaction can gain

a write lock for that data item. Thus, write-write conflicts

Consistent Concurrent
Schedule for

T1, T2, T 3, T4
NA NB NC

Start 5 1 6

r3(Nc) _ 6 5 1 6

rl(NA) _ 5 5 1 6

r3(NB) _ 1 5 1 6

w3(Nc) --_ 2 5 1 2

r4(Nc) _ 2 5 1 2

wI(NA) _ 4 4 1 2

w2(NB) _ 5 4 5 2

r2(NA) _-- 4 4 5 2

r4(NB) +-- 5 4 5 2

w2(NA) ---) 2 2 5 2

r4(NA) _-- 2 2 5 2

are avoided.

The foregoing conditions for two-phase locking generate consistent schedules. However, this

procedure raises the possibility of deadlock. Deadlocks occur when there is a circular series of

requests for locks. There are two tactics for attempting to deal with deadlock, deadlock prevention,

and deadlock detection.

-- Distributed Data Systems 23

TOWARD A BUREAUCRACY

The importance of a distributed database system can be found in the role it can play in a

bureaucratic system. Within a bureaucratic system there is a need to share information among more

or less independent intelligent agents. These agents are more-or-less specialists in a particular task.

Within the bureaucracy the tasks are initially composed by the designers and managers of the

bureaucratic system. In such a system there is little need for a system that engages in task sharing

since the bureaucracy is intended to establish a rationalized distribution of labor for task specialists.

However, with such an a priori task distribution system, the burden of the systems operation falls

upon the sharing of the results of the specialists. Further, it should be noted that a bureaucracy is

layered onto the collection of intelligent agents. This layered approach is designed to ensure that

each agent is able to continue in his task. However, for this to be the case the bureaucratic system

must provide access to the information that the specialist agent. Again the bureaucratic system is

deigned to make that information available.

With computational cooperating intelligent agents, these conditions for a bureaucracy can be meet

by the distributed database concept. In the DDB all agents of the system can post their results to the

database, and all agents can read the database. The posting of the results amounts to the more

traditional result sharing conception. It should be noticed that the mechanism examined here

leverages the technology of the DDB in enforcing consistent write procedures. The other side of

the issue is the conditions placed upon reads in a DDB. These conditions insure that an intelligent

agent will have a consistent reading of the available information.

In the following section the bureaucratic model will be examined more closely.

REFERENCES

• Database Processing, D. K. Kroenke and K. A. Dolan. SRA: Chicago, 1988.

° "Transactions and consistence in distributed database systems," I. L. Traiger, J. Gray, C. A.
Galtieri, and C. A. Lindsay. Transactions on Database Systems, 7(1982).

• "Applications of Byzantine agreement in database systems," H. Garcia-Molina, F. Pittelli, and S.
Davidson. Transactions on Database Systems, 11(1986).

• "Transaction management in the R* distrubuted database management system," C. Mohan, B.
Linsay and R. Obermarck. Transactions on Database Systems, 11(1986).

BUREAUCRATIC SYSTEMS

INTRODUCTION

A bureaucraticmodelfor DAI ispredicatedon thedifferencesbetweentheindividual expertagent

(E-agent)andtheintelligentbureaucraticagent(B-agent).

Theparadigmof anE-agentis a diagnostician.Foethemomentthe vastdifferencesbetweena

machineoperatorandamedicaldoctorwill beignored.It canbefairly assumedthat theE-agent
amassesknowledgethroughhisor herinteractionwith thedomain.At onestepremovefrom theE-

agentcan be found the working scientist.As will be indicatedbelow the working scientist or

engineersharescharacteristicsof both the E and B-agents.The paradigmof a B-agent is the
welfareagentof theInternalRevenueserviceagent.It canfairly beassumedthat suchagentshave

amassedknowledgeabout proceduresand regulationas wells as ways in which thesecanbe

appliedbadlyandwell. Betweenthediagnosticianandthebureaucraticagent

THE EXPERT AGENT

E-agents cane be separated into diagnosticians and scientists. Although this is a rough classification

it does seem reasonable. These two classes of E-agents differ in both their goals and their

bureaucratic interaction.

The Diagnostician

The novice's experiences with the domain become knowledge in several ways. An E-agent will

most often receive some formal training in the domain. This formal and declarative knowledge

furnishes a base on which addition knowledge can be built. Although such knowledge is not

sufficient for the E-agent to have expertise, it is a necessary contributory factor. This explicit

training can take place in two ways, however. One way is document drive. In this case the novice

is presented with explicit documents. Such documents should be understood broadly to include not

just printed materials, but also movies and computerized instruction. The other way is through an

_ Bureaucratic Systems 25

apprenticeship. Apprenticeship training provides some measure of domain interaction, but always

under the guidance of a mentor. In both cases the gaining provides a common body of knowledge.

In either case the novice is provided with a background against which further experiences can

generate individualized expertise.

The novice can gain expertise thorough failure experiences. That is, given the common body of

knowledge failures in the adequacy of that knowledge create domain failures. The failures generate

the opportunity for the E-agent to become even more familiar with the documents and existing

experts in the domain. At this stage the novice comes to know that if a particular kind of failure

occurs, then certain documents or experts have the knowledge needed to recover from the failure.

Further the novice E-agent learns that if there is a failure of a specified type, then specified

operations must take place to recover from that failure. A second way in which failures generate

knowledge is through the novice E-agent reflecting on the conditions that preceded the failure. In

this case the novice E-agent comes to that if specified conditions occur, then a specific kind of

failure may occur. Further in combination with the former sort of learning the E-agent may also

come to know that if certain condition occur preparations should be made for certain procedures of

recovery. However, the novice E-agent may also come to know that if certain conditions obtain,

and if the agent takes certain actions, then certain failures may not occur. Such a jump would be

based on both the link between the conditions and the failure and the link between the failure and

the recovery. The agent would in fact find that an early intervention into the system might avoid the

failure.

In brief the novice becomes a an expert E-agent by amassing knowledge through experience. This

knowledge is manifest in several generic kinds of rules:

• if a particular kind of failure occurs,

then certain documents or experts have the knowledge needed to recover from the failure

• if there is a failure of a specified type,

then specified operations must take place to recover from that failure

• if specified conditions occur,

then a specific kind of failure may occur

• if certain condition occur,

then preparations should be made for certain procedures of recovery

• if certain conditions obtain, and if the agent takes certain actions,

then certain failures may not occur.

_ Bureaucratic Systems 26

The Working Scientist

The working scientist deviates from the E-agent in several ways.

The working scientist most often focuses upon a domain problem. The working scientist can be

understood to represent a domain problem as the inability of the current explanatory or theoretical

resources of his or her discipline to adequately account for or manipulate some domain

phenomenon. Thus the problem is a function of the description of the domain, the knowledge

resources, and a measure of adequacy. In order to solve the problem the working scientist may

either alter the description, add to the resources, or change the measure. In quite revolutionary

periods all three elements might be changed, while in more normal time only one of the elements

are altered. This is rather different from what the diagnostician does. The diagnostician uses the

knowledge that he has in an effort to identify, recover, and remedy problems. The working

scientist on the other hand attempts to solve problems which might require the alteration of

knowledge. It is the alteration of the knowledge that distinguishes the scientist from the

diagnostician.

Even though the task of the working scientist is the alteration of existing knowledge, some parts of

that task are similar to the efforts of the diagnostician. Like the diagnostician the research scientist

must go through a period of training. What is learned during that period is akin to what is learned

by the diagnostician. However, in addition learning the rules for the detection, recovery, and

avoidance of failures, the working scientist also learns how to manipulate knowledge structures. In

particular the working scientist learns how to extend and amend existing structures, and how to

present them.

Extending and amending knowledge structures has many aspects. Such efforts may for example

focus on new mathematical or logical techniques. Such a focus provides new representational tools

for older knowledge items. Such tools may allow the scientist to get around the perceived

problems. Another focus may be the addition and deletion of aspects of the objects in the domain.

Such reasoning may change the status of the properties of an object. Properties that were once

though essential may displaced, and properties not though to be taxonomic may give rise to new

classes. A third focus may be the extension of one set of knowledge elements to another set by

analogical reasoning. Such reasoning is often useful in providing templates for solving perceived

problems. In brief the effort to solve problems may lead the working scientist to develop a

repertoire of techniques that can be used to solve other problems. In this case what the scientist

- Bureaucratic Systems 27

learns is that if a certain problem can be solved by extending or amending knowledge, then certain

techniques of representation, definition, and analogy should be used.

Although the extending and amending knowledge structures is a principle part of the scientist's

work there is a related but distinct part that is far less mechanistic. The process of discovery while

sharing some of the features of the extending and amending of knowledge, often adds a very

nonmechanical, insightful or serendipitous element While it might be possible to learn some of the

rules of discovery, it may always remain the case the some discoveries will by the product of the

special blend of elements that the scientists brings to a phenomenon. In some sense all of the

scientist's training prepares the ground for discovery, but in no way necessitates it.

In addition to the knowledge focused elements, the scientist also learns how to present his efforts,

and it is in this effort to present his research that the scientist begins to participate in a more

bureaucratic style of reasoning.

One of the principle components of the scientific ethos is that scientific knowledge is public

knowledge. This idea should be understood in the broad sense that includes both the funding of the

research and the presentation for critical review of the results of that research. Contemporary

research is dominated by the idea of funded research and the funding for the research in one way or

another traces to a governmental agency. In a sense the scientist is almost always performing his or

her research at the approval of the populace. Admittedly the connection is indirect, proceeding

through many funding and refunding agents. However, it is the particular characteristic of this sort

of research that it must be proposed to a body for evaluation before it is funded. This leads to the

somewhat curious practice of defending the validity of a research proposal before the research is

done. More importantly it leads to the learning of how to construct the proposal. Learning to

construct the proposal is learning how to communicate with other agents. Thus, the scientist learns

that if the proposal is to be acceptable, then certain protocols of communication are to be used.

Some of these protocols are explicitly presented by the funding body, others are implicit and

learned only through experience. In a similar way the scientist must learn the communication

protocols for the sharing of his results with other agents. Just as in the case of the proposal some

of the protocols are explicit while others are implicit.

In brief the working scientist amasses techniques and procedures for solving problems and

presenting research. These techniques and procedures can be thought of as encapsulated in some

general rules:

-- Bureaucratic Systems 28

• ifa certain problem can be solved by extending or amending knowledge,

then certain techniques of representation, definition, and analogy should be used

• if a proposal or report of research is to be acceptable,

then certain protocols of communication are to be used.

THE BUREAUCRATIC AGENT

The B-agent differs from the scientist and the diagnostician. In a sense, the diagnostician and the

scientist are both E-agents. They differ insofar as their expertise focuses on different aspects of the

world. The diagnostician attempts to make devices run properly while the scientist attempts to

make knowledge run properly. The diagnostician is successful if failures cane detected and

prevented or can be recovered from; the scientist is successful if perceived problems can be solved.

The focus of the B-agent is different. The B-agent seeks to create and apply procedures that allow

both diagnosticians and scientists, as well as a myriad of others, to work properly.

The B-agent can be thought of as the agent that applies the rules that allow other agents to operate.

In a very classical, Weberian sense, the bureaucracy rationalizes the large social actions of

individuals. It will be assumed that the bureaucracy is a legitimate one, and that the B-agents carry

out the policies and procedures of the bureaucracy in accord with an established distribution of

labor.

Typically a B-agent amasses knowledge about the bureaucracy itself, and applies that knowledge to

both the clients of the bureaucracy and the other B-agents in the bureaucracy. Unlike either the

diagnostician or the scientist, the E-agent focuses exclusively upon the directive artifacts of the

social organization. The scientist to a greater degree than the diagnostician encounters these in the

communication protocols, especially those connected to proposals, but as scientist neither

formulates nor applies the code of protocols, rules, and policies established by the bureaucracy.

The bureaucracy provides the B-agent with a set of protocols and rules that allow the B-agent to

perform the application of a policy. What the B-agent learns is that if the current case is of this

specific sort, then these particular protocols and rules ought to be used. As the B-agent quickly

finds some measure of intelligence is needed to interpret and apply these, however. Further, the B-

agent also finds that as the bureaucracy grows larger, either the B-agent must master ever

increasing amounts of protocols and rules, or find that a new bureau with more restricted scope is

created. In either case the B-agent must cope with changes in the materials that he must interpret

w Bureaucratic Systems 29

and apply. The skilled B-agent learns that if a bureaucratic change is of a certain type, then

particular strategies for interpretation and application should be used.

The B-agents of the bureaucracy are most often organized into a hierarchy. This again is unlike the

situation for E-agents. E-agents form a sort anarchy. Even in the case of the working scientist the

organization of the scientists efforts are more anarchic than hierarchical. The scientist does,

however, encounter a hierarchical and increasingly bureaucratic organization when he presents his

research either as a proposal or a report. In both of these cases reviews and criticisms are often

structured in such a way that various parts of the scientists efforts are examined by various B-agent

to assure that protocols and polices are observed. These can range from the physical way in which

the material is presented, through the use of terms and sources, to the content of the material. In

each case the working scientist will encounter a specialized B-agent that is layered onto his work.

The purpose of these agents is to ensure the quality of the uniformity and quality of the work.

Thus, while a scientist may work in any way he deems appropriate on ay project he deems

appropriate, the presentation of the research both for funding and acceptance demands that the

scientists abide by certain protocols and policies. Various B-agents are both ready and able to

ensure that this happens.

B-agents also participate in the establishment of policies and protocols and to some degree create a

division of labor among both clients and other B-agents. In establishing the policies and protocols

the B-agents are guided by both the goals and the previous history of the bureaucracy. They are

often further guided by goals of efficiency and perhaps fairness. It should be clear that in the

establishment of a policy some decisions must be made about which of these goals or perhaps

other goals is primary. If the goals can be ranked then the rank ordered list of goals can be used as

measure for proposed extensions and amendments of the protocols and procedures, as well as

proposal for wholly new items. This process though apparently akin to that which the scientist

used in solving problems, differs in important respects. Perhaps the most important respect in

which there is a difference is in the normative quality of the protocols and policies. These require

that the B-agent be familiar with the bureaucracy, but that familiarity does not necessitate any

particular decision. The element of responsibility is a kin to that of insight in discovery. Thus,

although policy making may in some ways resemble scientific problem solving, it is actually more

akin to discovery.

BureaucraticSystems 30

Theupshotof this examination of bureaucratic systems is that they can serve as a good model for

larger systems in which there is a distribution of intelligent agents. The model can be flexibly

applied since no reference is made to a specific domain. Finally, the division of function between

B-agents and E-agents allows for systems modifications without severe disruption.

REFERENCES

• "Extensibility and completeness: an essay on scientific reasoning," D. Rochowiak. The Journal

of Speculative Philosophy, 2(1988): 241-266.

• Human Understanding, S. Toulmin. Princeton University Press: Princeton, 1972.

• Objective Knowledge, K. Popper. Oxford University Press: Oxford, 1972.

• Representing and Intervening, I. Hacking. Cambridge University Press: London, 1983.

• "Scientific problems and constraints," T. Nickles. In PSA 1978, Philosophy of Science

Association: East Lansing, 1978, pp. 134-148.

• The Structure of Scientific Revolutions, T. Kuhn. University of Chicago Press: Chicago, 1962.

A BUREAUCRATIC MODEL

FOR MUTIAGENT SYSTEMS

INTRODUCTION

Distributed intelligent systems can be distinguished by the models that they use. The model

developed in this report focuses on layered multiagent systems conceived of as a bureaucracy in

which a distributed database serves as a central means of communication. In this section the

various generic bureaus of such a system will be described and a basic vocabulary for such

systems will be presented. In presenting the bureaus and vocabularies special attention will be

given to the sorts of reasonings that are appropriate.

The bureaucratic system

(B-system) is composed

of a collection of E-

agents and B-agents that

operate in a cooperative

way through a collection

of protocols and poli-

cies. The E-agents like

diagnosticians and sci-

entists perform special-

ized services. These

specialized services are

monitored and facilitated

by B-agents. Within the

Master System

Policies

B-agent B-agent

Work Group

Protocols

B-agent B-agent

Work Group

B-agent B-agent

Diagnostician Scientist Diagnostician Scientist

E-_agent. E-.agent .
--.clent t-sagent .

E-__aent _--.._gem .
E--agent _--agent

B-system that task decomposition is more-or-less fixed in terms of the bureaus or work groups of

the bureaucracy.

In brief a bureaucratic model has a hierarchy of master system and work group that organizes the

E-agents and B-agents.

A Bureaucratic Model for MAS 32

The master system provides the administrative services and support facilities for the work groups.

The goal of the master system is to stay in a stable state in which the communications between

work groups can continue and the results of the work groups can be shared. The workgroups are

collections of agents. The minimal workgroup would be composed of one B-agent and one E-

agent. The administrative oversight and communications of the E-agent would be provided by the

B-agent. Additionally, if there were several E-agents, the B-agent would provide the facilities for

cooperation and especially result sharing among the E-agents.

In order to accomplish these goals the use of a DDB is essential. The DDB acts a central repository

for information communicated by both the builder/designers of the system and the current states of

the agents in the bureaucracy. The distributed database also serves to account for the actions of the

agents and provide each agent with some account of the general nature of other agents. In order to

generate cooperation among the agents of the system there must be specified protocols and

policies. The protocols provide for the exchange of information and knowledge with out which the

bureaucracy would collapse into chaos. Without the protocols no agent would know how to

communicate and no agent would be able to share its knowledge. The policies of the master system

establish the distribution of the tasks and the general modes of interaction among work groups.

With out these no work group would know either what it was supposed to do nor the manner in

which a task was to be done.

B-AGENTS

B-agents are characterized in terms of protocols and policies. The protocols are what allow for

communication and the policies determine under what conditions and with whom the B-agent

should communicate.

Protocols

The bureaucratic database protocols are simply the protocols that ensure transparency in a DDB.

Since these tasks are essentially bureaucratic they would be performed by a B-agent within a work

group. Such a B-agent would have at least the information and knowledge needed to act as a

transaction manager. Thus one of the tasks performed by the B-agent in the work group is to

implement the protocols of DDB. The READ and WRITE command terms would be the major

ways in which a particular E-agent would address the workgroup's B-agent. The B-agent would in

turn know how to issue requests and obtain the locks required by the DDB. The second set of

- A Bureaucratic Model for MAS 33

protocols are more complex insofar as they require some way in which other agents can be

identified and decisions can be made about having access to them.

Policies

Given that a B-agent knows how to communicate the decision of when and with whom to

communicate become important. These decisions are the policies of the B-system. Each B-agent

will need to know the policy on which it should act.

As suggested earlier one way in which the other agents can be identified is through a frame like

system in which the relevant data for each sort of agent is represented as a value for an attribute.

Common sorts of agents would have common parent frames and these frames would be

particularized as the specialization of the agent increases.

E-AGENTS

E-agents perform various functions. As indicated in the previous chapter E-agents might be

thought of as either diagnosticians or scientists. In the model developed in this chapter that

distinction will be preserved largely in the sorts of reasoning that the agents do. A diagnostic E-

agent does two things: diagnosis problems and plans remedies. The scientific E-agent does several

things some of which are akin to what the diagnostic E-agent does. The particular task of the E-

agent is to simulate a physical system and solve problems. The problem solving strategies available

to the E-agent may include case based reasoning, constraint propagation, and induction.

Additionally, the scientific agent should have strong explanation facihties.

Diagnostic E-agents

A diagnostic E-agent corresponds most closely to a combination of classical expert systems and

planning systems. Such systems might be able to operate in a largely role based environment. The

planning component can be handled by fitting into and amending a global schedule created in some

other way. This is consistent with the assumption of layering for the MAS. The global schedule is

given and the variations must be fit into it. In this sense the problem has already undergone some

measure of decomposition.

The reasoning of diagnostic E-agents is largely rule reasoning. The two tasks of diagnosis and

planning within a global plan, could be handles by the forward and backward chaining

- A Bureaucratic Model for MAS 34

mechanisms used in an opportunistic way. In this way the difference would be represented in the

rule collections rather than the reasoning mechanisms.

Scientific E-agents

Scientific E-agents must have several means of reasoning at their disposal. The scientific E-agent

works in a larger time frame than the diagnostic E-agent and primarily gathers knowledge about a

physical system and attempts to explain its activity. In general the knowledge is acquired for the

purposes of discovery and problem solving and the explanations are generated in response to

requests by other agents. In general such requests would come from either another scientific E-

agent or some B-agent.

The reasonings used by the scientific E-agent are diverse. However, they are in general directed by

being appropriate to the task. Thus, case based reasoning might be used in cases of historical,

analogical, or approximate reasoning, while inductive strategies might be used in the case of

discovery. In most case there will also be some sort of simulation of the physical system which the

agent can use as a base line. Ideally this simulation would be tuned as that scientific E-agent gains

more knowledge of the physical situation. Finally, the agent should be able to explain the activities

of the physical system to both a human user and other appropriate agents.

AGENTS

All agents would be generated from a primitive agent frame. The primitive agent frame would

require only two slots:

FRAME: agent
TYPE:

RANGE: (B-agent or E-agent)
DEFAULT: (none)

LEVEL:

RANGE: (master or workgroup)
DEFAULT: (none)

B-agents

The frames for the B-agents would bring together the generic descriptions of the features that any

B-agent must have. Among the generic features for a B-agent are the following:

A Bureaucratic Model for MAS 35

FRAME: B-agent

SPECIALIZATION_OF: (agent)
FUNCTION:

RANGE: (protocol or policy)
DEFAULT: (none)

PROTOCOLS:

RANGE: (list of protocols available)
DEFAULT: (distributed database protocol)

POLICIES:

RANGE: (list of available policies)
DEFAULT: (none)

TASKS:

RANGE: (list of available tasks)
DEFAULT: (transaction manager)

One step lower in the inheritance structure would be the particular features of the specific B-agents.

The frame for specific B-agents would include:

FRAME: specific B-agent name
SPECIALIZATION_OF: (of B-agent)

PROTOCOLS_KNOWN:
RANGE: (subset from PROTOCOLS attribute of B-AGENT)
DEFAULT: (check DEFAULT attribute of B-AGENT)
IF_ADDED: (check PROTOCOLS attribute of B-AGENT)

POLICIES_KNOWN:

RANGE: (subset from POLICIES attribute of B-AGENT)
DEFAULT: (check DEFAULT attribute of B-AGENT)
IF_ADDED: (check POLICIES atlribute of B-AGENT)

WORKGROUP_ASSOCIATION:

RANGE: (list of associated WORKGROUPS)
DEFAULT: (none)

E-AGENT_ASSOCIATIONS:
RANGE: (unknown)
DEFAULT: (none)

IF_NEEDED: (get from WORKGROUP frames)
TASKS PERMI'ITED:

RANGE: (subset from TASKS attribute of B-AGENT)
IFADDED: (check TASKS attribute of B-AGENT)

TASK:

RANGE: (single element)
DEFAULT: (none)

IF_ADDED: (assemble POLICIES_KNOWN & PROTOCOLS_KNOWN and do TASK)

Within this general schema additional structures would contain the complete set of protocols and

policies. The structure would be accessed when a specific B-agent is created. The specific B-agent

would then acquire the needed protocols and polices. Since these would be held in a central

structure there is a guarantee that all B-agents would use the same protocols and policies. In the

simplest case a specif B-agent would acquire the protocols for acting as a transaction manager. If

the transaction protocols were to change then whenever the B-agent went to act on these the current

protocols would be used. Further, communications can be restricted between various workgroups

- A Bureaucratic Model for MAS 36

by restricting the protocols. This would also be a function of the level. For example, a B-agent at

the master level would know protocols for sharing results among other master level B-agents, but

not have a protocol for sharing results among other agents at the workgroup level. Or again, a

master level B-agent would know the protocol for assigning tasks to workgroup B-agents, but

would not have a protocol for assigning tasks to other master level B-agents.

The various policies that the B-agents can know would focus upon the decision to communicate,

when to communicate, and with whom to communicate. These policies are the decision rules

appropriate to the B-agent. Some B-agents might be given a policy of always communicating their

results to the master level. Other policies may be imposed to enforce communication only when

certain conditions are meet. Yet other policies may force a B-agent to communicate with a specific

E-agent or force a specific E-agent to redo its task with new or additional information.

The reasoning structure for B-agents has two prongs. The f'mst prong is more-or-less traditional.

The knowledge represented in the policies and the protocols is used as a basis for doing some task.

The inside of the policies and protocols will be calls to other frames or objects. For example, one

policy may need information from an E-agent in a work group. The policy would for a message

through a protocol to the E-agent in that workgroup. What is returned by that E-agent would the be

given to the policy in the the B-agent through the protocol. The process of using the policies and

procedures inside of the B-agent could represent different computational paradigms. All that is

required is that the bureaucracy continue to function through policies and protocols. The second

prong of reasoning concerns the ways in which one B-agent can reason about other B-agents.

Again the assemblage of policies and protocols controls the activity of the B-agent. However in

this case the reasoning is about the frame themselves rather than the information that can' be

provided from some other agent through its frame. In this sort of case there may be policies that

allow an agent to make new associations, or to search for another agent with the right attributes and

values; or to find an agent that is not busy that can do a particular task. These sorts of reasoning

are distinct from the former sort since they require no direct access to the workings of another

agent. It should also be remembered that in almost all case the B-agents will have to reason about

the DDB, since by default any B-agent would know how to be a transaction manager.

E-agents

An E-agent is a specialization of the agent primitive.

-- A Bureaucratic Model for MAS 37

FRAME: E-agent
SPECIALIZATION_OF: (agent)

FUNCTION:

RANGE: (diagnostic or scientific)
DEFAULT: (none)

DOMAIN:
RANGE: 0ist of domains available)
DEFAULT: (none)

Since E-agents are divided into kinds there will be general frames and specializations for each.

FRAME: E-agent kind
SPECIALIZATION_OF: (of E-agent)

KIND:

RANGE: (diagnostic or scientific)
DEFAULT: (none)

REASONING_PATTERNS_KNOWN:
RANGE: (list of pattern names)
DEFAULT: (none)
IF_ADDED: (check DOMAIN attribute for consistency)

The further specialization of the E-agent kind generates a specific E-agent.

FRAME: specific E-agent name
SPECIALIZATION_OF: (of E-agent kind)

WORKGROUP_AS SOCIATION:
RANGE: (list of associated WORKGROUPS)
DEFAULT: (none)

B-AGENT_ASSOCIATIONS:
RANGE: (unknown)
DEFAULT: (workgroup B-agent)
IFNEEDED: (get from WORKGROUP frames)

REASONING_PERMIT_D:
RANGE: (subset from REASONING PA_S_KNOWN attribute)

IF_ADDED: (check REASONING_PATIERNS_KNOWN attribute)
CURRENT_REASONING:

RANGE: (single element)
DEFAULT: (none)
IF_ADDED: (check REASONING_PERMITTED)

CURRENT_TASK:
RANGE: (unknown)
DEFAULT: (none)
IF_ADDED: (find and load relevant information)

CURRENT_STATUS:
RANGE: (busy, available, suspend)
DEFAULT: (available)

REPORTS_TO:

RANGE: (agent in workgroup)
DEFAULT: (B-agent for workgroup)

REPORTS_FROM:

RANGE: (agent in workgroup)
DEFAULT: (B-agent for workgroup)

- A Bureaucratic Model for MAS 38

The idea of the specialized E-agent is that it acts as a shell for any particular task. Once the task is

assigned and a determination is made of whether the task is one for a scientist or diagnostician, the

specialized E-agent would conform to the dictates of the specifications. This would allow the B-

agent for the workgroup to give tasks to the particular E-agent skeletons, if their current status is

available. The reports are given to the workgroup B-agent if no other agent is specified. Further the

E-agent receives information form the B-agent if no other agent is assigned.

With in the skeletal idea of the E-agent is also the notion that it permits certain kind of reasoning

and is assigned certain kinds of tasks. It is the matching of one with the other that would allow an

E-agent to respond to a request. This is in some ways a special consideration since the B-agent for

the work group already knows what its E-agents can do and assigns the task accordingly.

However, making the E-agents skeletal in the foregoing way allows for some notion of recovery or

critical cases in which an E-agent might have to respond to the B-agent on the basis of what it

knows about itself.

REFERENCES

• "Modeling coordination in organizations and markets," T. Malone, Management Science

33(10):1317-1332, 1987.

• "Offices are open systems," K. Hewitt. ACM Transactions on Office Information Systems, 4(3):

271-287, 1986.

• "An organizational view of distributed systems," M. Fox. IEEE Transactions on Systems, Man

and Cybernetics, SMC_I 1:70-80, 1981.

• "The scientific community metaphor," W. Komfield and K. Hewitt, IEEE Transactions on

Systems, Man and Cybernetics, SMC_I 1:24-33, 1981.

CONCLUSION

Thisreporthasexaminedsomeof the issueconnectedto thedevelopmentof abureaucraticsystem.

It hasemphasizeda layermultiagentapproachto DAI andfocusedon thedivision of labor in a

bureaucracy.

Thebureaucraticmodelseemsto beafertile modelfor furtherexaminationsinceit allowsfor the

growthandchangeof systemcomponentsandsystemprotocolsandrules.

Thefirst partof implementthesystemwouldbetheconstructionof aframebasedreasonerandthe

theappropriateB-agentsandE-agents.The agentsthemselvesshouldact asobjectsand theE-

objectsin particularshouldhavethecapabilityof takingonadifferentrole.

The report hasmadeno effort to addresstheproblemsof automatedfailure recovery,problem
decorllposition,or implementation.Insteadwhat hasbeenachievedis framework that can be

developedin severaldistinct ways,andprovidesa coresetof metaphorsand issuesfor further
research.

