
SOFTWARE ENGINEERING LABORATORY SERIES SEL-89-001

m

SOFTWARE ENGINEERING
LABORATORY (SEL)

DATABASE ORGANIZATION
AND USER'S GUIDE

L

MAY 1989

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

https://ntrs.nasa.gov/search.jsp?R=19900012229 2020-03-19T23:26:13+00:00Z

i

I

m

i

[]

t .

T" .-

I

J

iI

i

W i

II

J

I !
i

iI

= •

U-

L

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-

tion/Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development

Operation _ .

The goals of the SEL are (i) to undershahd the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of re-

ports that includes this document.

The major contributors to this document are

Maria So (Computer Sciences Corporation)

Gerard Heller (Computer Sciences Corporation)

Sandra Steinberg (Computer Sciences Corporation)
Douglas Spiegel (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

l

5063

iii

PRECEDING PAGE BLANK NOT FILMED :: i_E._.L_INTENTIONAELY BLANK

_v

i

m

in

IS

I

M

R

1

m_

[]

.m

.m

i

j_

iil

l

j _

[]

w

m

--:

ABSTRACT

The organization of the Software Engineering Laboratory (SEL)

database is presented. Included are definitions and detailed

descriptions of the database tables and views, the SEL data,

and system support data. The mapping from the SEL and system

support data to the base tables is described. In addition,
techniques for accessing the database, through the Database

Access Manager for the SEL (DAMSEL) system and via the

ORACLE structured query language (SQL), are discussed.

m

u

r_

i

m

w

5063

PRECEDING PAGE BLANK NOT FILMED

V

I
_INff._TIORAKy BLgffi(

.i

-" .r

u

u

[]

l

m

mE

_AILL

M

J

U

v"

I

IIJ

[]

Ul

m_
ill

L--

w

w

w

m

w

TABLE OF CONTENTS

Section 1 - Introduction

i.I Basic Relational Database Concepts

Section 2 - A Conceptual View of SEL Data

2.1 Project Data

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.1.6

2.1.7

Schedules

Estimates

Resource Use
Product Characteristics

Changes . _!
Subjective Eva{uations..: _

Final Statistics

2.2 Project-Independent Data

2.2.1 People and Services

2.2.2 Computers

Section 3 - SEL Data From a Data Collection

Viewpoint . ,

3.1 Data Collection Forms

3.1.1

3.1.2

3.1.3

3.1.4

Schedule and Estimates Forms

Weekly Rate Data Forms

Product Data Forms

Project Completion Forms

Section 4 - A Logical View of the SEL Database

4.1

4.2

Database Table and View Definitions

Relationships and Constraints Among Database
Tables

4.2.1

4.2.2

4.2.3

Relationships Among Tables

Descriptions of Support Data Tables . . .
Database Constraints

4.3 Mapping the Conceptual View to the Logical View. .

Section 5 - Accessinq the SEL Database

5.1 Database Access Requirements

5.2 DAMSEL System

I-i

1-2

2-1

2-1

2-3

2-4

2-5

2-9

2-11

2-13

2-14

2-16

2-16

2-17

3-1

3-1

3-1

3-3

3-5

3-7

4-1

4-1

4-2

4-2

4-26

4-30

4-31

5-1

5-1

5-2

5063

PRECEDING PAGE BLANK NOT FILMED

vii

1

TABLE OF CONTENTS (Cont'd)

Section 5 (Cont'd)

5.3 Ad Hoc Database Queries 5-4

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

5.3.7

5.3.8

5.3.9

Connecting to the Database 5-4
Basic SELECT Statement 5-5

Ordering the Re£rieved Data 5-6

Limiting the Number of Rows Retrieved . . 5-7

Group Functions 5-8

Retrieving From More Than One Table--

Joins 5-9
Retrieving From More Than One Table--

Subqueries 5-11• • • • • • • • • • • • • • •

Views--A Shortcut for Commonly Used
Joins _ _ _ 5-12

Spooling Output and Saving'Queries. [. . 5-13

Appendix A - Encoded Fields and Allowable Values

Appendix B- Sample Optimized Database Oueries

Appendix C -Glossary of Terms and Abbreviations

Appendix D - SEL Data collection Forms
.v

Appendix E - Data Definition Lanquaae for the SEL Database

Standard BiblioqraDhv of SEL Literature

i

w

U

mm

i

u

i

l

i

g
u

I

i

M
U

=

eP

i

Z
i

mm

5063

viii

i-I

2-1

4-1

4-2

4-3

Table

4-1

4-2

4-3

4-4

LIST OF ILLUSTRATIONS

Basic Relational Database Organization 1-3

Conceptual View of SEL Data. 2-2

Relationships Among Project-Related'Tab{as [[4-23

Relationships Among Support Data Tables 4-24

Relationships Involving the COMPUTER and

PERSONNEL Tables - . . . 4-25

LIST OF TABDES

SEL Database Tables and Views--Table and

Column Descriptions 4-3
SEL Database Tables and Views_-Technical

Specifications 4-12

Constraints on Database Tables 4-32

SEL Database Access Paths 4-41

5063

ix

i

m

i

i

n

i

n

i

i

i

I

u
i

n

i

i

F

m

_ECTION 1 - INTRODUCTION

The Software Engineering Laboratory (SEL) was established in
1977 to support research in the measurement and evaluation

of the software development process. Under its sponsorship,

numerous experiments have been designed and executed to

study the effects of applying various tools, methodologies,
and models to software development efforts in flight dynam-

ics applications. The SEL is a cooperative effort of the
National Aeronautics and Space Administration/Goddard Space

Flight Center (NASA/GSFC), Computer Sciences Corporation

(CSC), and the University of Maryland.

To support the research activities it sponsors, one of the

major functions of the SEL is th9 c011ection of detailed

software engineering data, describing al_ facets of the de-

velopment process, and the archival of this data for future
use. To this end, the SEL has created and maintained an

online database for the storage and retrieval of software

engineering data. The SEL database has been designed and

implemented as a relational database under the ORACLE rela-
tional database management system (RDBMS) on the Systems

Technology Laboratory (STL) VAX 11/780 at GSFC. Since

ORACLE provides the facilities for organizing, storing,

maintaining, and retrieving data, SEL database users do not
have to understand the physical organization of the data.

They need only understand the logical structure of the data_
base in order to query, calculate, and manipulate a variety
of information. SEL database users include those involved

in software engineering research, managers of current flight

dynamics development efforts, and those involved in the col-
lection of SEL data and maintenance of the database.

This document is intended as a reference guide for all SEL

database users. Its purpose is to provide general users

with high-level information about data collected by the SEL
and how they are stored in the database. Information on how

to access the data via various access paths is also provided.

For database maintenance personnel, this document provides

in-depth information about the structure of the database,

includSng table and field definitions, indexes and clusters
used, and constraints among data items.

Since this document is intended to be referenced by a broad

spectrum of users, it is organized in increasing levels of

specification. Section I.i describes general relational

database concepts and terminology for readers who are not
familiar with relational database systems. Section 2 of the

document presents an introduction to the types of data that

are stored from a conceptual point of _iew (i.e., without

5063

I-i

regard to physical or logical storage characteristics).
Section 3 discusses the organization of hhe data with respect

to their sources and the form in which they are collected,

The conceptual view in Section 2 and the data collection
view in Section 3 are then mapped into a logical view of the

database design. This design is presented in Section 4.

The logical design of the database is the lowest level of

detail required to understand how to access the database.

Details of the phys{cal-impiementatlon_ar e h_den from the
user via the ORACLE DBMS. Section 5 discusses varlous ways

to actually access the SEL database. Appendix A lists all
codes used in the database; Appendix B presents sample data-

base queries; Appendix C is a glossary of database-sPecific
terms and abbreviations; Appendix D presents the SEL data
collection forms; and Appendix E contains the data defini-

tion language (DDL) that specifies the definitions of tables,
views, and all the constraints needed to maintain data in-

tegrity in the SEL database environment.

I.I BASIC R_LATIONAL DATABASE CONCEPTS

In relational database terminology, the basic structure for

storing items of data is the table, or relation. A table
consists of a variable number of rows. Each row consists of
a fixed number of columns, or fields. Columns are identi-

fied by column names and may contain values of a particular
data type (e.g., character, number, date). The columns con-

tain both the actual data being stored and data that define

the relationship of a given row t9 rows in other tables. If
the values in a column from one table are drawn from the

same domain as the values in a column from another table,

the data in the two tables are related where rows in each

table share a common value. There is no predefined order in

which the rows of a table are stored. In most tables, a

particular column or group of columns is defined as the pri-

mary key of the table. This means that the values of those
columns will be unique for every row in the table. There

may also be columns other than the primary key that must be
unique across all rows. This basic organization is illus-

trated in Figure i-I.

Figure I-i contains two tables, PROJECT and PROJ_SUB. The
row in the PROJECT table for the project named XYZ is re-

lated, via common values in the project number columns

(PROJ_NO), to a group of rows in the PROJ_SUB table repre-

senting XYZ's subsystems. The primary key in the PROJECT

table might be the project name column (PROJ_NAME), while

the primary key in the PROJ_SUB table might be the combina-

tion of the project number (PROJ NO) and the subsystem prefix

(SUB_PRE) columns. For more details, Reference 6 provides a

good overview of relational database concepts. For

5063

1-2

m

mm

m

m

n

I

m

i

m

I

m

J

l

L

m

W

J

=_

a

I

I

mm

U

.==.

TABLE: PROJECT

COLUMN _PPPROJ NAMENAMES _

XYZ

ROW

PROJ_NO

COLUMNS

J"-
PROJ_TYPE ACTIVE_STATUS_

SIMULATOR101 ACT_DEV

:.._,

TABLE: PROJ_SUB

PROJ NO
|

101
101

102

Figure i-I.

SUB_PRE SUB_DATE "

Basic Relational Database Organization

_v

o
u_

w

5063

1-3

ORACLE-specific information, References 4 and 5 provide an

overview of the ORACLE RDBMS as well as a detailed

description of the ORACLE structured query language (SQL).

I

g

J

m

° .

= -

m

J

m

m_
i ?

M

_I

U

n

5063

1-4 m

m

N

SECTION 2 - A CONCEPTUAL VIEW OF SEL DATA

This section presents an overview of the types of software

engineering data that are stored in the SEL database from a

conceptual point of view. The fundamental entity about
which SEL data are collected and stored is the project.

Project data compose the bulk of the data in the database
and are presented in Section 2.1. A relatively small por-

tion of the database is allocated to the storage of support

data, such as computer names, services name, and_personnel

names. These data, which are not associated exclusively

with individual projects, are referred to as project-

independent data throughout this document. Section 2.2 con-

tains detailed descriptions of these data. The data elements
described in this section are taggedwith the reference

identifiers used to refer to them in Sections 3 and 4.

Figure 2-i shows the major data items that make up both the

project data and the project-independent data. This concep-
tual view of the data is later mapped into the logical view
of the SEL database discussed in Section 4.

2.1 PROJECT DATA

Software development in the area of flight dynamics at GSFC

is performed in distinct units referred to by the SEL as

projects. A project exists for a specified period of time

that spans the life of a particular software product. The
life of a project comprises two primary stages: the devel-

opment stage and the operations and maintenance stage. The

majority of the data collected by the SEL cover the develop-

ment stage of the lifespan, although some data are also col-

lected during the maintenance stage. The following sections
describe data types that characterize the development stage.

In addition, each project has associated with it the follow-

ing general information that defines and identifies the

project:

P1 - Name of the project; a unique identifier distin-

guishing it from other projects

P2 - Type of project; indicator used to describe the

nature of the application and to identify projects

with similar applications for the purpose of com-

parison

P3 - Current status of the project; whether it is in

the development stage or the maintenance stage or

whether its life cycle has been completed

i

5063
2-1

W

'8168"'_05
w

i

m v

i

h_

j

6')
I,Ll

?,,,
ILl
"1-
0
it)

m

m

5063

2-2
i

F

P4 - Miscellaneous descriptive information; this is op-

tional data and may include any of the following:

General notes on project or data peculiarities

Contacts for the project

Name of the project controlled source library

SEL forms collected for the project

Computer on which project is being developed

Project task numbers

Tools used for collecting project data

2.1.1 SCHEDULES

Project schedules divide the lifespan of a project into a

series of nonoverlapping, contiguous time periods referred

to by the SEL as phases. During the development stage, the

phases correspond closely to the primar_ type of development

activity being performed at any given time. The transition

from one phase to the next is signaled by project mile-

stones, such as the critical design review (CDR). The

schedules stored in the database are supplied by personnel

involved in managing the projects being monitored. An ini-

tial schedule is submitted at the start of the project and

updated every 6 to 8 weeks thereafter until the completion

of the project's development stage. All schedules submitted

are stored in the database along with their submission dates

to provide a historical trace of schedule changes. When a

project completes the development Stage, a final schedule is
submitted that reflects the actual schedule that was fol-

lowed by the project. Schedule data exist in sets that in-

clude the following:

P1 - Project name

P5 - Submission date of the current schedule

P6 - Requirements definition phase start and end dates

P7 - Design phase start and end dates

P8 - Code and test (implementation) phase start and end

dates

P9 - System test phase start and end dates

PI0 - Acceptance test phase start and end dates

PII - Cleanup phase start and end dates

PI2 - Maintenance stage start and end dates

5063

2-3

Phase dates are subject to certain constraints, such as the

requirement that they always fall on a Saturday. Also, de-
pending upon the life-cycle model followed, the size and

level of formality of the project, and the SEL's research
needs, some of the phase dates may not be supplied for

particular projects. Reference 1 presents a more thorough
discussion of the SEL definition of phase dates and the con-

straints to which they must adhere.

2.1.2 ESTIMATES

At various points in the life of a project, estimates are

made of certain project characteristics whose actual values
do not become available until the end of the development

phase. These estimates are made as part of the proce_s_Qf

planning the project and monitoring its progress. AS the
project proceeds, the 6st_ma_es are up_ated-reguiariy to _

reflect such factors as system growth and changes in staff-

ing patterns. Thus, toward the end of the development

phase, the at-completion estimates converge on the actual
final project characteristics. The sets of estimates col-

lected by the SEL and stored in the database include the

following:

P1 - Project name
PI3 - Submission date of the current set of estimates

P14 - Number of subsystems in the software product

P15- Number of components in the software product

P16 - Total lines of code in the software product
PI7 - Old iines of code in the Software product

P18 - Modified lines of code in the software product

P19 - New lines of code in the software product

P20 - Progra_er hours spent on the pr0ject

P21 - Management hours spent on the project

P22 - Services hours spent on the project

The terms "subsystem" and "component," used above and else-

where in this document, have specific definitions in the SEL

environment. In general, subsystems are a mutually exclu-
sive partitioning of the components that constitute a soft-

ware system. Components are individual routines or modules

that are maintained in separate files. (See Reference 1 for

a more detailed description of these concepts.)

The lines-of-code estimates collected refer to total lines

of source code, including executable and nonexecutable
statements, comments, and blank lines. The total lines es-

timate is expected to be the sum of the old, modified, and

new lines estimates. Programmer hours is the estimate of

the total technical effort spent on the project. Similarly,
management hours is the estimate of the total hours spent

5063

2-4

=

W

W

m

l

m

B

u

m

D

w

u

W

J

mm [

w

directly managing the project. Services hours refers to the
estimated hours spent by support personnel on the project.

This includes secretaries, technical editors, word proces-

sors, data librarians, couriers, and indirect levels of

project management.

2.1.3 RESOURCE USE

Throughout the development stage of a project, the use of

personnel and computer resources is measured and stored on a

weekly basis.

2.1.3.1 ManPower

Each week, the staff resources expended on a given project
are recorded and stored in the database. Hours are stored

for each person who does technical work or directly manages

the project during the particular week-in question. These
hours are categorized by the type of development activity

being performed.

In addition, for projects that began before June 1987, the

manpower resource hours may be further classified by the
subsystem on which the work was performed. Thus, for any

given project, week, and programmer, the following data are
stored:

P1 - Project name

P23 - Week ending date; this date is always a Friday

P24 - Programmer name; name of the person performing

technical or management work on the project

P25 - Predesign hours; hours worked on the project before
commencement of actual design work (requirements

definition, requirements analysis, etc.)

P26 - Create design hours; hours spent performing soft-

ware design activities (creating structure charts,
writing program design language (PDL), etc.)

P27 - Read/review design hours; hours spent reading and

reviewing design materials (peer reviews, design

walk-throughs, etc.)

P28 - Write code hours; hours spent developing source

code from design materials (coding at desk, en-

tering code at terminal, etc.)

5063

2-5

P29 - Read/review code hours; hours spent reading code

for any purpose except isolation of errors (peer
review, code walk-throughs, desk checks, etc.)

P30 - Test code unit hours; hours spent testing individ-

ual code units (planning and executing test cases,

writing test drivers and stubs, etc.)

P31 - Debug hours; hours spent isolating errors and

planning corrections (does not include actually

correcting errors)

P32 - Integration test hours; hours spent planning tests

that integrate system components (writing and exe-

cuting system tests, etc.)

P33 - Acceptance test hours; hours :spent running and sup-
porting acceptance testing of the software

P34 - Other hours; hours that do not fall into any of the

above activities (management, training, documenta-

tion, etc.)

The hours that are recorded in the various activities for a

given programmer during a given week add up to the total
hours worked on the-project during that week by that pro-
grammer. Manpower hours are recorded to the nearest tenth

of an hour. For projects that began before June 1987, the

activity hour items P25 through P34 may be further classi-
fied as being associated with a partlcular subsystem of the

project. In this case, the sum of the hours recorded in the

various activities and associated with particular subsystems

plus the hours charged to various activities and not associ-
ated with particular subsystems represents the total hours

worked during that week by that programmer. An example of
the latter case is as .follows:

Programmer: J. Doe Week ending: 30-Nov-87

Integration test hours (P32) for subsystem XYZ: 5.0

Integration test hours (P32) for subsystem ABC: !0.0

Write code hours (P28) for subsystem ABC: 15.0

Other hours (P34) (no subsystem): I0.0

Total hours worked: 40.0

I

m

m

mm

l

i

u

n

g
J

a

U

m_

5063

2-6

I

L

w

w

w

w

In addition to and independent of these weekly activity

hours, programmer hours are recorded categorized by the fol-

lowing activities:

P35 - Rework hours; hours spent reworking any part of the

system due to errors or other unplanned changes
(includes rework of code, design, testing, and all

hours spent debugging)

P36 - Enhancing/refining/optimizing hours; hours spent

improving efficiency or clarity of design, code, or
documentation (not due to unplanned changes)

P37 - Documenting hours; hours spent creating any form
of documentation on the system (system descrip-

tions, user's guides, in-line comments, etc.)

P38 - Reuse hours; hours spent attempting to reuse com-

ponents of this or other systems

The hours recorded in the above categories do not adhere to

the constraint that their sum represents the total hours

worked by a given programmer during a given week.

Reference 1 presents a more detailed discussion of the vari-

ous activities that categorize manpower effort hours.

2.1.3.2

Each week during the development stage of a project, service
hours are recorded and stored in the database. These are

hours spent by support personnel who are not directly in-

volved in the technical aspects of the project. The cate-

gories of service hours recorded each week for a given

project are as follows:

P1 - Project name

P23 - Week ending date

P39 - Technical publications hours; hours spent by tech-
nical editors, word processors, graphics artists,

etc., in preparing technical documentation for the

project

P40 - Secretary hours; hours spent by secretaries in sup-
port of technical and management-related project

paperwork

5063

2-7

P41 - Librarians; hours spent by data librarians in sup-
port of the project (includes data entry, tape gen-
eration, etc.)

P42 - Program management; hours spent by persons perform-

ing management activities in support of the proj-

ect, but who are not directly responsible for the

project's management

P43 - Other; hours spent in support of the project by

personnel who do not qualify in one of_the support
service categories above

Service hours are not recorded for individuals. Rather, the

sum of the hours reported by all persons performing a par-

ticular support activity during a given week is recorded.

2.1.3.3 Computer

Computer resources are the third type of resource data re-

corded and stored in the database on a weekly basis. During

the portion of the development stage when programmers are

using computer resources to create the resulting software
product, the number of computer runs and central processing

unit (CPU) hours used are monitored. If different portions

of the development effort are performed on different ma-
chines, hours and runs are recorded for each of them Thus,

for each week of a given project, the following computer
resource data are stored:

P1 - Project name

P23 - Week ending date

and for each computer being used at the current time:

P44 - Computer name; name uniquely identifying the de-

velopment computer

.P45 - CPU hours used

P46 - Number of runs executed

The number of runs recorded_is measured as either the number

of interactive log-ons by project members, the number of

batch Jobs submitted by project_ members, or both. On some
development computers, the accounting reports used for ob-

taining the resource data show separate CPU time and number

of run statistics for interactive sessions and batch jobs.

In these cases, the two are recorded separately under dis-

tinct computer names. On other machines, the accounting

=

m

m

@

W

I

m

w

u

m

5063

2-8 m

w

reports show total CPU time and number of runs without dis-

tinguishing between batch jobs and interactive sessions. In
these cases, only the single combined figures are recorded.

2.1.4 PRODUCT CHARACTERISTICS

A fourth class of project-related data characterizes the

software product that is generated during the development

stage. There are two primary types of product data: that

which captures the static composition of the system at any

given point in time, and that which captures the-dynamic

properties of system growth and change.

2.1.4.1 Structure and Size

The static composition of the system is recorded as the sys-

tem is produced. This consists Df the:partitioning of the
system into subsystems and components, along with descrip-
tive information about each. As mentioned earlier, the SEL

defines subsystems as a mutually exclusive partitioning of

the system components. For each subsystem in a project, the

following data items are stored:

P1 - Project name

P47 - Subsystem prefix; mnemonic prefix used in naming

components that belong tothe subsystem

P48 - Subsystem name; descriptive name describing the

purpose of the subsystem

P49 - Subsystem function; indicator used to describe the
nature of the subsystem and also to identify simi-

lar subsystems for the purpose of comparison

P50 - Subsystem date; date on which the subsystem infor-
mation was entered into the database

Subsystem prefixes are unique within a given project. Each

subsystem comprises multiple components. Components are de-
fined as modules or routines that are maintained in separate

files as individual configuration items. Each component is

associated with exactly one subsystem. The following de-

scriptive information is stored for each component of the

system:

P1 - Project name

P47 - Subsystem prefix; prefix identifying the subsystem

to which the component belongs

5063

2-9

P51 - Component name; mnemonic name used in identifying

the component

P52 - Component date; date on which the component infor-
mation was entered into the database

P53 - Creation date; date on which the component first

became part of the system configuration (i.e., was
moved into the controlled source library)

P54 - Submission date; date on which the component infor-

mation was recorded by the programmer

P55 - Programmer name; name of programmer who created

the component

P56 - Origin; source of the DomPonent (i.e., old code,

modified old code, new code)

P57 - Difficulty; discrete rating on a scale of 1

(easiest) to 5 (most difficult) of the difficulty

in creating the component

P58 - Type; indicator used to classify components of

similar nature for comparison

P59 _- Purpose; indicator of the component's purpose

2.1.4.2 Growth

Growth data recorded in the SEL database capture the dynamic

nature of the evolving software product. These data are

obtained by taking snapshots of the controlled source li-

brary of the project at regular intervals (weekly). The

data elements captured each week provide a historical per-

spective on system size through the development stage of the
life cycle. The information recorded is as follows:

P1 - Project name

P23 - Week ending date

P60 - Lines of code; count of the total lines of code

in the project controlled source library

P61 - Components; count of the number of components in

the project controlled source library

P62 - Changes; count of the number of changes that have

occurred in the project controlled library (each

time a new component is added to the library, it is

5063

2-i0

=--

w

m

J

w

U

d

11

w

j

l

m

j

J

Z

F
I# °

-- Z

jr

I

w

counted as one change; each time a component is up-

dated in the library, it is counted as another

change)

2.1.5 CHARGES

Detailed information is recorded in the database for each

change that takes place in a project's configured software.

A change is viewed by the SEL as an update to one or more

system components for a particular specific purpose. Typi-
cal purposes for changes include correcting an error, im-

proving the efficiency of a particular operation, or

implementing an enhancement. The following data items are

stored for each change:

P1 - Project name

P63 - Change number; number uniquely identifying each

change in the database

P64 - Programmer name; name of the programmer implement-

ing the change

P65 - Submission date; date on which the change informa-

tion was recorded

P66 - Effort required to isolate the change; time spent

determining what was necessary to make the change

P67 - Effort required to implement the change; time spent

actually designing, coding, and testing the change

P68 - One component affected; flag indicating whether

the change involved updating only one component

P69 - Involved Ada; flag indicating whether the change

resulted from using the Ada language

P70 - Examined other components; flag indicating whether

components other than those changed were examined

when performing the change

P71 - Parameters passed; flag indicating whether the

change required awareness of data communicated be-

tween components

P72 - Date change determined; date on which the need for

the change was initially determined

5063

2-11

P73 - Date change completed; date on which the change was

implemented into the system

P74 - Number of components changed; count of the changed

components

P75 - Number of components examined; count of the compo-
nents examined in the change process that were not

changed themseives

P76 - Change type; indicator used to classify changes by

particular types

P77 - Error source; indicator of the source of the error

for changes where the change type (P76) is error
correction - _

P78 - Error class; indicator of the-class of error for

changes where the change type (P76) is error cor-
rection

P79 - Commission error; for changes where the change type
(P76) iS error correction, flag _ndicatlng whether

something incorrect was included in the code

P80 - Omission error; for changes where:the change type

(P76) is error correction, flag indicating whether
something was left out of-the code

P81 - Typographic'al error; flag indicating whether an

error was typographical in nature for changes where

the change type (P76) is error correction

P82 - Ada documentation; flag indicating whether the Ada

documentation clearly explained the features that

contributed to an error (P76) attributed to the use

of Ada (P69)

P83 - Ada cause; indicator of the cause of an error (P76)
attributed to the use of Ada (P69)

P84 - Changed components; list of the names of the compo-
nents that were changed

P85 - Ada features; list of the Ada features that were

involved in an error (P76) in which the use of Ada

was a contributing factor (P69)

P86 - Ada resources; list of resources used in resolving

an Ada-related error (P69,P76)

I

=

g

i

w

J

m

i

N

J

u

I

_19

m

U

5063

2-12
m

i

i

z

P87 - Ada tools; list of software tools used in resolving

an Ada-related error (P69,P76)

2.1.6 SUBJECTIVE EVALUATIONS

When a project completes its development stage, the retro-

spective subjective opinions of personnel involved in the

management of the project are collected and stored in the

database. This includes rating a set of project char-
acteristics on a scale of 1 to 5 and indicating what

software engineering tools were used on the project. Unless
otherwise specified, the scale on the measures ranges from

1 = low to 5 = high. The subjective data items recorded are
as follows:

P1

P88

- Project name

- Problem complexity

P89 - Schedule constraints (loose = i, tight = 5)

P90 - Stability of requirements (unstable = i,

stable - 5)

Pgl - Quality of requirements

P92

P93

- Documentation requirements

- Rigor of requirements reviews

P94 - Development team ability

P95 - Development team application experience

P96 - Development team environment experience

P97 - Stability of development team (unstable = i,
stable = 5)

P98 - Management performance

P99 - Management application experience

PI00 - Stability of management team (unstable = i,

stable = 5)

PI01 - Project planning discipline

PI02 - Degree to which plans were followed

PI03 - Use of modern programming practices

5063
2-13

PI04 - Discipline in formal communication

PI05 - Discipline in requirements methodology

PI06 - Discipline in design methodology

PI07 - Discipline in testing methodology

PI08 - List of tools used on project (not a numerical

rating, but an actual list of tool names)

P109 - Use of test plans

PII0 - Discipline in quality assurance

PIll - Discipline in configuration management

PII2 - Access to development system -_

PII3 - Ratio of developers to terminals (low = 5,

high = l)

PII4 - Memory constraints

PII5 - System response time (poor - I, very good = 5)

PII6 - Stability of hardware and support software

PII7 - Effectiveness of tools used

PII8 - Agreement of software with requirements

PII9 - Quality of software

PI20 - Quality of design

PI21 - Quality of documentation

P122 - Timeliness of delivery

P123 - Smoothness of acceptance testing

2.1.7 FIRAL STATISTICS

When the development stage of a project is complete, meas-
urements are recorded of the actual values of parameters

that were estimated earlier and of additional parameters

that were not estimated. In addition, the project source

code is run through a static analysis tool, and statistics

are recorded for each component of the system. The data

I

i

i

M

J

a

J

W

J

m

5063

2-14

D

v

w

items that constitute final project statistics are as fol-

lows:

P1 - Project name

P124 - Submission date of final statistics

P125 - Actual requirements definition phase start and

end dates

P126 - Actual design phase start and end dates

P127 - Actual code and test (implementation) phase start

and end dates

P128 - Actual system test phase start and end dates

P129 - Actual acceptance test phas4start and end dates

PI30 - Actual cleanup phase start and end dates

PI31 - Maintenance stage start and end dates

P132 - Total technical and management hours expended on

the project

P133 - Total service hours expended on the project

P134 - Computer name

P135 - CPU hours used

P136 - Number of runs executed, for each computer used

on the project

P137 - Number of subsystems in the system

P138 - Number of components in the system

P139 - Number of changes made to the system

PI40 - Number of pages of documentation produced for the

system

PI41 - Total source lines of code in the system

P142 - Total newly created lines of code in the system

P143 - Total lines of code in the system that were modi-

fications to existing code from other systems

5063

2-15

P144 - Total lines of code in the system that were used

from other systems without modification

P145 - Total number of comment lines in the source code

P146 - Total number of executable modules in the system

P147 - Total newly created executable modules in the sys-
tem

P148 - Total executable modules in the system that were
modified from other systems

P149 - Total executable modules in the system that were

used from other systems without modification

PIS0 -Total number of executabie lines of code in the

system

PI51 - Total newly created executable lines of code in

the system

P152 - Total executable lines of code in the system that

were modified from other systems

P153 - Tota! executable lines of code in the system that

were used from other systems without modification

and for each executable component in the system:

P154 - Number of executable statements in the component

P155 - Total number of source lines in the component

2.2

P156 - Total number of comment lines in the component

PROJECT-IRDEPEND_ DATA

This section describes two types of data stored in the data-

base that represent real-world entities, yet are not di-

rectly related to a particular project, as were the items in
the previous section. The data stored about these items are

not extensive. Rather, their primary function is to iden-

tify specific instances of resources when recording project
data.

2.2.1 PEOPLE AND SERVICES

The first class of support entities consists of people and

services. Each person for whom resource hours are recorded

W

J

B
J

g

U

J

J

j

U

m

U

5063

2-16

I

m

or who submits component or change information is repre-
sented in the database by the following data items:

M1 - Form name; abbreviated version of the programmer's
name used on data collection forms (see Section 3)

M2 - Full name; programmer's complete first and last

name

M3 - Entry date; date on which programmer information
was entered into the database

Service personnel are stored in the database as generic pro-

grammers; that is, the same information listed above is
stored as only one generic entry for a given class of serv-

ice personnel. Thus, for example, the personnel entry for

secretary refers collectively to anyone performing secretar-
ial work on a monitored project. _ "

2.2.2 COMPUTERS

The other class of support entity is computers. Each com-

puter for which resource hours and runs are recorded is rep-
resented in the database by the following data items:

M4 - CPU name; abbreviated version of the computer name
used on data collection forms (see Section 3)

M5 - Computer full name; longer, more descriptive name

for the computer

5063

2-17

m

m

I

J

U

U

g

g

D

_I

J

g

g _

g -

U

II

I

U

SECTION _ - SEL DATA FROM A DATA COLLECTION VIEWPOINT

This section describes the data collection forms in their

role as sources for the data items described in Section 2.

Many data items entered on the forms map directly to items
described in Section 2. Other items are unique to the data

collection process and therefore do not appear in Sec-
tion 2. This section maps the software engineering items in
Section 2 to their sources on data collection forms and de-

scribes the data items that are peculiar to the data collec-

tion process.

The following subsections present descriptions for the SEL
data collection forms. The data items described are tagged

with reference identifiers corresponding to the identifiers

in the forms that are presented in Appendix D. The identi-
fiers are also used as cross references in the SEL database

access paths (Table 4-4 in Section 4). If an item maps
directly to an item in Section 2, the description consists

of the item name followed by the Section 2 identifier for

that item (in parentheses). Otherwise, a more complete de-

scription is presented.

3.1 DATA COLLECTION FORMS

3.1.1 SCHEDULE AND ESTIMATES FORMS

The Project Estimates Form (PEF) (Figure D-I in Appendix D)

provides periodic estimates of the development process and
the software product and estimates of the project schedule.

The estimates of the development process consist of staffing

projections. The estimates of the software product involve
various estimates of the size of the delivered software.
The schedule information consists of a set of dates on which

the various life-cycle phases of the project are scheduled

to start, along with a projected project end date. These

estimates reflect the project size and resource expenditure

as of the completion of the cleanup phase.

The PEF is completed by the project leader. It is submitted

at the initial entry of the project into the database and

every 6 to 8 weeks thereafter through the development life

cycle. The PEF data fields are described below.

Note that the phase date fields contain the start dates of

each of the listed life-cycle phases that apply to the

project. The end date for a given phase is the next phase

start date entered on the form, or the project end date if

there are no start dates for subsequent phases.

5063

3-1

PEF FIELDS

D1 - Project name (PI)

D2 - Form date (PI3)

D3 - Requirements; estimated requirements definition

phase start date

D4 - Design; estimated design phase start date

D5 - Code and test; estimatedcode and test-(implementa-

tion) phase start date

D6 - System test; estimated system test phase start date
,i

D7 - Acceptance test; estimated acceptance test phase
start date _-

D8 - Cleanup; estimated cleanup phase_sSart date

D9 - Maintenance; estimated maintenance stage start date

D10 - Project end; estimated project end date

Dll - Programmer hours (P20)

DI2 - Management hours (P21) --

DI3 - Service hours .(P22)

Di4 - Number of subsystems (PI4)

DI5 - Number of components (PIS)

DI6 - Total lines (P16)

DI7 - New lines (PI9)

DI8 - Modified lines (PIS)

DI9 - Old lines (PI7)

D20 - PEF form number; unique identifier distinguishing
this form from other PEFs

J

U

w

H

B
g

i

J

U

5063

3-2

i

l

3.1.2 WEEKLY RATE DATA FORMS

The Personnel Resource Form (PRF) and the Services/Products

Form (SPF) provide weekly rate information for the proj-
ects. The PRF, Figure D-2, captures the actual technical/

management expenditure history on the project. This form
also contains information on the type of activity on which

the manpower hours were spent during the week. A separate
section of the form is used to record hours spent performing

specific activities that are of current interest to the SEL.

The PRF is submitted by every person performing either tech-

nical or management activities on the project. This form is

completed every Friday for the duration of the project de-

velopment life cycle.

PRF FIELDS " _ __

D21 - Programmer name (P24)

D1 - Project name (PI)

D22 - Week ending date (P23)

D23 - Predesign hours (P25)

D24 - Create design hours (P26)

D25 - Read/review design hours (P27)

D26 - Write code hours (P28)

D27 - Read/review code hours (P29)

D28 - Test code unit hours (P30)

D29 - Debug hours (P31)

D30 - Integration test hours (P32)

D31 - Acceptance test hours (P33)

D32 - Other hours (P34)

D33 - Rework hours (P35)

D34 - Enhancing/refining/optimizing hours (P36)

D35 - Documenting hours (P37)

5063

3-3

D36 - Reuse hours (P38)

D37 - PRF form number; unique identifier distinguishing

this form from other PRFs

The SPF, Figure D-3, measures resource expenditure in sup-

port personnel hours and computer resource utilization and
is used to create a historical record of product growth over

the course of the project. The SPF is completed by SEL data
collection personnel. The form containsthree distinct

types of data; the growth history data are obtained by run-
ning growth history monitoring programs on the IBM 4341 and
the VAX 11/780. The computer information is taken from com-

puter accounting reports from these computers. Service
hours are obtained from task accounting reports. This form

is submitted every week in which support service or computer

resources are used or in which product growth data are
available. _ _-

SPF FIELDS

D1 - Project name (PI)

D22 - Week ending date (P23)

D38 - Computer name (P44)

D39 - CPU hours (P45)

D40 - Number of runs (P46)

D41 - Number of modules (P61)

D42 - Number of changes (P62)

D43 - Lines of code (P60)

D44 - Technical publications hours (P39)

D45 - Secretary hours (P40)

D46 - Librarians' hours (P41)

D47 - Other hours (P43)

D48 - Project management hours (P42)

D49 - SPF form number; unique identifier distinguishing
this form from other SPFs

5063

3-4

w

U

m

m
!

Im

l

m
BB

R

m
B

m

m_

a

m_m

g

g -

g

M

m

BI

i

w

L

3.1.3 PRODUCT DATA FORMS

The Component Origination Form (COF), the Change Report Form
(CRF), and the Subsystem Information Form (SIF) provide

product data information for the project. The COF, Fig-
ure D-4, records information about the components in the

system. Some of the information collected is the origin of
the component, difficulty of developing the component, type

of component, and purpose of component.

The COF is completed by personnel who code new system compo-

nents, modify old components for reuse, or transfer reused

components to the project controlled library. A form is

completed for each component in the system at the time when
the component is ready to be moved into the project con-

trolled source library.

COF FIELDS _

D1 - Project name (PI)

DS0 - Programmer name (P55)

D51 - Subsystem prefix (P47)

D52 - Form date (P54)

D53 - Component name (P51)

D54 - Date entered into controlled library (P53)

D55 - Relative difficulty of developing component (P57)

D56 - Origin (P56)

D57 - Type of component (P58)

D58 - Purpose of executable component (P59)

D59 - COF form number; unique identifier distinguishing

this form from other COFs

The CRF, Figure D-5, contains information about the type of

change that was made, the components that were changed, er-
ror information if applicable, and Ada-specific information

if applicable. The CRF is completed by personnel who imple-
ment changes to the system that involve modifying components

in the project-controlled source library. A form is submit-

ted for each change to the system at the time the changed

components are updated in the project-controlled source li-

brary.

5063

3-5

CRF FIELDS

D1 - Project name (PI)

D60 - Current date (P65)

D61 - Programmer name (P64)

D62 - Components changed (P84)

D63 - Date on which need for change was determined (P72)

D64 - Date change was completed (P73)

D65 - Effort to isolate change (P66)

D66 - Effort to implement change (P67)
-'L_-

D67 - Type of change (P76)

D68 - Change to one component (P68)

D69 - Look at any other components (P70)

D70 - Aware of parameters (P71)

D71 - Source of error (P77)

D72 - Class of error (P78)

D73 - Omission error (P80)

D74 - Commission error (P?9)

D75 - Transcription error (P81)

D76 - Did Ada contribute to the change (P69)

D77 - Ada features used (P85)

D78 - Documentation understandable (P82)

D79 - Which statements are true (P83)

D80 - Which resources provided the information needed to

correct the error (P86)

D81 - Which tools provided aided in correction of the

error (P87)

D82 - CRF form number (P63)

5063

3-6

m

m

l

N

M

J

W

j

J

m

I

z

=

The SIF, Figure D-6, contains information about the high-

level partitioning of the system into subsystems. A subsys-

tem prefix, a descriptive name, and a subsystem function
should be specified for each subsystem. The SIF is com-

pleted by the project leader. A form is submitted at the •
time of the preliminary design review (PDR) and any time
thereafter when a new subsystem is introduced into the

design of the system.

SIF FIELDS

D1 - Project name (PI)

DI51 - Subsystem date (P50)
D152 - Subsystem prefix (P47)

D153 - Subsystem name (P48)

D154 - Subsystem function (P49)

3.1.4 PROJECT COMPLETIOR FORMS

The Project Completion Statistics Form (PCSF) _ and the Sub-

jective Evaluation Form (SEF) provide project completion
information for completed projects. The PCSF, Figure D-7,

is used to record the final statistics for the project.

This information includes the actual project resources ex-

penditures, project schedule, and the software product size.

The PCSF is completed by the project leader. It is submit-
ted when the final system products have been delivered. The

PCSF data fields are described below.

Note that, as in the PEF, the phase date fields contain the
start dates of each of the listed life-cycle phases that

apply to the project. The end date for a given phase is the

next phase start date entered on the form, or the project
end date if there are no start dates for subsequent phases.

PCSF FIELDS

D1 - Project name (PI)

D83 - Form date (P124)

D84 - Requirements; actual requirements definition

phase start date

D85 - Design; actual design phase start date

D86 - Code and test; actual code and test (implementa-

tion) phase start date

5063

3-7

D87

D88

D89

Dg0

D91

D92

D93

D38

D94

D95

D96

D97

D98

D99

- System test; actual system test phase start date

- Acceptance test; actual acceptance test phase
start date

- Cleanup; actual cleanup phase start date

- Maintenance; actual maintenance stage start date

- Project end; actual project end date

- Technical and management hours (Pi32)-

- Service hours (P133)

- Computer name (P134)-

°.

- CPU hours (P135)

- Number of runs (P136)

- Number of subsystems (P137)

- Number of components (Pi38)

- Number of changes (P139)

- Pages of documentation (-PI40)

DI00 - Total source lines of code (PI41)

DI01 - New source lines of code (P142)

DI02 - Modified source lines of code (P143)

DI03 - Old source lines of code (P144)

DI04 - Comments (P145)

DI05 - Total executable modules (P146)

DI06 - New executable modules (P147)

DI07 - Modified executable modules (P148)

DI08 - 01d executable modules (P149)

DI09 - Total executable statements (PI50)

DII0 - New executable statements (PI51)

g

U

m

i

i

m

m

U

= =

w '

5063

3-8 m
m

m

DIll - Modified executable statements (P152)

DII2 - Old executable statements (P153)

Dll3 - PCSF form number; unique identifier distinguishing

this form from other PCSFs

The SEF, Figure D-8, consists of subjective perceptions of

persons who were involved in managing the project with re-

spect to such factors as the use of methodologies, the de-

velopment environment, and the complexity of the problem.
The SEF is completed by the project leader and selected per-

sonnel involved in managing the project. The responses from

each of the completed forms are combined and reported on one
form. The SEF is submitted when the final system products

have been delivered (end of cleanup phase).

SEF FIELDS

D1

D2

D21

- Project name (PI)

- Submission date (PI3)

- Project personnel name (P24)

DII4 - Problem difficulty/complexity (P88)

DII5 - Tightness of schedule constraints (P89)

DII6 - Stability of requirements (Pg0)

DII7 - Quality of specification documents (Pgl)

DII8 - Requirements for documentation (P92)

DII9 - Rigor of formal reviews (P93)

DI20 - Ability of development team (P94)

DI21 - Development team experience with application (P95)

D122 - Development team experience with environment (P96)

D123 - Stability of development team composition (P97)

D124 - Project management performance (P98)

D125 - Project management experience (P99)

D126 - Stability of project management team (Pl00)

5063

3-9

5063

D127 - Project planning discipline (PI01)

D128 - Degree project plans followed (PI02)

D129 - Modern programming practices (PI03)

DI30 - Disciplined change/question track{ng (PI04)

DI31 - Use of requirements analysis methodology (PI05)

D132 - Use of disciplined design methodology (PI06)

D133 - Use of disciplined testing methodology (PI07)

D134 - Use of tools (P108)

D135 - Use of test plans (PIp9)

D136 - Use of quality assurance (Pl10)

D137 - Use of configuration management procedures (Pl11)

D138 - Degree of access to development system (Pl12)

D139 - Programmers per terminal (Pl13)

D140 - Development machine resource constraints (Pl14)

D141 - System response time (Pl15)

D142 - System hardware and support software stability

(P116)

D143 - Software tool effectiveness (Pl17)

D144 - Delivered software supports requirements (Pl18)

D145 - Quality of delivered software (Pl19)

D146 - Quality of design present in delivered software

(PI20)

D147 - Quality/completeness of software documentation
(Pl21)

D148 - Timely software delivery (P122)

D149 - Smoothness of acceptance testing (P123)

DI50 - SEF form number; unique identifier distinguishing
this form from other SEFs

3-i0

===.

I

mm

l

H

w

U

i

B

mm

m

u

J

I

mm

= =

v

SECTION 4 - A LOGICAL VIEW OF THE SEL "DATABASE

This section presents the logical schema of the SEL data-

base. The introduction to relational databases in Sec-

tion i, together with the table descriptions in the following
sections, allow the reader to understand where the data items

described in Sections 2 and 3 may be found in the database.

This section also presents some additional information about

the way the data are stored and describes the tables con-

taining database support data. These latter discussions are
intended for the reader who needs to understand the database

at a deeper level, such as a database maintenance programmer.

Section 4.1 defines each table in the SEL database. Sec-

tion 4.2 describes how the tables are related to one another

and constraints that are imposed on th_ tables by the seman-
tics of the SEL data. Section 4.3 maps the data items as

defined conceptually in Sections 2 and 3 to each item's lo-
cation in a database table. This section also describes the

access path to follow to reach each end data item.

4.1 DATABASE TABLE AND VIEW DEFINITIONS

The SEL database contains a total of 48 base tables (rela-

tions) and 30 views. Base tables are defined independently
of other tables in the sense that no base table is com-

pletely derivable from any other base table. On the other

hand, views are virtual tables that are completely derived
from base tables and contain no data of their own. With

some restrictions, they can be treated as base tables. In
the SEL database environment, views are used to provide

users or application programmers with a more convenient way

to access data items that spread across more than one base
table.

Tables 4-1 and 4-2 present the tables and views in the data-
base and their component fields. Table 4-1, which contains

32 tables and 3 views, is intended for all database users.
The additional tables and views that are not included in

this table are mainly used for data entry and system main-
tenance. Table 4-1 presents, for each table and view, the

table or view name; the name of each column; a description

of each table and column; the type of each column and its

length; a list of valid values for columns where coded
values are used; and one or more reference IDs for most

columns, that cross-reference the column to data item de-

scriptions in Sections 2 and 3. A translation of the codes

used in Table 4-1 can be found in Appendix A. Columns that

are part of the primary key are underlined, columns that do

not have reference IDs are generally internal identifiers

5063

4-1

used for relating tables to one another. The data types for

columns may be one of the following: char, number, and date.

A char column that may contain a sequence of alphanumeric is

followed by the maximum length of the field. A number column
that may contain numerals is followed by the width of the

field and the number of decimal places, if applicable. A

date column may contain a date formatted as DD-MMM-YY. Ref-

erence 4 presents a more detailed description of various data

types.

Table 4-2 is intended for users, such as maintenance pro-

grammers, who need to know more of the technical specifica-
tions for all 43 base tables and 27 views. Provided for

each field are its name; its data type; its length and the

number of decimal places if it is a numeric field; an indi-

cation of whether it is part of the primary key; and a spec-
ification of whether it can contain null values, whether it

is indexed, and whether it is clustered with another table.
The last column in the table is for the view entries. It

specifies the underiy_ng table from which a particular col-
umn within a view is derived. Fields that are identified as

being indexed are those to be used frequently in join opera-
tions, in comparison, Or in specifying search conditions.

Unique indices are created for all the fields that must have

unique values within a particular table. All the primary
keys are also uniquely indexed.

4.2 RELATIONSHIPS AND CONSTRAINTS_%MONG DATABASE TABLES

The SEL database is composed of two classes of information:

the software engineering data itself, and the information

defining that data and describing its organization within

the database. The software engineering data are discussed

in Sections 2 and 3. The descriptive and organizational
information stored in various tables and referred to from

here on as system support data are further described in this
section.

4.2.1 RELATIONSHIPS AMONG TABLES

In the SEL relational database environment, tables are

stored without predefined orders, Due to the _@mantics of
the data itself, however, tables do have relational depend-

encies among them, These dependencies among tables are im-

portant and need to be observed, especially when insert,

update, or delete operations are performed. In a reiation-
ship, tables share common values existing in one or more

columns of each table. For example, table PROJECT and table

PROJ_SUB both share the same values of project number. When
project data are first entered in the database, a record

_m

l

£

I

m

u

I

g

m

=

M

w

mm

U

g

==. :

g z

5063

4-2

Table 4-i. SEL Database Tables and

Descriptions (I of 9)

Views--Table and Column

m

TABLE OR
VEW NAME

CHANGE

CH_ADAF_AT

COLUMN
NAME

CH_'U_:,E_NO

m=__tO

SUB_DATE

EFF_ONE

EFF_/_

E_= mO CH

EFF COM CH

EFF PARPA

EFF OTHER

DATE_OETER

DATE_COMP

NUM_COM_CH

NUM_COM_EX

CH_TYPE

FOPS_TYPE

STATUS

CH/U_GE_.NO

COM NO

0ESCRIPTK_

TABLE CONTAINING CRF INFORF
MATION FOIl ALL CHANGES

FORM NUMBER OF CRF

ID UNIClUELY IDENTFYING EACH
PROGRAMMER

SUBMISSION DATE OFCRF

YIESq'_O FLAG TO INDICATE
WHETHER CHANGE WAS MADE TO
ONE N_) ONLY ONE _ENT

YES/NO FlAG TO INDICATE
WHETHER USE OF ADA
CONTRIBUTED TO THIS CH/kNOE

PROC4:IAMMERS EFFORT TO
_OLATE GHNe]E

RqOGRAMMERS EFFORT TO
M=LEMENT

YESneO FLAG 'fO INDICATE
WHETHER PROGRAMMER HADTO
BE AWARE G¢"PARAMETERS
PASSE0 OR NOT

YES/NO FLAG TO INDICATE
WHETHER PROGRAMMER LOOKED
AT ANY OTHER COMPONENTS

DATE ON WHICH NEED FOR CHANGE
WAS DETERMINED

DATE ON WHICH CHANGE WAS
COMPLETED

TOTAL NUMBER OF COMPONENTS
CHANGED

TOTAL NUMBER OF (_3MPCWENT$
EXAMINED

TYPE OF CHAN(_

TYPE OF DATA C(X.LECTION FORM

STATUS OF CRF

TAS..E CONTAINING CHANGED
COMPONENTS ASSOCIATED WITH
PARTICULAR CRFs

FORM NUMBER OF CRF

IC OF CHANGED COMPONENT

TYPE

CHAR(e)

NUMBER (5, 0)

DATE

CHk.q (1)

(i)

CHAR0o)

CHAR(10)

CHAR(1)

CHAR (1)

DATE

DATE

NUMBER (2, O)

NUMBER (2, O)

CHAR (10)

CHAR (e)

CHN:I(10)

cHAR(s)

NUMBER (7, 0)

VALID COOENN.UE

Y,N

Y.N ,

IHR, 1DAY, 3DAY, NDAY, NOI"OET

1HR, 1DAY. 3DAY, NDAY, NOTDET

Y,N

Y.N

T_BI.E CONTNNINO ADA FEATURES
THAT WERE INVOLVED IN ORCON-

TRIBUTED TO PARTICULAR CHANGE. (

FORM NUMBER OF CRF CHAR (6)

' ERRCO, PLANE. IMPRE, IMPCM.
IMPUS, INADE. OPTSA, ADENC. OTHCH,

CRF

UNCHK. F_T.
HCERROR, VERAP

CHANGE NO

A,DA FEATURE FEATURE(S) INVOLVED IN CHANC4E
F ADA IS USED AS DESIGN N4D
IMPLEMENTATION LANGUAGE

cH_q(1o) DATATYPE. SUBPROG, EXCEPT, GEN,

PACK, TASK, SYSOEPF, OTHER

REFERENCE
IO

P63, D82

P6g, DTS

PS6, D65

PS7, De6

P71. D70

PT0. D_)

1:'72.D63

1=93, D64

P74

P7S

P715.D67

1363,D_2

5063

4-3

Table 4-1. SEL Dat_se Tables and:Views--Table and Column

Descriptions (2 of 9)

TASTEOR
VIEWNAME

CH ERR_ARES

cMSRR__N

CH ERR_TOOtS

COMPUteR

COM_PURPOSE

COLUMN
NAME

OESCRIPIqON

TABLECONTAINING RESOURCES
USED N CORRECIqNGERRORSFOR
p_RTICULARCH_$ NVOtV_NG
ADA

FORM NUMBEROF CRF

RESOJRCE8 U6ED TO CORRECT
_ CAUSED8Y USEOF J_A

T_LE CONTNN_ ERROR
CHNtACTERI811CS FOR PNtTtCtJLN_
CHANGES _nlFED ASERROR
CORRECllON8

TYPE VALIDCOOENALUE

NOLO. REFMA_ TEAM, MEMORY.
NTEAM, Oll-ER

F.RR SOUSE

F_RR_Ct_SS

FORM NUMBEROF ORF

SOURCEOF _

CLASSOF ERROR

CH_R_

CHAg (101 I_OMT. _. DESIGN, CODE.
PRECH,NOTOET

INIT, LOGIC,INTERI,WT1ERE.
0ATAVAL,COMPUI_ NOI_'T

ERR COMB

ERR_I"VI=O

ERR_OM_

ERR_ADOC

ERR__AUSE

YES,"NOR.AG TO INOCAIE
WHET'rER ERI:K)RWAS OMEOF
GOMMISSION

_ TO INDICATEWHETHER
ERRORWAS TYPOGRAR41CAL

Y'ES/NOR.,4_ TO INDIGAI_
WI-IEII-ER EN::IORWAS ONIEOF
O_1881ON

R.AO 70 INDICAI_
WHETHERN:)A _ DOCUME_
TATION OR ADA L_NOUAOE_
ENCE MANta. E_LARS
WVOtVED FEAII.RES _Y

_OF ERROR _OtV_G ADA

TABLECONTAINING_ USED IN
CORREC'nNO _ FOR PAR-
TICULAq_ INVOt.VNO ADA

F(]RM N_ OFCRF

DA TOOLStJ.D THAT AIDEDIN
DE'IT:CTIONOR CORREC'T1ONOF
ERROR

TASUECONTAININO INFORMATION
ABOUTCOMPUTERSUSED ON
VARIOUSPROJECTS

SH_RT. UNIOUENAMEII_,N'I_I_flNG
APARTICULARCOMPUTER

COMPUTERFULLNAME

TABLECONTA_O PURPOSES
REPORTEDON COF_ FOR
PNtTCULAR COMPONENTS

© UNK:UELY ©F.NT_NG EACH
COMPONENT

MAJORPURPO_(S) OF

C_q(l)

CHAR(l)

CHARfl)

CY_R(1)

CHaR(m)

Y,N

Y,N

Y.N

Y.N

IN'I'E_, INCOF,I_I'_.
FEATU_C

001_I, SYMOEB, I.SE,CMS. SCA,
DEC_M, oTHER

IOP_. ALC(:_P, DATRA,LOOEC,
CNTROMO0, INTOP,ADAPR, ADADA

,, i i i

REFERENCE
o

Pe3,De2

P77,D71

P?II,D?2

P79,D74

P_t, D75

P'_0,073

Pe2, DTII

PII3, 07_

144

M5

PSg,054

5063

4-4

i

E

l

[]

!
J

m

I
m

m

i

_q !

i

Table 4-1. SEL Database Tables and Views--Table and Column

Descriptions (3 of 9)

u

w

w

E

REFERENCE
TABLE OR COLUMN DESCRIPTION TYPE VALID COOENALUE

vIEW NAME NAME 10

cou SOURCE

COM 5TAT

EFF ACT

EFF_FORM

COM NO

PROG_ID

FORM_NO

FORM_TYPE

STATUS

CREATE DATE

O4:U_TYPE

COM_TYPE

c_NG

C_LINE

C..EXE_S

C_C_LINE

EFF_ID

ACT HR

TABLE CONTA;NING COF INFORMA-
TiON FOR ALL COMPONENTS

IO UNK3UELY IDENTIFYING EACH
COMPONENT

ID UNIQUELY IDENTIFYING EACH
PROGRAMMER

FORM NUMBER OF COF

TYPE OF DATA COLLECTK)N FORM

STATUS OF COF

DATE ON WHICH COMPONENT WAS
ENTERED INTO CONTROLLED LIBRARY

ORIGIN OF COMPONENT

TYPE OF _PONENT

DEGREE OF DIFFICULTY IN CREATING
PARTICULAR C(_PONENT

SUBMISSION DATE OF COF

TABLE CONTAIN ING COMPONENT
STATIb'TK?,S FOR ALL COMPONENTS

ID UNC_4JELY IDENTIFYING EACH
COMPONENT

TOTAL NUMBER OF LINES OF CODE
(WffH COMMENTS) IN COMPONENT

TOTAL NUMBER OF EXECUTABLE
SOURCE COOE STATEMENTS IN
COMPONENT

TOTAL NUMBER OF COMMENT LINES
IN COMPONENT

TABLE CONTAIN ING PROGRAMMER
ACTNITY HOURS FROM PRFs AND
SERVICE PERSONNEL HOURS

SPFs FOR ALL PROJECT, PROGRAM-
MER AND WEEK COMBINATIONS

VALUESFROMP_O(EFF__K:U)OR
PS__(EFF_SUB)

ACTNR'Y TO WHICH _ER
OR SERVICE PERSONNEL IS
CHARGING TIME ON PRF OR SPF

ACTUAL H(XJRS SPENT IN
PARTICULAR ACTIVITY

TABLE CONTAINING FORM IDENTI-
FICATION AND STATUS INFORMATION
FOR EACH PROJECT, PROGRAMMER

AND WEEK COMBINATION; ENTERED
FROM PFIFs OR SPFI

NUMBER (7,0)

NUMBER (5, 0)

CH_(_

CH_ (e)

CHAR(10)

DATE -

C,HA_ (10)

CHAA (10)

NUMBER (2, O)

DATE

NUMBER _:0)

NUMBER (6, O)

NUMBER (S, 0)

NUMBER (6,0)

NUMBER

('io,o)

CHAR(I0)

NUMBER

(10,

O0F

UNCHK, _, HCERROR,
VERAP.

NEW', EXTMO, SLI,K]O, OLDUC

INCl., JCL, ALC, FORTRAN, PASCAL
NAMELT, DISI=tAY, MENDEF,
REFDATA, BLOCKDA, AI)A_JBS,
ADABUBS, ADAPACKS, ADAPACKB,
_¢_TASKS, ADATASk_ ADAGENS,
ADAGENB, OTHER

ITOS

PREOE$. CREOES, ROREVOES,.

WRCOOF.. RDFEVCOO, "FSTCOOUN,
DEBUG, INTTEST, ACCTEST, OTHER.
SUPPORT

05g

PS3. O64

P'_, D_

Pal. D67

P155

P154

P156

P25 TO 1=34
D23 TO D3_
P39TO P43
D44 TO D4_

A
m

5063

4-5

Table 4--1. SEL Database Tables and

Descriptions (4 of 9)

Views--Table and Column

m

u

TABLE OFf

VIEW NAME

EFF FORM
(CONrD)

EFFPnOJ

EFF SUB

EFFSU_R

PERSONNEL

COLUMN
NAME

t

P_ID

FORMNO

FORM_TYPE

_nttUS

PROJ NO

SUB DATE

PROG ID

P._©

SUB_PRE

PS_lO

:PER_SUP

DESCRIPTION

P..ID VALUE FROM TABLE EFF_PROJ

FORM NUMBER OF PRF OR SPF

TYPE OF DATA CO4.LECT]C_ FORM

STATUS OF PRF OR SPF

TABLE ASSOCIATING ONEN PROJECT,

PROORAklMER, ANO 1MEEK COt_
B_AI"_ _ SURROOATE KEY p__
FOR U_ N OTI_ TABLES

ID UNIOUELY IDENTIFYING EACH
PROGRAMMER

SUBMIS,SlON DATE OF PFF OFf SRr

I) UNIOUELY IDENTFYI_IO EACH
PROJECT

SURROGATE KEY REPRESENTING UNIOUE
RqoJNO,PROO30,_ SUBDATE
COMBINATX_

TABLE ASSOCIA11NO P_ID FROM
EFF I_tOJ AND SUBSYSTEM PREFIX
WITH SURROGATE KEY pS_ID) FOR
USE IN OTHER TABLES

P_lO VALUE FROM TABLE EF'F_R:IOJ

SUBSYSTEM PREFIX

SURROGATE KEY REPRESENTINO
UNIOUE P,..ID AND SUB_I:hqlE COMBINA-
TION

TABLE CONTAINING PERCENTN3E
OF TIME SPENT DOING SUPERVISORY
WORK FOR A PARTICULAR PROJECT,
PI:tOCJ:U_MEFL AND WEEK
COMBINATION

P_ID VALUE FROM TkBLE EFF PFIOJ

PERCENTAGE OF SUPEFIV!SCRY TIME

FORTH_ PROGRAMMER, PROJECT,
ANO _EK

TABLE CoIcrAININO INFORMATION
ABOUT PERSONNEL FOR WHOd
HOUR8 ARE RECORDED ON VARIOUS

PROJECTS

I0 UNIQUELY iDENTIFYING EACH
PF:IOGRAMMER

i __ _E _ _ _ _

rvAR_us_m.s

TYPE

NUMBIEI_I

(1o, o)

CHAR (6)

CHAR (6)

CHAR(_0)

NU_R (3.

DATE

NUMSER (S, Ol

NUMBER

(lo, o)

NUMBER

(I(_ 0)
' CHAq(S) "

NUMBER

(I0,0)

NUMBER
(Io. o)

NUMBER (e, 2)

VALID COOENALUE

PRF. SPF

UNCHK. _:¢ORI_CT,
I._FIFI_. VEP,_

THIS REID ALSO INCLUDES THE
FOLLOWING "SERVICES" PROGRAM-

: IER NN_E5

I UBARIAN - LIBRARIANS

OTHSUPP - OTHER SUPPORT
PERSONNEL

' PROGMCJWT - PROGP_N_ MANAGE-
MENT PERSONNEL

SECRTARY .- SECRETARIES
_ - TECHNICAL _

PERSONNEL

REFERENCE
IO

P47, D51, D152

M1, 1:324,_I,

PSS, DS0, P64
Del

m

m

i

mm

i,,m

i

;aN

i

N

i

I

Q

5063

4-6

=

m

m

Table 4--1. SEL Database Tables and

Descriptions (5 of 9)

Views--Table and Column

;-C

m

w

w

i--

m

r_

TABLE OR
VIEW NAME

PERSONNEL

(CONTO)

PROJECT

PflOJ_CPU_STAT

PROJ_EST

COLUMN
NAME

FULL_NAME

DATEENTRY

RgOJ_NAME

R:IOJ_NO

ACTNE_STATUS

PROd NO

SUB DATE"

CPU_NAME

_OJ_NO

SUB DATE

T SYS

T COM

TUNE

T_NEWLINE

T_MOO_UNE

T..CX.D_LINE

PRO_HR

MAN_HR

DESCRIPTION

FULL DESCRIPTIV_ NAME OF
PROGRAMMER

DATE ON WHICH P_MER WAS
ENTERED INTO SYSTEM

T._BLE CONTAINING INFORMATION
ABOUT ALL PROJECTS IN THE
DATABASE

_UeCT_W

ID UNI(_JELY IDENTIFYING EACH

PROJECT CATEGORY

CURRENT STATUS OF PROJECT

TASLE CONTAININO AT-COMPI--rRO_
COMPUTER RESOURCE STATIS"rics
FOR ALL PROJECTS IN DATABASE

IO UNIQUELY IDENTIk"Y1NO EACH
PROJECT

SUBMISSION DATE OF PCSF

SHORT NAME IDENTIFYING COMPUTER

USED ON _ ,z_qOW CGtIoUTER
TAm_=)

TOTAL COMPUTER HOURS USED FOR
PART_,t,%AR COMPUTER ON PROJECT

TOTAL NUMBER OF RUNS FOR PAR'TIC..
ULAR COMPUTER ON PROJECT

TABLE CONTAINING ESTIMATED
STATISTICS FOR ALL PROJECTS IN
DATABASE

IO UNIQUELY IDENTFY1NG EACH
PROJECT

SUBMISSION DATE OF PEF

ESTIMATED TOTAL NUMBER OF
SUBSYSTEMS

ESTIMATED TOTAL NUMBER OF
COMPONENTS

ESTIMATED TOTAL NUMBER OF LINES
OFCODE

ESTIMATED TOTAL NUMBER OF NEW
UNES OF CODE

E_I"IMATED TOTAL NUMBER OF MODk
RED UNES OF CODE

ESTIMATED TOTAL NUMBER OF
LINES OF COOE

ESTIMATED TOTAL PROGRAMMER
HOURS

ESTIMATED TOTAL MANAGEMENT
HOURS

CHAR_)

DATE

CH_ (8)

NUMBER (3, m

AR (i

CHAR (10)

NUMBER(s,o)

OATE

CHA_I0)

NUMBER
(lO, 2)

NUMBER (0, 0)

NUMBER ($,0)

OATE

NUMBER (4, 0)

NUMBER (4. 0)

NUMBER (7. 0)

NUMBER (6, 0)

NUMBER (6, O)

NUMBER ($, 0)

NUMBER (10, 2)

NUMBER (10, 2)

"VALn CO_JVALUE

TTrrUOF/_,SS,SIM,oRsrr,
SCENTFIC. DATABASE,
REAL'TIME, TOOL, OTHER

ACT DEV, ACT_MAIN'T,
INACTIVE, DISCONT

REFERENCE
IO

M2

M3

P1, D1

P2

P3

P124, D83

Pt34, D38

P13_5, D94

P136. D95

PI3, D2

P14. D14

I>15, D15

P16, DIB

P19. O1"l

P19. O17

P18. D18

P17, D19

I=20, D1-1

/:'21, D12

5063

4-7

Table 4-1. SEL Database Tables and Views--Table and Column

Descriptions (6 of 9)

m

m
m

VIEW NAME

_ROJ_EST SERHR
[CONrD)

=lqOJ_ES'r PHA.SE

PROJ_FORM

PROJ_(J_I

Pg,OJ ME58

DESCR_T_N TYPE VNJD COO_VALUE REFERENCEID

PHASE

START_DATE

_TE

ESTIMATED TOTAL SERV1CES HOURS

TABLE CONTAINING ESTIMATED AND

AT-COMPLETION PHASE DATES FOR

ALL PROJECTS IN THE DATABASE

ID UN_UELY _ENnF_NG EACH

PROJECT

8_klSSION DATE OF PEF OR PCSF

PHASE (XX)E ICEWr&'_4_ DIFFERENT

1_4Asr_ IN UFE OF PRO.IE_

START DATE OF A PARTICULAR PHASE

END DATE OF A PN:iTICt.P.AR PHASE

TABLE CONTNMNO FORM IDENTIFICA-

TION A.NO $'rATU8 INFORMATION FOR

PEF. pC_I:. _EF. AND _ DATA

! PROJ NO 10 UNI(_JIq Y IOENTIFYINO EACH

PROJECT

SUB_DATE SUBMISSION DATE OF SPF. PEF. PC,gF.

OR 8EF

FORM NO FORM NUMBER OF SPF PEF _ OR

SEF

FORM TYPE TYPEOF DATACOU.ECTION FORM

STA'nJs ._q'AI"U5 COOE FOR F(:_IM DATA

_MSER(_o.2)

T/iBLE CONTAINING GROWTH HISTORY

INFORMATION FOR ALL PROJECTS IN

DATABASE

PROJ NO ID UNIOJELY IDENTIFYING EACH
PROJECT

SUB DATE SUBE41S,,_ONDATEOFSPF

(]RUNE TOTAL NUMBER OF UNES OF CODE

C//ITH COMMENTS) IN PROJECT CON-

TROLLED SOURCE LIBRARY

GP_MOO TOTAL NUMBER OF MOCULE5 IN PROJ-

ECT COMTROLLED LIBRARY

GR_CH TOTAL NUMEER OF CHANGES

RECORDED IN PROJECT CONTROLLED

UBRARY

! TABLE CONTNNING GENERAL PROJECT:

l DESCRIPTION INFORMAT_N FOR ALL

PROJECTS IN DATABASE

PROJ.NO ID UNI(XIELY I[X_NTIF_NG EACH
PROJECT

MESS TYPE GENERAL PROJECT DESCI:IIPTION
CODES

NUMBERp.. 0)

DATE

_ _ r

NU_eER (3. 0)

DATE

CH_R_

ON_

(10)

NUMBER(3.

DATE

• J_SER F,

NUMBER(4, 0)

NUMBER(¢

REQNI". DESGN, COOEr. SYSTE,

_CCTE.CLEAN.M_JNT

SPF, PEF,PCSF,SEF

UNCH_ _ECT. HCERROR,

VERAP

COMPACC. CONUB, CSCPI CURPH

DERMA,GHTOOCGS_CP,SELF.
T_0 TEXT1, T'EXT2, TEXT3,

TEXT4, TEXTS, TEXTS. TEXT7,

TEXTD. TEXTg, TEXTI 0

5063

4-8

P23, D13

PS, _ P124. DI3

D3 TO Ol0,

De4 TO [:,et

P_TO Pl_

P12S TO P131

D3TO Oi0,

De4 TO D_I.

I_TO 1=12.

PI2S TO P131

D_. D_ _

DlSO, D20, D49,

Dl13

m

M_

J

=

ml

mm

J

Bm

mm

n_

[]

J

z

=

u

w

Table 4-1.

TABLE OR COLUMN

VIEW NAME NAME

PROJ_MESS MESSAGE

(COm'D)
DATE_ENTR_

PROJ_PRCZ)

PROJ_NO

SUB DATE

RES_NAME

RE$..HR

RES_RUN
i

mOJ_SF.F

PROJ NO

EVALUATE

MEN; TYPE

I_OJ__F..SC-C

PROJ_MO

ICEAS_TYPE

SECOND L

P_OJ_STAT

PROJ NO

SUB_DATE

TECH_MAN
_HR

SERHR

T..SYS

T COM

SEL Database Tables and

Descriptions (7 of 9)

views--Table and Column

DE_CRtPTDN TYPE VAUD COOENALUE REFERENCE
- ID

GENERAL PROJECT DESCRIPTION CHAR (65) P4

ENTRY DATE OF EACH MESSAGE DATE

TABLE CONTAINING WEEKLY COMPUTER

RESOURCE USE INFORMATION FOR ALL

PROJECTS IN DATABASE

IO UNIQUELY IDENTIFYING EACH

PROJECT

SUBMISSION DATE OF SPF

SH(_Tr NAME II_=NTIFYING COMPUTER

USED ON A PROJECT (FRO_ COMPUTER

TOTN. CPU HOURS USED IN CURRENT

I WEEK

TOTAL RUN8 MADE IN CURRENT 'A_EK

TABLE CONTAINING SUBJECTIVE MEA-

SIURES FROM SEFs FOR ALL PROJECTS

W DATABASE

lid UNIQt.ELY IDENTIFYING EACH

PROJECT

INTEGER INDICATING THE VALUE OF

PNTncuI.AR MEN;_TYPE

C.¢X_S _ElCrII_INO PROJECT SUB.

JECTWE _F_STICS

TABLE CONTAJNINQ SECONDARY-

LEVlEL INFO, A8 _D ON BEFIk

FOR ALL PROJECTS IN DATA BASE

10 UNIQUELY IDENTIFYING

PROJECT

C_ IOENT/FYI_ PROJECTCHARAC-
IC8 AND TCOt U,SEO

SECONDARYLEVELINFCRMATDN FOR
PNRTCULAR MEN;_TYPE. AT
SENT, ALLTHE CO(_$ STORED HERE
ARE FOR'USE OF TOOLS"(PC:H)

T/_I.E CQNI"AJNINQ AT-CCMPt.ETION

51"AT1Sr¢8 FOR ALL. PROJECTS IN

DATABASE

IO UNIQUELY IOEKT'FYIN(I EACH

PROJECT

SUBMISSION DATE OF

TOTAL TLeCHNk?,AL _ MANAGEMENT

HOURS URED ON PROJECT

TOTAl. SERVICE HOURS EXI_NOED

ON PROJECT

TOTAL NUMIBER OF SUB.f STEM8

TOTAL NUMBER OF COMPONENTS;

NUMEER(3, 0)

DATE

CHNt (10_

NUMBER

(10, 2)

NUM_R (S, 0)

NUMBER(3, 0_

NUt,IER (1,0_

CH_ (1R _

NU_IBER (3, O)

CH_q (_0_

CHAR(10)

NUMBER(3. O_

DATE

NUMBER
(lo, 2)

NUMBER
(lo, 2)

NUMSER (4, 0_

NUMBER (4, 0}

1 TOS

PM01, PM02. PM03, F'm4, PM05.

PMae. Ira/, ST0e. ST0¢. S1"10, TM11,

TMIE TMI_ TM14, TM15, PC18, PC17,

RC1L PCll, PC_0, PC21, PC22, PC23.

PC_4, EN2S. _, EN27, EN2e, EN21).

EN30. PT31. PT32. PT33, PT34, PT35.

PT31

PC21

COMPI. LINK. EDIT, GRADIS, REPLP,

_. POLPR. ISPF, SAP, CAT,

PN_IVN.. TEST(X). INTERF. IS;E.

SYMDEB,CMT(X_ SDE. OTHER

1='23, D_2

P44, D_8

P45, D39

P46, D40

PM TO P107

P00 TO P123

P_0a, D_

P124, D83

P132. 092

P133, D93

P137, 096

P138, D97

m

5063
4-9

i

Table 4-1. SEL Database Tables and Views--Table and Column

Descriptions (8 of 9)

i

m

TABLE OR COLUMN
VIEW NAME NAME DESCRIPTION TYPE

PROJ_STAT
(CONTO)

PROJ_SUB

SPECtAL_ACT

SUBSYSTEM

5063

T_OH

LDOO

TUNE

T NEW LINE

T__D_LINE I

T OCO_UNE

T_OOMbENT

T_EXE_MOO

T_NEW UOO

T_UOO_MOO

T_OLD_MOO

T_EXE_STAT

T._NEW STAT

T_MOO_STAT

T OLD b'rAT

OJ.NO

SUB_PRE

SUBSY_O

SUS_DATE

EFF IO

SP ACTNffY

ACl"_HR

sussY..O

NAME

TOTAL NUMBER OF CHANGES

TOTAL PAGES CF DOCUMENTATION

TOTAL NUMBER OF LINES OF COOE

TOTAL NUMBER OF NEW UNES OF COOi

TOTAL NUMBER OF MOOFIED IJNES OF
COOS

TOTAL NUMBER OF O.D LIES OF COOE

TOTAL NUMBER OF COMMENT
S'I'ATEMENT8

TOTAL NUMBER CF EXECUTN_LE
M(:XXCES

TOTAL NUMBER OF NEW MOOULES

TOTAL NUMBER OF MODiRED MOOULES

TOTAL NUMBER OF OLD MOOCCES

TOTAL NUMBER OF EXECU'rNJI.E
ST ATEMENTS

TOTAL NUMBER OF NEW E_-CUTABLE

TOTAL NUMBER OF MOOfl_EO
EXECUTABLE STATEMENTS

TOTAL NUMBER OF OLD EXECUTJ_BLE
STATEMENTS

TABLE ASSOCIATING PROJECT ANO
SUSSYSTEM wrm SURROGAI_ KEY
THAT UNIQOELY IOENTIFE$ THE
SYSTEM FOR USE IN O1HER TABLES

ID UNIQUELY IDENTFYING EACH
PROJECT

SUBSYS'T'EM PREFIX

SURROGATE KEY REPRESENTING

UNIQUE PROJ_NO AND SUB_PRE
COMBINATION

DATE SUBSYSTEM WAS ENTERED

TABLE OONTAINING PROGRAMMER

ACTIVITY HOURS _ PRFs (Pk';n" C)
FOR ALL _T, PROGRAMMER, AND
WEEK COMBINATIONS

WCUES FROM P_IO (EFF_PROJ) OR
PS_ID (EFF SUB)

SPEC L_. ACTMTY TO WH K_H PRO-
GRAMMER IS CHARGING TIME ON

ACTUAL HOURS SPENT IN A
PARTICULAR ACTIVITY

TABLE CONTNNING NFORMATION FOR

NUMBER (e, 0)

NUMBER (8, O)

NUMBER (7. 0)

NUMBER (S. 0)

NUMBER (6, 0)

NUMeER(6.0)

NU_ER(e,_

NUMBER(4,0)

NUMBER (4, 0)

NUMmR(4,0)

NUI_R (4, 0)

NUMEER (S. O)

NUMBER (6. O)

NUMBER (e, O)

NUMBER (6, 0)

NUMOER (3, 0)

CHAR(S)

NUMBER (5, 0)

DATE

NUMBER

(1o, o)

CHAR (1o)

NUMBER

(lO, 2)

PARTICULAR SUBSYSTEMS. AS
_DON SlF=

10 UNIQUELY IDENTF'VWG EACH
SUBSYSTEM

SUBSYSTEM DESCRIPTIVE NAME

NUMBER (5, 0)

cHAR(40)

VAUD COOENALUE

-- ._

PEWORK. ENHANCE, DOCUMENT,
FIEUSE

USERINT, DPDC. REALTIME, GRAPH,
CPEXEC, SYSSERV, MATHCCMP

REFERENCE
ID

P130, 098

P140, D99

P141, D100

P142. D101

I)143. D102

P144. 0103

P145, 0104

P146, O105

P147, 0106

P146, D107

P149, D108

P150, 0109

P151. Dllo

P152, 0111

P153, O112

1:=47,051, 0152

PS0, DlSt

P_ TO P3a,
D33 TO D36

P48, 0153

4-i0

mm

i

m

m

I

[]

m

m

M

m !

[]

Table 4-1. SEL Database Tables and Views--Table and Column

Descriptions (9 of 9)

w

m

TABLE OR
VIEW NAME

SUBSYSTEM
(CON_)

SUB COM

VAUDAllON"

v_p_oJ_cOM

v_P_oJ_SUe_Ac'r

COLUMN
NAME DESCRIPTION TYPE

FUNC'nON SPECIFIC FUNCTION THAT SUBSYSTEM CHAR (f0)
PERFORM8

TABLE ASSOCIATING SUB,SYSTEM ANO
COMPONENT NAME WiTH
SURROGATE KL_f TI._T UNIQUELY
IDENTIFIES THE COMPONENT FOR USE
IN O'TI-IERTABLE8

8UBSY 10 IO UNIQUELY IDENTIFYING EACH NUMBER (S,O)
SUt_YSTEM

COM NAME COMUONENTOESCRRxnvENAME CHAR(40)

COM_NO SURROGATE KEY REPRESENTING NUMBER (7. 0)
UNW_UlE8UUY_IO AND COM. NN_E - - -
COMBINAllON

COM_DATE DATE ON _-.CH COMPONENT 18 DATE
ENTERED INTO OATABASE

F NAME

cooE

VALUE FULL DE_ON OF CODE

VIEW THAT JOIN6 THE PROJECT.
P_OJ_SU_ AND SUB_CGM TABLES

PfIOJ_NAME SAME A8 PROJ_NAME IN PROJECT

SUS_PRE SAME A8 8UB_PRE IN PROJ_SU8

COM NAME SAMIE A8 COM NAME IN 8UB..COt_

COM_NO SA_AS COMNO _ St__COM

VIEW THAT JOINS THE PROJECT,
EFF_FRO& EFF_SUB. AND EFF_ACT
TABLES

TABLE THAT IDENTIFIES VAUD
CODE81,18EO IN VARIOU6 FIELD8 IN
DATABASE AND PI:IOVlDE8
OESCRIPllON8 FOR THEM

RELD NAME FORW,4CHCO(_ kS VALID CHAR(20)

A_REV_TED CODE _ (10)

C_R (TS)

iP._ ._

CHAR

iCHAR

NUMBER

PROJ_NAME SAME A8 PIROJ_NAME IN PROJECT CHAR

SUE_PRE SAME A8 IMJB_PRE IN EFF_SUB CHAR

ACTIVITY SAME A8 ACTWITY IhlEFF_ACT CHAR

ACTFIR 84kME AS ACT_HR IN EFFJ_CT NUMBER

V_SU68YSTEM INFO _EW THAT JOIN8 THE PROJECT,
PROJ _J1_ AND 8U_YErIEM TABLES

PROJ_NA_E S._ME AS mOJ_NAME IN _OJECT ICHAR

SUB._PRE SAME AS SUB._PRE IN PRCU-SUB CHA_

NAME SAME A8 NAME A8 IN _d.JBSYSTE M CHAR

FUNCTION SAME All, FUNCllON IN BUOYS"rE M CHAR

SUB_DATE SAME A8 8UILDATE IN PROJECT DATE

'NOTE: _ APP£NOIX A FOR A DE_,_RIPTION OF ALL COOE8 ANO VALUE8.

REFERENCE
VALID COOENALUE IO

P4O, D154

1="31,053

PS2

5063

4-ii

W

_-(L)seos

oo-
,e'f _I I

E_

w2_o2_oooo_ ©o 2" "2 _2_2 _°_

o

I

O; o_

i!*'I,_,

=:_

l

m

F_I

J

l

m

_m

U

m

_J

m

i

5063
4-12

u

I

0

_0

o

I

I

io

5063

4-13

Jl

I:=

co

u_ - .•_ _ !!!_!!!!!!!--!!_ !!!
I
I

.i.,I
I>

rn
a)

,._A

0

_v

_4
!

1]1

J

z

i

m

J

m

W

m

M

w

i

J

I

5063
4-14 m

u

w

=:

0

{.)

O_
O_

{.)

L)

I
I

,el

,,..4

_o
._P.4

0

n-
w
Q
==

O. "_Z

5063

4-15

=

w

s-(L)cgo_

in

0
u.i3

Q)

I
I
In

.e.I

oo_ 2_2ON_NOOOOOOOOOOOOOOOOO

I1
Pl

°^ I
_O

c_

o 2

:' _

I

o

_n |

i

i

m_

!

w

m

111

u

m

m
_w

[]

R

5063

4-16

U

w

0

r_

.el
r,,)
0,1

e-4

I
I

0e.t

,I=A
_0
4.1,-I

0

I

l=d

(9,,,

Z

9-(L)c9o_

xx xxx _ x _ x-_._ _ xxx_| _|_ | ._ . _,____

%

>.

,.,_,,-, _, , ,
"_I 0_I I I __ I

5063

4-17

im

L_L)CgO_

0

,_14.1C0 _ z

I,M

u

,_ e'b

°
I11

|

I
I

VI

.F,I

m

[n

I

I--

l

i

II

==1

[]

tl

im

=

I

i

lie

E!

_I
il

_==.j

i

[]

5063

4-18

[]

|

i

0

u,,,l

J-I

I
I

,=4

_0
.1..I r-.l

0

I

=¢

i'
Z

b3

°I QQ QQ
_ QQ QQ Q{ QQ QQ _>

¢B

II °,"

5063

4-19

W

{a

o
.M

{J
.M

(D

.}

I
I

_a

,--I
,m

(D
{a

_A
_O

O

,4
I
'W'

Q)

,m

a

_h

ii

W

i

I

W

m

I

g

u

i

m

W

mm

mm

m

im

5063

4-20 i

U

F

0_-(_)cs0s

fa

O
.Pi
4J

ro
.,,.,i
q-i
°P.i
r,J
¢D
O,,
Ca

,-,i

rJ
,,,4

l-,
I

_uJ

°=_ _,a,_,_
= J

Q

3

%
W

o'1

i _ !! !!!! !!!!_!!!!
°r,,I

II1

_A

.It

o_. 90®= oN== o9®,-=
. v,-

1

,4
I

w

5063
4-21

containing the project name, project type, and project sta-
tus is created. A unique project number is also assigned

and stored in the same record. The rest of the project data

are stored in various tables. The relationship between
tables PROJECT and PROJ_SUB is defined through the project

number column.

Figures 4-1 through 4-3 depict these relationships and rep-
resent them as tree structures. Figure 4-1 shows the rela-

tionships among project related data. Figure 4-2 shows the
relationships among system support tables. Figure 4-3 shows
all the tables that are related to the tables containing

computer, manpower, and services data. _

In these figures, each tree is a logical entity of related
tables. The name shown within each block is a table name.

The top node in each tree is theparent node, and the others

are dependent nodes. Each dependent n6de occurrence in the
tree must have a record in its parent. For example, each

record existing in table SUBSYSTEM that contains detailed

subsystem information must first have been created in the

PROJ_SUB table, slnce the record in the PROJ SUB table con-
tains the vital information--the project number and the sub-

system prefix. The name(s) shown at the upper left corner
Of each block corresponds to the field name that links these

tables together and can be used as a joining column. For

example, field COM_NO can be specified in a WHERE clause for

joining tables SUB_COM and COM_PURPOSE. If the common col-
umns in both the parent and child tables have the same name,

only one name is shown. Otherwise, both column names from
these tables are shown and the notation "-" is used to show
that they share common values. The left-hand side of the

equality is the column name from the parent table; the

right-hand side is the column name from the child table.

For example, to join tables EFF_PROJ and EFF_ACT in a SQL
SELECT statement, the joining columns are P_ID from EFF_PROJ

and EFF_ID from EFF_ACT.

The relationships between data elements and tables are de-
scribed in detail in Reference 2. However, some of these

relationships are worth mentioning here so that the reader
can understand how the data are logically divided and stored

in the database. Observe that the d@ta _eiements that make

up each of the major data groups presented in Section 2 may
reside in one or more tables, depending on the number of

occurrences of a Particular data elements. For example,
consider the component informatlonwlthin the structure and

size data group. For each component of a project, all

component-related data, such as origin, creation date, type,
etc., reside in the COM_SOURCE table, with the exception of

the component purposes. These reside in the COM_PURPOSE

5063

4-22

l

J

M

U

i

mm

i

mm

g

m

R

l
m

i

_I I

m_

= =

5063

1

4-23

lid

=_

ill

l

i • i fl ii IPERM SCRIPT

I
SCRIPT_NO !

I ,GENERATE_SAT_DAYI

REPORT_TYPE_SE LECT1ON i

l REP_CONDITIONSI

ITEMP..SCRIPTI

sc.l_..o I _-_-
I SCRIPTREPORTI

i
REPOFIT_TYPE=SE LECTIOI_

I SCRIPT-PROJECTS I

USER_CLASS I

!

I USER-CLASS-AccEss I

!
USER_CLASS i

USERCLASSI I TABLEPR,V,LEGE]

O0.,PT.Oi .O.,PT_ l OO':"P_._ISO"'PT_N_!
ITEMP_MANHRSlITEMP SERVHRSl ITEMP ACTIVITYI IrEMP_FORMCT!!

Figure 4-2. Relationships Among Support Data Tables

i

m
i

u

=

i

g

i

M

i

m

m

i

I

5063

4-24

N

j_

L_

= :

CPU_NAME

[PROJ_CPU_STAT

I COMPUTER-I-

CPU NAME. RE$_NAME I

I I PROJ_PROD

w

z

L_

! PERSONNELI

PROG_ID I PROG_ID PROG_ID

[EFF_PROJ J ICOM_SOURCEII CHANGE

O_

"l

Figure 4-3. Relationships Involving the COMPUTER and
PERSONNEL Tables

w

5063

4-25

table because one component can have multiple purposes.

This logical partitioning of data is performed during the

database design process to ensure data integrity and mini-

mize data redundancy.

For the same reasons, staff hours information within the

resource usage data group resides in different tables. Reg-

ular activity hours for all projects reside in the EFF_ACT
table. The data elements required for retrieving project-

related activity hours, such as project and programmer IDs,

are stored in the EFF_PROJ table. Additional data elements

required for retrieving subsystem-related hours,-such as
subsystem prefixes, are stored in the EFF_SUB table. Using

this arrangement can minimize data redundancy. As mentioned

in Section 2, some projects may not have subsystem-related

activity hours. Thus, the activity hours may be retrieved
from the EFF_ACT table by directly joining _t with the EFF_

PROJ table, or via the EFF_SUB table. _These relationships

are depicted as connected lines in Figure 4-1.

In addition, some of the tables are used as connectors to

relate data items together that reside in different tables.

For example, consider the CHANGE_COM table within the change

data group. It does not contain any SEL forms data. It

only contains two surrogate key fields, change number and
component number. The fields in this table can be used to

connect the change data with the size and structure data,

specifically project and subsystem data items that are Stored
in various tables. Other tables, such as PROJ_SUB and SUB_

COM, have a functionality similar to the CHANGE_COM table.

4.2.2 DESCRIPTIONS OF SUPPORT DATA TABLES

The tables described in this section do not contain software
engineering data. Rather, they are used tostore data that
are internal to the database structure and to store data

that are used by the database operational software.

CRFTEMP_CHANGE_COM

This table is used for running the CRF menu screens
(CRF_UPDATE, CRF_INSERT, CRF_QA). It contains the component

information associated with the current CRF form. The in-

formation is uniquely identified with a USER_ID. This is

actually the SESSIONID of the current user.

DUMMY

This table is used by the data entry software. It is up-

dated with null values during data entry to invoke, or trig-

ger, certain sequences of operations to be performed.

5063

4-26

I

L--

I

l

u

W

W

zz_

J

w

E

= =
-- m

I f

m

I

m

-_..

w

GENERATE_SAT_DAY

This table is used in generating database reports. It
stores all the Saturday dates for reports that display

weekly information. Once the dates are used by a report,
the corresponding entries in this table are then deleted.

PERM_SCRIPT

This table is used in generating database reports. It

contains header information about the permanent report

scripts. A report script is built during interactive re-

port selection via the SEL user interface. The scripts are

identified by the script numbers and their owners.

T

This table is used as a look up table for the Report Inter-

face System. It contains all of the possible report titles,

report types, batch queues, and log printers. For each en-

try in the table there is a function and a unique code which

corresponds to a detailed value. These values have two pur-

poses. They are used to display information in a readable
form so that user will easily understand the contents of a

report script, and they are used to list available options

for queues, printers, etc.

REP_CONDITIONS

This table is used in generating database reports. For each
record in table SCRIPT_REPORT that has a value in the field

REPORT_TYPE_SELECTION, there will be an entry in this table

to further specify the conditions to be applied in selecting

a set of projects within that particular report.

SCRIPT_PROJECTS

This table is used in generating database reports. It

stores the names of the projects that are selected for a

multiple-project report. The only entries stored in this

table permanently are for the permanent scripts that have a
REPORT_TYPE_SELECTION (in table SCRIPT_REPORT) of "LIST."
The entries that are created for temporary scripts are de-

leted once the report has been generated.

SCRIPT_REPORT

This table is used in generating database reports. It con-
tains the bodies of all scripts; including both temporary

5063

4-27

and permanent scripts. The type of reports within a script,

its sequence, and other report-related information are also

specified in this table.

SEONO

This table is used by the data entry software. It contains

the maximum values of all the system-generated iDs in the

database. The system-generated IDs are used in the follow-

ing tables and columns:

Im_m_Ham_

PROJECT

PROJ_SUB
SUB_COM
PERSONNEL

EFF_PROJ

EFF_SUB
PEP,M_SCRIPT

TEMP_SCRIPT

Column Name

PROJ_NO

SUBSY_ID

C0M_NO
PROG_ID

_'P_ID

PS_ID
SCRI PT_N0

SCRIPT_NO

TABLE_PRiVILEGE

This table is used in enrolling database users, it defines

the access privileges that each user class may be granted

for each table in the database. The valid privileges are

select, insert, update, delete, alt-er table structure, and
create indices.

TEMP_ACTIVITY

This table is used for producing the Programmer Activity

Hours Reports. It contains all of the possible activities
for each week the project has been in a working phase. For

each activity and week, the total number of hours worked is

also stored. To populate this table the GENERATE_SAT_DAY

table must first be populated with the correct Saturday
dateS.

TEMP_FORMCT

This table is used for producing the Project Form Counts

Reports. It contains the total number of CRFs, COFs, and
SPFs that have been entered since the pr0ject has been in a

working phase. For each form type and week, the total num-
ber of forms entered is also stored. To populate this table

the GENERATE_SAT_DAY table must first be populated with the

correct Saturday dates.

t_

J

i

i

l

i

==.

m

J

J

g

m
i

J

m

Q

5063
4-28

i

_I

TEMP_MANHRS

This table is used for producing the Manpower Hours Re-

ports. It contains all of the programmer names for each

week the project has been in a working phase. For each pro-

grammer and week, the total number of hours worked is also
stored. To populate this table the GENERATE_SAT_DAY table

must first be populated with the correct Saturday dates.

TEMP_SCRIPT

This table isused in generating database reports. It con-
tains header information about the temporary report scripts

that are created by each user during an interactive ses-
sion. The script owner, his/her process ID, the script sta-

tus, and other script-related information are stored in this

table. The scripts are identified by _h@ script numbers.

TEMP_SERVHRS

This table is used for producing the Services Hours Re-

ports. It contains all of the support names for each week

the project has been in a working phase. For each support
and week, the total number of hours worked is also stored.

To populate this table the GENERATE_SAT_DAY table must first

be populated with the correct Saturday dates.

USER_CLASS

This table is used in enrolling database users. It contains

all users' ORACLE user IDs and their user class specifica-

tions. Currently, there are five types of user classes:

general user, librarian, quality assurance, SEL database ad-
ministrator (DBA), and system maintenance user.

USER_CLASS_ACCESS

This table is used in enrolling database users. For each

user class specification, the types of functional access

permitted are stored in this table. The current valid types
of access are form, query, view, backup, delete, distape,

general, insert, update, QA, DBA, import, and restore.

VALIDATION

This table stores all the codes and their corresponding de-

tailed descriptions used by various tables throughout the

database. (Appendix A provides a complete list of all the

5063

4-29

codes and their descriptions.)
are listed below.

Fields that use coded values

4.2.3

Table Name

PROJECT

PROJECT

PROJ_FQRM

PROJ_ESTPHASE
PROJ_MESS

PROJ_SEF

PROJ_SEF_SEC

EFF_FORM
EFF_ACT

SPECIAL_ACT
CHANGE

CHANGE

CHANGE

CHANGE

CH_ADAFEAT

CH_ERR_ARES

CH_ERR_GEN

CH_ERR_GEN
CH_ERR GEN

CHERR
COM_PURPOSE

COM_SOURCE

COM_SOURCE

COM_SOURCE
SUBSYSTEM

SCRIPT_REPORT
REP_CONDITIONS

DATABASE CONSTRAINTS

r

Field Name

ACTIVE_STATUS

PROJ_TYPE
STATUS

PHASE_CO

MESS_TYPE

MEAS_TYPE
SECOND_L
STATUS

ACTIVITY

SP_ACTIVITY
STATUS

:EFF_ISO_CH

EFF_COM_CH

CH_TYPE

ADA_FEATURE

ERR_ARES

ERR_SQURCE
ERR_CLASS

ERR_ACAUSE

ERR_TOOLS
PURPOSE

STATUS

ORI_TYPE

COM_TYPE
FUNCTION

REPORT_CODE
PROJ_TYPE

various constraints are associated with the database. Con-

straints are defined to ensure that the database contains

only accurate and consistent data and to protect the data

against unauthorized or accidental alterations. In the SEL
database environment, constrain£s are identified as access

constraints or data integrity constraints. Access con-

straints are associated with each user class and are defined
as follows:

• General user--Has read access to all data

Data librarian--Has read, write, and update access
to the form-related data

I

R

m

I

mm

J

m

U

w

l

I

5063

4-30
w

J_
z_m
M
ms

%-.

QA--Has read, and update access to certain form-

related data

• DBA--Has read, write, and update access to all data

System maintenance--Has read access to all data,
and read, write, and update access to system sup-

port data

Data integrity constraints are applied to all insertions to,

deletions from, and updates of the database. Table 4-3
describes these constraints. They are used not only in

structured query language (SQL) queries, but also in the

operational data entry software. Table 4-3 lists only the
database tables that have constraints. In addition to these

constraints, field EFF_ID in table EFF_ACT and table
SPECIAL_ACT contains values from both the P_ID field (in

table EFF_PROJ) and the PS_ID field (in table EFF_SUB).
This constraint is accommodated by assigning mutually

exclusive values for P_ID and PS_ID.

4.3 MAPPING THE CONCEPTUAL VIEW TO THE LOGICAL VIEW

This section presents a schema, shown in Table 4-4 (at the

end of the section), that maps both the conceptual and the
data collection views of the SEL data mentioned in Sections

2 and 3 to a unified logical view. The schema is intended

to provide general users who would like to retrieve data

using SQL queries with more detailed information of how to

get to the desired data. By using this schema, along with
the specific instructions on how to access the SQL in the

SEL database environment provided in Section 5.3, general

users can set up their own queries to look at the data in

their own specific ways.

Table 4-4 lists all the IDs used in Sections 2 and 3 that

identify the data items in the database and gives the names
of the table and the column where that data item is stored.

This table is ordered by target table and target column.

Required access information, information needed to obtain a

particular piece of data, is also provided for each ID.
Under the columns "TARGET TABLE" and "TARGET COLUMN" are the

field/table where data are being retrieved. For example, to

retrieve the activity hours for a particular programmer (see

page 7 of Table 4-4, under ACT_HR/EFF_ACT), the project

name, the programmer, the project name, the programmer name,
and the submission date of the PRF or the form number must

be provided before the appropriate activity hours can be
retrieved.

5063

4-31

Table 4--3. Constraints on Database Tables (1 of 6)
m

TABLE

CHANGE

CHANGE_COM

CH_ADAFEAT

CH_ERR ARES

CH_ERR_GEN

i_ ill

CONSTRAINT

THE PROGRAMMER ID (PROG_ID) MUST EXIST IN THE PERSONNEL TABLE.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL_STATUS VIEW.

THE EFFORT TO IMPLEMENT CHANGES CODE (EFF_COM_CH) MUST EXIST
INTHE VAL_COM_CH VIEW.

THE EFFORT TO ISOLATE CHANGES CODE (EFF_ISO_CH) MUST EXIST IN
THE VAL_ISO_CH VIEW.

THE TYPE OF CHANGE (CH_TYpE) MUST EXIST IN THE VAL_CH_TYPE VIEW.

THE FORM TYPE (FORMTYPE) MUST EQUAL 'CRF'.

THE CRF FORM NUMBER (CHANGE NO) MUST BE UNIQUE.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB...COM TABLE.

THE CRF FORM NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE.

THE ADA FEATURE CODE (ADA_.FEATURE) MUST EXIST IN THE
VAL._ADA_FEATURE VIEW.

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE,
THE FLAG INDICATING WHETHER THE USE OF ADA CONTRIBUTED TO THE

CHANGE (EFF ADA) INTHE CHANGE TABLE MUST EQUAL 'Y' FOR THAT
CHANGE, AND CH_TYPE MUST BE 'ERRCO'.

RESOURCE CODE NEEDED TO CORRECT ADA ERROR (ERR_ARES) MUST
EXIST IN THE VAL_.ERR_ARES VIEW.

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE,
THE TYPE OF CHANGE (CH_TYPE) iN THE CHANGE TABLE MUST EQUAL
'ERRCO' FOR THAT CHANGE, AND EFF_ADA MUST EQUAL 'Y'.

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST IN THE CHANGE TABLE,
AND THE TYPE OF CHANGE (CH_TYPE) INTHE CHANGE TABLE MUST EQUAL
'ERRCO' FOR THAT CHANGE,

THE SOURCE OF ERROR CODE (ERR_SOURCE) MUST EXIST IN THE
VAL_ERR_SOURCE VIEW.

CAUSE FOR AN ERROR INVOLVING ADA CODE (ERR_ACAUSE) MUST EXIST
IN THE VAL_ERR_ACAUSE VIEW,

CLASS OF ERROR CODE (ERR_CLASS) MUST EXIST INTHE
VAL_ERR_CLASS VIEW.

04
,';"

04
¢,O
O
t¢3

ill

[]

l

I

g

i
J

m

J

H

U

D
I

U

m !

z

BIB

5063

4-32
I '

H

w

Table 4-3.

TABLE

CH_ERR_TOOLS

COM_PURPOSE

COM_SOURCE

COM_STAT

CRF_TEMP_CHANG
E COM

EFF_ACT

EFF_FORM

Constraints on Database Tables (2 of 6)

CONSTRAINT

ADA TOOLS AIDED INTHE DETECTION OR CORRECTION OF ERROR CODE

(ERRTOOLS) MUST EXIST INTHE VAL_ERR_TOOLS VIEW.

THE CHANGE NUMBER (CHANGE_NO) MUST EXIST INTHE CHANGE
TABLE, THE TYPE OF CHANGE (CH_TYPE) INTHE CHANGE TABLE MUST
EQUAL 'ERRC_ FOR THAT CHANGE, AND ERR_ADA MUST EQUAL _".

THE COMPONENT NUMBER (COM_NO) MUST EXIST INTHE SUB_COM TABLE.

THE COMPONENT PURPOSE (PURPOSE) MUST EXIST IN
VAL_COM_PURPOSE VIEW.

THE COMPONENT NUMBER (COM_NO) MUST EXIST INTHE SUB_COM TABLE.

THE COF NUMBER (FORM_NO) MUST BE UNIQUE W_IN THIS TABLE.

THE STATUS CODE (STATUS) MUST EXIST IN THE VAL._STATUS VIEW.

THE COMPONENT TYPE CODE (COM_TYPE) MUST EXIST IN THE
VAL_COM_TYPE VIEW.

THE PROGRAMMER ID (PROG_ID) MOST EXIST IN THE PERSONNEL TABLE.

THE ORIGIN OF A COMPONENT CODE (ORI 'T'YPE) MUST EXIST IN THE
VAL_ORLTYPE VIEW.

THE FORM TYPE (FORM_TYPE) MUST EQUAL 'COF'.

THE COMPONENT NUMBER (COM_NO) MUST EXIST IN THE SUB_COM TABLE.

SUBSYSTEM PREFIX (SUB_PRE) MUST EXIST IN THE PROJ_SUB TABLE.

COMPONENT NAME (COM_NAME) MUST EXIST INTHE V_PROJ_COM VIEW.

COMPONENT NUMBER (COM_NO) MUST EXIST IN THE V_PROJ_COM VIEW.

THE EFF_ID MUST EXIST EITHER IN THE EFF_SUB (AS PS_ID) OR IN THE
EFF_PROJ (AS P._ID) TABLE.

THE ACTIVITY CODE (ACTIVITY) MUST EXIST IN THE VAL_ACTIVITY VIEW.

THE P_ID MUST EXIST IN THE EFF_PROJ TABLE. m
i

THE FORM TYPE MUST BE EITHER 'PRF" OR 'SPF'. _-
¢'%1

THE STATUS CODE (STATUS) MUST EXIST tNTHE VAL_STATUS VIEW.

5063
4-33

i

l

Table 4--3 ° Constraints on Database Tables (3 of 6) U

I
TABLE

EFF_PROJ

EFF_SUB

EFF_SUPER

GEN E_TE_SAT_DAY

PERM_SCRIPT

PR_ECT

PR_C PU_STAT

PRIEST

PRiEST_PHASE

CONST_I_

PR_ECT NUMBER (PR__NO) MUST EXIST INTHE PR_ECT TABLE.

THE PR_MMER iD (PR_) MUST EXIST IN ME _R_ONNEL TABLE.

ME SUBMISSION DATE (SUB_DA_) MUST _ A VALID FRIDAY DATE.

THE P_tD MU_ _ UNIQUE.

THE P ID MUST EXIST IN ME EFF_P_ TAME.

THE SU_YSTEM PREFIX (SUB_PRE) MUS_ EXIST IN ME P_SUB TABLE.

ME PS_ID MUST BE UNDUE.

THE P_ID MUST EXIST IN THE EFF_P_ TAME.

THE RE_ SCRIPT NUM_R (SCRIPT_NO) MUST EXIST IN THE
TEMP..SCRIPT T_.

ME DATE (SAT_DAY) MUST BE A V_ID SATURDAY DATE.

THE SCRIPT NUMBER (SCRIPT_NO).MUST BE UNIQUE.

THE O_C_ USER ID (_USER) MUST EXIST IN ME USER_C_SS TABLE.

THE VALID VALUES F_ FIE_ OUT_RO_ING ARE 'P' FOR PRINTER, °F' FOR
FliP.

THE _P_ FILE NAME (_Fll F) MUST BE ENTERED IF THE VALUE IN
FIE_ OUT_RO_ING EQUALS 'P.

_E PR_ECT NUMBER (P_J_NO) MUST BE UNIQUE.

THE PR_ECT NUMBER (P_J_NO) MUST _IST IN THE P_JECT TABLE.

THE _P_ER NAME (CPU_NAME) MUST EXIST IN THE COMPUTER TABIP

THE PR_ECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE PR_ECT NUMBER (PR_NO) MUST EXIST IN THE P_JECT TABLE.

THE PHASE C_E (PHASE_CO) MUST EXIST IN THE VAL_PHASE VI_.

THE PHASE STA_ DATE (START_DATE) AND END DATE (END_DATE) MUST
BE VALID SATURDAY DATES.

,#
T--

w

T--

BI

=

J

J

lira
m
lib

B

i

Jl

W

U

U

5063

4-34

[]
I

i

,.=..

Table 4-3.

TABLE

PROJ_FORM

PROJ_GRH

PROJ_MESS

PROJ_PROD

PROJ_SEF

PROJ_SEF_SEC

PROJ_STAT

PROJ_SUB

REP_CONDITIONS

Constraints on Database Tables (4 of 6)

CONSTRAINT

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE STATUS CODE (STATUS) MUST EXIST INTHE VAL_STATUS VIEW.

THE FORM TYPE (FORM_TYPE) MUST EQUAL 'PEF', 'SPF', 'PCSF', OR 'SEF'.

THE FORM NUMBER (FORM_NO) MUST BE UNIQUE WITHIN A PARTICULAR
FORM TYPE.

THE PROJECT NUMBER (PROJ__N(D)MUST EXIST IN THE PROJECT TABLE.

THE SUBMISSION DATE (SUB DAI:E) MUST BE A VALID FRIDAY DATE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE GENERAL PROJECT DESCRIPTION CODE (MESS'TYPE) MUST EXIST IN
THE VAL_MESS_TYPE VIEW'.

THE PROJECT NUMBER (PROJ NO) MUST EXIST INTHE PROJECT TABLE.

THE COMPUTER NAME (RES NAME) MUST EXIST INTHE COMPUTER TABLE.

THE SUBMISSION DATE (SUB_DATE) MUST BE AVALID FRIDAY DATE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS..TYPE) MUST EXIST
IN THE VAL_MEAS_TYPE VIEW.

THE SUBJECTIVE EVALUATION MEASUREMENT (MEAS_TYPE) AND THE
PROJECT NUMBER (PR__NO) MUST EXIST IN THE PROJ_SEF TABLE.

THE SECONDARY-LEVEL INFORMATION OF VARIOUS MEASUREMENT

CODES (SECOND_L) MUST EXIST IN THE VAL_SECOND_L VIEW.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE PROJECT NUMBER (PROJ_NO) MUST EXIST IN THE PROJECT TABLE.

THE SUBSYSTEM ID (SUBSY_ID) MUST BE UNIQUE.

THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST tN THE SCRIPT_REPORT
TABLE, THE REPORT_TYPE_SELECTION FIELD IN THE SCRIPT_REPORT
TABLE MUST EQUAL 'SCONDITION', AND THE REPORT_SEQ MUST EXIST IN
THE SCRIPT_REPORT TABLE.

J..

U3

5063
4-35

Table

TABLE

SCRIPT_PROJECTS

SCRIPT_ REPORT

SEQNO

SPECIAL_ACT

SUBSYSTEM

SUB_.COM

TABLE_PRIVILEGE

TEMP_SCRIPT

5063

4-3. Constraints on Database Tables (5 of 6)

CONSTRAINT

THE SCRIPT NUMBER (SCRIPT_NO) MUS_T EXIST IN THE SCRIPT_REPORT
TABLE AND THE REPORT SEQUENCE (REPORT_SEQ) MUST EXIST IN THE

SCRI PT REPORT TABLE.

THE PROJECT NAME (PROJ_NAME) MUST EXIST IN THE PROJECT TABLE.

THE SCRIPT NUMBER (SCRIPT_NO) MUST EXIST IN EITHER THE PERM SCRIPT
OR THE TEMP_SCRIPT TABLE

THE REPORT CODE (REPORT_CODE)MUST EXIST IN THE
VAL_REPORT_CODE TABLE. -" _. _-

THE TYPE OF REPORT CODE (REPORTTYPE) MUST EQUAL 9' FOR SINGLE
PROJECT REPORT, 'k¢ FOR MULTIPLE-PROJECT REPORT, OR _' FOR
MISCELLANEOUS REPORT. IF REPORT_TYPE EQUALS TO 'M', THE VAUD
VALUES FOR REPORT_TYPESELECTION ARE 'ALU, 'ACTIVE', 'INACTIVE',
<3CONDITION', 'LIST'. IF REPORT_TYPE EQUALS TO _, THE
REPORT_TYPESELECTION IS NULL IF REPORT_TYPE EQUALS TO <J', THE
VALID VALUES FOR REPORTTYPESELECTION IS A VALID PROJECT NAME
(PROJ_NAME) IN PROJECT.

THE TABLE NAME (TABLE_NAME) MUST EXIST IN THE DATABASE.

THE FIELD NAME (FIELD_NAME) MUST EXIST IN THAT PARTICULAR TABLE.

THE EFF..ID MUST EXIST IN EITHER THE EFF PROJ (AS P..ID) OR THE
EFF_SUB (AS PS_ID) TABLE.

THE SPECIAL ACTIVITY CODE (SP_ACTIVITY) MUST EXIST IN THE
VAL_.SP..ACTIVITY VIEW.

THE SUBSYSTEM ID (SUBSY_ID) MUST EXIST IN THE PROJ__SUB TABLE.

THE SUBSYSTEM FUNCTION (FUNCTION) MUST EXIST IN THE
VAL_S_FUNCTION VIEW.

THE SUJ3SYSTEM ID _SLIBSY_ID) MUST EXIST JN THE PROJ_SUB TABLE.

THE COMPONENT NUMBER (COM_NO) MUST BE UNIQUE.

THE USER CLASS (USER_CLASS) MUST EXIST IN THE USER_CLASS TABLE.

THE TABLE NAME (TABLENAME) MUST EXIST IN THE DATABASE.

THE SCRIPT NUMBER (SCRIPT_NO) MUST BE UNIQUE.

THE ORACLE USER ID (ORA_USER) MUST EXIST IN THE USERCLASS TABLE.

THE VALID VALUES FOR FIELD OUT_ROUTING ARE 'P' FOR PRINTER, 'P FOR
FILE.

THE OUTPUT FiLE NAME (OUT_FILE) MLI_T BE ENTERED IF THE VALUE IN
FIELD OUT_ROUTING EQUALS 'F'.

¢D

JA

OJ

4-36

g

Ill

g
i

_I

g

Ill

m

IB

U

lib

W

D

D

U

If'

Table 4-3 ° Constraints on DatabaseTables (6 of 6)

w

TABLE

USER_CLASS

TEMP_ACTIVWY

TEMP_FORMCT

TEMP_MANHRS

TEMP_.SERVHRS

CONSTRAINT

THE ORACLE USER ID (ORA USER_ID) MUST BE A VALID ORACLE USER
ACCOUNT NAME.

THE CLASS OF USER (USER_CLASS) MUST EXIST IN THE
USER_CLASS_ACCESS TABLE.

THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE. --

THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE.

THE SCRIPTNO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE.

THE SCRIPT_NO AND SAT_DAY MUST EXIST IN THE GENERATE_SAT_DAY
TABLE.

f_

X

O
u3

w

5063

4-37

Under the heading "Access Path," there is a graph-like dia-
gram showing the access path that an SQL query may traverse
to retrieve the desired data. The path shown is just one of

the many possible ways to get to the data; other paths can

be used to achieve the same result. In each access path,

the names within square brackets [] represent column names.

The names with no brackets around them represent table

names. The arrows always point to either the intermediate

or the final target columns or tables. The name of each

target field that stores coded values is followed by the

keywords "*CODED FIELD." The codes and their descriptions
are explained in Appendix A. In addition, symbol "!=" means

not equal to and MAX means the maximum value of the column
that follows.

Using the access paths in Table 4-4; the corresponding SQL
queries can be formulated easily_ The _ollowing two exam-

ples demonstrate how to interpret the access path diagrams.

They also show that some 0£ the access paths may retrieve

one record from a target table and others may retrieve mul-
tiple records. In the first example, the access path will

return one record if one Subsystem exists for the specified

project, or multiple records if more than one subsystem ex-
ists. Otherwise, it will return null. In the second exam-

ple, the access path will return only one record that

contains the creation date for the component specified by

the user. However, this access path can be modified to re-
trieve all the creation dates for all components in a par'
ticular subsystem within a particular project. This can be

accomplished by not specifying the component name in the SQL

query.

ExamPle 1

This example retrieves all the subsystem prefixes of a par-
ticular project. This access path is shown in Table 4-4 un-

der target table PROJ_SUB and target column SUB_PRE and is
as follows:

[PROJ_N_] _ PROJECT

$ [PROJ_NO]

PROJ_SUB

[SUB_PRE]

The first line in the access path shows that PROJ_NAME is

the qualified field of the PROJECT table. In other words,

the value of the field is specified by the user to identify

which project's data are to be retrieved. The down arrow

_m

g

mR

mm

D

--5

U

D

J

• _

i

U

5063

4-38
U

W

[]

r

u

between PROJECT and PROJ_SUB means that the two tables are

joined together by the'common field, PROJ_NO in this case,
that is listed next to the arrow. The down arrow under

PROJ_SUB points to the target column SUB_PRE of PROJ_SUB,
which is where all the subsystem prefixes are stored.

SQL statement

SQL> SELECT SUB_PRE FROM PROJ_SUB,PROJECT
2 WHERE PROJ_SUB.PROJ_NO=PROJECT.PROJ_NO

3 AND PROJ_NAME = <user-supplied project name>;

This example retrieves the date a component was entered into
the controlled library. The access path for this example is

shown in Table 4-4 under target _able COM_SOURCE and target

column CREATE_DATE and is as follows:

[PROJ_NAME]

[SUB_PRE]

[COM_NkME]

PROJECT

PROJ_SUB

SUB_COM

.-

COM_SOURCE

[CREATE_DATE]

[PROJ_NO]

[SUBSY_ID]

[COM_NO]

PROJ_NAME, SUB_PRE, and COM_NAME are the qualified fields of
tables PROJECT, PROJ_SUB, and SUB_COM, respectively. Tables

PROJECT and PROJ_SUB are joined on PROJ_NO; PROJ_SUB and

SUB_COM are joined on SUBSY_ID; and SUB_COM and COM_SOURCE

are joined on COM_NO. The result is from field CREATE_DATE
of the COM_SOURCE table.

SOL statement

SQL> SELECT CREATE__DATE
2 FROM COM_SOURCE,SUB_COM, PROJ_SUB,PROJECT

3 WHERE COM_SOURCE.COM_NO = SUB_COM.COM_NO

4 AND SUB_COM.SUBSYS_ID = PROJ_SUB.SUBSY_ID

5 AND PROJ_SUB.PROJ_NO = PROJECT.PROJ_NO

6 AND PROJ_NAME = <user-supplied project name>
7 AND SUB_PRE = <user-supplied subsystem prefix>

8 AND COM_NAME _ <user-supplied component name>;

5063

4-39

Example 3

This example uses a predefined view as an alternative of
example 2 to get the same data, i.e., the date a component
was entered into the controlled library. The access path "
for using the view V_PROJ_COM to retrieve thfs data item is

as follows:

[COM_NAME]

[PROJ_NAME] ÷

q

V_PROJ_COM _ [PROJ NO]

[COM_NO]

COM_SOURCE

[CREATEDATE]

In this example, view V_PROJ_COM replaces fables PROJECT,

PROJ_SUB, and SUB_COM used in the previous example joining

with the COM_SOURCE table. The result is from field CREATE_

DATE of the COM_SOURCE table.

SQL statemen£

SQL> SELECT CREATE_DATE
2 FROM V_PROJ_COM, COM_SOURCE

3 WHERE V_PROJ_COM.COM_NO = COM_SOURCE.COM_NO

4 AND COM_N_ I <user-supplied component name>

5 AND SUB_PRE = <user-supplied subsystem prefix>

6 AND PROJ_NAME = <user-supplied project name>;

The SQL statements in these examples are included for com-

pleteness. For a more detailed introduction to formulating

SQL queries, see Section 5.3.

l

M

i

I

g

I

B

J

i

U

U

u

i

5063

4-40 I

M

Table 4-4. SEL Database Access Paths (1 of 18)

w

m

REF. ID

P85. D77

P63. D82

P76. D67

P73, D64

P72. D63

P69, D 76

P67. D66

TARGET
TABLE

CH_ADAFEAT

CHANGE

CHANGE

CHANGE

CHA_E

_CHANGE

CHANGE

TARGET
COLUMN

ADA._FEATURE

CHANGE_NO

CH_TYPE

DATE COMP

DATEDETER

EFF._ADA

EFF_COM_CH

ACCESS PATH
ACCESS

INFORMATION

CHANGE NUM-

BER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR

CHANGE

NUMBER

[CHANGE_NO] --> CHANGE

_ [CHANGE_NO]

CH_ADAFEAT

[ADA_FEATUREI'CODED FIELD

[PROJ_NAME]-->V_ PROJ_C.OM

l [COM_NOl

- " cHA_E_eX_

- !.... [CHANGE_NO]

CHANGE --> [CHANGE _NO]

PROJECT NAME

CHANGE NUM-

BER; SEE P63
FOil THE
ACCESS PATH

THAT FINDS A
PARTICULAR

CHANGE
NUMBER

CHANGE NUM-

BER; SEE 1=63
FOR THE
ACCESS PATH
THAT FINDS A

PARTICULAR

CHANGE
NUMBER

CHANGE NUM-

BER_,SEE P63
FOR THE

ACCESS PATH
TF_T FINDS A

PARTICULAR
CHANGE

NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE

ACCESS PATH
THAT FINDS A
PARTICULAR

CHANGE

NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE

ACCESS PATH
THAT FINDS A

PARTICUEAR
CHANGE

NUMBER

[CHANGENO] --> CHANGE

!
[CH_TYPE]'CODED FIELD

[CHANGE_NO] --> CHANGE

I
V

[DATE_COMP]

i
[DATE_DETER]

[CHANGE_NO] --> CHANGE

[CHANGE_NO] --> CHANGE

[EFF ADA]

[CHANGE_NO] --> CHANGE

[EFF_COM_CH]* CODED FIELD

5063

4-41

P68, D68

P70. D6g

P71, DT0

P74

PTS

P65, De0

Table 4-4. SEL Database Access Paths (2 of 18)

TARGET

TABLE

CHANGE

CHANGE

CHANGE

CHANGE

CHANGE

CHANGE

CHANGE

TARGET

CO.UlvlN

EFFJSO_CH

EFF_ONE

r ,,

EFF_OTHER

EFF_PARPA

NUM_COMCH

ACCESS

INFORMATION

CHANGE NUM

BER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR
CHANGE

NUMBER

CHANGE NUM.

BERI SEE P63
FOR THE

ACCESS PATH

THAT FINDS A
PARTICULAR
CHANGE
NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE

ACCESS PATH
THAT FINDS A

PARTICULAR
CHANGE

NUMBER

CHANGE NUM.

BER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR
CHANGE

NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE

ACCESS PATH
THAT FINDS A

PARTICULAR
CHANGE

NUMBER

ACCESS PATH

_ iill i

[CHANGENO]--> CHANGE

I
V

[EFF_ISO CH]'COOED FIELD

[CHANGE_NO] --> CHANGE

[___'1

[CHANGE_NO] --> CHANGE

[IEFF_OTHE R]

[CHANGE_NO] --> CHANGE

_. [EFF PARPA]

[CHANGE_NO] --> CHANGE

[NUM COM CH]

NUM_COM_EX

_B_A_

CHANGE NUM.

BER; SEE P63
FOR THE

ACCESS PATH
THAT FINDS A

PARTICULAR
CHANGE

NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR
CHANGE

NUMBER

[CHANGE_NO]--> CHANGE

[NUM_eX__E_q

[CHANGE_NO]--> CHANGE

I
V

[SUB_DATE]

m

iim

I

,,.1

m

III

[]

i

=,1

i

lib

i

i

i

[]

5063

4-42 ==

i

Table 4-4. SEL Database Access Paths (3 of 18)

u

m

REF. IO

P88, DSO

P83, D79

P82, D78

P78, D72

P79. D74

PS0, D73

P77. D71

TARGET
TABLE

CH ERR ARES

ACCESS
INFORMATION

TARGET

COLUMN

ERR. ARES CHANGE NUM-

BIER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A

PARTICULAR
CHANGE

NUMBER

ACCESS PATH

[CHANGE_NO] --> CHANGE

[CHANGE_NO]

CH ERR_ARES

IERR..ARESI'CODED FIELD

CH_ERR GEN

CH_.ERR GEN

CH_ERR,_GEN

CH ERR GEN

CH ERR GEN

CH ERR GEN

E RR._ACAUSE

ERR_AOOC

ERR_CLASS

ERR COMIS

ERR_OMIS

ERR, SOURCE

CHANGE NUM-

BER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR

CHANGE
NUMBER

CHANGE NUM-

BER; SEE P63
FOR THE

ACCESS PATH
THAT FINDS A

PARTICULAR
CHANGE

NUIVlBER

CHANGE NUM.
SER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR

CHANGE
NUMBER

CHANGE NUM.

BER; SEE 1=63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR

CHANGE
NUMBER

CHANGE NUM.

BER; SEE P83
FOR THE

ACCESS PATH
THAT FINDS A

PARTICULAR
CHANGE

NUMBER

CHANGE NUM-
BER; SEE P63
FOR THE

ACCESS PATH
THAT FINDS A

PARTICULAR
CHANGE

NUMBER

[CHANGE_NO] --> CHANGE

_ lCHANGE._NO]

CH ERR GEN

[ERR. ACAUSE] ° CODED FIELD

[CHANGE_NO] --> CHANGE

_ [CriNgE_NO]

CH ERR GEN

I
[ERR__ADCC]

[CHANGE_NO] --> CHANGE

_ [CHANGE_NO]

• CH_E RR_GEN

I
[E RR._CLASS_ COOED FIELD

[CHANGE_NO] --> CHANGE

_ [CHANGE_NO]

CH ERR GEN

[ERR_COMtS]

[CHANGE_NO] --> CHANGE

_ [CHANGE_NOI

CH_ERR GEN

[ERR_OMIS]

[CHANGENO] --> CHANGE

_ [CHANGE_NO]

CH ERR GEN

[ERR._SOUI_ _° C_I_D FIELD

5063

4-43

REF. IO

P8i, D75

P87, D81

I=_. DS8

M5

Table 4-4. SEL Database Access Paths (4 of 18)

ACCESS

INFORMATION
TARGET

TABLE

i GH ERR GEN CHANGE NUM-

TARGET

COLUMN

ERR_'rYPO
BER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR

CHANGE
NUMBER

NLe

BIER; SEE Pe3
FOR THE
ACCESS PATH

THAT FINDS A
PARTICA.q.AR

CHANGE
NUMBER

CHERR
_TOOLS

_4_PURPOSE

COMPUTER

ERR_TOOLS

PURPOSE

ACCESS PATH

[C.HANGENOI--> CHANGE

_ [_E__:_I
CH_ERR_GEN

I
V

[ERR TYPO]

CFULL_NAME

PROJECT NAME,
SUBSYSTEM

PREFIX, AND
COMPONENT

NAME

CCM_UTER
SHORT NAME

M4 _UTER CPU_NAME NONE

P58, D57 COM SOURCE COM_TYPE PROJECT NAME

P53, D54 CREATE_DATE

5063

SUBSYSTEM

PREFIX, AND
COMPONENT

NAME

COM_SOURCE PROJECT NAME,
SUBSYSTEM

PREFIX, AND
COMPONENT
NAME

[CHANGE_NO] --> CHANGE

[_E NO]

CH ERR TOOLS

I
[ERR._TOOLS]'COOED FIELD -

[PROJ_NAME] -->PROJECT

[PROJ_NOI

[SUB_.PRE] -->PROJ_SUB

_[SUBSY_ID]

[COM_NAME]-->SUS._COM

_ [COM_NO]

_ PUR_E

[PURPOSE]* COOED FIELD

[CPU_NAME] --> COMFqJTER --> [C_FULL_NAIVE]

--> COMPUTER --> [CPU_NAMEI

[PROJ_NAML=]-->PROJECT

l [PROJ NO]

[SIJB_PRE] -->PROJ_SUB

I [suBsY__]
V

[COM_NAME]-->SUe COM

I [COM_NO1
¥

COM _SOURCE

I
v

[COM_T'YPE] ° CODED FIELD

[PROJ_NAME] -->PROJECT

I [PROJ_NO)
V

[SUB_PRE] -->PROJ_SUB

I
V

4-44

q
m

l

U

m

u

I

M

m

W

m

m

m

m

m

[]

= =

Table 4-4. SEL Database Access Paths (5 of 18)

i

m

z

M

i

_J

m

REF. ID

P53, D54

(CON_D)

P57, D55

D59

P56. D56

P54, DS2

TARGET
TABLE

TARGET
COLUMN

ACCESS
INFORMATION

COM_SOURCE

COM_SOURCE

COM_S_R_

COM_SOURCE

DIFFICULTY

FORM_NO

ORI_TYPE

SUB_DATE

PROJECT NAME

SUBSYSTEM

PREFIX, AND
COMPONENT
NAME

PROJECT NAME

PROJECT NAME,'
SUBSYSTEM

PREFIX, AND
COMPONENT
NAME

PROJECT NAME
SUBSYSTEM

PREFIX, AND
COMPONENT
NAME

ACCESS PATH

I [SUBSYJD]
v

[COM_NAME] --> SUB_COM

I [COM NO]
v

COM_SOURCE

[CREATEDATE]

[PROJ NAME] -->PROJECT

_ [PROJ_NO]

[SUB.. PRE] -->P RCU_SUB

I [SUBSY_ID]
v

[COM NAME] --> SUB_COM

_ [COM_NO]

COM__¢OURCE

[DIFFICULTY]

[PROJ_NAME] --> V_P ROJ COM

I [COM_NO]
v

COM SOURCE

[FORM NO]

[PROJ NAME] -->PROJECT

I [PROJ_NO]
v

[SUB_PRE] -->PROJ_SUB

I [SUBSY__ID]
V

[COM_NAME] --> SUB..COM

[COM NO]

COM_SOURCE

[ORI_TYPE]* COOED FIELD

[PROJ NAME] -->PROJECT

_ [PROJ_NO]

[SUB PRE] -->PROJ_SUB

!

5063

4-45

Table 4-4. SEL Database Access Paths (6 Of 18)

i

ms

REF. ID

P54, D52

P158

(CON_)

P154

P155

P25, P28, P27,

P28, P29, P30,

P31, P32. P33,

P34, 023

THROUGH D32

ACCESS

INFORMATION

PRO_CT
AND

_NT

NAME

TARGET

TABLE

COM STAT

C(3M_STAT

__STAT

En:_ACT

TARGET

COLUMN

C_C_UNE

C E__S

C_LINE

ACTOR

PROJECT NAME

_NT

NAME

PROJECTNAME
ANO

_NT

NAME

PROJECT NAME,

PROGRAMMER

NAME, WEEK

ENDING DATE,

AND

SUBSYSTEM

PREFIX

(OFrKRAL)

ACCESS PATH

_ SUBSY_ID]

[COM_NAME] --> SUB_COM

_ [C,OM NO]

[SUB_DATE]

[PROJ_NAMEI---> V_PROJ_OOM<-- [COM_NAME]

] [PROJ_NO]

PROJ STAT

I
¥

[C_C_LINE]

[PROJ_NAME] --> V_PROJ COM <-- [COM NAMIE]

_ [COM_NO]

__m'AT
I
¥

[C_E__Sl

[PROJ_NAME]--> V_PROJ_COM<-- [_NAME]

_ !_:___1

e__s'rAT

[C LINE]
i

pROJ NAME] -->PROJECT

!
i pROJ_NO]
i

[FORM_NAME] --> PERSONNEL

,r

[_:___1 --_FF._P_:N <- [_dB_DATE1

l [P_ID] --> EFF_SUB <-- [SUB_PRE]

[ACTIVITY] --> EFF_ACT <-- [PS_ID]

[ACT_HR]

WHERE

ACTIVITY FOR P25, D23 = PREDES

ACTIVITY FOR P26, D24 = CREDES

ACTNITY FOR P27, D25 - RDREVCOD

ACTIVITY FOIl P28, D28 = WRCOOE

5063

4-46

M

m

i

g

=
i
M

i

m

i

i

i

M

w

w

w

Table 4-4. SEL Database Access Paths (7 of 18)

REF. ()

P25, P26, P27,

P28. P29. P30.
P31. P32. P33,

P34. D23
THROUGH 032

(CONT1))

P39, P40. P41,

P42. P43,
044 TO D48

037, D49

TARGET
TABLE

P23, D22

M3

TARGET

COLUMN

EFF_ACT

ACCESS
INFORMATION

ACCESS PATH

WHERE
ACTIVITY FOR P29. D27 - RDREVDES
ACTIVITY FOR P30, D28 - TSTCODUN

ACTIVITY FOR P31, D29 - DEBUG
ACTIVITY FOR P32. D30 - INTTEST

ACTVITY FOR P33, D31 - ACCTEST
ACTIVITY FOR P34. D32 - OTHER

P24, D21

ACT_HR

EFF_FORM

PROJECT NAME
PROGRAMMER

NAME, AND
WEEK ENDING
DATE

FORM_NO

EFF_PROJ SUB DATE

_RSON_L

PERSONNEL

DATEJNTRY

FORM_NAME

[PROJECT NAME

AND FORM TYPE

PROGRAMMER
FORM NAME

PROJECT NAME

[PRCU_NAME] -->PROJECT

[PROJ NO]

[FORM_NAME] -->PERSONNEL

[PROG_ID] --> EFF_PROJ <-- [SUB_DATE]

vl [P_ID] l [EFF_ID]

EFF ACT

[ACT_HR]
WHERE

FORM_NAME FOR 1:)39,D44 . TECHPUBS
FORM_NAME FOR P40, D45 . SECRETARY

FORM_NAME FOR P41. D46 - LIBRARIAN
FORM_NAME FOR P42, D47 - PROGMGMT

FORMNAME FOR P43. D48 - OTHSUPP

PROJ_NAME] --> PROJECT

_ [PROJ_NO]

EFF_PROJ

_ [P_IO]

[FORM_TYPE] --> EFF_FORM

WORM_NO]

NOTE."
FORM_TYPE FOR D37 ,,,,PRF

FORM_TYPE FOR D49 - SPF

[PROJ_NAME] -->PROJECT

_ [PROJ_NO]

EFF_PROJ

I
V

[SUB, DATE]

[FORM_NAME] --> PERSONNEL--> [DATEJNTRY]

pROJ_NAME] -->PROJECT

_ [PROJ_NO]

EFF_PROJ

I
v

4-47

5063

Table 4-4. SEL Database Access Paths (8 of 18)

TARG_ TARG_ ACCESS
REF. _ TA_ _U_ INFOR_TION A_E_ PATH

! i! _ i iii

_4, D21

(CONll_)

RR_L_, D_

PE_L

FORM_ME

FORM_NAME

PROJECT NAME

SUBSYSTEM

PREFIX. AND
COMPONENT
NAME

CHANGE NUM-

BER; SEE P63
FOR THE
ACCESS PATH

THAT FINDS A
PARTICULAR
CHANG E

NUMBER

i
[PR__ID] --> PER_NEL

I
V

[FORM_NAME]

WHERE

FORM_NAMB I - TECHPUBS

FORMNAME t = _CRETARY
FORM_NAME I - LIB_R_

FORM NAMB I = PR_
FORM__ I = OTHSUPP

! [PROJ_NAME]-->PROJECT

_ [PROJ NO]

[SUB_PR_ -->PR_B

[SUBSYJD]

[__NA_-->: _JB_COM

,i [COMNO]

COM_SOJRCE

[PR__IDI --> _R_NNEL

[FORM_NAME]

[CHAN_oi-----'-->C_GE --> [PROG©]-->_RSORNEL

M1 RR_L FO_ _E --> PERSONNEL --> [FORM__]

..... , ,, , ,

_R_L FU_ P_MMER [FORM _ --> _R_NEL --> [FULL _
F_ NAME

PlY, _ _ PR_ECTPROJ_CPU
_STAT

PR_ECT NAMET_HRP135,_4 PROJ_CPU
._STAT

[PR_--> PR_ECT

_ [PRCU_NO]

P__CPU STAT

[CPU_NAME]

[PR_ME]--> PR_ECT

[FORM

III

J

=-_

U

= =

m

M

_ i

m

i

[] i

m

w

__= -z
i .
i -

5063
4-48 m

j

Table 4-4. SEL Database Access Paths (9 of z8)

m

w

TARGET
REF. I0 TABLE

P135,D94

(CON'rD)

TARGET

COLUMN

ACCESS

INFORMATION

P136, D95

P3

P1, D1

1:'2

P21, D12

P20, D11

P23, D13

PROJCPU
_STAT

PROJECT

PROJECT

PROJECT

PROJ_EST

PROJ_EST

PROJ_EST

T_RUN

ACTIVE

STATUS

PROJ_NAME

PROJTYPE

MAN_HR

PRO_HR

SER_HR

PROJECT NAME

PROJECT NAME

NONE

PROJECT NAME

PROJECT NAME
AND SUBMIS-

SION DATE OF
DESIRED SET OF

ESTIMATES

PROJECT NAME
AND SUBMIS-

SION DATE OF
DESIRED SET
OF ESTIMATES

iPROJECT NAME

AND SUBMIS-
SION DATE OF

DESIRED SET OF
E STIMATE S

ACCESS PATH

] [PROJ_NO]

PROJ_CPU_STAT

[TOTAL_HRS]

[PROJ_NAME] --> PROJECT

[P-_:_I

PROJ_CPU_STAT

[T_RUN]

pROJ_NAME] -->PROJECT

[ACTIVE_STATUS]*CODED FIELD

--> PROJECT

I
V

[PROJ_NAME]

[PROJ_NAME] -->PROJECT

I
V

[PROJ TYPE]'CODED FIELD

[PROJ_NAME] -->PROJECT

I [PROJ_NO]
V

[SUB DATE] --> PROJ_EST

[MAN_HR]

[PROJ_NAME] -->PROJECT

_ [PROJ NO]

[SUB DATE] --> PROJ_EST

I
V

[PRO_HR]

[PROJ_NAME] -->PROJECT

_ [PROJ NO]

[SUB_DATE] --> PROJ_EST

[SER_HR!

&

_=

5063

4-49

Table 4-4. SEL Database Access Paths (i0 of 18)

i

B

REF. ID

P13, D2

P15, D15

P18, D18

P18. D18

P19, D17

P17, D19

P14. D14

TARGET
TABLE

PROJ_EST

PROJ_EST

TARGET
CCLUMN

SUB_DATE

ACCESS

_FORMATION

PROJECT NAME

PROJ_EST

PROJ_EST

PROJ_EST

PROJ_EST

T_CCM

T_LINE

PR_ EST T_SYS

T_MOO_LINE

T_NEWLINE

TOLD LINE

PROJECT NAME
AND SUBMIS-

SION DATE OF
DESIRED SET OF
ESTIMATES

P_ECT NAME

AND SUBMI_
S_N DATE OF
DESIRED _=T OF

ES_MATES

PROJECT NAME

AND SUBMIS-
SION DATE OF

DESIRED SET OF
ESTIMATES

PRCUECT NAME
AND SUBMI_
S_N DATE OF

DESIRED SET OF
ES_MATES

P ROJEC'3"NAME
AND SUBMIS-

SION DATE OF

DESIRED SET OF
ESTIMATES

PR_ECT NAME
AND SUBMI_

S_N DATE OF
DESIRED SET OF
ESTIMATES

ACCESS PATH

_RCU_NAME] -->PRCUECT

I [PROJ_NO]
V

PROJ_EST

I
¥

{SUB_DATE]

[PROJ_NAME] -->PRE_ECT

_ pROJ_NO]

[SUB_DAT_ --> PROJ_EST

fr_cx_ll

pRCU_NAME] -->P_ECT

_ pROJ_NO]

[SUBDATE] --> PR__EST

F_LINEi

[PROJ_NAME] -->PROJECT

_ [PR_NO]

[SUB DATE] --> PROJ_EST

[T__:__uNEI

[PROJ_NAME] -->PR_ECT

I [PROJ_NO]

[SUB..DAT_ --> PRIEST

[T_NEW_LINE]

[PR_NAME] -->PR_ECT

] [PR_ NO!

[SUB_DATE] --> PROJ_EST

[r_OLO_LINN
i

[PR_NAME] -->PROJECT

I pR_NO]
V

[SUB_DATE] -->PROJ_EST

F_sYs]

i

I

i

i

|

i

i

=_-

u

I

5063

4-50 IB

Table 4-4. SEL Database Access Paths (11 of 18)

v

w

REF. ID

D10. D91

03, D4, DS. 06.

D7, 08,1:)9.
0_ TO 090

P6, P7, PS,
Pg, P10,

Pll, P12,
P125 TO P131

PS, P124,

P13, D2

D20, D49.
D113,D150

TARGET

TABLE

TARGET

COLUMN

ACCESS

INFORMATION

PROJ_EST

PHASE

PROJ_EST

_PHASE

PROJ_EST
PHASE

PROJ EST

_PHASE

PROJ_FORM

END DATE

STARTDATE

STARTDATE,

ENDDATE

SUBDATE

FORM_NO

PROJECT NAME

AND SUBMIS-
SKiN DATE OF

DESIRED
SCHEDULE

PROJECT NAME

PHASE CODE,
AND

SUBMISSION
DATE

PROJECT NAME

SUBMISSION
DATE OF
DESIRED

SCHEDULE, AND
PHASE COOE

PROJECT NAME

PROJECT NAME

AND FORM TYPE

ACCESS PATH

[PROJ_NAME] --> PROJECT

_ [PROJ_NO]

[SUB_DATE] --> PROJ_EST_PI-IASE

MAX [END_DAT_,

I [PROJ_NAME] --> PROJECT

[PHASE_CO]--> PROJ EST PHASE

[SUBDATE]

[START_DATE]

PHASE_CO FOR O3, _ - REQNT

PHASE_CO FOR D4. D85. DESGN
PHASE_CO FOR DS. D86 - COOET

PHASE_COFORDe.Oe7- SYSTE
PHASE_CO FOR D7. D68 - ACCTE

PHASECO FOR DS, D89 . CLEAN
PHASE__CO FOR D9.1390 - MAINT

SUB DATE FOR D3 TO D9 IS THE SUBMISSION DATE OF
DESIRED SCHEDULE.

SUB_DATE FOR D84 TO Dg0 IS THE SUBMISSION DATE OF
FINAL STATISTICS.

[PROJ_NAME] -->PROJECT

[PROJ_NO]

[SUB_DATE] --> PROJ EST PHASE <_SE_CO]

i
[START DATE1,

[END_DATE]

NOTE:

PHASE_CO FOR P6, P125 . REQNT
PHASE_CO FOR P7. P126 - DESGN
PHASE_CO FOR 1:>8.P127 - CE_ET

PHASE_CO FOR 1:>9.P128 - SYSTE

PHASE_CO FOR P10, P129 - ACCTE
PHASE_CO FOR P11, P130. CLEAN
PHASE_CO FOR P12, P131 - MAINT

[PROJ_NAME] -->PROJECT

_ [PROJ_NO]

PROJ EST_PHASE

i
[SUS_DATE1

[PROJ_NAME] --> PROJECT

5063

4-51

Table 4-4. SEL Database Access Paths (12 of 18)

REF. ID

020, D4g,
O113, D150

(CONI_)

P62, 042

P60, D43

I=61, D41

P45, D¢39

TARGET
TABLE

PROJ GRH

P_cu_a_

PROJG_

PROJIMESS

PROJ._PROD

TARGET
COLUMN

GRCH

GR_LINE

GR_MOO

MESSAGE

RESHR

ACCE SS
INFORMATION

PROJECT NAME
AND WEEK END-

ING DATE

PROJECT NAME

AND WEEK END-

ING DATE

PROJECT NAME
AND WEEK END-

ING DATE

PROJECT NAME

PROJECT NAME,
COMPUTER

NAME, AND
SUBMISSION

DATE

ACCESS PATH

I [PROJ_NO]
v

[FORMTYPE] --> PROJ_FORM

[FORM_NO]

NOTE."
FORMTYPE FOR D150 - SEF
FORM._'PtPE FOR D20 . PEF

FORM_TYPE FOR D49 . SPF
FORM_TYPE FOR D113 - PCSF

[PROJ_NAME] -->PROJECT

I [PROJ_NO]
V

[SUB_DATE]-->PRiU_GRH
[aR'CH]

[PROJ_NAME] -->PROJECT

I [PROJ NO]
V

[SUB_DATE] -->PROJ_GRH

I
V

[GR_LINE]

[PROJ_NAME] -->PROJECT

I [PROJ_NO]
V

[SUB_ DATE] -->PF OJGRH
r

[GR_MOO]

[PROJ_NAME] -->PROJECT

_ [PROJ_NO]

PROJ_MESS

I
V

[MESSAGE]

[PROJ NAME]--> PROJECT

[PROJ_NO!

[SUB_DATE] --> PRO, J_PROD <-- [RES_NAME]

1
V

[RES__HR]

5063

4-52

l

U

m

1

u
1

1

m

wmm

1

i

i

I

1d

__=
1

1

[]

1

U
l
1

v

_r

=

REF. ID

P44. D38

P46, i)40

P88 TO P107,
P101) TO P123

5063

Table 4-4. SEL

TARGET

TABLE

PROJ_.PROD

PROJ_PROO

PROJ_SEF

°-

TARGET
COLUMN

RE$ NAME

RES..RUN

EVALUATE

Database Access Paths (13 of 18)

ACCESS
INFORMATIOF

PROJECT NAME

PROJECT NAME,
COMPUTER

NAME, AND
SUBMISSION
DATE

PROJECT NAME
AND MEASURE-
MENT WPE

ACCESS PATH

[PROJ_NAMEJ--> PROJECT

_([PROJ NO]

PROJ_PROD

[RES_NAME l

[PROJ_NAME] --> PROJECT

_ pROJ_NO]

(SUBDATE]--> PROJ PROD <--[RES NAME]

IRES_RUN1

[PROJ_NAME] --> PROJECT

_ [PROJ_NO]

[IvF..AS_.TYPE] --> PROJ SEF

[EVALUATE]

NOTE:

MEAS TYPE FORP88, D14 IS 'PM01'

MEAS TYPE FOR P89. D115 IS 'PM0_
ME[ASTYPE FOR Pg0, D116 IS 'PM03'

MEAS_ TYPE FOR P_t, O117 IS 'PM04'
MEAS TYPE FOR P92, D118 IS 'PM05'
MEAS TYPE FOR 1:)93,Dl19 IS 'PM06"

MEAS TYPE FOR Pg4, D120 IS 'ST07'
MEAS TYPE FOR P95, D121 IS 'ST08"

MEAS TYPE FOR P96, D122 IS 'ST09'
MEAS TYPE FOR P97, D123 IS 'ST10'

MEAS TYPE FOR P98. D124 IS _M11'
MEAS TYPE FOR Pgg, D125 IS _M12'
MEAS_TYPE FOR P100. D126 IS _rM13'

MEAS_TYPE FOR P101, D127 IS "TM14'

MEAS_TYPE FOR P102, D128 IS _rMtS'
MEAS_TYPE FOR P103, D129 IS 'PC16'

MEAS_TYPE FOR P104, D130 IS 'PC1?'
MEAS_TYPE FOR P105, D13_ IS 'PCIB'
MEAS TYPE FOR P106, D132 IS 'PCIg'

MEAS_TYPE FOR P107, D133 IS 'PC20'
MEAS_TYPE FOR P108, D134 IS 'PC21'

MEAS_TYPE FOR P109, D135 IS 'PC22'
MEAS..TYPE FOR P110, D136 IS 'PC23"
MEAS_TYPE FOR P111, D137 IS "1=C24'

MEAS_TYPE FOR P112, 0138 IS 'EN25'
MEAS.TYPE FOR P113, D139 IS 'EN26'

MEAS._TYPE FOR P114, 0140 IS 'EN27'
MEAS TYPE FOR P115, D141 IS 'EN28"

MEAS TYPE FOR P116, D142 IS 'EN29'
MEAS_TYPE FOR PI 17, D143 IS 'EN30'

MEAS_.TYPE FOR P118, D144 IS "PT31'
MEAS TYPE FOR P119, D145 IS 'PT32'
MEAS TYPE FOR P120, D146 IS "PT33'

MEAS_TYPE FOR P121. D147 IS 'PT34'
MEAS_TYPE FOR P122. D146 IS 'PT35'

MEAS_TYPE FOR P123. D14g IS 'PT36"

4-53

Table 4-4. SEL Database Access Paths (14 of 18)

REF. B

P108, Dt34

TARGET
TABLE

PROJ SEF
_SEC

TARGET

COLUMN

SECONO_L

ACCESS
INFORMAT_N

PROJECT NAME
AND _ASURE-

_NT TYPE

PR___ATP133, DgS

FP139, D98

Pi38, D97

P145, 0104"

PlY, D_

P132, D92

_<U_S'rA÷

PFIOJ_STAT

PROJ_STAT

PROJ__rAT

PROJ STAT

SER_HR

T_CH

T_COM

T_COMMENT

T_DOC

TECH MAN HR

)ROJECT NAME

PR_EcT NAME

PR_ECT NAME

=R_ECT NAME

PROJECT NAME

PR_E_NAIVE

ACCESS PATH

[PR_ NAME] --> PROJECT

I [PRCU_NO]

[MEAS TYPE] --> PROJ_SEF_SEC

[SECOND_.L]* CODED FIELD

NOTE: MEAS_TYPE IS PC21

PROJ_NAME] --> PROJECT

I [PROJ_NO]

PROJ_STAT

I
V

iSER_HR]

[PROJ_NAME] --> PROJECT

_ pROJ_NO]

PROJ_STAT

[T_CH]

[PROJ_NAME] --> PROJECT

_ [PR__NO]

PR_ _AT

F_c_q

PROJ_NAME]--> PROJECT

[PROJ_NO]

PROJ_STAT

I
%,

IT_COMMENT]

[PROJ_NAME] --> PROJECT

_ pROJ_NO]

PROJ STAT

I
V

F_DOCl

PROJ_NAME] --> PROJECT

_ [PR__NO]

PR__STAT

_CH_MAN HR] i

m

i

m
lib

lib

lib

t

i

i

t

i

i

BI

5063

4-54 BB

Table 4-4. SEL Database Access Paths (15 of 18)

v

w

w

REF. ID

P146, D105

TARGET
TABLE

PROJ_STAT

TARGET

COLUMN

T EXE MOO

ACCESS
INFORMATION

PROJECT NAME

P150, D100

P141, D100

P143, D102

P148, D107

P152, D111

P142, D101

=ROJ STAT" '

PROJ STAT

PROJ STAT

PROJ STAT

PROJ_STAT

PROJ STAT

T._EXE STAT

T_LINE

T_MEX)_LINE

,H,

T_MOO_MOO

T_.MOO_STAT

T_NEW_LINE

=ROJECT NAME

_ROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

ACCESS PATH

[PROJ_NAME] --> PROJECT

_ [PROJ_NOI

PROJ_STAT

I
¥

[T_EXE_MOD]

[PROJ_NAME] --> PROJECT

_ [PROJ_NO]

P ROJ_STAT

,i
[T_EXE_STAT]

[PROJ_NAME] --> PROJECT

_ [PRCU_NO]

PROJ_STAT

F_LINE]

[PROJ_NAME] --> PROJECT

_ pROJ_NO]

PROJ_STAT

[T_MOD_LINE]

[PROJ_NAME] --> PROJECT

_ [PROJ NO]

PROJ_STAT

I
V

F_MOO_MOO]

[PROJ_NAME] --> PROJECT

_ _R___I

PROJ_STAT

F_MOD_STAT]

[PRCU NAME] --> PROJECT

_ [PROJ_NO]

PROJ_STAT

F_NEWLINE]

5063

4-55

Table 4-4. SEL Database Access Paths (16 of 18)

REF. ID

P147, D106

P151, [)110

P144, D103

TARGET
TABLE

PROJ_STAT

TARGET
COLUIvlN

T_NEW_MOO

P149, D108

P153

P137, D96

P150, D151

5063

PROJ_STAT

PROJ STAT

PROJ_STAT

PROJ_STAT

PROJ_STAT

PROJ_SUB

T NEW STAT

T_OLD_LINE

TOLD MOO

T_OLD_STAT

T..SYS

SUBDATE

ACCESS
INFORMATION

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

PROJECT NAME

AND

SUBSYSTEM
PREF_

ACCESS PATH

[PROJ_NAME] --> PROJECT

I [PROJ NOI
v

PROJ_STAT

I
v

[T_NEW_MOO]

[PROJ_NAME] --> PROJECT

_ [PROJ_NOI

PROJ STAT

[T_NEW_STA/]

[PROJ_NAME] --> PROJECT

PROJ STAT

[T_OLD_LINE]

[PROJ NAIVE] --> PROJECT

_ [PROJ_NO]

PROJ_STAT

I
Y

[T_OLD_MODI

[PROJ_NAME] --> PROJECT

J [PROJ NOI
v

PROJ_STAT

1
V

[T_OLO_STAT]

[PROJ_NAME] --> PROJECT

• _ [PROJ_NO]

PROJ_STAT

[T_SYS]

[PROJ_NAME] --> PROJECT

I [PROJ_NO]
¥

[SUB PRE] --> PRCU_SUB

I
v

[SUB_DATE]

4-56

w

l

m

_m

mm

z

m

N

Q

i

l

m

m
m

_m

J

i !

m

i

Table 4-4. SEL Database Access Paths (17 of 18)

w

r

F

=

w

TARGET

TABLE

A_E_

IN_R_TI_REF. ID

P47, D51,D152 PROJ_SUB

SPECUU._ACT

TARGET
COLUMN

SUB_PRE

P35, 1338,P37,

P38, D33
THROUGH D36

P52

P51, D53

P49, D154

4"--

SU__COM

SUB_COM

SUBSYSTEM

ACT HR

COM_DATE

COM_NAME

FUNCTION

PROJECT NAME

PROJECT NAME,
PROGRAMMER I

NAME, AND
WEEK ENDING
DATE

PROJECT NAME,
SUBSYSTEM

PREFIX, AND
COMPONENT

NAME

PROJECT NAME

AND SUB-
SYSTEM

PREFIX

PROJECT

NAME AND

SUBSYSTEM
PREFIX

ACCESS PATH

[PROJ_NAME] --> PROJECT

[PROJ_NO]

PRCU_SUB

I
V

[SUB_PRE]

[PROJ_NAME] -->PROJECT

[PROJ_NO]

[FORMNAME] -->PERSONNEL

v
[PROG_ID] --> EFF_PROJ <-- [SUB_DATE]

I
v [P_ID] - [EFF_ID]

[ACTIVITY] --> SPECIAL_ACT

[ACT_HR]
WHERE

SP_ACTNITY FOR P35, D33 - REWORK

SP_ACTIVITY FOR 1:'38, D34 - ENHANCE
SP_ACTIVITY FOR P37, D35 - DOCUMENT
SP_ACTIVITY FOR P38, D38 - REUSE

[PROJ NAME] -->PROJECT

_ pROJ_NO]

[SUB_PRE] -->PROJ_SUB

[SUBSY_ID]

[COM_NAME]-->SUB__COM

[COM_DATE]

[PROJ NAME] -->PROJECT

_ [PROJ_NO]

[SUB_PRE] -->PROJ_SUB

_ [SUBSY_IOI

SUB_COM

I
V

[COM_NAME]

[pROJ_NAMEJ -->PROJECT

[PROJ_NO]

[SUB PRE] -->PROJ_SUB

I
V

4-57

5063

m

U

L--
Ill

Table 4-4. SEL Database Access Paths (18 of 18)

=_

i

Im

REF. _)

P49, D154

P48, D153

P84, D62

ACCESS
INFORMATION

TARGET
TABLE

TARGET

COLUMN

PROJECT NAME

AND SUB-

n%;

SUBSYSTEM -

V_PROJ_COM

NAME

COM_NAME

SYSTEM
PREFIX

='ROJECT NAME

ACCESS PATH

I

vI [SUBSY._ID]

SUBSYSTEM

[FUNCTION]" COOED FIELD

[PROJ_NAME] --> PROJECT

J [PF___I

[SUB_PRE]--> PROJ_SUB

! [suBsY__)I

SUBSYSTEM

I
%/

_E]

CHANGE_COM

_ [COM_NO]

[PROJ_NAMEI --> V_PROJ_COM

i

m

J

4

2___

D

[]

d

l

u

II

B

5063

4-58

m_

SECTION 5 - ACCESSING THE SEL DATABASE

w

L

r_

The database table definitions and relationships presented

in Section 4 provide a guide to finding a particular soft-

ware engineering data item in the database. This Section

discusses how to actually access a data item once its loca-
tion in the schema has been identified.

Section 5.1 discusses how a user initially gets access to

the SEL database. Section 5.2 provides an introduction to

the Database Access Manager for the SEL (DAMSEL) software

system: a menu-driven user interface that allows the user
to view data, enter data, generate reports, and perform var-

ious database support functions. Section 5.3 presents an
introduction to ad hoc database queries via the SQL language

provided by the ORACLE DBMS. This introduction covers the
basics of how to formulate an SQL query and provides several

illustrative examples.

5.1 DATABASE ACCESS REOUIREMENTS

To access the SEL database, a user must first have a user ID
on the STL VAX 11/780. Users can register for this account

by contacting STL systems personnel. Second, the user must
have an ORACLE user ID on the VAX. This may be obtained

from STL ORACLE systems personnel. Third, the user must be
enrolled-as a database user. This may be accomplished by

contacting the CSC SEL DBA and supplying an ORACLE user ID,

password, and SEL database user class. User classes are
defined to give different types of users different levels of
database access. The user class determines the access priv-

ileges a user has with respect to individual database tables
and the functions that may be performed under the database

operational software. The following user classes have been
defined:

General user--Users requiring read-only access to

the database, such as researchers and managers

Librarian--SEL data entry personnel

• QA--SEL quality assurance personnel

• Maintenance--SEL database maintenance programmers

• DBA--SEL database administrator

5063

5-1

Once a user has been enrolled in the SEL database environ-

ment and logs onto the STL VAX, the following command proce-
dure must be executed to create all of the logicals and

symbols required to access the ORACLE RDBMS and the DAMSEL

system:

$ @STL_DISKI[TOOLS]SELINIT

To avoid having to type this command to access the database,
it is recommended that it be included in the user's LOGIN.COM

file to be executed automatically upon logging onto the VAX.

Then, after logging on, the user may execute the DAMSEL sys-

tem by simply typing

$ DAMSEL

5.2 DAMSEL sYSTEM

The DAMSEL system is the primary facility that provides a

convenient way to access the SEL data for all classes of
users. This is a menu-driven user interface with five major

options at the top level:

• Forms function option--Users may view, insert, up-

date, delete, or quality assure SEL data interactively, one

SEL form at a time. The screens for performing these opera-

tions display data in a manner that resembles the data col-

lection_orms presented in Section 3.

• Report funct_onoDtion--This selection provides a

method for users to view large amounts of data on single

projects, or on multiple projects, within a single report.
Reports are available for viewing data that are not project

specific or related to SEL forms. Users select a sequence

of reports and options from the report menus and submit the

sequence to be executed. They may also save one or more

frequently used sequences of reports for future execution.

Reports are submitted as batch jobs, and the results may be

printed or routed to files for terminal display and future

printing.

• Ouery SUDDort function option--This selection pro-

vides a set of ad hoc SQL que[ies that would likely be used

by general users, such as researchers and managers.

• DBA function QDtionr-This selection provides data
entry screens for the SEL DBA to enter or modify projects,

personnel information, and computer information and to per-
form various database verification tasks.

m
g

mm

w

i

U

J

H
I

u

i

i

n
m

m
m

U

m

m

J

i

5063

5-2
u

i

_I

v

• General database SUDDort function option--This se-

lection provides commands to SEL database suppor£ personnel
to back up and restore the database and to generate distri-

bution tapes.

In the menu system, users, depending on their user class,

may access one or more of these functions. The menu system
has built-in security features to verify that each user has

the access privilege to the functions that he or she is at-

tempting to perform. The message "You do not have access to

this option" will appear on the screen if the user tries to

perform a function that is not in his/her operational do-
main. Each user class has different access privileges in

the menu system. These are defined as follows:

• General user--This class of user can access all the

SEL form function viewing screens, all the report function

screens, and all the query support function screens.

• _--This class of user can access all the

SEL form function viewing, insert, update, and delete

screens; all the report function screens; and the general

support function backup and distribution tape generation
screens.

• OA--This class of user can access all the SEL form

function viewing and quality assurance screens, plus all the

report f_nction screens.

• Maintenance--This class of user can access all the

SEL form function viewing screens, all the report function

screens, all the query support function screens, and the

general support function backup and distribution tape gener-
ation screens.

• DBA--This class of user can access all the SEL form

function viewing screens, all the report function screens,

all the query support function screens, all the general sup-

port function screens, and all the DBA function screens.

After the database access requirements, described in Sec-

tion 5.1, are satisfied, the user can access the menu system

as follows:

• Log-on to the VAX under his/her VAX account.

• At the '$' prompt, type DAMSEL.

Enter his/her ORACLE user name and password on the

first screen in the menu system.

5063

5-3

@

@

Select menu options.

Terminate the menu system session via the <Exit/

Cancel> key.

Reference 3 presents a more detailed discussion on using the

operational software.

5.3 AD HOC DATABASE OUERIES

The basic operations that may be performed on a database
table are retrieving rows and columns, inserting rows, delet-

ing rows, and updating existing rows. In the SEL database,
insertion, deletion, and update operations are all performed

via the operational software described in the previous sec-
tion. This is done to ensure that the semantic constraints

imposed by the nature of the software engineering data, as
discussed in Section 4.2, are enforced at all times. The

operation of retrieving data, however, may be done in any
context without risk of violating the integrity of the data-

base. This section discusses how to perform database re-
trievals in an ad hoc manner. Additional examples of

optimized SQL queries are presented in Appendix B. Although
an introduction to the SQL SELECT statement is included, the

coverage is not exhaustive. The reader is referred to Ref-
erence 4 for a more in-depth presentation of the SQL lan-

guage.

5.3.1 CONNECTING TO THE DATABASE

Once a user with database access (section 5.1) has logged

onto the STL VAX, typing the following command at the system

prompt connects him/her to the SEL database:

$ SQLPLUS

After supplying an ORACLE user ID and password, the user is

placed in an interpretive environment from which he/she may
enter ad hoc SQL queries to retrieve database data. The

command l_ne prompt

SQL>

is displayed, signaling that the system is waiting for an
SQL command. Upon entering an SQL command, terminated with

a semicolon (;), and pressing "return," SQL processes the

command, displays the result, and returns to the SQL>

prompt.

5063

5-4

u

u

l

Im

W

g

I

D

=--

i

I

J

W

i

mm

I
IB

%...-

While in an SQL*Plus session, the following online HELP com-

mand is available:

SQL> HELP;

This displays a list of SQL commands, clauses, and related

topics for which help is available.

To exit from an SQL*Plus session, the user types

SQL> EXIT

to disconnect from ORACLE and return to the system prompt.

5 .3 •2 BASIC SELECT STATEMENT

The SQL statement for retrieving database data from the
database is the SELECT statement. In its simplest form, the

SELECT statement has the following syntax:

SQL> SELECT * FROM <table-name>;

This statement displays to the terminal every row in the
table indicated, as in the following example:

SQL> SELECT " FROM PROJECT;

PROJ-_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

PROJ_I01 101 SIM ACT_DEV
PROJ_I02 102 AGSS ACT_DEV

PROJ_I03 103 SIM ACT_DEV

PROJ_I04 104 SIM ACT_DEV
PROJ_I05 105 AGSS ACT_DEV

PROJ_I06 106 SIM ACT_DEV

PROJ_71 71 SIM INACTIVE

PROJ_II0 ll0 AGSS ACT_DEV

PROJ_I08 108 SIM ACT_DEV

PROJ_96 96 ORBIT INACTIVE
PROJ_73 73 ATTITUDE ACT_MAINT

PROJ_72 72 OTHER ACT_DEV
l

The '*' in this form of the SELECT statement indicates that

all columns of the table should be retrieved. To retrieve

only specific columns, the '*' should be replaced by a list
of the desired column names. The column names need not be

5063

5-5

specified in the order in which they are defined in the
table definition, as illustrated in the following example:

SQL> SELECT PROJ_NO, PROJ_NAMEFROMPROJECT;

PROJ_NO PROJ_NAME

108
96

73

e

PROJ-108

PROJ_96

PROJ_73

5.3.3 ORDERING THE RETRIEVED DATA

The SELECT statements seen thus far do not guarantee that

the rows retrieved from the table will be displayed in any

particular order• This may be ensured by specifying an
ORDER BY clause on the SELECT statement, as in the following:

SQL> SELECT PROJ_NAME, PROJ_NO
2 FROM PROJECT

3 ORDER BY PROJ_NAME;

PROJ_NAME PROJ_NO

m

PROJ_73 73

PROJ_101 101
PROJ_I02 102

PROJ_110 110

This causes the retrieved rows to be displayed in ascending
order sorted on the column specified in the ORDER BY clause.

CHARACTER columns are sorted alphabetically, NUMBER columns

are sorted numerically, and DATE columns are sorted chrono-

logically. The default order in an ORDER BY clause is as-

cending. A display in descending order may be accQmplished

by specifying DESC after th@ name of th@ ORDER BY column.
The ORDER BY clause also permits sorting on more than one
field.

In the previous example, the SELECT statement was entered on
more than one line. This illustrates that the SQL inter-

preter does not execute the command until a semicolon is

entered. It should be noted that the command typed in is
stored in a buffer that is retained after the command is

u

Q

i

l

V

W

J

N

im

l

i

mm

m
gg

m

i

I

i

5063
5-6 m

m

u

L

F

executed. This buffer may be edited to change the query

slightly without having to retype it completely. The cur-
rent command in the buffer may be executed by typing

SQL> /

followed by a carriage return. The command buffer may be

displayed by typing 'L', followed by a carriage return:

SQL> L
1 SELECT PROJ_NAME, PROJ_NO

2 FROM PROJECT

3 ORDER BY PROJ_NAME

Reference 4 provides details on editing the command buffer.

5.3.4 LIMITING THE NUMBER OF ROWS RETRIEVED

The queries presented thus far hive all displayed every row

of the table specified. The WHERE clause allows constraints
to be defined that limit the number of rows retrieved, as in

the following example:

SQL> SELECT * FROM PROJECT WHERE PROJ_TYPE = 'SIM';

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

PROJ-_I01 i01 SIM ACT_DEV

PROJ_71 71 SIM INACTIVE
PROJ_I08 108 SIM ACT_DEV

PROJ_I03 103 SIM ACT_DEV

PROJ_I04 104 SIM ACT_DEV

PROJ_I06 106 SIM ACT_DEV

This query selects only those records in which the PROJ_TYPE
column has a value of 'SIM'. It should be noted that, when

specifying a character constant (or a date constant), it
must be surrounded by single quotes. Date constants must be

specified as follows: 'dd-mmm-yy', as in '05-JAN-88'.
ORACLE character fields are case sensitive, and all the

character fields in the SEL database that are commonly used

in queries contain only uppercase characters.

Additional relational operators useful in specifying WHERE

conditions include the following:

>

>=

<

not equal to

greater than

greater than or equal to
less than

5063

5-7

IN
less than or equal to
member of a list of items

The following example illustrates the use of the IN operator:

SQL> SELECT * FROM PROJECT
2 WHEREPROJ_NOIN (101,103,105,107);

PROJ_NAME PROJ_NO PROJ_TYPE ACTIVE_STATUS

PROJ_I05 105 AGSS ACT_DEV

PROJ_i03 103 SIM ACT_DEV

PROJ_I01 i01 SIM ACT_DEV

Conditions in a WHERE clause may be combined by the logical

connectives AND, OR, and NOT to build more complex condi-

tions, as follows:

SQL> SELECT * FROM PROJECT
2 WHERE PROJ_TYPE = 'SIM'

3 AND PROJ_NO > 104;

PROJ_NAME -_ PROJ_NO PROJ_TYPE ACTIVE_STATUS

PROJ_I06 106 SIM ACT_DEV

PROJ_I08 108 SIM ACT_DEV

When multiple conditions are specified, parentheses () may
be used to clarify or override precedence of operators.

5.3.5 GROUP FUNCTIONS

A set of functions in SQL*Plus allows statistics to be cal-

culated on the results of a query. Some of the most common

of these are COUNT, AVG, MAX, MIN, SUM, STDDEV, and

VARIANCE. The following example illustrates how these work:

SQL> SELECT COUNT(PROJ_NO)
2 FROM PROJECT;

COUNT(PROJ_NO)

9O

This query returns the count of all rows in the PROJECT
table that have a non-null value in the PROJ_NO column.

Null values are entered into a particular column of a partic-
ular row to indicate that no data exist for that data item.

The table definitions in Section 4.1 indicate which columns

in the database will accept null values. Thus, in the case

5063

5-8

I

a

m

U

W

H

U

J

M

m

m

mm

z

U

m

H

i

i

I

LI

N

H

J

of the above query, since the PROJ_NO column does not accept

null values, the query always returns the count of all rows
in the table. Like COUNT, the statistical functions AVG,

STDDEV, and VARIANCE operate only on non-null values.

Another example is as follows:

SQL> SELECT COUNT(RES_HR), SUM(RES_HR), AVG(RES_HR)

2 FROM PROJ_PROD

3 WHERE PROJ_NO = 151;

COUNT(RES_HR) SUM(RES_HR) AVG(RES_HR)

22 1.88 .085454545

5.3.6 RETRIEVING FROM MORE THAN ONE TABLE--JOINS

At this point, enough of the basic features of the SELECT
statement have been presented to allow the user to find a

particular piece of data in the database. Suppose, for ex-

ample, the user wishes to know the names Of the subsystem
prefixes for project EXAMPLE. Consulting Section 4.3, the

first step is to find the PROJ_NO value for that project:

SQL> SELECT PROJ_NO
2 FROM PROJECT

3 WHERE PROJ_NAME = 'EXAMPLE';

PROJ-_NO

135

The user can use this result to retrieve the subsystem pre-

fixes from PROJ_SUB:

SQL> SELECT SUB_PRE
2 FROM PROJ_SUB

3 WHERE PROJ_NO = 135;

SUB_PRE

PP

SD

TM

PG
CM

UT

AC

5063

5-9

This works, but rather than doing this in two steps every

time, the same result can be accomplished by a single query

that j__ the two tables:

SQL> SELECT SUB_PRE
2 FROM PROJECT, PROJ_SUB

3 WHERE PROJ_NAME = 'EXAMPLE'

4 AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO;

SUB_PRE

J

_I

i

am

PP

SD
TM

PG

CM

UT
AC

In this query, ORACLE created a virtual table containing all
the columns in both the PROJECT and PROJ_SUB tables. If no

constraints had been specified, the virtual table would have

contained a-lrow for each possible pairing of a row in

PROJECT with a row in PROJ_SUB. However, the WHERE clause

allowed it to create a virtual table in which the only row
selected from the PROJECT table was that in Which the

PROJ_NAME was EXAMPLE; the only rows selected from the

PROJ_SUB-table were those in which the PROJ_NO column had
the same value as the PROJ_NO column in the row selected

from PROJECT (the PROJ_NO value for EXAMPLE). A join is not

limited to two tables, and the columns displayed may come

from any of the tables specified, as in the following exam-

ple that displays the same subsystems as above, but includes
the name of the project and the descriptive name of the sub-

system:

SQL> SELECT PROJ_NAME, SUB_PRE, NAME
2 FROM PROJECT, PROJ_SUB, SUBSYSTEM

3 WHERE PROJ_N ¢ 'EXAMPLE'
4 AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO

5 AND PROJ_SUB.SUBSY_ID = SUBSYSTEM.SUBSY_ID

6 ORDER'BY SUB_PRE;

PROJ_NAME SUB_PRE NAME

EXAMPLE
EXAMPLE

EXAMPLE

AC

CM
PG

ATTITUDE AND ORBIT CONTROL

COMMON BLOCKS

PLOT GENERATOR

5-10

5063

g

HE

J

i

m

W

I

w

L__

HE

M

i

H
I

m
i

i

v

When the same column name occurs in more than one of the
tables selected, that name must be qualified with the table

name to refer to it within the query. Thus, PROJ_NO is

qualified to differentiate between its occurrences in the
PROJECT and PROJ_SUB tables, but PROJ_NAME need not be qual-

ified, since it occurs only in the PROJECT table.

5.3.7 RETRIEVING FROM MORE THAN ONE TABLE--SUBQUERIES

Suppose the user wants to know the most recently estimated
start and end dates for the design phase of project

EXAMPLE. The user could join PROJECT and PROJ_EST_PHASE on

the PROJ_NO field and get all of the estimated design phase
start and end dates for that project. To limit the re-

trieval to only one pair of dates, however, the concept of a

subquery is introduced. The most common use of a subquery

is in specifying conditions on a WHERE clause, as follows:

SQL> SELECT PROJ_NAME, PHASE_CO, START_DATE, END_DATE

2 FROM PROJECT, PROJ_EST_PHASE

3 WHERE PROJ_NAME - 'EXAMPLE'

4 AND PHASE_CO - 'DESGN'
5 AND _PROJECT.PROJ_NO _ PROJ_EST_PHASE.PROJ_NO

6 AND SUB_DATE -
7 (SELECT MAX(SUB_DATE)

8 FROM PROJ_EST_PHASE
9 WHERE PROJ_EST_PHASE.PROJ_NO = PROJECT.PROJ_NO);

PROJ_NAME PHASE_CO START_DATE END DATE

EXAMPLE DESGN 06-JUN-87 02-JAN-88

This query joins the PROJECT and PROJ_EST_PHASE tables on
the PROJ_NO field and further limits the retrieval by speci-

fying that only the PROJ_EST_PHASE row with the most recent
SUB_DATE for the specified project be selected. It should

be noted that subqueries are enclosed in parentheses, and

they must return a single value or a single column of val-
ues. The relational operator IN may be used to see if a

value is in a column of values returned by a subquery.

Also, subqueries may be nested, as in the following example

that lists the names of all components under project EXAMPLE:

SQL> SELECT COM_NAME
2 FROM SUB_COM

3 WHERE SUBSY__ID IN

4 (SELECT SUBSY_ID
5 FROM PROJ_SUB

6 WHERE PROJ_NO =
7 (SELECT PROJ_NO

5063
5-11

COM_NAME

FROMPROJECT
WHEREPROJ_NAME= 'EXAMPLE')) ;

PROID

PROINI

PROINT

ACQINT
DELP

GETCAS

5.3.8 VIEWS--A SHORTCUT FOR COMMONLY USED JOINS

Several views have been defined in the SEL database to allow

users quick access to commonly used data items. A View is a
virtual table that consists of columns from one or more

tables selected by criteria specified in the definition of

the view. For example, to be able to retrieve all the com-
ponent names for a given project, the V_PROJ_COM view was

defined (refer to the table and view definitions in Sec-

tion 4.1). Thus, the following:

SQL>_SELECT * FROMVPROJ_COM
WHERE PROJ_NAME - <project name>;

is equivalent to

SQL> SELECT PROJ_NAME, SUB PRE, COM_NAME, COM_NO

FROM PROJECT, PROJSUB, SUB_COM

WHERE PROJ_NAME = <project name>
AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO

AND PROJ_SUB.SUBSY_ID = SUB_COM.SUBSY_ID;

Similarly, the view V_SUBSYSTEM_INFO allows subsystem infor-

mation to be selected using the following query:

SQL> SELECT * FROMV_SUBSYST_INFO
WHERE PROJ_NAME = <project name>;

This is equivalent to

SQL> SELECT SUB_PRE, NAME, FuNcTION, SUB_DATE, PROJ_NAME

FROM PROJECT, PROJ, SUB, SUBSYSTEM

WHERE PROJ_NAME = <project name>

AND PROJECT.PROJ_NO = PROJ_SUB.PROJ_NO

AND PROJ_SUB.SUBSY_ID = SUBSYSTEM.SUBSY_ID;

u

g

i

J

J

i

D

g

E_s
I

g

N

I

R

5063
5-12

B
I

m

Finally, the view V_PROJ_SUB_ACTis a shortcut to retrieve

the activity hours charged to a particular subsystem. Thus,

SQL> SELECT * FROM V_PROJ_SUB_ACT
WHERE PROJ_NAME = <project name>

AND SUB_PRE = <subsystem prefix>;

is equivalent to

SQL> SELECT PROJ_NAME, SUB_PRE, ACTIVITY, ACT_HR
FROM

WHERE

AND
AND

AND

AND

PROJECT, EFF_PROJ, EFF_SUB, EFF_ACT

PROJ_NAME = <project name>

PROJECT.PROJ_NO = EFF_PROJ.PROJ_NO

EFF_PROJ.P_ID = EFF_SUB.P_ID
SUB_PRE = <subsystem prefix>

EFF_SUB.PS_ID = EFF_ACT.EFF_ID;

5.3.9 SPOOLING OUTPUT AND SAVING QUERIES

All the queries presented displayed their results to the

terminal. To create a permanent copy of the query results,

it is necessary to spool the query session, or at least part
of it, to a-file. This can be accomplished with the fol-

lowing command:

SQL> sPOOL <VMS file name>;

If no file extension is supplied as part of the file name, a

file is created in the current default directory with the

extension .LIS. After this is done, any commands entered

and the associated results displayed are spooled to this

file. Spooling can be turned off, with the following

command:

SQL> SPOOL OFF;

Another useful feature is to be able to save the contents of

the current command buffer and reload it at some future

time. The first step can be accomplished with the following
commands:

SQL> SAVE <VMS file name>;

If no file extension is supplied as part of the file name, a
file is created in the current default directory with the

extension .SQL. This query can be reloaded into the command

buffer by using the following command:

SQL> GET <VMS file name>;

This command searches the current default directory for the

file name specified. If no extension is supplied in the

5-13

5063

file name, it searches for a file with extension .SQL. The

command may now be executed or listed with / or L as de-
scribed above.

This section has presented enough of an introduction to ad

hoc database queries to enable the user to access any partic-
ular item of software engineering data in which he/she is

interested. It has not, however, covered all of the features

present in SQL*Plus that facilitate data retrieval. Some
additional capabilities inciude displaying computed columns,

simple pattern matching in WHERE clauses, conversion between

data types, renaming columns and defining display formats,

parameterizing queries, and computing statistics on groups of
records and printing them on break points when the value of a

particular column changes. Readers who are interested in
these and other advanced features are referred to Reference 4.

I

g

I

g

W

i

g

I

W

I

g

I

5063

5-14

I

J

W

APPENDIX A - ENCODED FI_LD_ AND ALLOWABLE VALUES

v

w..7

L

This appendix lists all the codes used throughout the SEL

database and their corresponding values. Items are listed

alphabetically according to the field in which the code is

stored.

Fi@Id Where Used

ACTIVE_STATUS

ACTIVE_STATUS

ACTIVE_STATUS

ACTIVE_STATUS

ACTIVITY

o_-

ACTIVITY

ACTIVITY

ACTIVITY

ACTIVITY

ACTIVITY

ACTIVITY

ACTIVITY

ACTIVITY

ACTIVITY

ACTIVITY

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

ADA_FEATURE

CH_TYPE

CH_TYPE

Value (Description)

Data collection is active;

project is in development

Data collection is active;

project is in maintenance

Data for the project are incom-

plete; no plan to validate data

The project has been completed
and no more data are being col-

lected

Pre design

Create design

Read/review code

Write code

Read/review design

Test code units

Debugging

Integration test

Acceptance test

Other

Support

Data typing

Subprograms

Exceptions

Generics

Program structure and packaging

Tasking

System dependent features

Other

Error correction

Planned enhancement

Cod_

ACT_DEV

ACT_MAINT

DISCONT

INACTIVE

PREDES

CREDES

RDREVCOD

WRCODE

RDREVDES

TSTCODUN

DEBUG

INTTEST

ACCTEST

OTHER

SUPPORT

DATATYPE

SUBPROG

EXCEPT

GEN

PACK

TASK

SYSDEPF

OTHER

ERRCO

PLANE

5063

A-I

Field Wher_ Used

CH_TYPE

CH_TYPE

CH_TYPE

CH_TYPE

CH_TYPE

CH_TYPE

CH_TYPE

COM_TYPE

CO PE
COM_TYPE

COM__PE -.

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

COM_TYPE

EFF_COM_CH

EFF_COM_CH

Value (Description)

Implementation of requirements

change

Improvement of clarity, main-
tainability, or documentation

Improvement of user services

Insertion/deletion of debug
code

Optimization of time/space/

accuracy

Adaptation to environment

change

Other change type

Include file

Job control language

Assembly language component

FORTRAN source code

Pascal source code

NAMELIST or parameter list

Display identification

Menu definition or help file

Reference data file

BLOCK DATA component

Ada subprogram specification

Ada subprogram body

Ada package specification

Ada package body

Ada task specification

Ada task body

Ada generic specification

Ada generic body

Other type of component

Ada source code (type unspeci-

fied)

1 hour or less

1 hour to 1 day

Code

IMPRE

IMPCM

IMPUS

IN/DE

OPTSA

ADENC

OTHCH

INCL

JCL

ALC

FORTRAN

PASCAL

NAMELT

DI SPLAY

MENDEF

REFDATA

BLOCKDA

ADASUBS

ADASUBB

ADAPACKS

ADAPACKB

ADATASKS

ADATASKB

ADAGENS

ADAGENB

OTHER

ADAUNSPEC

IHR

IDAY

W

J

U

lq_.
m

B

B

I

m

=
I

i

i

U

E_J

i

m

J

5063

A-2
g

i

r_

Field Where Used

EFF_COM_CH

EFFCOM_CH

EFF_ISO_CH

EFF_ISO_CH

EFF_ISO_CH

EFF_ISO_CH

ERR ACAUSE

ERR ACAUSE

ERR ACAUSE

ERR ACAUSE

ERRARES

ERRARES

ERR_ARES

ERRARES

ERRARES

ERRARES

ERR CLASS

ERR_CLASS

ERR_CLASS

ERRCLASS

ERRCLASS

ERRCLASS

ERRSOURCE

ERRSOURCE

ERR_SOURCE

ERRSOURCE

ERR_SOURCE

ERR_TOOLS

ERR_TOOLS

ERR_TOOLS

ERRTOOLS

ERR_TOOLS

Value (DescriPtion)

1 day to 3 days

More than 3 days

1 hour or less

1 hour to 1 day

i day to 3 days

More than 3 days

Misunderstood interaction of

features

Features applied incorrectly

Misunderstood features

Confused features

Class notes

Ada reference manual

Own project team member

Own memory

Someone not on project team

Other

Initialization

Logic/control structure

Interface (internal)

Interface (external)

Data value or structure

Comput at iona 1

Requ i rement s

Functional specifications

Design

Code

Previous change

Compi lee

Symbolic debugger-

Language sensitive editor

CMS

Source code analyzer

Code

3DAY

NDAY

IHR

IDAY

3DAY

NDAY

INTERACT

INCOF

FEATUREM

FEATUREC

NOTE

REFMAN

TEAM

MEMORY

NTEAM

OTHER

INIT-

LOGIC

INTERI

INTERE

DATAVAL

COMPUTE

REQMT

FUNSPEC

DESIGN

CODE

PRECH

COMPI

SYMDEB

LSE

CMS

SCA

5063
A-3

Field where Used

ERR_TOOLS

ERR_TOOLS

ERR_TOOLS

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

5063

Value (DescriPtion) CQde

Performance and coverage PCA

analyzer

DEC Test Manager

Other

User interface

Data processing/data conversion

Real-time control

Mathematical/computational

Graphics and special device

support

Control processing/executive

System services

Problem difficulty

Tightness of schedule con-
straints

Requirements stability PM03

Quality of specification doc- PM04

uments

Requirements for documentation PM05

Rigor Of formal reviews PM06

Ability of development team ST07

Development team experience ST08

with application

Development team experience ST09
with environment

Stability of development team ST10

composition

Project management performance TMII

Project management experience TM12,

with application

Stability of project manage- TM13
ment team

Project planning discipline TMI4

Degree project plans followed TMI5

Modern programming practices PC16

Disciplined change/question PC17

tracking

A-4

DECTM

OTHER

USERINT

DPDC

REALTIME

MATHCOMP

GRAPH

CPEXEC

SYSSERV

PM01

PM02

I

Im

I

m

I

U

g

i

W

I

r_

M
J

m

I

J

[]
E

I

%..*

Field Where Used

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE_.

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

MEAS_TYPE

ME SS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

Value (Description)

Use of disciplined require-

ments analysis methodology

Use of disciplined design

methodology

Use of disciplined testing

methodology

Use of tools

Use of test plans

Use of quality assurance

procedures

Use of configuration manage-

ment procedures

Degree of access to develop-

ment system

Programmers per terminal

Development machine resource
constraints

System response time

System hardware and support
software stability

Software tool effectiveness

Delivered software supports

requirements

Quality of delivered software

Quality of design present in
delivered software

Quality/completeness of soft-
ware documentation

Timely software delivery

Smoothness of acceptance test-

ing

Computer accounts to monitor

Names of controlled libraries

CSC contact

Current phase

Development machine

Code

PC18

PC19

PC20

PC21

PC22

PC23

PC24

EN25

EN26

EN27

EN28

EN29

EN30

PT31

PT32

PT33

PT34

PT35

PT36

COMPACC

CONLIB

CSCP

CURPH

DEVMA

w

5063

A-5

Field Where Used

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE

MESS_TYPE--

ORI_TYPE

ORI_TYPE

ORI_TYPE

ORI_TYPE

PHASE_CO

PHASECO

PHASE_CO

PHASE_CO

PHASE_CO

PHASE_CO

PHASE_CO

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE
PROJ_TYPE

Value (Description)

Growth history tool used

GSFC contact

SEL forms required

Task numbers and corresponding

years

Text comment 1

Text comment 2

Text comment 3

Text comment 4

Text comment 5

Text comment 6

Text comment 7

Text comment 8

Text comment 9

Text, comment i0

New

Extensively modified

Slightly modified

Old (unchanged)

Requirements definition

Design

Code and test (implementation)

System test

AccePtance test

Cleanup

Maintenance

Attitude oriented

Other

Attitude ground support system

Simulator

Orbit oriented

Scientific oriented

,L Cod@

GHTOOL

GSFCP

SELF

TASKNO

TEXT1

TEXT2

TEXT3

TEXT4

TEXT5

TEXT6

TEXT7

TEXT8

TEXT9

TEXTIO

NEW

EXTMO

SLMOD

OLDUC

REQNT

DESGN

CODET

SYSTE

ACCTE

CLEAN

MAINT

ATTITUDE

OTHER

AGSS

SIM

ORBIT

SCIENTIFIC

=_

D

R

W

-m

m

m

U

u

I

g

i

=_

m

i

I

5063

A-6
u

W

z

m
I

Field Where Used

PROJ_TYPE

PROJ_TYPE

PROJ_TYPE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

PURPOSE

QA_STATUS

QA_STATUS

SECOND_L

SECOND__L

SECOND_L

SECOND L

SECONDLL

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

SECOND_L

V_lue (DescriPtion)

Database

Real time processing

Software tool

I/O processing

Algorithmic/computational

Data transfer

Logic/decision

Control module

Interface to operating system

Ada process abstraction

Ada data abstraction

Hand-checked: errors found

Hand-checked: correct

Compiler

LinMer

Editor

Graphics display builder

Requirements language processor

Structured analysis tool

PDL processor

ISPF

Source Code Analyzer Program

Configuration Analysis Tool

PANVALET

Test coverage tool

Interface checker (e.g.,

RXVPS0, - ANALYZ)

Language sensitive editor

Symbolic debugger

Configuration management tool

(e.g., CMS, MMS)

Other tools

Software development environ-

ment

Code

DATABASE

REALTIME

TOOL

IOPRO

ALCOMP

DATRA

LODEC

CNTRMOD

INTOP

ADAPR

ADADA

HCERROR

HCCORRECT

COMPI

LINK

EDIT

GRADIS

REPLP

STRANT

PDLPR

ISPF

SAP

CAT

PANVAL

TESTCO

INTERF

LSE

SYMDEB

CMTOOL

OTHER

SDE

5063

A-7

Field Where Used

SP_ACTIVITY

SP_ACTIVITY

SP_ACTIVITY

SP_ACTIVITY

STATUS

STATUS

STATUS

STATUS

Value (Description)

Rework

Enhance/refine/optimize

Document

Reuse

Unchecked

Hand-checked: correct

Verified by application

Hand-checked: errors found

Code

REWORK

ENHANCE

DOCUMENT

REUSE

UNCHK

HCCORRECT

VERAP

HCERROR i

I

U

°.

I

m

I

m

g

g

5063

A-8

m

APPENDIX B - SAMPLE OPTIMIZED DATABASE OUERIES

L

1. :

This appendix contains additional examples of SQL queries to

augment those presented in Section 5.3. These are optimized

queries that are written specifically for an ORACLE DBMS

environment. In each example, the data desired from the

database are first expressed in an English statement. This

is followed by SQL statements to retrieve the desired data.

The user should remember that there is often more than one

way to formulate a particular query; only one realization is

presented here for each example.

i. Retrieve the names of all Attitude Ground Support

Systems (AGSSs) with more than i00,000 total lines

of code.

.

SQL> SELECT PROJ__NAME

FROM PROJ__STAT,PROJECT

WHERE T__LINE > 100000

AND PROJ_TYPE = 'AGSS'

AND PROJECT.PROJ_NO = PROJ_STAT.PROJ_NO;

Retrieve the names of all persons who have submit-

ted PRF forms for project 'XYZ.'

SQL> SELECT DISTINCT FULL_NAME

FROM

WHERE

AND

AND

AND

AND

EFF_FORM,EFF_PROJ,PERSONNEL,PROJECT

FORM_TYPE = 'PRF'

EFF_PROJ.P_ID = EFF_FORM.P_ID

EFF_PROJ.PROG_ID = PERSONNEL.PROG_ID

EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO

PROJ_NAME = 'XYZ';

. For project 'XYZ,' list alphabetically all compo-

nent names (with subsystem prefixes) that do not

have COF data.

SQL> SELECT SUB_PRE,COM_NAME

FROM V_PROJ_COM

WHERE PROJ_NAME = 'XYZ'

AND COM_NO NOT IN

(SELECT COM_NO FROM COM_SOURCE)

ORDER BY SUB_PRE,COM_NAME;

. Retrieve the number of error correction changes for

project 'XYZ' that took more than 3 days to imple-

ment.

SQL> SELECT COUNT(CHANGE_NO)

FROM CHANGE

5063

B-1

•

WHERE

AND

AND

CHANGE_NO IN

(SELECT DISTINCT CHANGE_NO
FROM CHANGE_COM, V_PROJ_COM

WHERE CHANGE_COM.COM_NO - V_PROJ_

COM. COM_NO

AND PROJ_NAME - 'XYZ')

EFF_COM_CH - 'NDAY'

CH_TYPE = 'ERRCO' ;

Retrieve the total design hours for project 'XYZ.'

This query may be interpreted two ways.

a. Retrieve all hours charged to design activi-

ties•

SQL> SELECT SUM(ACT_HR)

FROM EFF_ACT

WHERE EFF_ID IN

(SELECT P_ID
FROMEFF_PROJ,PROJECT
WHERE EFF_PROJ.PROJ_NO - PROJECT.PROJ_NO

AND PROJ_NAME = 'XYZ'

--._ .U ION
SELECT PS_ID

be

FROM

WHERE

AND

AND
AND

EFF_SUB,EFF_PROJ,PROJECT
EFF_PROJ.P_ID = EFF_SUB.P_ID

EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO

PROJ_NAME = 'XYZ')
ACTIVITY IN ('CREDES','RDREVDES');

Retrieves all manpower hours charged during

the design phase.

First, find the design phase start and end

dates•

SQL> SELECT START_DATE,END_DATE
FROM PROJ_EST_PHASE,PROJECT

WHERE SUB_DATE =
(SELECT MAX(SUB_DATE)

FROM PROJ_EST_PHASE
WHERE PROJ_NO - PROJECT.PROJ_NO)

AND PHASE_CO = ' DESGN'
AND PROJ_EST_PHASE.PROJ_NO = PROJECT.PROJ_NO

AND PROJ_NAME = 'XYZ';

J

[]

I

mm

g

m

W

M

g

r_

J

m

mm

i

W
=

U

H

J

m

5063

B-2 J

M

Second, find all activity hours between these
dates.

SQL> SELECT SUM(ACT_HR)
FROM EFF_ACT

WHERE EFF_ID IN

(SELECT P_ID

FROM EFF_PROJ,PROJECT

WHERE SUB_DATE BETWEEN <start date>
AND <end date>

AND EFF_PROJ.PROJ_NO = PROJECT.PROJ_NO
AND PROJ_NAME = 'XYZ'
UNION

SELECT PS_ID

FROM EFF_SUB,EFF_PROJ,PROJECT
WHERE SUB_DATE BETWEEN <start date>
AND <end date>

AND EFF_PROJ.P_ID = EFF_SUB.P_ID

AND EFF_PROJ.PROJ_NO = PROJECT.PROJNO
AND PROJ_NAME = 'XYZ')

AND ACTIVITY != 'SUPPORT');

ic[_

5063
B-3

ImW

l

RI

Ul

IP

g

N

II

MI

iil

li3

g

W_w

nm

J

_m

i

I

I

_w

APPENDIX C - GLOSSARY OF TERMS AND ABBREVIATIONS

Clause

Cluster

Column

Command

Field

Group
Function

Index

Join

Null

Primary Key

Query

Record

Relation

TERMS

A portion of an SQL command, starting with a
reserved word, that qualifies or constrains

the operation of the command.

An internal mechanism for storing together

groups of related columns from different

tables, or groups of like-valued column en-

tries from a single table, to improve effi-

ciency.

A particular class of data items within a
table. Each column has a single value in each

row of a table.

An instruction to the SQL*Pius interpreter.

_ Synonymous with column.

An SQL*Plus function that operates on a single

column of all rows in a query, returning a

single value.

A mechanism for improving efficiency of data-

base access by enabling searches to be per-
formed without always examining an entire

table.

Retrieval of rows from two or more tables in a

single query.

A "value" for a column indicating that the

column hasno value. Null values do not use

storage space.

One or more columns whose values uniquely

identify each row of a table.

An instruction to the SQL*Plus interpreter to
retrieve one or more rows and columns from one

or more tables or views.

Synonymous with row.

Synonymous with table.

5063

C-I

Row

Subquery

Table

View

AGSS

CDR

COF

CPU

CRF

DBA
DBMS

DDL
GSFC

ID

NASA

PCSF
PDL

PDR

PEF

PRF

SEF
SEL

SIF

SPF

SQL
STL

A single entry in a table, containing one en-

try for each column in the table.

A query enclosed in parentheses that returns
values used in a condition of a SQL command.

The basic unit of data storage in a relational
DBMS. Contains a variable number of rows,

each of which contains a fixed number of col-

umns.

A "virtual table" that consists of one or more

columns from underlying database tables.

Views do not actually store data.

ABBREVIATIONS

Attitude Ground Support System

critical design review

Component Origination Form
central processing unit

Change Report Form
database administrator

database management system

data definition language
Goddard Space Flight Center
identification

National Aeronautics and Space Administration

Project Completion Statistics Form

program design language

preiim_nary design review

Project Estimates Form
Personnel Resource Form

SubjectiveEvaluation Form

Software Engineering Laboratory
Subsystem Information Form
Services/Products Form

structured query language

Systems Technology Laboratory

W

I

mm

u

mR

i

U

mm

mm

I

W

g

U

5063

C-2
m

BB

APPENDIX D - SEL DATA COLLECTION FORMS

This appendix contains all the SEL data collection forms.

These forms are completed by programmers and managers of
SEL-monitored projects, with the exception of one form, the

Service/Products form, that is completed by SEL personnel.

"5063

D-I

II

i

El

PROJECT ESTIMATES FORM

Project Name:

Form Date:

D1

D2

Phase Dates iSaturdays)

Start DatePhase

Requirements

Design
Code &Test

System Test

Acceptance Test

Cleanup "-

Maintenance,

I_ject End

D3

D4

D5

D6

D7

-D8

D9

DIO

Staff Resource Estimates
i rll ii

Programmer Hours D11
,, ,,, ,v,,

Management Hours D12

Services Hours D13

l_oject Size Estimates

Number of subsystems D14

Number of components D15

SourceunesofCode

Total D16

New D 17

Modified D 18

Old D19

Note:

JULY 1987

All of the values on this form am to be

estimates of pro_-'led values at completion
of the project. This form should be
submlltedwithupdated estimates every 6 to
8 weeks during the course of the project.

Figure D-1. Project

t For Lbar_'s Use On_

Number: D.20

Checkedby:

Estimates Form

g

B

|

W

me

W

U
J

H

i

i

g.

H
g

a

U

IB

J

i

5063

D-2

-- o

I

gB

ORIGINAL PAGE IS

OF POOR QUALITY.

Name: D21

Project: I)1

Personnel Resources Form

FridayDate: D22

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: HoursByActivily(Totalof hoursIn SectionB shouldequal totalhoursin SectionA)

Activity

pr,_es_n

CreateDesign

Read/RevkMDesign

W_ Code

Read/ReviewCode

TestCodeUnits

ACtivityDefinitions

Understandingtheconceptsofthesystem.Anyworkpriorto theactualdesign(such
as requirementsanalysis).

Devek_m ofthesyste._s_sym_ orcompone__esk._._ devek_on.n
of PDL,designdiagrams,

Hoursspratmodlngorrevlew{ngdeslQn.Inc.lududeslgnmMtings,formalandinfon'r,al
revi_n, orv41k'thro_he.

ycnd _ compomr_bcJud_b_hdukand_ ox_ deve_on_,

_ma4:Ong_m__ofm

TestTng_ componentsofthesystmn._ vwiUngtest_

Hoursspemflnd_e knownen_ bthesymmmddevelop_ a solution,bcludesgen-
erationandesecutionoftssts associa_iw_ findingd_eerror.

Integratk)nTest Wrltingandexecutingtestsgvdintegratesystem(:_'_:4_'_ds,Irmludk_lsystemtests.

AcceptanceTest Runnbo/st_opa't_acceptancetNl_;.

Other Oth_hoursm mtheproj_tnotco_r_l_mw. Imlud_mmagm_ mest_gs,
,,

Hours

I)23

I)24

D25

D26

027

I)28

. I)29

D30

D31

D32

SECTIONC: EffortOnSpecificActivities(Neednotaddto A)
/SomehoursmaybecountedInmorethanonearea;vieweachactlv_ separa_y)

_ewo.,k:_oftotsihou_oentthatwemcau_dbyunplamdcher_mormors. Includ_
_nortcauudbyunpinnedc_angestomecmcatm_enno_: orc_ar_l de_, enm or
un_armdc_n_ toco_,c_n_ todocum_ (T_ lacJud_anhouriq:m _)

Enhandng/Refir_ng/Optimizlng:Estima_of totalhoursspentknlxov(ngtheefficlercyorctarltyofdesign,or
code,ordocumentaU_Thesem notcamedbyrequln_lchengesorenorsinthesystem

DooJmen_n_:Hours_n_ m w_ _ ofthesymm bckxl_ dev_opm_ ofd_Igndocumm_ [_
pro_ogs,in.l_ _, testplans,systemdescdpt_s,uses gu_les,orsayoUwsystsm

R_se: HO_ qxmtlnan_odtorwmcompomntloftM_ Includeseffortin lookingatother
_m(a) d_ign,code,_ _ Counttotslhorninmrchbg, a?l_/b¢,mdt_tJng.

For Ulmmd#m'm Use Only

Number:. D37 _

Ollto:

Checkedby:

JULY 1987

Figure D-2. Personnel Resources Form

5063
D-3

i

SERVICES/PRODUCTS FORM

Project: D1

Friday Date: D22

Computer CPU-hours No. of runs
i

D38 D39 D40

Modules D41

Changes D42
im

Unell of Code D43

Service

Tech Pubs

Houm "

D44

SecreWw 045

Ubrarlarm

Other

o _ D48

D46

D47

For Ulwarlm',, U_ Only

m: D49

Date:

Entarmdby:

Checked by:

JULY 1987

B

=

i

=

i

i

[]
i

m

IB

i

i

: =

Z
i

m

m

U

i

m

i

i

Figure D-3. Services/Products Form U

5063

D-4 i

i

m

w

COMPONENT ORIGINATION FORM

Project Name: D1 Programmer Name: D50

Subsystem Prefix: D51 Form Date: D52

Component Name: D53

Date entered into controlled library: D54

Location of Developer's Source File

Library or directory:

Member name:

Relative Difficulty of DeveloDlna Component

Please Indicate your Judgmentby circling one of the numbers below.

Easy Medium Hard
D55

1 2 3 4 5

If the component was modified or dedved from a different project, please indicate the
apfxoximate amount of change and from where it was acquired; if itwas coded new (from

detailed design). Indicate NEW.
NEW D56
Extensively modified (more then 25% of
mtm_enta changed)
S.0h.ymodmed
Old (unchanged)

If not new, what project or llbrary Is It from?

F_ Ubradm'=U_ Omy

.u._. p:;$
Dale:

Emuld b_.
Ch=ck=dby:.

Twe of Component (Check one only)

"INCLUDE' file (e.g., COMMON)
JCL (or other control)
ALC (assembler code)
FORTRAN executable source
Pascal source
NAMEUST or parameter list
Displey identification (GESS)
Menu definition or help
Reference data files
BLOCK DATA file

D57

m

i

N

Ade subprogram specification
Ada subprogram body
Ada package specification
Ada package body
Ada task specification
Ada task body
Ada generic specification
Ada generic body
Other

Purgose of Executable Com[x)nent D58

For executable code, please identify the major purpose or purposes of this component.
(Check all that apply).

I/O processing Control module
Ngorithmio/computational _ Interface to operating system
Data transfer _ Ada process abstraction
Logic/decision _ Ada data abstraction

JULY 1987

Figure D-4. Component Origination Form

5063

D-5

ORIGINAL PAGE IS

OF POOR QUALITY_.
i

prom N=rne: ol

Programmer NmN:.. C_1

_ A- klenttflcatlon

(),._rU:_thechange:(What,why,how)__.

CHANGE REPORT FORM

Current Date:.

.a.pprov_W:

DeO

F.nec=Wha¢_ (0,'doozn,='=) =_
d'enged? (t_S_m) .

De2

w_ =ddmonaa=ompom_ _ doomvn=)
m oxarnh'lod_ _ whaut_ _
needed?

Locationof devsloper's source tUN

c_,=,ge=,mpk,=d_='_=. =y'm=-_): I I ! I_"''"_J
ih.1=.= 1h.,'1_ 1,=_a_ _,='p

FJIkxtInper_ timetoi=o_ thechange(orerror): °es I o66
m

__.Sectl_on B-AI_

'pine of Change(Check on*)
11111

v N Effec_ of Chan_

0 pv,=_,=_n=,n== 0 o_nv=,eon0__

n _ dussrmYlO_

Section C- For ErrorConectio_ Only
Soumeof Error Cla_of Error

(Checkon=) (Ct_¢ mo_ =pp_ab_)"

0==,_
OCod,

Opm_ou=_

(modubwmodub_

rl(moc_==ommvd ==wnun._.aSo_
Om (v=lu=or=au=_)

(e.g.,=n_ inn_h expr,m_)

•_twom _quany=ppUc.b_=h_ the
anehioh_ontheIk_.

D71

o._ u ==q=o,w_
DeO

070

p_ml _p=dW=rk,_IdW(,#.
oommon blo_ to=¢Inn thec_=l

Characterl._k_
(CheckY or N for all)

gmkdmw=. (o.s.,==_'=_ev_ _ ouO
D/4

Indud_1
D75

Number:.
D_le: -

F=r_'= U_Only

Ent_d by:..
Cl_eck_l by:.

JULY 1_i7

Figure D-5. Change Report Form (1 of 2)

m

[]

u

m

U

n

U

m
I

u

n

m

m

z

m

I

5063

D-6 I

m

OF POOR QL;ALITY

CHANGE REPORT FORM
Ada Project Additional Information

1. Check which Ads feature(s) was Involved in this change

(Check all that apply)

I_ Data Typing E] Program Slructure and Packaging

[] Subprograms [] Tasking
D77

[] Exceptions [] System dependent features

[] Generics [] Other, please specify

(e.g., I/O, Ads statements)

2. For an orrar Involving Ads:

a. Does the compiler documentation or the language

reference manual explain the feature cle!rly?

b. Which of the following Is most true? (Check one)

r-1 Understood features separately but not Interaction

[] Understood features, but did not apply correctly
D79

r'! Did not understand features fully

rl Confused feature with feature in another language

c. Which of the following resources provided the Information

needed to correct the error? (Check all that apply)

D80

d°

3.

D78 .

D81

[] Class notes r'l Own memory

[] Ads reference manual [] Someone not on team

[] Own project team member [] Other

Which tools, if any, aided in the detection or correction of this

error? (Check all that apply)

1-1 Compiler

[] Symbolic debugger

[] Language sensitive editor

[] CMS

(Y/N)"

[] Source Code Analyzer

[] P&CA (Performance and Coverage
Analyzer)

[] DEC test manager

[] Other, specify

Provide any other Information about the interaction of Ads and this change

that you feel might aid in the evaluation of the change and the use of Ada

JULY 1988

Figure D-5. Change Report Form (2 of 2)

5063
D-7

BE

l_oJectName:
Date: D151

SUBSYSTEM INFORMATION FORM

D1

Subsyst, ern Subsystom Subsystem
pmnx Name Funct_

D151 D153 D154

Thb form bto becompbtod bythe tlrneof the PreliminaryDesignReview(POR). An update
mu_ be md_mlttmlMch timea new mubsyst_ b definedthereaftor.

Sub_tslm_Prefix:

SuMysm. Name:
Sul:mymmFunction:

A prefix of 2 to 5 charact_'s used to Identify the subsystmn when
nam_ ox,'c,:m_
Ade,mtptJvenan'mofupto40chamctms
EnWthemo_ aR:e'oprta_functioncodefromthelistoffur_ctlons
below:.

USERINT:
DPDC:
REALTIME:
MATHCOMP:
GRAPH:
CPEXEC:
SYSSERV:

U_r Intorfaee
Dam_ Conversion
Real-time Control

Mathematk:al/Compu_lonal
Graph_andSp_ Davk_Support
Corm'olPrc)c_ssrng,,Ex_Ivo
Symm

ULY1_

i

[]

Ill

ii

E

Z

i

qp

m
I

m

W

nil

mm

J

mm

Figure D-6. Subsystem Information Form
m

5063

D-8 i

I

w

;;=,-

Z :

L_

PROJECT COMPLETION STATISTICS FORM

Project Name: D1

Form Date: D83

Phase Dates (Saturdays)

Phase Start Date

Requirements D84

Design D85

Code & Test D86

System Test D87

Acceptance Test D88

Cleanup D89

Maintenance Dg0

Project End D91

Staff Resource Statistics

Technical and
Management Hours D92

Services Hours D93

Computer Resource Statistics

Computer CPU-hours No. of runs

D38 D94 D95

Project Size Statistics

General Parameters Source Lines of Code

Pages of documentation

Number of subsystems D96 Total D 100

Number of components D97 New D101

Number of changes D98 Modif'md D102

D99 Old

Executable Modules

Conlnlents

Total

D103

D104

Executable Statements

D109D 105 Total

New D106 New Dl10

Modified D 107 Modified D 111

Old D 108 Old D 112

Note: All of the values on this form are to be actual
values at the completion of the project. The
values entered by hand by SEL personnel
reflect the data collected by the SEL during
the course of the project. Update these
according to project records and supply
values for all blank fields.

ForUbrwia_',,_ Only
F

Number: Ql1:_
Omo:

Enteredby:

Checkedby:

JULY1987

Figure D-7. Project Completion Statistics Form

,-Z: ;

5063
D-9

Name

Project Name

Submission Date

P24

P1

P13

SUBJECTIVE EVALUATION FORM

Purpose: To obtain subjective assessments on recently com-

pleted software development projects.

Completed by: Personnel participating in management of the

project, within one month of project

completion.

I. PRObLEM CHARACTERISTICS

1. Assess the intrinsic difficulty or complexity of the

problem that was addressed by the development of the

software.

1 2 3 4 5

Easy Average Dl14 Difficult

2. How tight were the schedule constraints on the project?

1 2 3 4 5

Loose Average D115 Tight

3. How stable were the requirements over the development

period?

1 2 3 4 5

Low Average Dl16 _High

FOR LIBRARIAN'S USE ONLY

Number: D150

Date:

Entered by:

Checked by:

--j

M

W

l

4

z

m

W

U

m

B

m

m

m

m

mR

u

g

Figure D-8. Subjective Evaluation Form (I of 8)

I

I

5063

D-10 mm

m

m

L_

w

5063

4,

5.,

6.

Assess the overall quality of the requirements specifi-

cation documents, including their clarity, accuracy,

consistency, and completeness.

1 2 3 4 5

Low Average Dl17 High

How extensive were the documentation requirements?

1 2 3 4 5

Low Average D118 High

How rigorous were the formal review requirements?

1 2 3 4 5

Low Average DI 19 High

II. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess the overall quality and ability of the develop-

ment team.

1 2 3 4 5

Low Average D120 High

8. How would you characterize the development team's exper-

ience and familiarity with the application area of the

project?

1 2 3 4 5

Low Average D121 ; High

9. Assess the development team's experience and familiarity

with the development environment (hardware and support

software).

1 2 3 4 5

Low Average D122 High

Figure D-8.

JULY 1987

Subjective Evaluation Form (2 of 8)

D-II

I

i0. How stable was the composition of the development team

over the duration of the project?

1 2 3 4 5

Low Average D123 High

III. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

ii. Assess _he overall performance of project management.

1 2 3 4 5

Low Average D124 High

12. Assess project management's experience and familiarity

with the application.

1 2 3 4 5

Low Average D125 High

13. How stable was the project management over the duration

of the project?

1 2 3 4 5

Low Average D126 High

14. What degree of disciplined project planning was used?

1 2 3 4

Low Average D127

15. To what degree were project plans followed?

1 2 3 4

Low Average D128

5

High

5

High

Figure D-8.

JULY 1987

Subjective Evaluation Form (3 of 8)

i

m

m

M

U

m

i

J

m

m

J

5063

D-12

m

%..-

IV. PROCESS CHARACTERISTICS

16. TO what extent did the development team use modern pro-

gramming practices (PDL, top-down development, struc-

tured programming, and code reading)?

1 2 3 4 5

Low Average D129 High

17. To what extent did the development team use well-

defined or disciplined procedures to record specifica-

tion modiflcations, requirements questions and answers,

and interface agreements?

1 2 3 4 5

Low Ave rag • D130 H ig h

18. To what extent did the development team use well-

defined or disciplined requirements analysis method-

ology?

1 2 3 4 5

Low Average D131 High

19. To what extent did the development team use well-

defined or disciplined design methodology?

1 2 3 4 5

Low Average D132 High

20. To what extent did the development team use well-

defined or disciplined testing methodology?

1 2 3 4 5

Low Average D133 High

5063

Figure D-8.

JULY 1987

Subjective Evaluation Form (4 of 8)

D-13

J

21. What software tools were used by the development team?

Check all that apply from the list that follows and

identify any other tools that were used but are not

listed.

[3 Compiler

O Linker

[] Editor D134

[_ Graphic display builder

[_ Requirements language processor

[] Structured analysis support tool

[] PDL processor

[] ISPF

[] SAP

O CAT

O PANVALET

[] Test coverage tool

[] Interface checker (RXVP80, etc.)

[] Language sensitive editor

O Symbolic debugger

[_ Configuration Management Tool (CMS, etc.)

[] Others (identify by name and function)

22. To what extent did the _evelopment tea_ prepare and

follow test plans?

1 2 3 4 5

LOW Average D135 High

23. To what extent did the development team use well-

defined and disciplined quality assurance procedures

(reviews, inspections, and walkthroughs)?

1 2 3 4 5

LOW Average D136 High

Figure D-8. Subjective Evaluation Form (5 of 8)

=_

W

i

m

l

_mm

mm

m

i

i

m_m

5063

D-14
M

N

- =

L--

W

24. To what extent did the development team use well-

defined or disciplined configuration management proce-

dures?

1 2 3 4 5

Low Average D137 High

V. ENVIRONMENT CHARACTERISTICS

25. How would you characterize the development team's degree

of access to the development system?

1 2 3 4 5

Low Average D138 High

2b. What was the ratio of programmers to terminals?

1 2 3 4 5

8:1 4:1 2:1 D139 i_i 1:2

27. To what degree was the development team constrained by

the size of main memory or direct-access storage avail-

able on the development system?

1 2 3

Low Average

28. Assess the system response time:

4 5

D140 High

were the turnaround

times experienced by the team satisfactory in light of

the size and nature of the jobs?

1 2 3 4 5

Poor Average D141 Very Good

Figure D-8.

JULY 1987

Subjective Evaluation Form (6 of 8)

5063

D-15

g

29. How stable was the hardware and system support software

(including language processors) over the duration of the

project?

1 2 3 4 5

Low Average D142 High

30. Assess the effectiveness of the software tools.

1 2 3 4 5

Low Average 0143 High

VI. PRODUCT CHARACTERISTICS

31. To what degree does the delivered software provide the

capabilities specified in the requirements?

1 2 3 4 5

Low Average 0144 High

32. Assess the quality of the delivered software product.

1 1 3 4 5

Low Average D145 High

33. Assess the quality of the design that is present in the

software product.

1 2 3 4 5

LOW Average D146 High

34. Assess the quality and completeness of the delivered

system documentation.

1 2 3 4 5 .

Low Average 0147 High

Figure D-8.

JULY 1987

Subjective Evaluation Form (7 of 8)

V

J

I

W

U

U

m

w

I

I

M

I

m

w

I

4

m

5063

D-16 g

I

35. To what degree were the software products delivered on

time?

1 2 3 4 5

Low Average D148 High

36. Assess the smoothness or relative ease of acceptance

testing.

1 2 3 4 5

Low Average D149 High

Figure D-8.

JULY 1987

Subjective Evaluation Form (8 of 8)

5063

D-17

INB

V

U

i

IB

E

i

m
uf

im

m

m

m

u

iI

U

u_

i

ml

Jim

m

L

APPENDIX E - DATA DEFINITION LANGUAGE FOR THE SEL DATABASE

This appendix describes the data definition language (DDL)
that contains all the semantic rules of the SEL database.

In the DDL, each base relation is identified by the keyword
RELATION and each view is identified by the keyword VIEW.

Each field within a relation is identified by the keyword

FIELD followed by its name, its data type, and its length.

Char, which represents a character data type, is followed by
the maximum length of the field. Numeric, which represents

a numeric data type, is followed by the width of the field

and the number of decimal places, if any. Date represents

an ORACLE data type.

The primary key component(s) is identified by the keyword
KEY, and a unique index will be created for every primary

key in the database. The keyword UNIQUE identifies the
fields that are not part of the primary key but whose values

are unique within a relation. The keyword INDEX identifies
fields to be indexed in addition to the primary key

field(s). CLUSTER identifies relations that are physically

stored together.

The constraints mentioned in Section 4.2.3 are represented

by mathematical expressions. The following constraint in

the DDL

CONSTRAINT

RANGE PROJECT P

RANGE PROJ_SUB S

VS 3P (P.PROJ_NO = S.PROJ_NO)

can be interpreted as follows: P is the range variable that

ranges over the PROJECT relation, and its Permitted values
are records of PROJECT. _ is the range variable that ranges

over the PROJ_SUB relation, and its permitted values are

records of PROJ_SUB. Here, range variables are used as a

simple shorthand. For all (v) S, there exists (3) P such

that PROJ_NO in P is equal to PROJ_NO in S. In other words,

for each project number that exists in the project-subsystem

relation, the same project number must exist in the Droject
relation. Besides "for all" (v) and "there exist" (3) qual-

ifiers, the qualifier "or" (V) is used in the constraint
definition of relation EFF_ACT, and the qualifier "and" (A)

5063

E-I

is used in the constraint definitions of relations
CH_ERR_ARES, CH_ERR_TOOLS, CH_ADAFEAT, and CH_ERR_GEN. Each
field within a view is identified by the keyword FIELD fol-
lowed by its name and the base relation from which it is
derived. The field lengths are the same as in the base re-
lations.

m

m

m

m
m

H

m

W
m_

[]

mm

g

J

R

I

J

J

W

5063

E-2
I

W

w

w

RELATION PROJECT

(FIELD PROJ_NAME char(8)
FIELD PROJ_NO numeric(3)

FIELD PROJ_TYPE char(10))

(FIELD ACTIVE_STATUS char(10))

KEY (PROJ_NAME)

UNIOUE (PROJ_NO)

INDEX (PROJ_NO)

CLUSTER (PROJ_SUB)

RELATION PROJ_PROD

(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date

FIELD RES_NAME char(10)

FIELD RES_HR numeric(10,2)

FIELD RES_RUN numeric(5))
KEY (PROJ_NO, SUB_DATE, RES_NAME)

CQNSTRAINT
RANGE PROJECT P

RANGE PROJ_PROD PR
RANGE COMPUTER CPU

V PR 3_P (P.PROJ_NO = PR.PROJ_NO)

VPR 3CPU (CPU.CPU_NAME = PR.RES_NAME)
VPR: 3PR (PR.SUB_DATE = a valid Friday date)

RELATION PROJ_GRH

(FIELD PROJ_NO numeric(3)
FIELD SUB_DATE date

FIELD GR_LINE numeric(7)

FIELD GR_MOD numeric(4)
FIELD GR_CH numeric(6))

KEY (PROJ_NO, SUB_DATE)
CONSTRAINT

RANGE PROJECT P

RANGE PROJ_GRH PG

VPG 3 P (P.PROJ_NO = PG.PROJ_NO)

VPG HPG (PG.SUB_DATE = a valid Friday date)

RELATIQN PROJ_SUB
(FIELD PROJ_NO numeric(3)

FIELD SUB_PRE char(5)

FIELD SUBSY_ID numeric(5))

KEY (PROJ_NO, SUB_PRE)

UNIOUE (SUBSY_ID)
INDEX (SUBSY_ID)

CLUSTER (PROJECT)

CONSTRAINT
RANGE PROJECT P

RANGE PROJ_SUB S
VS 3P (P.PROJ_NO = S.PROJ_NO)

5063

E-3

F

RELATION PROJ_FORM

(FIELD PROJ_NO numeric(3)

F__ SUB DATE date

FIELD FORM_NO char(6)

FORM_TYPE char(6)

STATUS char(10))

KE___XY(PROJ_NO, SUB_DATE, FORM_NO, FORM_TYPE)

NI_ (FORM_NO, FORM_TYPE)

D_ (FORM_TYPE)

INDEX (STATUS)

PROJECT P

PROJ_FO_ PF

]_uN_C_VAL_STATUS VS

V PF

V PF

VPF

3P (P.PROJ NO = PF.PROJ_NO)

3VS (VS.COD = PF.STATUS)

3PF (PF.FORM_TYPE _ 'PEF' VPF.FORM_TYPE

'SPF' VPF.FORM_TYPE = 'PCSF'V

PF.FORM_TYPE = 'SEF')

PROJ_STAT

(_ PROJ_NOnumeric(3)

FIELD SUB_DATE date :

T_SYS numeric(4)

_ T_COM numeric(4)

J T_EXE_MOD numeric(4)

F=LF_ T_NEW_MOD numeric(4)

T_MOD_MOD numeric(4)

FIELD T_EXE STAT numeric(6)

T_NEW_STAT numeric(6)

FIELD T_CH numeric(6)

F_ELD T_LINE numeric(7)

FIEL______DT_DOC numeric(6)

FIELD T_NEW_LINE numeric(6)

FIELD T_MOD_LINE numeric(6)

___ T_MOD_STAT numeric(6)

FIELD T_OLD_LINE numeric(6)

FIELD T_OLD_STAT numeric(6)

T_OLD_MOD numeric(4)

PRO_HR numeric(10,2)

TECH MAN_HR numeric(10,2)

FIELD SER_HR numeric(10,2)

FIELD T_COMMENT numeric(6))

KEY (PROJ_NO, SUB_DATE)

R_ PROJECT P

RANGE PROJ_EST PES

VPES 3P (P.PROJ_NO = PES.PROJ_NO)

5063

E-4

I

I

I

I

u

I

I

W

i

g

W

I

i

W

=

: =

_w

RELATION PROJ_CPU_STAT

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date
FIELD CPU_NAME char(10)

FIELD TOTAL_HRS numeric(10,2)

FIELD T_RUN numeric(6))

KEY (PROJ_NO, SUB_DATE, CPU_NAME)

CONSTRAINT

RANGE PROJECT P

RANGE PROJ_EST_CPU PESC

RAN_ COMPUTER CPU

RANGE VAL_CPU_PURPOSE VCP
V PESC 3 P (P.PROJ_NO = PESC.PROJ_NO)

V PESC 3CPU (CPU.CPU_NAME = PESC.CPU_NAME)

RELATION PROJ_EST_PHASE

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date
FIELD PHASE_CO char(10)

FIELD START_DATE date

FIELD END_DATE date)

KEY (PROJ_NO, SUB_DATE, PHASE_CO)

RANGE PROJECT P

RANGE PROJ_EST_PHASE PESP

RANGE VAL_PHASE_CO VPC

v PESP 3P (P.PROJ_NO = PESP.PROJ_NO)
VPESP 3VPC (VPC.CODE = PESP.PHASE_CO)

V_PESP 3 PESP (PESP.START_DATE = a valid

" Saturday day)

v PESP 3 PESP (PESP.END_DATE = a valid
Saturday day)

RELATION PROJ_MESS

(FIELD PROJ_NO numeric(3)

FIELD MESS_TYPE char(10)
FIELD MESSAGE char(65)

FIELD DATE_ENTRY date)

KEY (PROJ_NO, MESS_TYPE)
CONSTRAINT

RANGE PROJECT P

RANGE PROJ_MESS PE

RANGE VAL_MESS_TYPE VMET

VPE 3P (P.PROJ_NO = PE.PROJ_NO)

V PE 3VMET (VMET.CODE = PE.MESS_TYPE)

RELATION PROJ_SEF

(FIELD PROJ_NO numeric(3)

__IELD MEAS_TYPE char(10)

FIELD EVALUATE numeric(l))

KEY (PROJ_NO, MEAS_TYPE)

5063

E-5

PROJECT P

PROJ_SEF PSE

RANGE VAL_MEAS_TYPE VMT

V PSE 3P (P.PROJ_NO = PSE.PROJ_NO)

V:PSE 3VMT (VMT.CODE _ PSE.MEAS_TYPE)

RELATION PROJ_SEF_SEC

(FIELD PROJ_NO numeric(3)

FIELD MEAS_TYPE char(10)

SECOND_L char(10))

KEY (PROJ_NO, MEAS_TYPE, SECOND L)

PROJ SEF_SEC PSES

PROJ_SEFPSE

P_N_Fa_VAL_SEC_L VSL

VPSES 3PSE (PSE.MEAS_TYPE = PSES.MEAS TYPE A

PSE.PROJ NO = PSES.PROJ_NO)

VPSES 3VSL (VSL.CODE = PSES.SECOND_L)

EE_VALIDATION

(FIELD F_NAME char(20)

CODE char(10)

FIELD VALUE char(75))

KEY (F_NAME, CODE)

SUB_COM

(_ SUBSY_ID numeric(5)

FIELD COM_NAME char(40)

FIELD COM_NO numeric(7)

FIELD COM_DATE date)

KEY (SUBSY_ID, COM NAME)
COM_NO

COM_NO

PROJ_SUB S

SUB_COM C

VC 3S (S.SUBSY__ID = C.SUBSY__ID)

SUBSYSTEM

(_ SUBSY_ID numeric(5)

NAME char(40)

FUNCTION char(10))

KEY (SUBSY ID)

RANGE PROJ_SUB S

RANCz_ SUBSYSTEM SUB

RANG__ VAL_S_FUNCTION VSF

VSUB

VSUB
3S (S.SUBSY_ID = SUB.SUBSY_ID)

3VSF (VSF.CODE = SUB.FUNCTION)

5063

E-6

g

w

g

m

W

U

m

i

R

m

W

I

m
m

=

COM_PURPOSE

(FIELD COM_NO numeric(7)
FIELD PURPOSE char(10))

KEY (COM_NO, PURPOSE)

CONSTRAINT

RANGE SUB_COM C

RANGE COM_PURPOSE CP
RANGE VAL_COM_PURPOSE VCOP

V CP 3C (C.COM_NO = CP.COM_NO)

v CP 3VCOP (VCOP.CODE = CP.PURPOSE)

RELATION COM_STAT

(FIELD COM_NO numeric(7)

FIELD C_EXE_S numeric(6)

FIELD C_LINE numeric(6)
FIELD C_C_LINE numeric(6))

KEY (COM_NO)

CQNSTRAINT

RANGE SUB_COM C
RANGE COM_STAT CS

VCS 3C (C.COM_NO = CS.COM_NO)

RELATION COM_SOURCE

(FIELD COM_NO numeric(7)

FIELD PROG_ID numeric(5)

FIELD FORM_NO char(6)
FIELD FORM_TYPE char(6)

FIELD STATUS char(10)

FIELD CREATE_DATE date

FIELD ORI_TYPE char(10)

FIELD COM_TYPE char(10)

FIELD DIFFICULTY numeric(2)

FIELD SUB_DATE date)

KEY (COM_NO)
UNIOUE (FORM_NO)

INDEX (STATUS)

INDEX (CREATE_DATE)

INDEX (SUB_DATE)
CONSTRAINT

RANGE SUB_COM C

RANGE COM_SOURCE CSO

RANGE VAL_ORI_TYPE VOT

RANGE VAL_STATUS VS
RANGE VAL_COM_TYPE VCT

RANGE PERSONNEL PROG
V CSO

V CSO

V CSO

V CSO

V CSO

v CSO

3c (C.COM_NO = CSO.COM_NO)
3VOT (VOT.CODE = CSO.ORI_TYPE)
3VS (VS.CODE = CSO.STATUS)
3VCT (VCT.CODE = CSO.COM_TYPE)
3PROG (PROG.PROG_ID = CSO.PROG_ID)
3CS0 (CSO.FORM_TYPE = 'COF')

5063

E-7

RELATION CHANGE_COM

(_ CHANGE_NO char(6)

COM_NO nume r ic (7))

KEY (CHANGE_NO, COM_NO)

RANGE SUB_COM C

RANGE CHANGE_COM CHC

RANGE CHANGE CH

V CHC 3 C (C.COM_NO = CHC.COM_NO)

V CHC 3 CH (CH.CHANGE_NO = CHC.CHANGE_NO)

RELATION CHANGE

(FIELD CHANGE_NO char(6)

FIELD PROG_ID numeric(5)

SUB_DATE date

FIELD EFF_ONE char(l)

FIELD EFF_ADA char(l)

FIELD EFF_ISO_CH char(10)

EFF_COM_CH char(10)

FIELD EFF_PARPA char(l)

FIELD EFF_OTHER char(l)

DATE_DETER date

FIELD DATE_COMP date

FIELD NUM_COM_CH numeric(2)

FIELD NUM_COM_EX numeric(2)

FIELD CH_TYPE char(10)

FIELD FORM_TYPE char(6)

FIELD STATUS char(10))

KEY (CHANGE_NO)

INDEX (SUB_DATE)

INDEX (PROG_ID)

INDEX (CH_TYPE)

_NDEX (STATUS)

CONSTRAINT

RANGE VAL_ISO_CH VEI

RANGE CHANGE CH

PERSONNEL PROG

RANGE VAL_STATUS VS

VAL_EFF_COM_CH
RANGE VAL_CH_TYPE VCHT

V CH

V CH

V CH

V CH

V CH

V CH

3PROG (PROG.PROG_ID = CH.PROG_ID)

3VS (VS.CODE = CH.STATUS)

3VEI (VEI.CODE = CH.EFF_ISO_CH)

3VEC (VEC.CODE = CH.EFF_COM_CH)

3VCHT (VCHT.CODE = CH.CH_TYPE)

3CH (CH.FORM_TYPE = 'CRF')

RELATION CH_ADAFEAT

(FIELD CHANGE_NO char(6)

E__I__IL_ADA_FEATURE char(10))

KEY (CHANGE_NO, ADA_FEATURE)

5063

E-8

I

W

J

I

W

I

I

I

m

m

I

I

mg

W

w

U

V

z --

m

I

i

I

w

CQNSTRAINT

RANGE CHANGE CH

RANGE CH_ADAFEAT CHA

RANGE VAL_ADA_FEATURE VAF
V CHA 3 VAF (VAF. CODE = CHA. ADA_FEATURE)

V CHA 3CH (CH.EFF_ADA = 'Y'ACH.CHANGE_NO
= CHA.CHANGE_NOACH.CH_TYPE =

'ERRCO ')

RELATION CH_ERR_ARES
(FIELD CHANGE_NO char(6)

FIELD ERR_ARES char(10))

KEY (CHANGE_NO, ERR_ARES)

F_9_ITBAIB_T
RANGE CHANGE CH
RANGE CH_ERR_ARES CHEA

RANGE VAL_ERR_ARES VEA

VCHEA 3 CH (CH.CH_TYPE = 'ERRCO'ACH.CHANGE_NO
CHEA.CHANGE_NOACH.EFF_ADA = 'Y')

VCHEA 3VEA (YEA.CODE = CHEA.ERR_ARES)

RELATION CH_ERR_TOOLS

(FIELD CHANGE_NO char(6)

FIELD ERR_TOOLS char(10))

(CHANGE_NO, ERR_TOOLS)

CONSTRAINT
RANGE CHANGE CH

RANGE CH_ERR_TOOLS CHET

RANGE VAL_ERR_TOOLS VET
VCHET 3 CH (CH.CH_TYPE = 'ERRCO'ACH.CHANGE_NO

= CHET.CHANGE_NO)

VCHET 3VET (VET.CODE = CHET.ERR_TOOLS)

CH_ERR_GEN

(FIELD CHANGE_NO char(6)

FIELD ERR_SOURCE char(10)
FIELD ERR_CLASS char(10)

FIELD ERR_COMIS char(l)

FIELD ERR_TYPO char(l)

FIELD ERR_OMIS char(l)

FIELD ERR_ADOC char(l)

FIELD ERR_ACAUSE char(10))

KEY (CHANGE_NO)

INDEX (ERR_ACAUSE)
CONSTRAINT

RANGE CHANGE CH

RANGE CH_ERR_GEN CHEG

RANGE VAL_ERR_SOURCE YES

RANGE VAL_ERR_CLASS VEC

RANGE VAL_ERR_ACAUSE VERA

5063

E-9

VCHEG

VCHEG
V CHEG

V CHEG

9CH (CH.CH_TYPE = 'ERRCO'ACH.CHANGE NO

= CHEG.CHANGE_NO)

3VES (YES.CODE = CHEG.ERR_SOURCE)

3VERA (VERA.CODE = CHEG.ERR_ACAUSE)

3VEC (VEC.CODE = CHEG.ERR_CLASS)

RELATION PERSONNEL

(FIELD PROG_ID numeric(5)

FIELD FORM_N_ char(15)
FIELD FULL NAME char(30)

FIELD DATE_ENTRY date)

KEY (PROG_ID)
UNIOUE (FORM_NAME)

INDEX (FORM_NAME)

RELATION COMPUTER

(_ CPU_NAME char(10)

FIELD C_FULL_NAME char(20))

KEY (CPU_NAME)

RELATION EFF_PROJ
(FIELD PROJ_NO numeric(3)

SUB_DATE date

FIELD PROG_ID numeric(5)

FIELD P_ID numeric(10))

KEY (PROJ_NO, sUB_DATE, PROG_ID)

UNIOUE (P_ID)

INDEX (P_ID)

CONSTRAINT
RANGE PROJECT P

RANGE PERSONNEL PROG

RANGE EFF_PROJ EP
V EP 3P (P.PROJ_NO = EP.PROJ_NO)

V EP 3 PROG (PROG.PROG_ID = EP.PROG_ID)
VEP 3EP (EP.SUB_DATE = a valid Friday date)

RELATION EFF_SUB

(FIELD P_ID numeric(10)

SUB_PRE char(5)
PS_ID numeric(10))

KEY (P_ID, SUB_PRE)
UNIOUE (PS_ID)

INDEX (PS_ID)
CONSTRAINT

RANGE EFF_PROJ EP

RANGE EFF_SUB ES
PROJ_SUB S

v ES
V ES

3S (S.SUB_PRE = ES.SUB_PRE)

3EP (EP.P_ID = ES.P_ID)

!:

u

B

m

J

m

W

U

11

=_
J

m

J

l

=

J

W

m

5063
E-10

I

M

w

w

RELATION EFF_FORM

(FIELD P_ID numeric(10)

FIELD FORM_NO char(6)

FIELD FORM_TYPE char(6)

FIELD STATUS char(10))

KEY (P_ID)

INDEX (STATUS)

CONSTRAINT

RANGE EFF_PROJ EP

RANGE EFF_FORM EFF

RANGE VAL_STATUS VS

vEFF 3EP (EP.P_ID = EFF.P_ID)

V EFF 3 VS (VS.CODE = EFF.STATUS)

vEFF 3EFF (EFF.FORM_TYPE = 'SPF'V

EFF.FORM_TYPE = 'PRF')

RELATION EFF_SUPER

(FIELD P_ID numeric(10)

FIELD PER_SUPER numeric(6,2))

KEY (P_ID)

C9_LITAKL_LT
RANGE EFF_PROJ EP

RANGE EFF_SUPER ESU
VESU H_EP (EP.P_ID = ESU.P_ID)

RELATION EFF_ACT

(FIELD EFF_ID numeric(10)

FIELD ACTIVITY char(10)

FIELD ACT_HR numeric(10,2))

KEY (EFF, ID, ACTIVITY)

CONSTRAINT

RANGE EFF_PROJ EP

RANGE EFF_SUB ES

RANGE VAL_ACTIVITY VA

RANGE EFF_ACT EA

v EA 3VA (VA.CODE = EA.ACTIVITY)

VEA 3ES EP (ES.PS_ID = EA.EFF_ID V EP.P_ID

= EA.EFF_ID)

RELATION TEMP_MANHRS

(FIELD FORM_NAME char(15)

FIELD SAT_DAY date

FIELD HOURS numeric(10,2)

FIELD PROJ_NO numeric(3)

FIELD PROG_ID numeric(5)

FIELD SUB_HR numeric(10,2)

FIELD FLAG char(4)

FIELD P_ID numeric(10)

FIELD SCRIPT_NO numeric(10))

KEY (SCRIPT_NO,SAT_DAY)

CONSTRAINT

5063
E-II

RANGE TEMP_MANHRS TEMP

GENERATE_SAT_DAY GSAT
VTEMP HGSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO

AGSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_SERVHRS

(FIEL_______DFORM_NAME char(15)

FIELD SAT_DAY date

HOURS numeric(10,2)

FIELD PROJ_NO numeric(3)

FIELD PROG_ID numeric(5)

F_EL D FLAG char(4)

FIELD P_ID numeric(10)

_IELD SCRIPT_NO numeric(10))

KEY (SCRIPT_NO,SAT_DAY)

CONSTRAINT
RANGE TEMP_SERVHRS TEMP

RANGE GENERATE_SAT_DAY GSAT

VTEMP 3GSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO

AGSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_ACTIVITY

(_ SAT_DAY date

FIELD ACTIVITY char(8)

HOURS numeric(10,2)

FIELD PROJ_NO numeric(3)

FIELD SUB_HR numeric(10,2)

FIEL_ FLAG char(4)

SCRIPT NO numeric(10))

KEY (SCRIPT_NO,SAT_DAY)

CONSTRAINT

RANG E TEMP_ACTIVITY TEMP

RANGE GENERATE_SAT_DAY GSAT

VTEMP HGSAT (GSAT.SCRIPT_NO = TEMP.SCRIPT_NO

AGSAT.SAT_DAY = TEMP.SAT_DAY)

RELATION TEMP_FoRMCT

(FIELD SUB DAY date

FIELD PROJ NO numeric(3)

FIELD PROG_ID numeric(5)

FIELD FORM_TYPE char(6)

FIELD SCRIPT_NO numeric(10))

KEY (SCRIPT_NO,SAT_DAY)

CONSTRAINT

RANGE TEMP FORMCT TEMP

RANGE GENERATE_SAT_DAY GSAT _

VTEMP HGSAT (GSAT.SCRIPT_NO = TEMP,SCRIPT_NO

AGSAT.SAT_DAY = TEMP.SAT_DAY)

J

U

U

+

J

_z

W

m_m

j

I

H
mm

m

w

I

m

l

5063

E-12
I

m
U

RELATIQN REP_CODES

(FIELD CODE char(10)

FIELD VALUE char(30)

FIELD FUNCTION char(15))

KEY (CODE)

RELATION CRF_TEMP_CHANGE_COM

(FIELD USER_ID numeric

FIELD SUB_PRE char(5)

FIELD COM_NAME char(40)

FIELD COM_NO numeric(7))

KEY (USER_ID,SUB_PRE,COM_NAME)
CONSTRAINT

RANGE V_PROJ_COM VPROJ

RANGE CRF_TEMP_CHANGE_COM CRF

RANGE PROJ_SUB SUB

VCRF HSUB (SUB.SUB_PRE = CRF.SUB_PRE)

VCRF 3VPROJ (VPROJ.COM_NAME = CRF.COM_NAME)

VCRF 3VPROJ (VPROJ.COM_NO = CRF.COM_NO)

DUMMY

(FIELD HIDDEN char(l))

GENERATE_SAT_DAY

(FIELD SAT_DAY date

FIELD SCRIPT_NO numeric(10))

KEY (SCRIPT_NO, SAT_DAY)

 QIL$/_RKI I
RANGE TEMP_SCRZPT T

RANGE GENERATE_SAT_DAY SAT

VSAT HT (T.SCRIPT_N0 _ SAT.SCRIPT_NO)

VSAT 3SAT (SAT.SAT_DAY I a valid Saturday

date)

RELATION PERM_SCRIPT

(FIELD ORA_USER char(20)

FIELD 0UT_FILE char(20)

_ OUT_ROUTING char(20)

FIELD SCRIPT_NAME char(20)

FIELD SCRIPT_NO numeric(10))

KEY (ORA_USER, SCRIPT_NAME)

SCRIPT_NO

f L%TRa/ LT
RANGE USER CLASS U

RANGE PERM_SCRIPT P

VP 3U (U.ORA_USER = P.ORA_USER)

VP 3P ((P.OUT_ROUTING = 'P')

A(P.OUT_FILE != null A

P.OUT_ROUTING = 'F'))

5063

E-13

RELATION REP_CONDITIONS

(FIELD ENDDATE date

FIELD LINES_OF_CODE numeric(5)

FIELD NUM_COM numeric(5)

PROJ_TYPE char(10)

_IELD REPORT_SEQ numeric(3)

FIELD SCRIPT_NO numeric(10)

FIELD START_DATE date)

KEY (SCRIPT_NO, REPORT_SEQ)

CONSTRAINT

RANGE SCRIPT_REPORT S

RANGE REP_CONDITIONS REP

VREP 3S (S.SCRIPT_NO _ REP.SCRIPT_NO

S.REPORT_TYPE_SELECTION =

'SCONDITION'

AS.REPORT_SEQ = REP.REPORT_SEQ)

RELATION SCRIPT_PROJECTS

(FIELD PROJ_NAME char(8)

FIELD REPORT_SEQ numeric(3)

SCRIPT_NO numeric(10))

KEY (SCRIPT_NO, PROJ NAME, REPORT_SEQ)

CONSTRAINT

RANGE PROJECT PR

SCRIPT REPORT R

RANGE SCRIPT PROJECTS P

VP

VP

3R (R.SCRIPT_NO = P.SCRiPT_NO

AR.REPORT_SEQ = P.REPORT_SEQ)

3PR (PR.PROJ_NAME = P.PROJ_NAME)

RELATION SCRIPT_REPORT

(_ REPORT CODE char(10)

REPORT_SEQ numeric(3)

REPORT_TYPE char(20)

F_IELD REPORT_TYPESELECTION char(10)

SCRIPT_NO numeric(10))

KEY (SCRIPT_NO,REPORT_SEQ)

CONSTRAINT

AN_ pRQjE_TPROJ

RANGE PERM SCRIPT P

RANGE TEMP_SCRIPT T

SCRIPT REPORT S

_VAL_REPORT_CODE VAn

vS 3P VT (P.SCRIPT_NO = S.SCRIPT_NOV

T.SCRIPT_NO = S.SCRIPT_NO)

VS 3VAL (VAn.REPORT_CODE = S.REPORT CODE)

i

I

mm

V

g

i

Im

m

D

i

I

5063

E-14

m

B

L-

w

L

V S 3 PROJ ((S.REPORT_TYPE_SELECTION =

'INACTIVE'

V S.REPORT_TYPE_SELECTION

'ACTIVE'

V S.REPORT_TYPE_SELECTION = 'ALL'

V S.REPORT_TYPE_SELECTION = 'LIST'

V S.REPORT_TYPE_SELECTION =

'SCONDITION'

AS.REPORT_TYPE = 'M') V

(S.REPORT_TYPE_SELECTION = null

V S.REPORT_TYPE = 'O') V

(S.REPORT_TYPE_SELECTION =

PROJ.PROJ_NAMEA S.REPORT_TYPE =

's'))

RELATION SEQNO

(FIELD FIELD_NAME char(30)

FIELD MAXSEQNO numeric(10)

FIELD TABLE_NAME char(30))

KE_ (TABLE_NAME,FIELD_NAME)
CONSTRAINT

RANGE SEQNO S

VS 3S (S.TABLE_NAME = a valid relation name

AS.FIELD_NAME = a valid field name

within that relation)

RELATIQN SPECIAL_ACT

(FIELD ACT_HR numeric(10,2)

FIELD EFF_ID numeric(10)

FIELD SP_ACTIVITY char(10))

KEY (EFF_ID,SP_ACTIVITY)

CONSTRAINT

RANGE SPECIAL_ACT SA

RANGE EFF_PROJ EP

RANGE EFF_SUB ES

RANGE VAL_SP_ACTIVITY VAL

VSA 3EP VES (EP.EFF_ID = SA.EFF_ID

V ES.EFF_ID = SA.EFF_ID)

V SA 3 VAL (VAL.SP_ACTIVITY = SA.SP_ACTIVITY)

TABLE_PRIVILEGE

(FIELD ALTER_PRIV char(l)

FIELD DELETE_PRIV char(l)

FIELD INDEX_PRIV char(l)

FIELD INSERT_PRIV char(l)

FIELD SELECT_PRIV char(l)

FIELD TABLE_NAME char(40)

FIELD UPDATE_PRIV char(l)

FIELD USER_CLASS char(20))

5063

E-15

-J

KEY (TABLE_NAME,USER_CLASS)

CONSTRAINT

RANGE TABLE_PRIVILEGE T

RANGE USER_CLASS U
VT 3U (U.USER CLASS = T.USER_CLASS)

VT 3T (T.TABLE_NAME = a valid relation in the

database)

RELATION TEMP_SCRIPT

(FIELD DELETE_STATUS char(10)
FIEL_ ORA_USER char(20)

FIELD OUT_FILE char(20)

_ OUT ROUTING char(20)
FIELD PROCESS_ID char(20)

FIE!_ RUN_STATUS char(10)

FIELD SCRIPT_NO numeric(10))

KEY (SCRIPT_NO)

RANGE USER_CLASS U
RANGE TEMP_SCRIPT T _

VT 3U (U.ORA__USER = T.ORA_USER)

VT 3T ((T.OUT ROUTING = 'P' V T.OUT_ROUTING

- 'F')V

(T.OUT_FILE != null A[T.OUT_ROUTING

ffi 'F'))

RELATION USER_CLASS

(_ ORA__USER_ID char(20)
FIELD USER_CLASS char(20))

KEY (ORA_USER_ID)
CONSTRATNT

RAN_ USER_CLASS_ACCESS UA

RANGE USER_CLASS U

V U 3U (U.ORA_USER_ID = a valid ORACLE user

ID)
V U 3UA (UA.USER_CLASS ffiU.USER_CLASS)

RELATION USER_CLASS__ACCESS

(FIELD ACCESS_TYPE char(10)
FIELD USER_CLASS char(20))

KEY (U__C--LASS,ACCESS_TYPE)

RANGE USER_CLASS_ACCESS UA

RANGE USER_CLASS U _
VU 3UA (UA.USER_CLASS = U.USER_CL_SS)

VUA 3UA (UA.ACCESS_TXPE = ('BACKUP' V 'DBA'
V'DELETE' V 'DISTAPE' V'FORM'

V'GENERAL' V iIMPORT' V 'INSERT'

V'QA' V 'QUERY' V 'REPORT'

V'RESTORE' V 'UPDATE' V 'VIEW'))

u

J

i

a

m

m

Q

m=l

N

m
J

m

U

u

i

m

W

B

t

m

m

5063

E-16
B

m

F

= :

RELATION PROJ_EST

(FIELD PROJ_NO numeric(3)

FIELD SUB_DATE date

FIELD T_SYS numeric(4)
FIELD T_COM numeric(4)

FIELD T_LINE numeric(7)

FIELD T_NEW_LINE numeric(6)

FIELD T_OLD_LINE numeric(6)

_ELD T_MOD_LINE numeric(6)

FIELD PRO_HR numeric(10,2)

FIELD MAN_HR numeric(10,2)
FIELD SER_HR numeric(10,2)

KEY (PROJ_NO, SUB_DATE)

CONSTRAINT
RANGE PROJECT P

RANGE PROJ_EST PES

VPES 3P (P.PROJ_NO = PES.PROJ_NO)

VIEW V PROJ_COM

(FIELD PROJ_NAME,SOURCE PROJECT
FIELD SUB_PRE,SOURCE PROJ_SUB

FIELD COM_NAME,SOURCE SUB_COM

FIELD COM_NO,SOURCE SUB_COM)

VIEW V_PROJ_SUB_ACT
(FIELD PROJ_NAME,SOURCE PROJECT

FIELD SUB_PRE,SOURCE EFF_SUB

FIELD ACTIVITY,SOURCE EFF_ACT

FIELD ACT_HR,SOURCE EFF__ACT)

VIEW VAL_MEAS_TYPE

(FIELD CODE,SOURCEVALIDATION

FIELD VALUE,SOURCEVALIDATION)

VIEW VAL_SECOND_L

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL__ACTIVE_STATUS
(FIELD CODE,SOURCE VALIDATION)

(FIELD CODE,SOURCE VALIDATION)

VIEW VAL_MESS_TYPE

(FIELD CODE,SOURCE VALIDATION
FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_STATUS

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

5063

E-17

V_/EW VAL S FUNCTION

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_COM_PURPOSE

(FIELD CODE,SOURCEVALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ORI_TYPE

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_COM__TYPE

(FIELD CODE,SOURCE VALIDATION

_VALUE,SOURCE VALIDATION)

VIEW VAL_ADA_FEATURE

(FIELD CODE, SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ERR_CLASS

(FIELD CODE,SOURCEVALIDATION

FIELD VALUE,_VALIDATION)

VIEW VAL_CH_TYPE

(FIELD CODE,_VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ERR_ARES

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ERR_SOURCE

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VAL_ERR_ACAOSE

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ERR_TOOLS

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ACTIVITY

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

5063

E-18

u

J

U

U

[]
J

g

I

[]

I

m

w

J

[]

W

u

m

VIEW V_PROJ_TYPE

(FIELD PROJ NO,SOURCE PROJECT

FIELD PROJ TYPE,SOURCE PROJECT)

VIEW VAL_PHASE_CO

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW V_PERM_SCRIPT

(FIELD SCRIPT_NAME,SOURCE PERM_SCRIPT)

VIEW V_REP_CODES_CRITERIA

(FIELD VALUE,SOURCE REP_CODES)

VIEW VAL_COM_CH

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_ISO_CH

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_QA_STATUS

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_REPORT_CODE

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW VAL_SP_ACTIVITY

(FIELD CODE,SOURCE VALIDATION

FIELD VALUE,SOURCE VALIDATION)

VIEW V_SUBSYSTEM_INFO

(FIELD FUNCTION,SOURCE SUBSYSTEM

FIELD NAME,SOURCE SUBSYSTEM

FIELD PROJ_NAME,SOURCE PROJECT

FIELD SUB_DATE,SOURCE PROJ_SUB

FIELD SUB_PRE,SOURCE PROJ_SUB)

VIEW V_PERM_SCRIPT

(FIELD SCRIPT NAME,SOURCE PERM_SCRIPT)

VIEW V_REP_CODES_LOG

(_VALUE,SOURCE REP_CODES)

5063

E-19

J

U

g

g

J

l

i

i

I

m

I ,

.

.

•

5.

6.

REFERENCES

Software Engineering Laboratory, SEL-87-008, Data Col-
lection Procedures for the Rehosted SEL Database,

G. Heller, October 1987

Computer Sciences Corporation, CSC/TM-87/6016, Desiqn o_f

the Rehosted SEL Database, M. So and G. Heller, March
1987

--, CSC/SD-88/6019, User's Guide for the Database Access

M_n_qer for the Software Enaineering Laboratory__(DAMSELI,

S. Steinberg, April 1989

ORACLE Corporation, SOL*Plus User's Guide, J. Sachs

ORACLE Corporation, SOL*Plus Reference Guide, J. Sachs

C. J. Date, An Introduction to Database Systems, Addison

Wesley

5063
R-I

Ul

g

Ell

g

B

Ea

B

D

m

g

m

m
g

_m

J

l

U

[]

m

II

w

_TANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-QRIGINATED IX)CUMENTS

SEL-76-001, Proceedinos From the First Summer Software Enqi-

neerina Workshop, August 1976

SEL-77-002, Proceedinas From the Second Summer Software En-

aineerina Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton

and S. Zeldin, September 1977

SEL-77-005, GSFC NAVPAK Desion SD@cifications Lanouaaes

Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedinq$ From the Third Summer Software Enqi-

neerina Workshop, September 1978

SEL-78-006, GSFC Software Enqineerina Research Reuuirements

Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, AuDlic_bilitY of the Rayleiqh Curve to the SEL

Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Proaram

(SAP) User's Guide (Revision 37, W. J. Decker and

W. A. Taylor, July 1986

SEL-79-002, The Software Enqineerinq Laboratory: Relation-

ship Euuations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, _n4 G0r_Qn Pro-

qram Desiqn Lanquaqe (PDL)in the Goddard Spac_ Fliqht Cen-
ter (GSFC) Code 580 Software Desiqn Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

5063
BL-I

I

SEL-79-005, Proceedinus From the Fourth Summer Software En-

qineerinq Workshop, November 1979

SEL-80-002, Mu_ti-Level Expression Desian Lanauaae-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraf£ Ground Support

Software System (MMS/GSSS)State-of-thelArt Computer Systems/
Compatibility StudY, T. Welden, M. McClellan, and

P. Liebertz, May 1980

SEL-80-005, A Study O_ the Musa Reliability Model,

A. M. Miller, November 1980

SEL-80-006, Proceedinqs From the Fifth Annual Software E_qi-

neerinq Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software SYstems, J. F. Cook and

F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (¢AREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software En_ineerin_Laboratorv PrQqrammer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluatinq Software Development by Analysis of
Chanqe Data, D. M. Weiss, November 1981

SEL-81-012, The Ravle_ah Curve as a Model for Effort Distri_
bution Over the Life of Medium Scale Software Systems, G. O.

Picasso, December 1981

SEL-81-013, Proceedinq$ From the Sixth Annual Software Enqi-

neerinu Workshop, December 1981

SEL-81-014, Automated Collection of Software Enqineering

Data in the Software Enaineerinu Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-104, The Software _nqineerinu Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

g

g

I

D

g

z
!
u

m

m

I

g

l

B

g

El

l

J

E1

5063

BL-2
I

m

i

SEL-81-107, Software Enqineerinq Laboratory (SEL) Compendium

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodology for Fliqht Dynamics, G. Page,

F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, _e¢ommended Approach to Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al._ April 1983

SEL-82-001, Evaluation of Manaqement Measures of Software

DeveloPment, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers:

ume i, July 1982

Vo I-

SEL-82-007, Proceedinqs From the Seventh Annual Software

Enqineerina Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

Changes: The Data From the Software Enuineerinq Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revision i), W. A. Taylor and

W. J. Decker, April 1985

SEL-82-105, Glossary of Software Enqineerinq Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-706, Annotated BiblioqraDhv of Software Enqineering
Laboratory Literature, G. Heller, January 1989

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February i984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Enqineerinq Papers:
ume II, November 1983

Vol- "

SEL-83-006, Monitorinq Software Development Throuqh Dynamic
V_riables, C. w. Doerflinger, November 1983

5063

BL-3

SEL-83-007, Proceedinas From the Eiqhth Annual Software En-

gineerinq Workshop, November 1983

SEL-84-001, Manauer's Handbook for Software Development,

W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-003, Investiqation of Specification Measures for the

_gftware_nqineerinq Laboratory (SEL), W. W. Agresti,

V. E. Church, and F. E, McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Enqi-

neerinq Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-

niques, D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al.,

April 1985

SEL-85-002, Ada Trainina Evaluation and Recommendations From

the Gamma RaY Observatory Ada Development Team, R. Murphy

and M. Stark, October 1985

SEL-85-003, Collected Software Enaineerina Papers:

ume iII, November-i985

Vo I-

SEL-85-004, Evaluations of Software Technoloaies: Testinq,

CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testlna, D. N. Card,

C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedinas From the Tenth Annual Software Enqi-

neerinq Workshop, December 1985

SEL-86-001, Proqrammer's Handbook for F!iqht Dynamics Soft-

ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Developm_nt,

E. Seidewitz and M. Stark, August 1986

SEL-86-003, Fliqht Dynamics System Software Development En-

vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software ED_ineerina ?apers" Vol-

ume IV, November 1986

SEL-86-005, Measurina Software Desiqn, D. N. Card, October

1986

u

g

m
===.

J

m

J

U

I

g

i

M

m

m

I

I

m

5063

BL-4
m

g

i

m

w

t_
w

SEL-86-006, Proceedinqs From the Eleventh Annual Software

Enqineerina Workshop, December 1986

SEL-87-001, Product Assurance Policies and Procedures for

Fliaht Dynamics Software Development, S. Perry et al., March

1987

SEL-87-002, Ada StYle Guide {Version i.I), E. Seidewitz

et al., May 1987

SEL-87-003, Guidelines for Applyinq the Composite Specifica-

tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, A_$essinq the Ada Desiqn Process and Its Impli-

cations: A Case Study, S. Godfrey, C. Brophy, et al.,

July 1987

SEL-87-008, Data Collection Procedures for the Rehosted SEL

Database, G. Heller, October 1987

SEL-87-009, Collected Software Enqineerina Papers: Volume V,

S. DeLong, November 1987

SEL-87-010, Proceedinas From the Twelfth Annual Software En-

gineerinq Workshop, December 1987

SEL-88-001, System Testina of a Production Ada Proiect: The

GRODY Study, J. Seigle and Y. Shi, November 1988

SEL-88-002, CQllected Software Enaineerinq Papers: Vol-

um_ VI, November 1988

SEL-88-003, Evolution of Ada Technoloqy in the Flight Dynam-

ics Area: Desiqn Phase Analysis, K. Quimby and L. Esker,

December 1988

SEL-89-001, Software Enaineerina Laboratory (SEL) Database

Orqanization and User's Guide, M. So, G. Heller,

S. Steinberg, and D. Spiegel, May 1989

SED-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,

"Designing With Ada for Satellite Simulation: A Case Study,"

Proceedinqs of th_ FirSt International Symposium on Ada for

th@ NASA SPace Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Proaram Transformation %nd Pro-

qr_mminq Environments. New York: Springer-Verlag, 1984

5063

BL-5

iBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," proceedinqs Qf the
Fifth International Conference on Software Enqineerina.

New York: IEEE Computer Society Press, 1981

iBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Computer Technoloqv,

January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software

Manaqement %nd Enqineerina. New York: IEEE Computer Society

Press, 1980 (also designated SEL-80-008) _v

3Basiii, V. R., "Quantitative Evaluation of Software Meth-

odology," Proceedinqs of the First Pan,pacific computer con-
ference, September 1985

iBasili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-
lems?," Journal of Systems and Software, February 1981,

vol. 2, no. 1

iBasili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-

ships Between Effort and Other Variables in the SEL,"

Proceedinq_ of the International Computer Software and AP-
plications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

and Reliability Assessment in the SEL Environment, University

of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and

Complexity: An Empirical Investigation," CQmmunications of

the ACM, January 1984, vol. 27, no. 1

iBasili, V. R., and T. Phillips, "Evaluating and Comparing

Software Metrics in the Software Engineering Laboratory,"

Proceedinas of the ACM SIGMETRICS _ympo$ium/Workshop: Qual-

ity Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coveraqe Qf FDn¢-
_ional Testinq, University of Maryland, Technical Report

TR-1442, September 1984

U

i

U

i

J

I

g

u

m

u

m

I

I

I

I

[]

5063

BL-6

U

w

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-

type Expert System for Software Engineering Management,"
Proceedinas of the IEEE/MITRE ExPert Systems in Government

Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," proceedinas of the Workshop

Qn Ouantitative Software Models for Reliability, Complexity,

%nd Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. and H. D. Rombach, "Tailoring the Software

Process to Project Goals and Environments," Proceedinas of

the 9th International Conference on Software Enaineerinq,

March 1987

5Basili, V. and H. D. Rombach, "T A M E: Tailoring an Ada
Measurement Environment," Proceedinas of the Joint Ada Con-

ference, March 1987

5Basili, V. and H. D. Rombach, "T A M E: Integrating Meas-

urement Into Software Environments," University of Maryland,

Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:

Towards Improvement-Oriented Software Environments," IEEE

Transactions on Software Enuineerina, June 1988

2Basili, V. R_, R. W. Selby, and T. Phillips, "Metric Anal-

ysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software EnaineeKing, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use

of an Environments's Characteristic Software Metric Set,"

Proceedinas of the Eiahth International Conference on Soft-

ware Enqin@erinq. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., CQmparinq the Effective-
ness of Software Testina Strateqies, University of Maryland,

Technical Report TR-1501, May 1985

3Basili, V. R. and R. W. Selby "Four Applications of a

Software Data Collection and Analysis Methodology," Proceed-
inas Qf the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-

perimentation in Software Engineering," IEEE Transactions on

Software Enqineerinq, July 1986

5063

BL-7

m

5Basili, V. and R. Selby, "Comparing the Effectiveness of

Software Testing Strategies," IEEE Transactions on Software

Enqineerina, December 1987

2Basili, V. R., and D. M. Weiss, A Methodoloav fo_llectinq

yalid Software Enqineerina Data, University of Maryland, Tech-

nical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collect-

ing Valid Software Engineering Data," IEEE Transactions on
Softwar_ Enqineerinu, November 1984

IBasili, V R., and M V. '............... . Zelkowltz, "The Software Engi-

neering Laboratory: Objectives," Proceedinus of the Fif-
teenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedinus of the Software Life
Cycle M_n_q@ment Worksh6D, SePtember 1977

iBasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-

ware Engineering Laboratory," Proceedinas of the Second Soft-
ware Life Cycle M_n%aement Workshop, August 1978

iBasili, V. R,, and M. V, Z-eikowitz, "Measuring software

Development Characteristics in the Local Environment," Com-

puters and Structures, August 1978, vol. I0

Basili, V. R., and M. V. zeik0witz, "Analyzing Medium Scale

Software Development," Proceedinq_ Qf the Third Interna-

tional Conference on Software Enqineerina. New York: IEEE
Computer Society Press, 1978

5BrOphy, C., W. Agresti, and V. Basili, "Lessons Learned

in Use of Ada-Oriented Design Methods," Procee_inqs of the

Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basiii_,

"Lessons Learned in £he Implementati0n_ase of a Large Ada

Project," Proceedinqs of the Washinuton Ada Technical Con-
ference, March 1988

2Card, 0. N., "Early Estimation of Resource Expenditures and

Program Size," Computer Sciences Corporation, Technical Memo-

randum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques

for Resource Estimation," Computer Sciences Corporation,

Technical Memorandum, November 1982

J

n

U

W

n

g

g

I

i

I

I

n

I

R

U

[]

5063

BL-8 • d

B

3Card, D. N., "A Software Technology Evaluation Program,"

Ann_i_ do XVIII Conqresso Nacional de Informatica, October

1985

5Card, D. and W. Agresti, "Resolving the Software Science

Anomaly," The Journal of Systems and Software, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design

Complexity," Th@ Journal of Systems and Software, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,

"A Software Engineering View of Flight Dynamics Analysis

System," Parts I and II, Computer Sciences Corporation,

Technical Memorandum, February 1984

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-

cal Study of Software Design Practices," IEEE Transactions

on Software Enaineerina, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteris-

tics of FORTRAN Modules," Computer Sciences Corporation,

Technical Memorandum, June 1984

5Card, D., F. McGarry, and G. Page, "Evaluating Software

Engineering Technologies," IEEE Transactions on Software
Enuineerina, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for

Software Modularization," Proceedinas of the Eiqhth Interna-

_iQn_l Conference on Software Enaineerina. New York: IEEE

Computer Society Press, 1985

iChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceedinas

of the Fifth International Conference on Software Engineer-

i!Lq. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and

Q. L. Jordan, "An Approach for Assessing Software Proto-

types," ACM Software Enuineerinu Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software

Development Through Dynamic Variables," Proceedinqs of the
Seventh International Computer Software and Applications

Conference. New York: IEEE Computer Society Press, 1983

5Doubleday, D., "ASAP: An Ada Static Source Code Analyzer

Program," University of Maryland, Technical Report TR-1895,

August 1987 (NOTE: i00 pages long)

5063

BL-9

6Godfrey, S. and C. Brophy, "Experiences in the Implementa-

tion of a Large Ada Project," Proceedinqs of the 1988

Washington A d_ Svmp0s_um, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for

NAVPAK, Higher Order Software, Inc., TR-9, September 1977

(also designated SEL-77-005)

Jeffery, D. R., and V. Basili, "Characterizing Resource

Data: A Model for Logical Association of Software Data,"

University of Maryland, Technical Report TR-1848, May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME

Resource Data Model," Proceedinqs Of the Tenth International

Conference on Software Enaineerina, April 1988

5Mark, L. and H. D. Rombach, "A Meta Information Base for

Software Engineering," University of Maryland, Technical

Report TR-1765, July 1987

6Mark, L. and H. D. Rombach, "Generating Customized Soft-

ware Engineering Information Bases From Software Process and

Product Specifications," Proceedinqs of the 22nd Annual

Hawaii International Conference on System Sciences, January

1989

5McGarry, F. and W. Agresti, "Measuring Ada for Software

Development in the Software Engineering Laboratory (SEL),"

Proceedinas of the 21st Annual Hawaii International Con-

ference on System Sciences, January 1988

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the

Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedinas of the Hawaiian _n_T-

national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research Technoloqy Work_hQp (Proceedings), March
1980

3page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-

perience With Independent Verification and Validation,"

Proceedlnqs of thelEiahth International Computer Software

_Dd ADpiications C_r_g_, November 1984

5Ramsey, C. and V. R. Basili, "An Evaluation of Expert Sys-

tems for Software Engineering Management," University of

Maryland, Technical Report TR-1708, September 1986

W

W

I

N

R

U

u

M

J

g

l

m
u

i

mm

M

i
E

5063

BL-10

z
J

l

m

l

w

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process

Using Structural Coverage," Proceedinas of the Eiqhth Inter-

n_tional Conference on Software Enqineerina. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of

Software Structure on Maintainability," IEEE Transactions on

Software EnqineerinG, March 1987

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment

of Maintenance: An Industrial Case Study," Proceedinqs From

th_ Conference on Software Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Prod-

uct Specifications: A Basis for Generating Customized SE
Information Bases," ProceedinGs of the 22nd Annual Hawaii

International Conference on System Sciences, January 1989

5Seidewitz, E., "General Object-Oriented Software Develop-

ment: Background and Experience," Proceedinus of the 21st
Hawaii International Conference on System Sciences, January

1988

6Seidewitz, E., "General Object-Oriented Software Develop-

ment with Ada: A Life Cycle Approach," Proceedinas of the

CASE TechnoloGy Conference, April 1988

6Seidewitz, E., "Object-Oriented Programming in Smalltalk

and Ada," Proceedinq_ of the 1987 Conference on Obiect-
Oriented PrQarammina Systems. LanGuaGes, and Applications,
October 1987

4Seidewitz, E., and M. Stark, "Towards a General Object-

Oriented Software Development Methodology," ProceedinGs of
the First International Symposium on Ada for the NASA SPace

Station, June 1986

Stark, M., and E. Seidewitz, "Towards a General Object-

Oriented Ada Lifecycle," Pr0¢_edinqs of the Joint Ada Con-
ference, March 1987

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

5063

BL-II

5Valett, J. and F. McGarry, "A Summary of Software Measure-

ment Experiences in the Software Engineering Laboratory,"
Proceedinas of the 21st Annual Hawaii International Confer-

ence on Syst@m Sciences, January 1988

3Weiss, D. M., and V. R. Basiii, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-

ware Engineering Laboratory," IEEE Transactions on Software

Enqineerina, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool

for Ada Software Systems," Proceedinq8 of the Joint Ada Con-

ference, March 1987

iZelkowitz, M. V., "Resource Estimation for Medium Scale

Software Projects, Procee_inas of the Twelfth C0hference on

the Interface of Statistics and Computer Science. New York:

IEEE Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaiuation for Ex-

perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study, W Proceedinas of the 26th Annual Tech-

nical Symposium of the Washinqton' D. C., Chapter of the ACM,

June 1987

6Zelkowltz, M. V., "Resource Utzlzzatzon During Software

Development," Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedinas of the Soft-

_re Life Cycle Manaqement Workshop, September 1977

NOTES:

iThis article also appears inSEL-82-004, Collected Soft-

ware Ena_neerinq Papers: Volume i, July 1982.

2This article also appears in SEL-83-003, Collected Soft-

ware Enuineerina PaDers: Volume If, November i983.

3This article also appears in SEL-85-003, Collected Soft-

ware Enqineerinq Papers: Volume III, November 1985.

4This article also appears in SEL-86-004, Collected Soft-

ware Enqineerinq Papers: Volume IV, November 1986.

m

m

W

m

M

R=m

J

u
m

i

[]

I

I

I

U

H

[]

B

z
l

5063

BL-12

m
m

__=
g

m

5This article also appears in SEL-87-009, Collected Soft-

ware Enaineerinq Pap@rs: Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Soft-

ware Enaineerina Papers: Volume Vl, November 1988.

w

w

5063

BL-13

im

m

Hm

M

B

Ill

B

B i

m

I

m

W

m

m

R -

i

w _
!

