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ABSTRACT

The convergence of solutions to the discrete or sampled time linear quadratic regulator
problem and associated Riccati equation for infinite dimensional systems to the solutions
to the corresponding continuous time problem and equation, as the length of the sampling
interval (the sampling rate) tends toward zero (infinity) is established. Both the finite and
infinite time horizon problems are studied. In the finite time horizon case, strong continuity
of the operators which define the control system and performance index together with a
stability and consistency condition on the sampling scheme are required. For the infinite
time horizon problem, in addition, the sampled systems must be stabilizable and detectable,
uniformly with respect to the sampling rate. Classes of systems for which this condition can
be verified are discussed. Results of numerical studies involving the control of a heat/diffusion

equation, a hereditary of delay system, and a flexible beam are presented and discussed.
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1. Introduction. In this paper we consider the convergence of closed-loop solu-
tions to discrete or sampled time linear quadratic (LQ) optimal control problems and
the associated Riccati equations for infinite dimensional systems defined on Hilbert
spaces to the solutions to the corresponding continuous time problems and Riccati
equations, as the length of the sampling interval tends toward zero. With the advent
and proliferation of micro-computers, and control tasks becoming ever more complex
(for example, the stabilization of large flexible spacecraft), the roles played by dis-
crete or sampled time control design techniques and distributed parameter systems
have become increasingly more important. It has become necessary, therefore, to
develop extensions of many of the familiar results for finite dimensional systems to
an infinite dimensional setting. One area that has recently received a great deal of
attention has been the LQ theory. Certain aspects of the linear-quadratic approach
to control design for both continuous and sampled time infinite dimensional systems
have been studied extensively. In particular, these aspects include, for example, the
linear state feedback structure of the optimal control law, the optimal LQG estimator
and compensator problems, boundary control, and finite dimensional approximation
(for specific references, see below). But to the best of our knowledge, however, the
inter-relation between the continuous and discrete time theories, which in the finite
dimensional case is well understood, has not as of yet, been looked at in the context
of infinite dimensional systems. Such a study would be useful, for example, because
typically in engineering practice, the discrete and continuous time LQ theories are
applied interchangeably without regard to as to whether or not the actual system is
continuous or discrete in nature. In particular, due to hardware constraints, most sys-
tems occurring in engineering practice are in fact discrete. However, if the sampling
is considered to be rapid enough, the system may be treated as continuous when an
optimal control law, state estimator, or compensator is designed. Our work is largely
motivated by the fact that the results we shall present here will serve to, in some
sense, justify this approach.

We note that in finite dimensions, where strong and uniform norm convergence of
linear operators are equivalent, the continuous dependence with respect to sampling of
the solution to the linear quadratic control problem and associated Riccati equation
is straight forward. Indeed, in [Le| the continuous time theory is established by
first deriving the discrete time results, which are fundamentally algebraic in nature,
and then taking the limit as the length of the sampling interval tends toward zero.
However, in infinite dimensions, as is typically the case, the desired convergence is
less obvious. This is especially true in the case of the infinite time horizon problem.
It is this problem that we address here. _

We consider both the finite and infinite time horizon problems. In the case of
the finite time horizon problem, under the assumption of strong continuity of the
operators which define the control system and performance index, together with a
stability and consistency hypothesis on the sampling scheme, we are able to deduce
the desired convergence. We must develop an appropriate framework to facilitate the
comparison of discrete and continuous time operator families. For this purpose we rely
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heavily upon Kato’s [K] treatment of discrete semigroups. In the case of the infinite
time horizon problem we must additionally assume stabilizability and detectability of
the discrete time systems with some degree of uniformity in the sampling rate. The
notion of stabilizability/detectability uniform with respect to sampling will be made
precise in Section 3 below. We are able to establish that if the continuous time system
is stabilizable and detectable via finite rank feedback, and if zero-order hold sampling
is employed, then the resulting discrete time systems are uniformly stabilizable and
detectable for sufficiently small sampling interval. We also have a result concerning
the uniform stabilizability and detectability of parabolic systems. However, this result
will not be discussed here, but rather in a forthcoming manuscript.

Our treatment is functional analytic in nature, and is similar in spirit to the many
recent studies of convergence of solutions to LQ control and estimation problems
and the associated Riccati equations under state (space) approximation (i.e. finite
difference, modal, or finite element, for example). See, for example, [BK], [BW],
[G],[GA], [GR], and [W]. For the discrete time LQ theory for infinite dimensional
systems, we rely heavily on the well known results contained in [HH], [LCB], and [Z].

In addition to our theoretical results, we have included the results of some of our
numerical convergence studies. We present and discuss our findings for the infinite
time horizon LQ optimal control problems for a one dimensional heat or diffusion
equation, a one dimensional hereditary or delay system, and a hybrid system of or-
dinary and partial differential equations describing the small amplitude transverse
vibration of a cantilevered Voigt-Kelvin viscoelastic beam with tip mass.

An outline of the remainder of the paper is as follows. In section 2 we treat the
finite time horizon problem. The infinite time horizon problem is considered in the
third section. Our numerical results are presented and discussed in Section 4, while
a brief fifth section contains a summary and some concluding remarks.

2. LQR Problems with Finite Time Horizon. In this section we consider
the linear quadratic regulator (LQR) problem over a finite time interval. The basic
notation and our general assumptions are introduced in the statements of both the
continuous time and corresponding sampled time problems given below. The existence
and uniqueness of the optimal control as well as its closed loop feedback structure can
be obtained using a variety of approaches. Here we opt to consider the optimal
control problem as the minimization of a strictly coercive quadratic form on the
admissible control space. This approach yields an explicit representation for the
solution of the usual Riccati equations (for both the continuous and sampled time
problems) in terms of the underlying system and penalty operators which define the
problems. Since the particular focus of our effort here is the consideration of sampled
time problems as approximations to a continuous time problem, specialized notions
and characterizations of convergence must be introduced. Once this is done, our
fundamental result for the finite time horizon problem can be stated in terms of these
specialized notions of convergence as follows. The convergence of the optimal control
and the optimal feedback laws for the sampled systems to the optimal control and
feedback law for the continuous time problem as the length of the sampling interval
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tends to zero, follows directly from the convergence of the open-loop sampling of the
underlying linear control system and quadratic performance index. We consider the
open-loop sampling of the infinite dimensional LQR problem in an abstract setting so
that our results can be applied to a wide range of sampling procedures.

Let H and U be Hilbert spaces with inner products < -,- >y and < -, >y
respectively. Let to,t; € R be given with ¢, < ts, and let T = {T(t,s) :to <5<
t < t;} be an evolution system on H. For each t € [to,t/], let B(t) € L(U, H),
Q(t) € L(H), and R(t) € L(U), and let G € L(H). We consider the continuous time
LQR problem given by
(P) Determine a control input @ € Ly(to,ts; U) which minimizes the quadratic per-

formance index

J(ujto,z(t0), G) = < Gz(ty),z(ty) >n
+/t0’ (< Q(1)z(2),z(t) >x + < R(t)u(t), u(t) >v}dt

where for each t € [to,1;] the state z(t) € H is given by
¢
2.1)  z(t) = T(t,s)z(s) +/ T(t,7)B(r)u(r)dr, to<s<t<t;.

We make the following standard assumptions on the operator families {T, B, G, Q, R}
which determine problem (P).
(C1) The evolution system T is strongly continuous on H and therefore is uniformly
exponentially bounded, with constants M > 0 and w € R. That is

IT(t, 8)lLm) < Me?t™9, o <s <t <ty

(C2) The operator valued functions B, @, and R are strongly continuous and there-
fore are uniformly bounded on [to,t;]. That is, there exists a constant C' > 0
for which

IB®)llwm <€, 1R <C, [R(H)lzw) < C,

t € [to,tg].

(C3) The operator G and the operators Q(t) and R(t) for each t € [to,tf] are self-
adjoint and nonnegative definite. Moreover, there exists a constant r > 0 for
which R(t) 2 TI, t e [to,tf].

The strong continuity assumption in (C2) is not necessary for the well-posedness
of the LQR problem. However, some assumptions on the continuity of the operators
B, Q, R will be needed to obtain uniform convergence with respect to sampling.

The closed-loop linear state feedback form of the solution to problem (P) can
be shown to exist and be explicitly constructed by considering the minimization of
appropriately constructed strictly coercive quadratic forms on the Hilbert spaces U, =
Ly(s,t5;U), s € [to,tg] (see, for example, [G]). Since it will play a prominent role in
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our discussions to follow, we briefly outline this approach here. For each s € [to, /]
define the operators B, € L(H,U,) and R, € L(U,) by

22) (B = BO) {T(t,07GT(t5) + [ Tln,t)Qn)T(n,5)dn } 6,

for ¢ € H, t € [s,ty], and
(23)  (Rw)(®) = ROu(t)+BE T(rt)'G [ Tlts,mBln)usln)dn

+B() [ {T(n,t) a() ["T(n7)B(r)u ()d'r}dn,

s

for t € [s,t;] and u, € U,. It is not difficult to verify that the adjoint operator
B} € L(U,,H) of B, is given by

(2.4) Bous, = T(ts,s) G/ (t;,8) B(t)u,(t)dt

+ [ 1510 { [ Tlr,mBlm)us(n)an o

and that for u, € U,, we have
J(usis,2(s), G) =< GT(t;,s)z(s), T(ts,)z(s) >n
+ [ < QUIT(1,9)2(), T(t, 9)2(s) >u di= < R} Bua(s), Box(s) >u,
+ <’ Rs(us + R;1Byz(s)),us + Ry 1B,z(s) >y, -

It follows that for z(s) € H given, J(-;s,z(s),G) is minimized by choosing v, = @, =
~R;'B,z(s) € U,. We then obtain

rrl}i.n J(+;s,2(s), G) = J(us;8,2(s),G)

t
= < GT(ts,s)z(s), T(ts,s)z(s) >g —+—/ "< Q)T (t,s)z(s), T(t,s)z(s) >g dt
— < R;7'B,z(s), B,z(s) >y,
= < II(s)z(s),z(s) >x
where the self-adjoint operator valued function II : [to,t¢] — L(H) is defined by

(2.5) Ms)é = Tltss)'CTlts, )0+ [ T(t,5)" QUIT(r, )
—B:R;'B,¢, ¢€ H.

Using the definitions given above, the following theorem concerning the existence and
characterization of the closed-loop solution to problem (P) can be established.

THEOREM 2.1. Suppose that assumptions (C1)-(C3) are satisfied. Then for
any initial state z(to) € H given, there ezists a unique solution @ to problem (P). The
optimal control 4 is given in linear state feedback form by

a(t) = —~R(t) "' B(t)'TI(t)Z(t),t € [to, 1]
4



where & is the optimal trajectory. The operator valued function I is given by (2.5)
and it is the unique self-adjoint solution to the Riccati integral equation

(26) T(t) = T(tnt)GT(ts?)
+f Y I(r,1) {Q() - TI(7) B(r)R() ™ B() )} T(r, 1),

t € [to,ts]. We have

(2.7) muin J (10, 2(to), G) = J (&3 o, 2(t0), G) =< M(to)z(to), z(to) >m -

We consider next the discrete or sampled time problem. Let ko,k; € Z with
ks> ko and let h € R with h > 0. For k€ Z with ko < k < k; — 1 let Ax(k) € L(H),
and let {Th(k,5) : ko < j < k < ks} be the discrete time evolution system on H given
by

k-1
Th(k,k) = I, Th(k,j) = Ah(k—l)'Ah(k—2) . Ah(j) = H Ah(z), ko S j < k S kf.
.y

(2.8)
Let {Ba(k)}:3L, {Qn(k)}is,, and {Rx(k)};Ls, be sequences in L(U, H), L(H) and
L(U) respectively, and let G, € L(H). The LQR problem is then given by

P,) Determine a control input @, € la(ko, ks — 15 U) which minimizes the quadratic
f
performance index

Jn(un;i ko, zn(ko), Gr) =< Ghza(ks), znl(kys) >n
kf—l

+h Z {< Qh(k):zh(k),xh(k) >g + < Rh(k)uh(k),uh(k) >U}

kzko
where for each k € Z with ko < k < ky, the state zx(k) € H is given by
k-1
(2.9) za(k) = Ta(k,5)za(s) + R Y_ Talk,i+ 1) By (1) un(3),
i=j
fOI’koS]<kSkf

For the discrete time case, we make the following assumptions.

(D1) For each h > 0 the operators An(k), Bu(k), Qn(k), and Ry (k) are bounded in
k for kg < k < k; — 1. Thus, there exists a constant C} for which

|l An(K) |y < Chs | Br(R)llwmy < Ch,
1Qa(k) |y < Chy |BRa(K)llz@w) < Chs

for ko < k < k; — 1.



(D2) The operator G, and the operators Qn(k) and Ry (k) for kg < k < k; — 1 are
self-adjoint and nonnegative. Moreover, there exists a constant rp > 0 for
which Rh(k) Z r;,I, ko S k S kf - 1.

Note that assumption (D1) together with (2.8) yield that the discrete time evolution
system {Th(k,7) ko <7<k < ks} is uniformly exponentially bounded with

ITalk, D)l < Cy7, ko <5< k< k.

Note also that the discrete’time evolution equation (2.9) is equivalent to the discrete
time dynamical system given by

(210) xh(k + 1) = A,,(k)zh(k) + hBh(lc)u;,(k), ’Co S k S kf - 1,Ih(k0) € H.

For each h > 0 and 7 = ko, ko + Lieoosky— 1, let Unj = (g, ks — 1;U) endowed
with the inner product

ky-1
< Uh,js Vh g >Uh.;'= h Z < u;,,j(k),vh,,-(k) > .
k=j
Define the operators B, ; € L(H,Us;) and R, € L(Un;) by
(2.11) (Bni#)(k) = Bu(k) Tulks k+ 1) GpTy(k;,5)é

+B(k)’ {h i Th(s,k + 1)*Qh(i)Th(i,J')} ®,

i=k+1

for¢€H,k=j,j+1,-~-,kf—1,and

(2.12) (R un;) (k) = Ra(k)us; (k)
+Bh(k)*Th(kf,k + 1)*th IZ Th(kf,l. + l)Bh(Z‘)uh,j(l.)

=3

+Bn(k)"h tff: Th(i, k + 1)"Qu(4) {thh(i,z + 1)Bh(1)uh,j(z)} ,

1=k+1 =3

Uhj € Unj, bk =4,7+1, -+, k; = 1, respectively, where in the above expressions and
throughout the remainder of the paper we adopt the convention that 2=t =0
whenever v < . It is not difficult to verify that the adjoint of By ;, the operator
By, € L(Un,, H) is given by

kp~1
(2.13)  Bijun; = Tu(ks,1)°Grh Y Tlks,k + 1)By(k)us (k)

k=j

h i;, Th(k,J')*Qh(k){hkah(k,Hl)Bh(i)u;z,j(i)},

k=j+1 =3
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for up; € Up ;.
Proceeding as we did in the continuous time case, we find that for y = ko, - -, ks —
1, zn(j) € H, and up; € Uy

Jn(uns; 7, 20(5), Ga) = < GuTwlks, 5)zn(3), Tulks,7)za(s) >
k,—l
+h D < Qu(k)Ta(k,5)zn(7), Ta(k, ) zn(5) >H

k=3
— < Rp;Brjznls), Buizal(s) >us,
+ < Ruj(unj + Ry ;Bnizn(d))s uns + Ry Brizald) >us,

where the existence of the inverse of R, ; is quaranteed by assumption (D2). It
is immediately clear that for j € Z with j € [ko,ky — 1] and zx(y) € H given,
I (i 7, 2r(5), Gn) is minimized when up; = @th; = — R} }Bnjza(s). It follows that

IginJh(ﬁjth(J‘)aGh) = Ju(@n;;7,z0(7), Ga)

hg
= < GhTh(kf,j)Ih(j),Th(kfaj)zh(j) >H
kf—l

+h Y < Qu(k)Th(k,7)zn(5), Tul(k, 5)za() >5

k=3
— < Ry3Bniza(d), Bujza(s) >u,,
= <Mu(7)za(s),za(s) >,

where the sequence of self-adjoint operators in L(H), {H,,(k)}:f__;;, are given by

ks—1

(2.14) Ta(5)¢ = Talks, ) GaTulks,5)d+h Y Tul(k,5) Qu(k)Th(k,5)é

k=j

-_BLjR;;Bhdéa

for k = ko, --,k; — 1 and ¢ € H. We note that it is completely consistent to define
Hh (kf) = G.

Using the above definitions, it is possible to establish the following well known
result (see, for example, [LCB], [Z], and [GR]) for the discrete time LQR problem
(Pr).

THEOREM 2.2. Suppose that assumptions (D1) and (D2) are satisfied. Then for
any given initral state (ko) € H there exists a unique solution y € l2(ko, ks — 1;U)
to problem (P,). It is given in linear state feedback form by

ﬂh(k) = —Rh(k)-lBh(k)*Hh(k + I)Ah(k)fh(k), k= ko, o ,kf - 1,

where Ry,(k) = Ry (k) +hBy(k)*TIn(k+1)Bu(k), for k = ko, -+, ks~ 1, and the optimal
trajectory I is given by (2.9) (equivalently (2.10)) with u, = @,. The sequence of



operators in L(H), {nh(k)}:;;; are given by (2.14) with Ix(ks) = G, and can be
obtained recursively via the Riccati difference equation
(2.15) Ia(k) = Ap(k)'TIi(k + 1) Ax(k)

-—hAh(k)*Hh(k + I)Bh(k)Rh(k)_lBh(k)*Hh(k + I)Ah(k)

+th(k)a
k=ks—1,---,ko, lIn(ks) = Gr. We have
(2.16) 1111:1:1 Ju('i kos znlko), Gn) = Jn(@n; ko, zn(ko), Gi)

= < Hh(ko).’rh(ko),xh(ko) >H .

For appropriate choices of the families of operators T}, By, @x, and R,, we are
interested in studying the convergence of solutions to the problems (P}) to the solution
of problem (P) as the length of the sampling interval, h, tends toward zero. In
particular, we want to investigate the convergence of the discrete families of Riccati
operators {Il,(k) : ko < k < k;} to the continuous family of operators {II(t) : to <
t <t}.

In ~~der to reduce the necessary degree of technical detail, we make the simplifying
assumption that t, = 0. There is of course no loss of generality in doing this since
any system can be transformed to one on a time interval starting at the origin. Set
ko = 0 and for each h > 0 let k; = ks, = [t;/h] where for a € R, [a] is used to
denote the greatest integer less than or equal to a. Let t;, = hks, and note that
lim;._.o+ tf,); = tf.

In order to compare discrete and continuous families of operators, it is useful to
identify certain [/, sequence spaces with subspaces of L;. For X a Hilbert space and
all h > 0, let Ly 4(0,ts4; X) be the subspace of L3(0,¢;4; X) defined by

Lon(0,t58; X) = {¢ € Ly(0,ts4;X) : ¢ is constant on each of the intervals
0, ), By 28), -+, [(kpa — 1)k t1a)}.
Note that the subspace L (0,5 4; X) of Ly(0,¢s4; X) is isometrically isomorphic to
the space /3(0, ks — 1; X) endowed with the inner product

kf,h—l

kpp-1 kpp—1
<{&; 1L ke >=h 3 <én¥i>x.
=0
Let U = L,(0,t;;U) and let Up = Lpn(0,tyn;U). Let P, € L(U,Us) be the
orthogonal projection-like mapping of U onto U, defined by

kf'k—l

(Pug)(t) = 3 (#n)ixs(t), O <t <tygn,

§=0

for ¢ € U where for j = 0,1,---,ksn — 1, xy; is the characteristic function for the
interval I; = [jh, (7 + 1)h) and

(6n); = 7" [ s(t)at.
8



It is not difficult to show (see Appendix A) that
(i) the net {||Pallz us)}r>o0 is uniformly bounded;
(ii) limp_.o+ ||Phd>||uh = H¢||u, ¢ € U, and
(iii) for each ¢ € U, there exists a ¢ € U such that ¥ = Py¢ and [|¢|ly = ||¥||u,-
Following Kato (K, §IX.4] we say that a net {@x}s>0,Ps € U converges to ¢ € U

(¢n — @, or limy_o+ p = @) if
Jim {|¢n — Prgllu, = 0.

Also, if for h > 0, ®, € L(U), then we say that ®, converges strongly to ® € L(U) if
®,Prdp — P, ¢ € U; that is if

lim [@,Psg — P@gllu, =0, @€ U.

With strong operator convergence defined in this way, it can be shown that ¢, P,¢ —
®¢, ¢ € U implies that the net {||®4||L,)} is uniformly bounded and that if &, P.é —
®p,and V,Prod — Vo, ¢ € U, then &,V , Pr¢p — ®VP, ¢ € U, etc. We note of course
that an analogous definition of strong convergence can be made for bounded operators
having only one or the other of its domain and co-domain being U,. That is, for
example, if &, € L(X,U,) and ® € L(X,U) where X is a normed linear space, then
we say that ®, converges strongly to ® if &,z — @z, z € X, or

hlil’él+ “@;,I - PhQ.'E”uh = 0.

Following the treatment of discrete semigroups in Kato [K], we make the following
formal definition.

DEFINITION 2.1. The discrete time families of bounded linear operators ¢, =
{®r(kn,kpn-1,-,k1) : 0 < ky < kg < .-+ <k, < Ki}, h > 0 from a Banach space
X into a Banach space Y will be said to (strongly) approximate a continuous time
family of operators & = {®(tn,tp_1, - ",t1) : 0 < t; <ty < -+ < t, < T} with
<I>(t,,,---,t1) € L(X,Y) fort = (tn, -+, t1) € An,T) = {(tnrtn-1, -+ 1) E R":0 <
t1 <ty < - <ty, <T},att= (fn, -, t1) € Aln,T), if

(i) There exists at least one net of multi-indices {kh}h>0, k= (kn,h, s l::l,h) ez

with 0 < klh <. < knh < Kj and lim,_ o+ hk;. = {.

(ii) For all nets {kh}h>0, satisfying ( ) above,

11m 1@ (kn ®(f)zlly =0,z € X.
The families ®,, 2 > 0 will be said to approximate ® on the set A(n,T), if K = [T/h]
and if ®, approximates & at each { € A(n,T).

When the discrete time families ®,, A > 0 approximate the continuous time family
® at time ¢ (on the set A(n,T)) we shall write &, — ® at time £ (on the set A(n,T)).

DEFINITION 2.2. For h > 0 and &, = {®n(kn,kn-1,""", k1) : 0 < ky < ky <
- < kn < Ki} a discrete time family of bounded linear operators, we define an
9



associated continuous time family of operators, éh = {éh(tn,tn_l, e ty) 1 0< ) <
ty+ h < o < tn+h < (Kp+ 1)k} via Oy(tn, -+ t1) = ®4([ta/h],--,[t1/h]) for
t = (tn, - t1) € Da(ny Kin) = {(tnrtnt, -rt) E R :0 <ty <ta+h < - <
th + h < (Ki + l)h}.

Note that when K, = [T/h], A(n,T) C An(n, K,) for all A > 0.
The proof of the following theorem can be argued in much the same manner as
were the proofs of Lemmas IX.3.4 and IX.3.5 in Kato [K].

THEOREM 2.3. Suppose that the continuous time family of bounded lsnear opera-
tors ® is strongly continuous on A(n,T) and that ,, h > 0 are discrete time families
for which &, — & on the set A(n,T). Suppose further that for each h > 0, &, is
the continuous time family on An(n, K)) corresponding to the discrete time family ®,
constructed according to Definition 2.2 above. Then

(i) The families ®;, h > 0 are uniformly bounded in h in L(X,Y); that is there

exists a constant M > 0 independent of h for which

”Qh(kn: kn—l,' " akl)”L(X,Y) S M, 0 S kl S k2 S e S kn S Khvh > 03
(i) &, — ® uniformly.int for t € A(n,T); that is

hlirgx+ |®n(t)z — ®(t)zily =0,z € X,
uniformly in t for t = (tn,---,t1) € &(n,T).
Conversely, if K, = [T/h] and &, — & uniformly int fort € A(n,T), then &, — &
on the set A(n,T).

Let the continuous time families T = {T(t,s) : 0 < s <t < T} C L(H),
B ={B(t):0<t<t}c LUH),Q={Q#) :0<t <t} C L(H) and
R={R(t):0<t <t;} C L(U) be as given in the statement of the continuous time
LQR problem (P) (i.e., in particular assume that the conditions (C1)-(C3) hold).
For h > 0, let ks = [t;/h] and let Ay = {An(k) : 0 < k < kyp — 1} C L(H),
B, = {Bh(k) :0<k< kf,h— 1} C L(U,H), Qn= {Qh(k) :0<k< kf’h—l} C L(H),
and R, = {Ru(k) : 0 < k < kg, — 1} C L(U) be discrete time families of bounded
linear operators which satisfy conditions (D1) and (D2) and which satisfy the following
conditions.
(A1) B, —» B, Qy — Q, R, — R, and B; — B on the set A(1,t;) where B* =
{B(t)* : 0 S t S tf} and B}: = {Bh(k)* : 0 S k S kf,h}.
(A2) (a) (Stability) The discrete time families of operators T, = {Th(k,7) : 0 < j <
k < ksn} C L(H) given by

k-1
H An(r), 7 <k,
i=j3
I, 1=k

Th(k,j) =

are uniformly bounded in L(H) for A > 0.
10
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(b) (Consistency)
N o
and
. 1 - - * _
hlixgl_i_"_l”Th(t'i_hst) ¢—T(t+h’t) ¢|| =0, QSE H,

uniformly in t for t € [0,tf].
(A3) The scalars r; given in the statement of condition (D2) are bounded away from
zero uniformly in k. Thatisr, >r >0, 2 >0.

LEMMA 2.1. Condition (A2) smplies that Tp — T and Ty — T* on the set
A(2,ty).

Proof. We consider the convergence Tj, — T only; the adjoint convergence is com-
pletely analogous. Following the proof of the well known Lax-Equivalence Theorem
[RM], the result is an immediate consequence of condition (A2), the strong continuity
of the continuous time family T, and the identity

k-1

Tw(k, 5)¢—T(kh, jh)¢ = 2 Ti(k,i + 1){An(i) — T((i + Dh,ik)}T (th, jh)$, k> 1,

0, k=3,

0<j<k<ks o€ H. a
We shall also assume that G € L(H) is as in condition (C3) and that for each
h > 0 the operator G, € L(H) satisfies condition (D2). We require that the additional
approximation condition
(A4) limh_.0+ Gh¢ = G¢, ¢ € H,
be satisfied as well.
For h > 0 and s € [0,¢/] define B, € L(H, Us) by

For t € [0,tsn — hl:

Xi(e/ Mty nl (&) Br() {Ta(t st + h) GaTa(tss 5)
trn - o w

+ /K To(n, ¢ + b)* Gu(m)Tn(n, s)dn}s,

t+h)/hlh

(2.17) (Bh,#)(t) =

F(BI‘ 1S [t'f,h - h, t‘f’h] :
(Bh,s®)(tsn — h)s

when s € [0,ts,), and by (Bhn,) = O when s € [t7n,tg], for ¢ € H. Note that for
j :0a1a2a"'1kf,h_ 1, k :jaj+1,"'akf,h_ 1, and ¢e H

(2.18) (Brs9)(t) = (Bn;®)(k),

for s € [jh,(j + 1)h) and t € [kh, (k + 1)h), where for j = 0,1,2, -, ksn — 1,
B, € L(U,Unj) is given by (2.11).
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Similarly, for s € [0,¢] define é,’;,, € L(Ux, H) by

tsh

(2.19) é,’;,uh = fh(tf,h,s)*Gh/ Th(tf,hat + h)éh(t)uh(t)dt

[s/h}h

/{}tm f’h(T, 3)*Qn(7) {/{'[r/h]h ’j‘h('r,f) + h)éh(’?)uh(n)dn} dr,

s+h)/hlh s/h]h

when s € [0,¢;,), and by B?,:’,uh = 0 when s € [ty ,t/] for u, € U,. Note that for
7=0,1,2,---,kgp—1and up; € Un,; we have

(2.20) By u = By iun;

for s € [jh,(j + 1)h) when u, € U, is given by

_} o, 0<t<jh
(2:21) un(t) = { up;(k), kh <t < (k+1)h,
=153 +1,- - ,kgn — 1, and By, € L(Un;, H) is given by (2.13). Note also that
By, = (Bxn,). That is that é,:’a € L(Un, H) given by (2.19) is the Hilbert space
adjoint of the operator B;L,, € L(H,U,) given by (2.17) for all s € [0,¢].
For s € [0,t/] define Ry, € L(U,) by

For t € [0,t;4 — A :
Ru(t)un(t) + X{ja/njhty ) (t) Ba(t)”

- trh o -
{Th(tf,h,t + hrGhj{/h]h Tw(tsn,n + B)Bi(n)un(n)dn

tsh . -
+/[( Ta(n,t + )" Qu(n)

t+h)/hlh

I/ R) Ba(r)un(r)dr| d
'/{a/h}h w(n,7 + w(r)un(r)dr| dn ¢,

(2.22)  (Rh,up)(t) =

Fort € [tyn — h,t;4]:
(Rasun)(tsn — h),

when s € [0,¢7,4) and by (Ra,ua)(t) = Ra(t)us(t), 0 < ¢ < t;5, when s € [t;4, ], for
up € Uy. We again have that for y = 0,1,2, - vkin—1, k=73,7+1,-+ ksr—1, and
Un; € Upj,

(2.23) (Rnsun)(t) = (R un;z) (k)

for s € (jh, (7 + 1)k) and t € [kh, (k + 1)h), where u, € U, is given by (2.21) and
Rnj € L(Un;) is given by (2.12). We note also that R, , is self-adjoint and positive
definite on U), and that if we let ZZ;,,J- denote the subspace of U, obtained from Up; via
the natural embedding (i.e. via (2.21)), then, R,, is a bijection from Un, onto Uy ;.
It follows therefore from (2.17), (2.19), (2.22) that for j = 0,1,2, - -- vken—1

(2.24) By Ry 1Bu;b =By RilBy,6
12



for each ¢ € H and all s € [jh, (7 + 1)A), and that
(2'25) é;,sé;,iéh,a(ﬁ =0

for all s € [tf;h,tf].
Setting Ix(s) = Mx(k), kh < s < (k + 1)A, for s € [0,ty], from (2.11), (2.12),
(2.13), (2.14), and (2.24) we find that

(2.26) 'ﬁh(s)d’ = Th(tf,h,s)*GhTh(tf,h,S)fﬁ
trh o - ~ - - ~
+ /[ " Fult, s)* Ou(t)Tult, s)pdt — By Ri1Bh.é

s/hlh
for each ¢ € H. Note that (2.25) implies that IT,(t) = G, for t € [t;,t;].
For B, € L(H,U,), R, € L(U,), and B; € L(U,, H) given by (2.2), (2.3), and (2.4),
respectively, define 8, € L(H,U), R, € L(U), and B; € L(U, H) by

20 BO0={ G0, 515,
(5
and

(2.29) Biu=8u

for € H and u € U. It is not difficult to show that B: = (B,)" (i.e. that 8; € L(U, H)
is the Hilbert space adjoint of B8, € L(H,U)), that R, is self-adjoint positive definite on
U, and that if we let U, denote the subspace of U obtained via the natural embedding
of U, into U, then }é, is a bijection from zZ, onto U,. Consequently, if follows that

(2.30) B;R;'B,¢ = B;R;'B,¢

for all ¢ € H and s € [0,t;]. From (2.5) we obtain that

(231)  Ts)p = T(ts)CTltss)+ [ T(t,9) QOTI(E, )
_B: R 'Bu,

for all ¢ € H and s € [0,t/].
Our fundamental convergence or approximation result for the finite time horizon
problem is given in the following theorem and its corollary.

THEOREM 2.4. Suppose that the families of operators {T, B, Q, R} satisfy con-
ditions (C1)~(C3) and that for all h > 0, the families of operators {Th, Bn,Qn, Rrn}
satisfy conditions (D1) and (D2). Suppose further that the approzimation assumptions
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(A1)—(A4) are satisfied. Then the discrete time family of operators 11, = {IT4(k) : 0 <
k < k;n} given by (2.14) or (2.15) strongly approzimates the continuous time family
of operators T = {T1(t) : 0 < t < t;} given by (2.5) or (2.6) on the set A(1,t7). That
is, I, — I on the set A(1,t5).

Proof. The desired result will follow from Theorem 2.3 if we can argue that
lims_o+ IT4(t)¢ = II(t)¢, uniformly in ¢, for t € (0,ty], for each ¢ € H, where M, and
I are given by (2.26) and (2.31), respectively.

From assumption (A3), we have that the operators R;} »s are bounded uniformly
in h >0 and s € [0,¢ f] Somewhat technical, but rather elementary arguments can
be used to show that B,,,qS — B,4, for all ¢ € H, Rh,Phu — R,ufor u € U, and
Bh ,Phu — B u, for v € U, uniformly in s for s € [0,t;], where Bh,,B,,Rh,,R,,BM
and B! are given by (2.17), (2.27), (2.22), (2.28), (2.19), and (2.29) respectively (see
Appendix B). This together with the identity

BilPy — PaRY = Ry MR o P — PARIR

yield that lims_o+ B, ,RhlBh b =BrR: 18,4, for ¢ € H, uniformly in s for s € [0, y].
The desired convergence can then be obtamed from assumptions (A1), (A2), (A4)
and equations (2.26), (2.31). 3

Let F={F(t):0<t <t;}and S = {S(t,s) : 0 < s <t < ts} be respectively the
continuous time families of optimal closed-loop feedback gain operators and optimal
closed-loop state transition operators for the continuous time LQR problem (P). That
is, for t € [0,t/]

F(t) = R(t)"'B(¢)"II(t) € L(H, U),

and for 0 < s <t < iy
(2.32) Stts) = T(t5)$~ [ T(t,mBOIF()S(n,s)édn
= T(t,9) - [ T(t,n)Bn)(R;*Bi¢)(n)an,

for ¢ € H (see [G]). Similarly, for the discrete time problem, let the discrete time
families, F = {Fn(k) :0< k < k;,—1} C L(H,U) and S, = {Sh(k,7):0<j<k<
ksn} C L(H) be given by

Fu(k) = Ry (k)™ Bu(k) TIa(k + 1) Ap(k),
where
Ra(k) = Ba(k) + hBa(k) Tha(k + 1) Bu(k),
k=0,1,---,k;n— 1, and ‘

(2.33) Sh(k,j)qﬁ = Th(k,j)qS — hlg Th(k,i + I)Bh(i)Fh(i)Sh(i,j)gb
= Tu(k,5) - hkzln kv + 1)Ba(i) (R73B1,8) (),
14



0Sj§k_<_kfm,f01‘¢EH.

COROLLARY 2.1. Suppose that the hypotheses of Theorem 2.4 above are satis-
fied and let {@,Z} and {@x,Zx} be the optimal control/trajectory pairs for the LQR
problems (P) and (Py), respectively, corresponding to the initial data z(0) = z,(0) =
zo € H. Then

(i) F, = F;

() S — S;

(Ht) limy_, 0+ Hﬁh(kh) —ﬂ(t)HU =0, and limy,_o+ ”f:h(kh) -.’Z‘(t)“y =0, fort € [O,tf]
and for all nets {kp}rso for which lim,_o+ hkn =t.

(H)} limh_.0+ jh = J_

Proof. Statement (i) and (iv) (recall (2.7) and (2.16)) are immediate consequences
of Theorem 2.4. Statement (iii) follows from statement (i) and (ii) since a(t) =
—F(t)Z(t), Z(t) = S(t,0)z0, t € [0,tf], and @x(k) = —Fy(k)Zp(k), 0 < k < kypn — 1,
Zp(k) = Sa(k,0)z0, 0 < k < kyn. Thus we need only to verify statement (ii).

We rewrite (2.32) as

S(t,5)6 = T(t,9)8 ~ [ T(t,m)B(n)(R;*8;)(n)dn,

and from (2.33) we obtain

- - [{¢/hlh . . . o
St o) = Tultssjo = [ " Faltn + W) Ba() (R B30 ()
The result now follows as in the proof of Theorem 2.4 a

REMARK In actual practice, given the continuous time LQR problem (P), the
net of discrete time problems {(Px)} is typically obtained by considering zero-order
hold (i.e. piecewise constant) control inputs and output sampling. In this case we
would obtain An(k) = T((k + 1)h, kh), Ba(k) = A~ [ETMT((k + 1)k, s)B(s)ds,
Qalk) = h'lfk(,’iﬂ)hQ(s)ds, Rn(k) = A1 fk(,’fﬂ)hR(s)ds, and G, = G. When con-
ditions (C1)-(C3) on the continuous time families T, B,Q, and R are satisfied, it is
immediately clear that thé discrete time families T, B, Qn and Rj, and the oper-
ator G, satisfy conditions (D1) and (D2) and the approximation conditions (A1)~
(A4). More generally, other discretizations are also admissible. For example, in the
time invariant case, the semigroup {T(t) : ¢ > O} could be discretely approximated
using A-stable Padé approximants to the exponential (see [HK]). In particular, if
T(t) = exp(tA), t > 0, then one might set Tx(k) = (I - hA)~* (implicit Euler) or
Tw(k) = (I — hA/2)7*(I + hA/2)* (Crank-Nicolson). The stability and consistency
of these discretizations (i.e. assumption (A2)) can be verified using the theory and
techniques developed in [HK]. Finally, along these same lines, the convergence of si-
multaneous but independent state and time discretization in the context of the LQR
theory should also be looked at. We note that appropriately “coupled” state and
time discretization can be handled using the theory and framework which has been
developed above.
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3. The Infinite Time Horizon Problem. The linear quadratic regulator prob-
lem over an infinite time interval can be viewed as an extension of the finite time
interval problem. The state equations (2.1) and (2.9) governing the dynamics of the
continuous time and discrete time control systems, respectively, remain the same. The
continuous and discrete time operator families {T, B, Q, R}, and {7}, By, @4, R:} are
assumed to be defined on the infinite time intervals [to, +00) C R and [k, +o0) C Z,
respectively. The cost functionals are taken to be

(3.1)  Ju(uito,z(te)) = /:{< Q(t)z(t), z(t) >a + < R(t)u(t), u(t) >u)dt
= lim J(u;tg,z(t),0)

ty—o0

and

Tneolunikorza(ke)) = h'S°{< Qn(k)za(k) zn(k) i + < Ba(K)un(k), un(k) >u}

k=ko
(32) = k}ei—{noo Jh(uh;ko,xh(ko),O)

Under appropriate stabilizability and detectability assumptions on the continu-
ous time and the discrete time control systems, the existence and the uniqueness of
the optimal controls @, %, minimizing (3.1) and (3.2), respectively, can be obtained.
Moreover, these optimal controls can be written in a closed-loop state feedback form
(see Theorem 3.1 below). We are again interested in investigating the convergence of
the optimal controls and the optimal feedback laws for the sampled systems as the
length of the sampling interval tends toward zero.

Our fundamental result can be outlined as follows. Assume that the conditions
(A1)-(A4) for the convergence of the open-loop control problems are satisfied on
every finite time interval [to,¢;]. Suppose further that the stabilizability and the
detectability of the continuous time system are uniformly preserved by the sampled
time systems (see Definition 3.3-(iii) and 3.4-(iii)). Then the optimal controls i,
and the optimal state feedback laws Fj for the sampled time systems converge to
the optimal control # and optimal feedback law F for the continuous time system,
respectively, as the length, h, of the sampling interval tends toward zero. We note
that the problem of uniform preservation of stabilizability and detectability under
sampling is in general, a difficult one. Here we shall treat this question only in a
limited sense. We shall have to assume finite rank feedback stabilizability and finite
rank detectability (see Condition (F)) for the continuous time system, although we
have some conjectures about other reasonably broad classes of systems for which these
conditions can be verified. We address this question in greater detail below.

As in the finite time horizon problems, the functionals J,, and Jj o, can be viewed
as quadratic forms on L (to,o0;U) and l3(ko, 00; U), respectively. However, since Jo,
and Jho are, in general, not bounded (for example, the uncontrolled system may
not be asymptotically stable, hence the cost for the control input « = 0 may be
infinity), one must deal with some rather tedious technical details. Therefore, the
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infinite horizon LQR problem is commonly viewed as the asymptotic limit of the
finite time horizon problems with the final time, ty, tending to infinity. The existence
and the uniqueness of the optimal controls and feedback laws can then be obtained
by considering the limiting behavior of the optimal controls and the optimal feedback
laws for the finite time horizon problems. From the definitions of the functionals Joo
and Jh oo, it is natural to view the infinite time horizon problem as the limit of the
finite horizon problems with the final state penalty operators G and Gj taken to be
sero. However, we note that if the optimal trajectories £(t) and Z4(k) are known to
be asymptotically stable (i.e-, z(t) — 0, Zn(k) — 0, as t and k tend to infinity), then
the infinite horizon LQR problem can also be considered as the limit of finite horizon
problems with Gh,G > 0. Once again, for simplicity, we shall assume henceforth,
without lost of generality, that to = ko = 0.

DEFINITION 3.1. (Cost functional stabilizability)

(i) The continuous time system associated with the operator pair {T, B } is said to
be cost functional stabilizable with respect to the performance index Joo given
by (3.1), if for each ¢ € H, there exists a constant M (¢) such that for any
s > 0, there exists a control input u, € La(s,00; U) with Joo(Us;8,9) < M(9).

(ii) The sampled time svstem associated with the operator pair {T, By} is said to
be cost functional stabilizable with respect to the discrete performance index
Jhoo given by (3.2), if for each ¢ € H, there exists a constant My(#) such
that for any j > 0, there exists a control input sequence U, € ly(j,00;U)
with Jh eo(un 3 Js®) < M;(8)-

(iii) The sampled systems are said to be uniformly cost functional stabilizable for
all 0 < h < hy, if.for each ¢ € H, the constants M, (¢) defined in (ii) are
independent of the length of the sampling interval h, for all h < ho for some
ho > 0.

For any given final time t; and final index kyn, let Ht!(-;G) and HkM(-;Gh)
denote the Riccati operators given by (2.5) and (2.14) corresponding to the final state
penalty operators G and Gh, respectively. In the case G = G, = 0, using (2.7) and
(2.16), it is easy to verify that (see for example, [DI]) for each given t >0and k >0,
the functions t; +— Il !(t;O) and ksp — l'I;hk‘,’h(k;O) are nondecreasing, self-adjoint,
nonnegative operator valued functions. The assumed cost functional stabilizability of
the continuous and discrete time control systems then provides an upper bound for

I, and Tlnk,,- Indeed, we have

< L, (t:0)6,6 >x< M(9), ¢ € H,
and
< Hh,k!.h(k;0)¢a¢ >H_<_ Mh(¢), ¢ € H’

for all t; and kg . Thus, the strong limits of T, (t;0) and Tlhk, . (Kk;0) exist for each
t >0and k >0 as iy and k; tend to infinity. Let us denote these strong limiting,
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operator valued functions by Il (+;0) and II400(;0), respectively. The existence and
uniqueness of the solutions to the continuous and discrete time optimal control prob-
lems is given in the following well known theorem; see, for example, [BW], [G], [GR],
[LCB, [HH], and [2).

THEOREM 3.1. Assume that the continuous time system and the sampled time
systems for all h sufficiently small are cost functional stabilizable. Then foranys>o0
and j > 0, and initial states z(s) = ¢ and Zjn = @, there exist unique optimal controls
4, and 4y which minimize the cost functionals Joo(-;s,:c(s);O) over Ly(s,00;U) and
Jnoo (34,20 (7); 0) over 124, 00;U), respectively. The optimal controls can be written
in linear state feedback form as

2(t) = ~R() " B(t) T (50)2(t) = —F(1)2(t)
and
ﬁ,h(k) = —éh(k)—lBh(k)*Hh,oo(k + l;O)Ah(k)fh(k) = —Fh(k)fh(k),

where T and Z, are the corresponding optimal trajectories and Ii’h(k) = Ru(k) +
hBy (k)T o (k + "*0)Bn(k). The operator-valued function T (+;0) is bounded on
the interval [0,00) and satisfies the Riccat: integral equation

(3'3) Hoo(s;o)¢ = T(t’s)‘noo(t;o)T(t’s)fﬁ
+ / T(r )" [R(r) = Tleo (r;0) (BR™B*) (1)L (r; 0) T, 5) b,

forall g € H and (t,s) € A2, o). Similarly, the operator-valued sequence Iy 0 (+;0)
1s bounded for 0 < k < oo and satisfies the Riccats difference equation

(34) T (k30) = A (k) Ty (k + 1;0) 4y (k) + @ (k)
R An(K) Tha.0 (k + 150 By (k) Ba (k) ™ By (k) T (K + 1; 0) A ().

If the sampled time systems are uniformly cost functional stabilizable for 0 < h < hy,
then the operator-valued sequences I, (-;0) are uniformly bounded for all sampling
period h with 0 < h < hg.

We assume that the general conditions (A1)-(A4) for the convergence of the
open loop problems hold on any given finite time interval. From the feedback form
of the optimal controls given in Theorem 3.1, it is not difficult to see that on a
given finite time interval [0,¢], the uniform convergence of the optimal controls U,
the optimal trajectories Tx, and the optimal feedback gains Fj, for the sampled time
control problems would follow directly from the uniform convergence of i 00 (- 0).
Our investigation is therefore, focused on the convergence of ITj, ., (+; 0) to My (-;0) as
h tends toward zero. Using the notation introduced in the previous section, we note
that for each ¢ > 0, an obvious sufficient condition for the convergence of I:Ih,oo (¢;0)
to IT(¢;0) is the convergence of I, (t; G) to II,, (t;0) and the uniform convergence
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in h of I:Ih,km (t; Gp) to I:[;,,oo(t;O) (with ks = [ty/h]) as t; tends to infinity for some
G > 0 and corresponding G 2 0. Indeed, from the triangle inequality, for ¢ € H, we
have

(1TTh 00 (t;0)¢ — Moo (;0) @)l < [TTh.co (£;0) 6 — Tak, . (8 Ga)ollm
[T, (85 Ga)é — T, (£ G) @l + IITLe, (8 G) — Mo 0)d||x-

Then for an arbitrary € > 0, a sufficiently large t; can be chosen such that the first
and the last terms on the right hand side of the above inequality are smaller than ¢ /3
for all h. By applying the theory of the previous section on the interval [0,¢y], there
exists hy > 0 small enough'such that for all 0 < h < hg, the second term on the right
hand side of the above inequality is bounded by €/3. Thus, the desired convergence
immediately follows.

As we have pointed out, if the trajectories of the systems are asymptotically stable,
then as t; tends to infinity, the cost functionals Jo, and Jj o are also limits of the cost
functionals J, J, for the finite time interval problems on [0, ¢ s] with final state penalties
G and G, different from zero. In particular, if the optimal trajectory of the infinite
horizon problem is asymptotically stable, the convergence rates of J,(#%s; k, ¢, Gh) =<
Mpg,,(kiGh)$, & >u with G > Mi(¢) and J(&;t,6,G) =< I, (t;G)¢, ¢ >n with
G > M(¢) can be estimated by the decay rate of the optimal trajectory Z for the
infinite horizon problem. Toward this end, let § = {5(t,s) : 0 < s <t < oo} be the
continuous time evolution system given by
(3.5) S(t,s)¢ =T(t,s)¢ — /t T(t,T)B(T)F(f)S(T,s)qus, for ¢ € H.

L]
The evolution system S is also referred to as the perturbation of T by —BF. It
is not difficult to verify that S(t,0)¢ corresponds to the optimal trajectory for the
continuous time infinite horizon problem with initial state ¢ € H. Similarly, let the
discrete time evolution system Sy = {Si(3,7) :0< 7 <1 < oo} be defined as

1 =7,

T
(3-68(2,7) = { L0 A, () = hB(k) Ra(K) " Ba() Thaoo (k + 1;0) An(R)}, i > j.

k=3

Thus, S, (k,0)¢ is the optimal trajectory for the discrete time infinite horizon problem
with initial state ¢ € H.

DEFINITION 3.2. (Exponential stability of the optimal feedback systems)

(i) The optimal continuous time feedback system (3.5) is said to be exponentially
stable, if there exist constants M and a > 0 such that forall0 <s <t < oo,
15ty s) ||y < M exp{—e(t — s)}.

(ii) The discrete time optimal feedback system (3.6) is said to be exponentially
stable, if there exist constants M, and a; > 0 such that, forall0 < 7 <t < oo,
1Sk (Z ) ey < Mh exp{—ax(t — J)h}.
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(iii) The sampled time optimal feedback systems are said to be uniformly expo-
nentially stable for all 0 < & < hy, if the constants M} and @, > 0 in (ii)
above are independent of A for 0 < h < k.

The following result is an important property of the solutions of the Riccati equa-
tions on the infinite time interval when the optimal feedback systems are exponentially
stable. The proof can be found in [BW], [DI], [G] for the continuous time problem,
and in [GR] (Theorem 2.9) for the discrete time problem.

LEMMA 3.1. Assume that the continuous time control system and the sampled
time control system with sampling period h are cost functional stabilizable. If the
corresponding optimal feedback systems are ezponentially stable, then Ty (;0), and
IMhoo(+;0) are the unique bounded solutions of the corresponding Riccati equations
(3.3) and (3.4) on the infinite time interval. Furthermore, sf G and G, are chosen
such that G > N (t;0) and Gy > I, o (k;0) for all t and k, then the solutions of the
Riccati equations on the finite time interval, I, (t; G) and 1N, 4 (k3 G), satisfy

< Hg,(t;G)QS—Hoo(t;O)QS,(ﬁ >H S < Gs(tf’t)¢’s(tfst)¢ >H1

and
< Iy o (ki GR) — Th oo (k; GR)D, 0 > < < GrSn(kyn, k)@, Sn(ksn, k)b >x,
respectively, for all t < t;, k < kin, and ¢ € H.

LEMMA 3.2. Assume that the sampled systems are uniformly cost functional
stabilizable with the optimal feedback systems uniformly ezponentially stable for 0 <
h < ho. Then, the operators G and Gh can be chosen as described in Lemma 3.1 with
Gy < C -1 for some constant C independent of h. As t; tends to infinity, Htf(-;G’)
converges to Il (-;0) uniformly on any bounded subinterval [a,b] of [0,00) and the
convergence of ﬁh,k,,,,(';Gh) with kyy = [ty/h] to ﬁh'oo(-;O) s uniform in h for all
0 < h < hg on any bounded subinterval [a,b] of [0,00) tn the uniform operator norm.

Proof. We prove only the discrete time assertion. The continuous time case
is completely analogous, if not simpler. The assumption of uniform cost functional
stabilizability implies that the operators G, can be chosen as stated in the theorem.
Then let M and a be the constants in Definition 3.2-(iii). For a given ¢ > 0 and
t € [a,b], we can take t, large enough such that CM? exp{—2a(t; —t — hy)} < e. Let
kh = [t/h], then (kf‘h - kh)h 2 tf -t — ho forall0 < A S ho. Since Hh,k!'h (kh; Gh) Z
ITh o0 (k13 0), we have

Hﬁh,k,,,.(t; Gh) — ﬁh,oo(t;o)HL(H) = |Mak,, (kn; Ga) — a0 (k13 O) | L(ar)
= sup < (Iau,,(kn; Gr) — Maco(kr; 0))d, ¢ >x

el <1

< sup < GpSulkpn, kn)@, Sulksn, kn)d >u
l#lla <1

S CM2€—2a(lc,,h-—k;,)h S €.
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O
As a consequence of the above lemma, we obtain our first convergence result.

THEOREM 3.2. Let Conditions (A1)—(A4) for the operator famulies {Th, Br, @n, Bn}
hold on any finite subinterval of [0,00). Assume further that the continuous time sys-
tem and the sampled time systems with 0 < h < ho are uniformly cost functional
stabilizable, and that the optimal closed-loop evolution systems are uniformly ezpo-
nentially stable . Then, the Riccati operators Ilj o (t;0) converge strongly to Il (t;0)
and the convergence is uniform on any bounded subinterval of [0,00).

Proof. Let ¢ € H and let [a,b] be a bounded subinterval of [0,00). We choose
an operator G such that G > Il (t;0) and G > Il 0 (k;0) for all t € [0,00) C R,
k € [0,00) C Z and 0 < h < hg. By Lemma 3.2, t; can be taken large enough such
that for all ks, = [t;/h], we have
€

and |[[Tnuys(t; Q)¢ — hoo(t:0)8]lm < 5

1T, (t; G) o — Moo (t;0)| | <

LWl m

for all t € [a,b] and all 0 < h < hy. By Theorem 2.4 of Section 2, we can find h small
enough such that
. €
[l (6 G)6 — e (5. Gl < 5,
for all ¢t € [a,b]. Therefore, we have

Th 00 (£;0) — Moo (t;0)ll 1 < || TIh oo (;0)¢ — Mak,, (6 G) i
+|TTh kg (8 G)¢ = The, (8 G) bl + 1T, (85 G) — oo (£50) Sl < €,

for all t € {a, b)]. Q

We note that although the exponential stability of the optimal feedback systems is
only a sufficient condition for the uniqueness of the solutions to the Riccati equations,
it also implies the stability of the solutions to the Riccati equations under small
perturbations (see [BW], [DI}) which is important in the context of approximation.
Consequently the remainder of our discussions here are concerned with conditions
which guarantee the exponential stability and uniform exponential stability of the
optimal feedback systems.

A useful characterization of exponentially stable evolution systems is given in a
result due to Datko in the continuous time case (see [D]) and Zabczyk in the discrete
time case (see [Z]). We state it here in both its continuous and discrete time forms as
a lemma.

LEMMA 3.3.
(1) Let T be a strongly continuous evolution system. If there erists constants
C1,C,, and w > 0 such that

IT(t e < Cret, and [ 7T (6, 9)@lydt < Call ol
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forall ¢ € H and 0 < s <t < 00, then, we can find constants M and a > 0,
depending only on Ci, Cy, and w, such that ||T(t, s)||Lzy < M exp{—a(t—s)},
forall0 <s <t <oo.

(11) Let T, be the discrete time evolution system defined by

I 1=,
Th('h]) - { |k—=11 Ah(k), i> j_

If there exist constants Cy »,wp and C; p such that

I Th (5, 5) |y < Crae*¥=P2 0 and A3 | Th(i, k)¢llk < Conlldllk,
t=k

for all 0 < k < oo and ¢ € H, then, we can find constants M, and a; > 0,
depending only on Cyx,wh and Cap, such that for all0 < j <1< oo

1 Tw (25 ) eary < M e~ onli=)h

The converse of this lemma is obviously true. By the uniform cost functional
stabilizability, the solutions of the Riccati equations (3.3) and (3.4), II,, and II, o are
uniformly bounded, and therefore, the evolution systems S and S, given by (3.5) and
(3.6), respectively, are uniformly exponentially bounded if T and T, are uniformly
exponentially bounded. Moreover, we have

[ 100256 s)9lat < Mgl

and
h Y 11Qu(k) 2 Sh(k,5) el < Ml|ol%
k=j

for some constant M and for all $ € H. If the operators Q(t) and Q,(k) are uniformly
strictly coercive (i.e., there exists a constant ¢ > 0, such that Q(t) > ¢I and Qx(k) >
gl, for t > 0 and k > 0), we can immediately conclude that S and S, are uniformly
exponentially stable.

A more general case in which the boundedness of the cost functional implies the
stability of the feedback system, is the case of detectable systems.

DEFINITION 3.3. (Detectability)

(i) A continuous time control system is said to be detectable with respect to
the cost functional (3.1), if there exists a bounded operator-valued function
V(-) : |0,00) — L(H) such that the evolution system Ty, corresponding to
the perturbation of T byVQl/z(-), is exponentially stable.

(ii) A sampled time control system is said to be detectable with respect to the cost
functional (3.2), if there exists a bounded sequence of operators {V,(k)}52, C
L(H) such that the discrete time evolution system Ty, given by

.. I, t =17,
o6) = | T (a1 + MAIQARY, 55
is exponentially stable.
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(iii) The sampled time systems are said to be uniformly detectable for 0 < h < ho,
if there exist constants Cp,Cz, and a > 0, independent of A such that the
operator-valued sequences {Vi(k)}3Zo in (ii) satisfy ||Va(k)llz@ry < Cr and

Ty (i, )|y < Coe™ U9, 0<j < i< oo,
for all sampling rates 0 < h < ho.

Under appropriate conditions, the detectability of the control systems implies the
stability of the optimal feedback systems. Indeed, toward this end, we require the
following boundedness assumption.

(B) The continuous time evolution system T and the discrete time evolution system
T, are uniformly exponentially bounded on A(2,00). That is, there exist
constants M and w such that

IT(t, 8) |y < Me*®9,  [|Tu(i5) |y < MeE=7",

for0<s<t<ooand 0<j <1 < oo The operator families B, @, and
R and the piecewise constant operator families Bh, @h, and Rh are uniformly
bounded in norm by a given constant C on the entire interval [0, c0) for all
sampling rates h > 0. Furthermore, there exists a constant r > O such that
R(t) > rI and Ry(t) > rI for all ¢t >0, and h > 0.

THEOREM 3.3. Consider a detectable continuous time control system and a
detectable sampled time system which are both cost functional stabilizable. Assume
that the evolution systems T, Ty are ezponentially bounded, and the operator families
{B,Q,R} and {Bx,Qx, Rs} are bounded in norm on the infinite time interval. Then,
the optimal feedback systems for both systems are ezponentially stable. Furthermore,
suppose that constants C,w,r > 0, and a > 0 can be found such that the following
conditions are satisfied.

(1) The operator families {B,Q,R,M(+;0),V} and {Bh,Qh,Rh,Hh,w(-;O),Vh}

are bounded in norm by C;
(i5) For allt >0,k >0, R(t) >l and R, > rl;
(iii) The evolution systems T, T, Tv, and Ty, satisfy

IT (2, 9)llagm < CeC9, Ty (t,8)lem < Ce™7)s
and
IT(s e < Ce = || Ty (5, 7) |y < Ce 07"

Then there ezists constants M and 8 > O depending only on the constants C,r,a and
w such that

1S(t, ) o < M2, |1Su(i, ) o < Me P07
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Moreover, under Assumption (B), if the sampled systems are uniformly detectable and
uniformly cost functional stabilizable for 0 < h < hg, then, the optimal closed-loop
systems are uniformly ezponentially stable for 0 < h < hy.

Proof. In the case of continuous time system, a proof is given by Da Prato and
Ichikawa in [DI]. The dependence of the exponential bound for the optimal closed-
loop system on the constants indicated above is proved in [W]. The arguments for the
discrete time case are very similar to those used in the continuous time case. Indeed,
let Sy, correspond to the perturbation of Ty, by Ap = {Ax(k) = —Bi(k)Fi(k) +

Vi(k)Qnr(k)*/?} in the sense that

[t/ .
(t 8)(}5 TV),(t 3)45-{- ”~ Tv),(t T)Ah( )S),(T,S)¢'d7'.

Let us define
fu(k,i) = —Ry(k)'/*Fy(k)$, and ga(k,i) = Qu(k)?Su(k,1)8,
for £ > 1 > 0. Then cost functional stabilizability implies that

1/a () lagioowy < Cllgllas  llgn(s8) agiooirry < Clidla-

The evolution system Ty, is bounded; ||Tv (7, 5)||(m) < C exp{—a(i — j)h}. Thus we
obtain

& —aft—s) [¢/] —a(t-1) (|| D -1/2 ¢
15a(t, )bl < Ceatt=9) 4 /[ Ce* (|| Bu(r) Ba(r) 2| siwany | Ful7, 8) lu

s/h
V() Ly llgn(r, s)| ) dr

and by Young’s inequality (see, [A, Theorem 4.30, p.90]), we have

/,oo I15(t, $)8ll3rdt < Klig]3, 6 € H,

for some constant K. Applying Lemma 3.3, we obtain the exponential stability of

Sr. The dependence of the exponential bound for S, on the indicated constants of

course follows from the dependence of the constant K on the indicated constants as

prescribed in the lemma. In this way it is easy to see how under Assumption (B), uni-

form detectability and cost function stabilizability will imply the uniform exponential

stability of the closed-loop systems. a
Another closely related control theoretic concept is the stabilizability.

DEFINITION 3.4. (Stabilizability)

(i) A continuous time system is said to be stabilizable, if there exists a bounded
operator-valued function K(-) : [to,00) — L(H,U) such that the evolution
system Tk corresponding to the perturbation of T by BK is exponentially
stable.
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(ii) A sampled system is said to be stabilizable, if there exists a bounded sequence
of operators { Kx(k)}$o C L(H,U) such that the discrete evolution operator
Tk » given by

o I, 1= js
Tk n(4,7) = { i-1(An(k) + hBa(k)Kn(K)), ©> 7,

is exponentially stable.

(iii) The sampled time systems for are said to be uniformly stabilizable for 0 <
h < hg if there exist constants C1,Cq,a > 0 independent of the sampling
period h, such that Kj and Tk, satisfy

Ea (k) |y < C1s [ Tralis Dlegm < Cae™®E,
forall0< k< 00,0<j <t <o00.

Using Theorem 3.3 it is easy to verify that cost functional stabilizability and de-
tectability imply stabilizability (take K = F, K, = F, for example). Conversely,
stabilizability clearly implies cost functional stabilizability. Therefore, under the uni-
form detectability assumption, cost functional stabilizability and stabilizability are
equivalent. In general, uniform stabilizability and uniform detectability are required
for the convergence of ITj o to Il as h tends toward zero.

THEOREM 3.4. Let Assumption (B) hold. Suppose further that Conditions
(A1)-(A4) hold on any bounded subinterval of [0,00). If the continuous time system
and the sampled time systems are uniformly stabilizable and uniformly detectable,
then, the unique solution 11, o of the infinte horizon Riccati difference equation (3.4)
converges to the solution Tl of the infinite horizon Riccati integral equation (3.3) as
h tends toward zero. The convergence is uniform in time on any bounded subinterval

of [0,00).

Proof. By Theorem 3.3, uniform stabilizability and uniform detectability imply
exponential stability of the optimal feedback systems (i.e., Definition 3.2), uniformly
over all sampled systems with 0 < h < hq. Therefore, by Theorem 3.2, we obtain the
desired convergence. O

Most control systems of interest in engineering practice are stabilizable and de-
tectable. In fact, in modeling many control systems of practical interest, a realis-
tic description of the phyéical system frequently necessitates stabilizability and de-
tectability of the system model (see, for example, [BKS|, [BKSW]). Investigation of
stabilizability and detectability of particular classes of evolution systems has gener-
ated several interesting mathematical problems (see, for example, [C], [L]). However,
in the context of approximation, we usually assume that the original control system
is stabilizable and detectable. An important issue here is whether or not a given
time discretization algorithm is capable of preserving, uniformly, these properties,
and therefore provide discrete time convergent approximations for the optimal feed-
back operators. In the remainder of this section, we attempt to address this issue for
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some particular discretization algorithms and indicate some other possible approaches
to this problem.

Assume that the control system defined in Equation (2.1} is stabilizable and de-
tectable with respect to the cost functional (3.1). Thus, there exist bounded operator-
valued functions K(-) : [to,00) — L(H;U) and V() : [ts,00) — L(H) such that the
evolution systems Tk, Ty, corresponding to the perturbations of T by BK and VQ/2,
respectively, are exponentially stable. That is, there exist constants M,a > 0 such
that [|Tx (2, )|y < M exp{—a(t — s)} and || Ty (t, s)|| () < M exp{—a(t — s)}, for
all 0 < s <t < co. By definition, the evolution operators Tk, and Ty satisfy

(3.7) Ti(t,s)6 = T(ts)d+ /:T(t,n)B(n)K(n)TK(n,s)¢dn,

(8) Tt = T()6+ [ Tlm)V(n)Q2(n)Ty (n,)sdn,

for all ¢ € H and for all 0 < s <t < c0. Consider the zero-order hold discretization
described in the Section 2. For each k > 0, the operators Ay (k), B, (k) are defined by

(3.9) An(k) = T((k+1)h,kh),
’ 1 flk+1)h
(3.10) Bin(k) = al T((k + 1)h,n)B(n)dn,
with the discrete evolution systems Tk 4, Ty » then given by
. I t=3

3.11 T y = ,"_ . .’
(3.11) LAUE) { i {An(k) + hBi(k)K (kh)}, i > j,

. I, 1 =7,
3.12 Tvalt,g) = i L
(3.12) varlis 1) { ML {An(k) + BV (ER)Qn(K)Y2}, i > .

If the discrete time evolution systems Tk », Tv s are uniformly exponentially stable for
all 0 < h < hy for some hy > 0, then, these sampled time systems are uniformly
stabilizable and uniformly detectable. Using (3.7) and (3.8), the evolution systems
Tk, and Ty satisfy

i-1

Tx(ih,h) = ] [T((Ic + 1)k, kR) + [ iHl)hT((k + l)h,n)B(n)K(n)TK(n,kh)dnJ ,

and

1—-1

Ty (ih, jh) = [] [T((k + 1)h, kh) + /:HMT((k + l)h,n)V(n)Q(n)I/zTV(n,kh)dr]J ,

k=3
for 0 < 57 < ¢ < co. Therefore, Tk,n, and Ty, can be considered as perturbations of
Tx and Ty, respectively. In fact, we have

i-1

(3.13) Txn(i,7) = H.{TK((A: + 1)k, kh) + h®,(k)},
(3.14) Ty n(i,g) = ﬁ‘{TV((k + 1)h,kh) + R, (k)},
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for 0 < j <t < 0o, where

a6 = 3 (7" T + D) B KCkk) - Kin)Ty (o, k)Jdn ).

and

2 (k+1)h 12
k) = (VEERQuBYE = 3 [ Tk + Dby mV ()@() Ty (1, Kk
for k > 0. Let 0 < w < « and define Tk 4(1,7) = exp{w(i — 5)h)}Tkn(1,3), 0 < J <
i < 0o and Tk (t,s) = exp{w(t — 5)}Tk(¢t,s), 0 < s <t < co. We define Ty and Tvx
analogously. It is not difficult to verify that

1Tw (t, )|y < M, | Tv(t,s)llom < M.

Multiplying both sides of (3.13) and (3.14) by exp{w(¢ — j)k)}, and rewriting these
equations in a variation of constants form, we obtain

i—1

Txlh(z‘,]‘) = TK(lh,]h) +h Z TK(‘lh, (k 1 1)h)e“‘h@h(k)Tx,h(k,j),
k=3
-1

TV,h(‘l',j) = Ty (1h,]h) +h Z Tv (ih, (k + 1)h)CWh\I’h(k)TV’h(k,j).
k=j

If there exists a constant ho > 0 such that for all b < ho, exp{wh}||®x(k)||L() < w/2M
and exp{wh}||¥a(k)|L(r) < w/2M, then,

i—1
| Toen(is )y < M+hY) M-
k=i
~ i—1
1Tyn(i, )y < M+hY M-

k=3

5M = ||k, 9) i,

2M —— || Tv,n(k, 5) |

The discrete Gronwall inequality then yields

I Fren(iod)loen < MeTM2,
Ty alid)llogn < MeGH2,

Therefore, Tk », and Ty are uniformly exponentially stable for all 0 < h < hg.

It is not difficult to see that for each k > 0, ®,(k) and ¥,(k) converge strongly
to zero as h tends toward zero. We can obtain convergence in norm if the rank of the
operator valued functions ®,(k) and ¥(k) is finite.

DEFINITION 3.5. (Finite rank operator-valued function) Let X and Y be Hilbert
spaces with inner products < -,- >x and < -,- >y, respectively. An operator-valued
function W (-) : [0,00) — L(X,Y) is said to be continuous and to have finite rank, if
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there exist continuous vector-valued functions fi(:) : [0,00) — X and g,(-) : [0, 00) —
Y,k=1,---,n with n < oo, such that for all z € X,

n

W(t):c = Z < fk(t),.’l: >y gk(t).

k=1-

We define the following condition.

(F) (Finite Rank Stabilizability and Detectability Condition) There exist finite rank
continuous operator-valued functions K(:), V(-) such that the perturbed evo-
lution systems Tk and Ty are exponentially stable.

LEMMA 3.4. Suppose that Conditions (A1)—(A4) hold. If the finite rank con-
dition (F) is satisfied, then on any finite subinterval of [0,00), the operator-valued
functions (i;,, and \ilh constructed from &), and ¥, in the usual manner, converge
uniformly to zero in the uniform operator norm as h tends toward zero.

Proof. We consider ¥, only, the argument for ®, is analogous. Using the finite
rank condition, we write

V(t)p = z < Folt),d >h ault),

with fi and g, continuous for k = 1,---,n. It follows that
V(5h)Qn(:)?¢ = é < Qu(&)" fi(5h), ¢ >5 gr(ih),
for ¢ > 0, and
T(t,n)V (1)Q(n)/ Ty (n,s)¢ = Z < Ty (n,9)'Q(m)"*fu(n), ¢ >u T(t,n)gx(n),

k=1

for 0 < s <n <t < 0o0. Therefore, we have

Uu(t) = V([t/h]h)Qn(t)*¢
— 3 [ b+ ORIV ()Q) T o, )
{[t/h]+1)R

1 & ~ 1/2
= 2l s (S OO A/RR), 6 > au((e/ ]
= < Ty (n, [t/h}h) Q(n)"/2 fu(n), & >x T(([t/R] + 1)k, n)gu(n)} dn.

By adding and subtracting the term < Ty (n,[t/h|h) Q(n)Y2fe(n), ¢ >u gr([t/h]R)
under each of the above integral signs, and using the Schwartz inequality, we obtain
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the following estimate

n ([¢/A]+1)A

fo0dle < 32 [ toaltmlls(E/h)

k1" [t/hlB
ton(t, T (ms[¢/BIR) Q) 2 Fe(m) Il
12 ((¢/h]+1)h
S 20 MGl
where
waltin) = Oa(®)2fiullt/IR) — Ty (n, [t/R1R) Q) fulm)lla
onlt,n) = lla(t/AlR) = T((t/R] + Dh,m)g(m)llm, and

un(t,n) = Wh(tm)llg([t/h]h)lln+vh(t,n)HTv(m[t/hlh)'Q(n)mfk(n)llﬂ.

Since the functions f and g are continuous on any bounded subinterval [a, b] of [0, 00),
and for any € > 0, there exists § > 0 such that || f(t) — fe(s)lla < ¢ and ||gk(t) —
ge(s)||g < eforallt,s € [a, b] with [t—s| < §andk =1,--,n. Then, the boundedness
of the operator families T, Ty,V,Qn, @ and the uniform strong convergence of Qs to
Q implies that for any bounded subinterval [a, b] of [0, o), and for any given constant
e > 0, we can find ho > 0 such that for all 0 < h < hg and t € [a,b], the functions
un(t,n) < eforn € [t,t + h] and t € [a,b]. Consequently ||¥a(t)|lzan < € for all
t € [a,b].

We can extend the uniform convergence on finite time intervals to uniform conver-
gence on the infinite time interval by assuming certain periodicity (in particular time
invariance) of the evolution system T and the operator-valued functions B, Q, @h, K
and V. In fact, the periodicity assumption implies that éh,‘ilh are also periodic
functions of time.

THEOREM 3.5. Assume that the evolution system T and the operator-valued
functions B,Q, R are strongly continuous and periodic with the same period, 0. Sup-
pose further that the periodicity of Q 15 preserved by Qh for the sampled time systems.
If the finite rank condition (F) holds for some §-periodic functions K and V, then
the discretization defined in (3.9) and (3.10) generates uniformly stabilizable and uni-
formly detectable sampled control systems for sampling periods h with 0 < h < hg for
some constant hg > 0.

The periodicity assumption is trivially satisfied in a large number of practical ex-
amples, in particular, it is satisfied for all time invariant systems. However, the finite
rank assumption says, in essence, that only a finite number of modes of the state
vector are unstable in the absence of control. Indeed, in the case of evolution systems
corresponding to a hyperbolic partial differential equation, there exists examples in
which if the finite rank condition is not satisfied, all sampled systems are not stabi-
lizable even though the cortinuous time control system is stabilizable. For parabolic,
compact, evolution systems, the spectral properties of the evolution system provide
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valuable additional structure. In this case, an approach which does not require the
finite rank condition, similar to the one used in [R], can be applied. The results using
this type of argument will be reported on elsewhere. However, even in the case of
parabolic, compact, evolution systems, since the unstable spectrum consists of only
a finite number of isolated points, it would be interesting to know whether these sys-
tems can be stabilized via finite rank feedback. If the answer is affirmative, then the
arguments presented here may not be as restrictive as they seem. For other discretiza-
tion schemes, the uniform stabilizability and uniform detectability of the generated
sampled systems remains, in most cases, an open question.

4. Examples and Numerical Results. In this section we present and briefly
discuss some of our numerical findings which serve to illustrate our convergence results
in the context of a variety of distributed parameter control systems. In particular,
we consider the infinite horizon optimal control or regulation of a heat or diffusion
equation, a delay or hereditary system, and a flexible structure in the form of a
cantilevered Voigt-Kelvin viscoelastic beam with tip mass.

In all of the examples to follow, we consider time invariant systems omnly, and
obtain the discrete or sampled time operators from the corresponding continuous
time operators via Ty = T(h), By = h~! [*T(t)Bdt, Q) = Q, and Ry = R, for
h > 0 (i.e., via zero-order hold sampling). In order to solve the resulting infinite
dimensional continuous and discrete time LQR problems, we introduced some form
of state discretization (i.e. either modal or spline based Ritz-Galerkin techniques)
which were known to yield convergence in the closed-loop problem. By choosing the
state discretization sufficiently fine, we could assume that we obtained a reasonably
accurate finite dimensional approximation to the solution of the infinite dimensional
LQR problems.

The resulting finite dimensional continuous and discrete time LQR problems
(more precisely, the matrix algebraic Riccati equations) were solved using either eigen-
vector (in the continuous time case, also known as Potter’s method, see [KS]) or Schur
vector (for the discrete time problems, see [PLS]) decomposition of the Hamiltonian
matrix. All computations for the first two examples were carried out on an IBM PC
AT. The flexible structure problem was solved on an IBM3090, although it too could
have been solved on a personal computer.

In each of the examples below, the control systems are time invariant and the
control space U is finite dimensional. In fact, U = R. Thus, the optimal feedback
gains, F and F}, are elements in L(H,R). That is, they are bounded linear functionals
on H. Consequently, they admit representors, respectively f and f,,, in H with F =<
fro > and Fhp =< fr,0 >g, for ¢ € H. The elements f and f, in H are referred
to as the optimal continuous or discrete time functional feedback control gains. The
finite dimensionality of the control space U also implies the uniform stabilizability
of the sampled systems when the continuous time systems are stabilizable (recall
Theorem 3.5). Our convergence result implies that lim,_ g+ Frp = Fy for p € H.
Note that when U is finite dimensional, this is equivalent to limy_o+ F, = F in
the uniform norm topology on L(H,U) and limp_o+ f, = fin H. It is this latter
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convergence of the functional gains which we shall exhibit in our plots below.
Example 4.1. We consider the scalar or one dimensional heat or diffusion control

system
a a?
Ezz(t,n) = ab-?z(t,n) + X[y ,e5)(Mu(t), 0<n<1,t>0,
with the Dirichlet boundary conditions
z(t,0) = z(t,1) =0, t>0,

atn =0and n = 1 wherea > 0, € R, 0 < ¢ < €& <1, and x, denotes the
characteristic function on the set S. We take the performance index to be

Tw) = [TC[ aale,n)dn + ru(e)?yat

with ¢ > 0 and r > 0.
In this case we have H = L,(0,1),U = R, A:Dom(A) C H — H given by

Ap = aD%p for ¢ € Dom(A) = H*(0,1)() Hy(0,1),

B € L(R, H) given by (Bv)(n) = bX[e;,s)(n)v, 0 < n <1,vE R, QE L(H) given
by Q = ¢I, and R € L(U) given by R = rI, where I denotes the identity map on
R. We note that {T(t) : t > 0}, the semigroup of bounded linear operators on H
with infinitesimal generator A, is parabolic and uniformly exponentially stable. Thus
the continuous time pairs, {4, B} and {Q, A} are trivially stabilizable and detectable
and the discrete time pairs, {Tx, Bx} and {Q4,Ts} are uniformly stabilizable and
detectable as well.

Setting @ = 0.1, b = 1.0, ¢ = 1.0, r = 1.0, ¢ = 0.21, and €; = 0.275, we
obtained the plot of the functional gains f and f, in L,(0,1), for various values of
h > 0, given in Figures 4.1 and 4.2. Those in Figure 4.1 were obtained via a modal
(i.e. sin(krz),k = 1,2,---,N) state discretization with N = 20 modal elements.
For the gains in Figure 4.2, we used linear B-spline elements (i.e. “hat” functions)
defined with respect to a uniform partition of [0, 1] into N = 20 subintervals of equal
length. Convergence of these state approximations and the corresponding closed-loop
solutions to the control problem is well known (see, for example, |G|, [GR]).
Example 4.2. In this example, we consider the scalar, single input hereditary control
system

(4.1) i(t) = agz(t) + arz(t — 1) + bu(t)
where ag,a;,b € R. We take the performance index to be
()= ["{az(0) + rut(0)}at
- Jo

with ¢ > 0 and » > 0.
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TABLE 1
Head gains for hereditary system.

Sampling period h | Head gain 10
107! 3.76185
1072 4.35007
1073 4.41577
107* 4.42241
10°° 4.42308
10~® 4.42314
Continuous time 4.42315

The abstract Hilbert space formulation for linear hereditary control systems is
well known (see, for example, [BB]). We let H = R x Ly(—1,0),U = R and set
A :Dom(A) C H — H to be A(n,p) = (aon + ayp(~1), D) for (n,9) € Dom(A) =
{(¢,¥) e H:pE HY(-1,0), ¢ = 4(0)}. The operator A is the infinitesimal generator
of the C,-semigroup of bounded linear operators on H, {T(t) : t > 0}, given by
T(t)(n,¢) = ((t),:) where z is the solution to (4.1) with v = 0 and corresponding
to the initial data z(0) = n, z(f) = v(f), -1 < § < 0, and z, € Ly(—1,0) is the
past history of z from t back tot — 1. That is z,(8) = z(t +6), -1 <8 <0. We let
Be L(R,H) Q€ L(H),and R € L(U) be given by Bv = (bv,0), Q(n,p) = (¢n,0),
and Rv = rv, respectively.

To solve both the continuous and discrete time LQR problems we employed a
piecewise constant /linear spline hybrid finite element scheme developed by Ito and
Kappel in [IK]. Setting ao = a1 = b= q = r = 1, and with a state discretization
level in the Ito-Kappel scheme taken to be N = 20, we obtained the E X Ly(—1,0)
functional gains, f = (f°, f*) and fa = (72, f}) for various values of h > 0, tabulated
and plotted in Table 1 and Figure 4.3 below. We note that for this choice of the
parameters ag and ar, the open loop system has an eigenvalue with positive real part.
Consequently the system (4.1) is open-loop unstable. It is not difficult to argue that
the pairs {A, B} and {Q, A} are respectively stabilizable and detectable. Also, since
the operators B and Q are of finite rank, there exists ho > 0 such that for all sampling
periods h < hg, the sampled control systems are uniformly stabilizable and detectable
in h.

Example 4.3. We consider the control of the small amplitude transverse vibration of
a cantilevered Voigt-Kelvin viscoelastic beam with tip-mass. The relevant dynamics
are described by the hybrid system of ordinary and partial differential equations

2 5 84

P‘gt'z':(t,n) + clan4?ta:(t,n) + EI—a—n—;x(t,n) =0,n € (0,1),
5} d

méﬁx(t, 1) — clansat:t:(t,l) - EI-a—n—sa:(t,l) = bu(t),
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for t > 0, the essential (or stable) boundary conditions at n =0

5}
z(t,0) = 0, E)—x(t,O) =0, t>0,

and the natural (or unstable) boundary condition at n =1,

a® o?
_EIZ _z(t,1)=0, t>0.
a7728t:1:(t, 1) EIanzz( ,1)

cl

In the above equations p > 0 is the linear mass density of the beam, I > 0 is the
beam’s cross sectional moment of inertia, ¢ > 0 is the viscosity coefficient, E > 0 is
Young’s modulus, m > 0 is the mass of the tip mass, and b € R is a constant.

We take an energy based performance index:

J(u) = / { EI/ (tsn)) 2dn+%m(§tfr(t 1))*
+/ )dn+ru()}dt-

Once again the abstract Hilbert space formulation of this problem is standard. We
let H = H2(0,1) X R x L4(0,1) where H?(0,1) = {p € H*(0,1) : p(0) = Dp(0) = 0},
and endow H with the energy inner product

1
< (o110 W1), (02,00, %) > = EI /0 D*0,D*py
1
+m771'72+l’/0 P10,

The operator A : Dom(A) C H — H is given by A(p,n,¥) = (¢,cID3*p(1) +
EID3p(1), —cID* — EID*p) for (p,n,9) € Dom(4) = {(p,n,¢) € H : ¢ €
H%(0,1),n = ¥(1),cID*y+ EID*p € H?(0,1),cID*y(1) + EID*p(1) = 0}. We take
U = R and define B € L(R, H) by Bv = (0,bv,0). We let Q € L(H) and R € L(U)
be given by Q = (1/2)Ig and R = rly, where Iy, and Iy denote, respectively, the
identity operators on H and U.

It can be shown (see [GA]) that A is the infinitesimal generator of a uniformly ex-
ponentially stable analytic semigroup. Thus once again stabilizability and detectabil-
ity for the continuous time problems trivially follows as does the uniform stabilizability
and detectability for the discrete time problems.

We employed a standard cubic spline based Ritz-Galerkin finite element scheme to
approximate or finite dimensionalize the continuous and discrete time LQR problems
(see [GA], [GR)). Setting p = 0.1, EI = 1.3333 x 1074,¢] = 1.3333 x 1077, m = 1,b =
1,¢g =1, and r = 1 and with N = 9 cubic spline elements, we obtained the functional
gains f = (O, f1, f%), fn = (f2, fL, f}) € H exhibited in Table 2 and Figure 4.4 below.
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FIG. 4.4. Functional gains for beam equation. (a) Displacement, we plot D? f* to ezhibit the H?

convergence; (b) Velocity.

TABLE 2
Tip gains for beam equation.

Sampling period & | Tip Gain, f!
1.000 0.12181
0.500 0.12003
0.010 0.11798
0.005 0.11796
0.001 0.11794

Continuous time 0.11793

Cont inuous time

-1., 0.3, 0.01, 0.00%.

¢.001

(a)
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5. Summary and Concluding Remarks. We have investigated and estab-
lished the convergence of solutions to discrete or sampled time linear quadratic regu-
lator problems and the associated Riccati equations for infinite dimensional systems
to the solutions to the corresponding continuous time problem and associated Riccati
equation, as the length of the sampling interval tends toward zero. We have con-
sidered both the finite and infinite time horizon problems and carried out numerical
studies involving a variety of distributed parameter control systems in order to ob-
serve how well our theoretical results predict what actually takes place in practice. In
the context of the finite time horizon problem, the assumption of strong continuity on
the operators which define the control system and performance index, together with a
stability and consistency hypothesis on the sampling scheme, are sufficient to establish
the strong convergence of the Riccati operators, feedback gains, optimal control laws,
and optimal trajectories, with some degree of uniformity in time over the compact
interval of interest. For the infinite time horizon problem, we require the additional
assumption of stabilizability and detectability, uniformly with respect to the length
of the sampling interval. We have shown that this condition can be verified when
zero-order hold sampling is employed and the continuous time system is stabilizable
and detectable by finite rank feedback. We also have a result for parabolic systems,
but this will be reported on elsewhere.

Several interesting open questions related to the results we have presented here
remain open. For example the inter-relation between stabilizability /detectability for
the continuous and sampled time systems in a more general setting and under more
general sampling schemes (A-Stable Pade, for example) requires further study. Also,
convergence under simultaneous and independent state (space) discretization (i.e.
finite difference or finite element approximation) and temporal sampling should be
investigated. It would not be difficult to extend the results we presented here to
handle certain “coupled” state and time discretizations. Finally, a study similar to
the present one could be carried out for the LQG estimator and compensator problems.
We have not as of yet looked at these problems, but suspect that similar results to
those given above could be obtained.
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Appendix A.
(i) Continuity of Pr: Let ¢ € U. Then since P,¢ is constant on each of the
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intervals I; = [jh, (j + 1)h), we have

trh
Pl = [ IE )
kra—1

= L hw / b(s)ds]*
< "’ilh FACCIE A
_ /0 " l6(s)|Pds < (|12

(i1) Convergence of P,: First, let us consider a continuous function ¢ € U. Then, for
all t € [0,t;), there exists ho(t) > O such that for all b < ho(t), we have t € [0,y,4].
That is, for all ¢t € [0,¢/],

(Pad)(t) = b7 [ $(s)ds

for h small enough, where I is an interval of length A containing t. The Bochner
integral is equal to the Rieman integral for continuous functions, and wuerefore, for
all t € [0,t;), it follows that

lim (Pag)(t) = 6(0).

Now consider an extrapolation operator, E, : U, — U, defined for all u € U,
as: Eju(t) = u(t), for t € [0,t;4], Enu(t) = 0 for t € (¢;n,ts]. It is evident that
(EnPro)(t) converges to ¢(t) as h tends to O for all t € [0,t). Since

ty
L IEPS) () s = | Pt
from (i), we conclude, via the dominated convergence theorem, that
Tim || Paglu, = 6l

Then from the uniform boundedness of P, and the density of the continuous functions
in U, we obtain

Jim Pty = (19l

holds for all ¢ € U.
(iii) For all u € U), we have Eyu € U, P,Eju = u, and ||PyEsu|ly, = || Ently-

Appendix B.
We shall show that

Jim [5n.0 ~ PaBugllu, =0,
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uniformly in s for s € [0,¢;], and ¢ € H. Analogous arguments can be used to show

that

lim HIE;,,,P;.u - P;.}é,u”u, =0
h—0t

and that

lim, 185, Pou = Blulls = 0

uniformly in s for s € [0,¢/], and each u € U.
From the definitions of 8, and B, given in (2.2) and (2.11) respectively, it is easy
to observe the following for any ¢ € H.

(i)

(ii)

1(8,4)(t)||v is continuous with respect to s for all t > s. Therefore, from the
uniform boundedness of ||(8,4)(t)||y for all 0 < s <t < t;, we conclude that
é,q& is a continuous function of s in the U norm.

By condition (A1)-(A4), it is easy to see that

®(t,s) = [|Ba(t) — Bip(t)llo

converges to zero, uniformly in A(2,¢7). By the unuorm boundedness of
| Bn.s#(t)|lv for all h, we conclude that

s

1Bort - Bsl, = [

[s/hlh

- trn ~ -
Brg() e + [ 1Bursle) — Bugle) e

converges to zero, uniformly in s.
Since we have

1Bh.o¢ — PaB.dllu, < |Bnod — Bodllu, + |(Pn — I)Bo)uss

the strong continuity of B,, and the strong convergence of P, to the identity
on U, yield the desired uniform convergence result.
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