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Abstract

This report describes the development and applications of multiblock/
multizone and adaptive grid methodologies for solving the three-dimensional
simplified Navier-Stokes equations. The program was initiated in 1987 focusing on
developing a three-dimensional plume code to simulate the aerodynamic
characteristics of a jet, issuing from nonaxisyrmmetric nozzles. Previously, Abdol-
Hamid et. al. introduced the single zone version of the present code (PAB3D-v1) where
the parabolized and simplified Navier-Stokes equations were solved. The code was
tested and compared with the experimental data for axisymmetric underexpanded and
overexpanded supersonic jet flows and transonic flow around a nonaxisymmetric
afterbody.

In the present report, adaptive grid and multiblock/multizone approaches are
introduced and applied to external and internal flow problems. These new
implementations increase the capabilities and flexibility of the PAB3D code in solving

flow problems associated with complex geometry.

Vil



1. Introduction

A single block solver can be used efficiently to simulate simple aerodynamic
configurations. Among various methods offered by many researchers, Abdol-Hamid
1,2.3 introduced the single block version of PAB3D code to simulate underexpanded and
overexpanded supersonic jets issued from round and rectangular nozzles. Abdol-Hamid
and Compton? used the PAB3D code to simulate external flow around a nonaxisymmetric

nozzle at a Mach number of 1.2. Pao and Abdol-Hamid® used the single block with
adaptive grid to simulate underexpanded supersonic jet flows issued from round,
square, and elliptic nozzles.

As better computational methods and powerlul computers are available in
recent years, computational fluid dynamics {CFD) has become one of the important
tools in improving aircraft design (6,7). Until recently, the use of CFD was limited to
simple geometries. Fulure aircraft (fighter or transport) will have very complex
geometries and are difficult to handle with a single zone structured grid. Either
unstructured or multiblock/multizone structured grids are attractive approaches for
solving viscous flow problems with complex configurations. Even though the
unstructured grid is much easier to generale, it requires more computational time and
memory for solving the Navier-Stokes equations per grid point. With the capability of
the supercomputers of today, the multiblock/multizone approach is a flexible method
which can handle very complex configurations.

The advantages in using the multiblock/mullizone approach are:

1. Simple grid generation for complex configurations.

2. Flexibility to use a different CFD approach for each block:

a. Numerical technique (space marching algorithms for supersonic flows
and time-dependent algorithms for subsonic and separated flows).

b. Different topology for each block (polar, cartesian, etc.).



c. Adaptive grid in regions where the dependent variables and their

gradients change their strength and location.,

3. Less memory as each zone is solved independently with appropriate
boundary conditions.

This report describes the capabilities of an improved version of the PAB 3D-v1 code
reported in references 1 to 4. This improved code, named PAB 3D-v2, includes options
for three different numerical schemes to solve the simplified Navier-Stokes equations.
The three schemes are: the flux-vector-splitting scheme of van LeerS, the flux-
difference-splitting scheme of Roe® and a modified Roe scheme {space marching
scheme)2:3. Four different turbulence model options are also included in PAB 3D-v2.
The first of the four, the Baldwin-Lomax!0 model, is a two-layer algebraic model which
follows the pattern adopted by Cebecill but avoids the necessity of determining the
boundary layer thickness. The second, the Johnson and King modell2 as extended to
three-dimensional flows by Abid13 and Abid et. al.14, is a two-layer hybrid eddy-
viscosity Reynolds shear-stress model in which a simplified ordinary differential
equation for the maximum Reynolds shear-stress is solved. The third, the Goldberg
modell5 as modified by Goldberg and Chakravarthy16, can be considered as a three-
layer turbulence model where the third layer is used to simulate the separated regions of
the flow. The last is the mixing length turbulence model? with the option of including a
compressibility correction factor introduced by Cheuchl?. Two different external and
one internal flow problems are used to test the various code capabilities.

One important problem for CFD applications is the prediction of the shock-cell
structure of underexpanded and overexpanded supersonic jet flows. Understanding the
effect of shock-cell structure and interaction of a supersonic jet with the external
stream is essential [or the design of future aircraft. Also, the nozzle exit geometry plays
an important role in designing fighter aircraft for maximum maneuverability over a

wide range of Mach numbers 18-22, Developing an efficient compulational technique is



important to fully understand the flow characteristics of these nozzles. At the present
time, there are few codes available to predict the aerodynamics of three-dimensional
shock containing jets. Wolf et. al. developed a three-dimensional code (SCIP3D23) for
analyzing the propulsive jet mixing problem. Anderson and Barber24 also developed a
three-dimensional Parabolized Navier-Stokes procedure for calculating the heated
subsonic and supersonic jet. This code was used o simulate the jet mixing rate for
axisymmetric, rectangular and splayed nozzles operated at design conditions. Abdol-
Hamid2-3-4 introduced a space marching scheme, which is based on modifying the Roe's
scheme, to get an accurate solution to the simplified Navier-Stokes equations for
supersonic flows with a single time sweep. This scheme was successfully used to
simulate underexpanded supersonic round and square jet flow problems2'3. Pao and
Abdol-Hamid® introduced a new adaptive grid for analyzing the aerodynamic of shock-
containing single jets. They used this technique to simulate round, square, and elliptic
jet flows. The adaptive grid is used to accurately describe the shear layer and detect and
track the movement of the shock system for underexpanded supersonic jets. In the
present report, adaptive grid and multiblock capabilities included in PAB 3D-v2 are
utilized to simulate round, square, and elliptic supersonic jet flows.

Another group of underexpanded supersonic jet flow which involving the
internal and external flow regions for a special family of jet nozzle is analyzed in this
report. These examples are designed for showing the f{lexibility of the PAB3D-v2 code in
handling mixed boundary conditions over a block interface. The nozzle configuration
can be described as a circular pipe section followed by five equally spaced tabs. Each tab
is simply the extension of an arc segment of the circular pipe for a certain length in the
downstream direction. Each arc segment, representing the width of the tab, is 1/10 of
the full circle. For this family of configurations, only two grid blocks are needed for
calculations using the PAB3D-v2 code. It is estimated that at least 30 percent of

computer resources are saved by such structural simplicity when compared to typical
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multiblock codes. Results of analysis using PAB3D-v2 for these nozzles are
qualitatively similar to the experimental results obtained by Wlezien et al44 for
nozzles with 1, 2, 4 and 8 tabs. In general, the results show that the tab nozzle
configuration allows rapidly establishment of a pressure equilibrium between the
underexpanded jet flow and the ambient free stream. The jet plume is found to have a
higher spreading rate and a lower core flow Mach number aé compared to a similarly
underexpanded supersonic jet issuing from a circular nozzle without tabs.

Finally, PAB3D-v2 was used to predict the aerodynamics of an alterbody at
transonic speed. In fighter development programs, a great amount of elfort is spent in
analyzing the afterbody flowfield to efficiently integrate the nozzle and airframe. For
analyzing this complex flowfield, computational fluid dynamics is becoming
increasingly useful. Previous applications of computational fluid dynamics to the
afterbody problem include numerical techniques ranging from panel methods to
Navier-Stokes solvers25-33. Abdol-Hamid and Compton? used four different
numerical algorithms and three different turbulence models to solve the three-
dimensional Navier-Stokes equations for supersonic flow over a nonaxisymmetric
nozzle. Three of the algorithms were contained in the PAB3D-v1 and PAB3D-v21-5 and
the other in the CFL3D code31.34-36, n the present report, the multiblock/multizone
approach in PAB 3D-v2 is utilized to simulate the flow over this nonaxisymmetric
nozzle at a Mach number of 0.8 using a coarse grid. Also, the performance of the three
turbulence models using a fine grid topology in simulating supersonic flow are

compared with experimental data.

2. Governing Equations

The governing equations under consideration here are the Reynolds-averaged
Simplified Navier-Stokes equations obtained by neglecting all streamwise derivatives,
9/3, of the viscous terms. The resulting simplified Navier-Stokes equations are

written in generalized coordinates and conservation form as
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In these equations, p is the density, u, v, and w are the components of the velocity
in the x, y, z directions, respectively, and e is the total internal energy per unit volume.

The pressure, P, is related Lo the energy by

P =(y-1)[e—% p(u2+v2+w2)]

(4)
o
Txx
Fv= Txy
Txz
Y i dT
PrK o HUT, +VT, +WT,
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where
& = £(x.y.2.t) = Streamwise (marching) direction
1 = n(x.y.z.t) = Normal direction

€ = {(x.y.z.t) = Spanwise or circumferential direction

dJ is the Jacobian of the transformation given by

J=AE0.0/4x.y.2)

2 (,9u_ov ow du v
= - D = - = ek e
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where,
W =ML + YT aflerbody calculations
L= ML jet and nozzle calculations

ur, and pt are the laminar and turbulent viscosity respectively. In the present

investigation, the turbulent viscosity is evaluated using two algebraic turbulence

models which are described subsequently.



The Parabolized Navier-Stokes (PNS) equations are obtained from the
governing equations when the unsteady terms are omitted and the following

assumptions are enforced:

1. The streamwise velocily component is everywhere greater
than zero.

2. The pressure gradient term in the streamwise direction dP/d§
is either omitted or treated with other techniques to avoid a
complex eigenvalue.

In the present investigation, the technique of Vigneron et. al.37 is adopted to
suppress the departure solutions associated with the elliptic behavior of the equations.
Vigneron et. al.37 show that PNS equations are hyperbolic-parabolic provided that the

streamwise convected flux vector is replaced by

E:[pﬂ.pufH Sx 0P, pvU+S 0P pwl+S,up.(e +P)G] -

where

= _9&4_5____2_ M& <1
1+(y-1)M,
and, o is a safetly factor to account for the nonlinearily of the governing equations. A
value of 0.95 is used in the present calculations.
3. Turbulence Modgls
The Baldwin-Lomax, Johnson-King, and Goldberg turbulence models (for wall

boundary problems) and mixing length turbulence models (for shear {low problems) are

briefly described in this section.



3.1 Baldwin-Lomax Model

The Baldwin-Lomax 10 model is an algebraic two-layer turbulence model which
follows the pattern adopted by Cebecill. The model is developed for thin-layer, two-
and three-dimensional calculations. The turbulent viscosity is evaluated as follows:

Ht = (udh 1 < Ncros
ut = (o 7N > Ncros

where 1 is the normal distance from the afterbody surface and n¢rqg is the smallest
value of n at which values of (j11); and (), are equal. For the inner-layer:

i =p2 |of (8)

where, 1 = kn [1 —exp (- n*/A+)]
and, k= 0.4, At =26

v PwTw?
Hw (9

where 1,, = wall shear stress

0] is the magnitude of the vorticity.

There are two different ways to calculate |w!; the three-dimensional form:

| (222 2220 2w
3D ay ax aZ ay ax az

and the thin-layer approximation

ol = [n g ia!)z{n ¥ ﬂ]z +[n M 3‘1)2 "
P Yo fon Y m “ono Y om (10b)

For the outer-layer:

(10a)

(o = KCep P Fwake Fkleb (h) (11)

where, Ccp = 1.6, k=0.018

Mmax Fmax
Fwake = the smaller of

Cwk"maxVU/Fmax

U=u2 +v2 + w2 Cwk=0.25
Nmax IS the N location corresponded to the maximum value (Fy,,4) where F is
calculated by



F(n) =n|a)|[1 - exp(- n*/A+)] (12)

and
-1
c .V
Fkleb= 1+5.5 M—’
max (13)
Ck]eb =0.3

3.2 Johnson-King Model

The Johnson-King modell2.13 js a two-layer hybrid eddy-viscosity/Reynolds-
shear-stress model. A simplified ordinary differential equation for the maximum
Reynolds shear stress (1) is used to determine the change in the turbulent viscosity in
the streamwise direction. The initial values of the Reynolds shear stress (along each

line normal to the afterbody) have to be evaluated with some other approaches. The

original model was developed for 2-D flows in which a 1-D equation for 1, is to be

solved. Abid19 and Abid et. al.14 extended the Johnson-King model!2 for the
application to 3-D flows. In the Johnson-King model, the turbulent viscosity is

expressed as

“t=(“t)o[l—e’(p(—(”l)o/(ut)i)] (14)

1/2 + +
(pl)i =kntm [l'exp(—m /Al ):’
(15)

where
+ 1/2
N =P Trax /1,

Al =17
Tmax = Maximum Reynolds shear stress/densily



The outer eddy viscosity is the same as the one used for the Baldwin-Lomax model
(equation 11) but multiplied by a correction factor . However, k takes a value of 0.0168
as suggested by Abid et. al.14. The o [actor provides a link between the eddy viscosity
evaluated by equation (16} and 1y;. T Is evaluated by solving the 2-D ordinary

differential equation, which can be written in the following finite volume form:

s W"‘8 r=0
£, 8T T

(17)
where
U, =R, u,, +RyVm +R,w,
Wo =Taun+Tyv,+T,w,
1
r= 4 (_g__- ]_ C[)Lmll"" /2| Vol
2L | Eeq 8a,(0.7-n,/8) Un (18)

where a1 = 0.25, Cp =0.5
Lm = min (0.4 nm. 0.095)
g=Tm"
First, the Baldwin-Lomax model is used to supply the initial values for tm at each

streamwise location, and ¢ is set to 1. Then, at the following time steps, equation (17} is

solved for 1m using an upwind-scheme, and o is updated as follows

ot+tM-gty mPmax/ (10
max (19)

In the region where ¢ is less than unity, the value of '1 - o'” t (equalion 14) is set to zero.

3.3. Goldberg Modification
Goldberg15 and Goldberg and Chakravarthy16 introduced a modification for

boundary layer turbulence models, which is designed to simulate the separation bubble

10



in the flow. The modification consists of a simple formula for the distribution of the

eddy viscosity within the separation bubble. The Baldwin-Lomax model is used outside

the separation bubble and the edge of the separation region "ng" is treated as a wall

boundary. Thus, the 7 in equations 9, 11, 12 and 13 is replaced by "-ng".

For high Reynolds number flows, Goldberg and Chakravanhy16 show that the

viscosity in the separatidn regions can be evaluaied as

(), =Crus N ypup[A(n/ n,)+BNG o<n<ng
and

(e )V=Czus'ﬂs\/5w—0 s SN<TN¢p
where

G=[1-edM/MY2] /[1-e-0

3/5

9/5 C
A=—(Cu/2] .B=—2-"- -A

ut.m(“)max

p

Him = u:'m,m

C1=0353,C2=0.188.¢6=0.5,C, =0.7

(20)

(21)

In the separation layer, equation (16) is used up to ner . the smallest value of n at which

values from equation (20) and Baldwin-Lomax model are equal. Beyond n¢r, the

Baldwin-Lomax model is used.

3.4 Mixing Length Model (ML)

This is an algebraic eddy-viscosity turbulence model which is based on the

Prandt! hypothesis. The turbulence viscosity is evaluated as

11



ur=p2 lol (22)
where 1 is the turbulence length scale,

1=0.111G

nG=mnz2-mi

where at ]

U-Us

0~ Uaw (23b)
where U = Exu + Eyv + Ew
is the contravarient velocity component in the streamwise directions, U, is the

external flow velocity and Ug is the jet centerline velocity.

3.5 Compressibility-Corrected Mixing Length Model (ML-CC).

It is well known that turbulent mixing rales are reduced for supersonic flows in
comparison to subsonic flows. Chuech et. al.17 introduced a compressibility

corrections factor and used it to modify the turbulent viscosity:

ut =Kot 10| (24)
where k

=1.0 Mc < 0.55

=2.03 - 187Mc for 0.55 = M¢ £ 0.95

=0.25 Me > 0.95

where M is the connective Mach number of the mixing layer.

4. Compuiational Methods

The three computational schemes presented in this report are basically

implicit, upwind, and constructed using a [inite volume method. The diffusion terms

12



are centrally differenced and the inviscid flux terms are upwind differenced in these
schemes. Associating the subscripts i,k,j with &, 0, { directions, a numerical

approximation to Eq. (1) may be written in the following form:

. n+l n+l . n+l N+l _n+l . n+l
g) ¥E 1 -E | +F | -F | +G -G -0
(Q:.k.j)t i+—;—.k.j i—-;—.k.j 1k+ -;—.j i.k—%,] Lk j+ % 1.k, j- % (25)

The fluxes at (n + 1 time ileration) are linearized as

.n+l n o
E =E +-a—b—: AQ

0Q

n+l n aP‘-n
=F +——A
+ag Q

n+l _n aén
=G +— A
+8Q Q

(26)




In the present code, two flux-splitting schemes are used to construct the convective flux

terms in equation (26).

The variables Q*, Q- are defined by an upwind biased one parameter

family
Q:+ Lag™ Oik.s *% {(1 k) Vg + (14 k) Aa} Qiky

(27)
Q. Lig” Q)+ 1k ‘{‘ {(1 +hg) Vg +(1- kg Aé} Ok,

These variables can be either the conservatlive or primitive variables. Also, Q+ and Q-
represent the right and left variables, respectively, in reference to the cell face.

where

AeQiks= Qiv1kj~ Dk BeQik;i=Qukg— Qi-1ky

¢=0 first order fully upwind

second order fully upwind

=1
1
kg = §'
third order biased upwind
=1

However, to ensure monotonic interpolation for the third order interpolation in the
vicinity of a shock, a min mod limiter is used as follows:
V@ = min mod (VQ,bAQ)

(28)
AQ =min mod (AQ,bVQ)

3-k
where b is a compression parameter, b = l_kg
e
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It should be mentioned that the splitting procedures are only used for the

inviscid convection parts of the flux vectors (F‘ and G) . A second order, central

difference is used to represent the diffusion (viscous) terms.

I n+l

n+1 n+1 n+1

+AL AQy - +ALAQ _ +AAQ
(29)

n+1 n+1 n+1 n

+C€ AQi +1 +CT|AQk+l +C§AQJ+1 =R.H.S

Ac=(Jf) 7V (J - 5= 1)!%; =(Jf] , —[Jf)j_%w, (j - %J)—vl (J - %J)

.l"2 J+§
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t 1t t
Jy1.Jd2.J3. Vi and V;  are completely described in Ref (1).

The implicit upwind/relaxation algorithm of Newsome et. al1.38 is used to solve

the governing equations. This can be achieved through a series of alternative sweeps in

n+1
the streamwise direction. For a forward sweep, AQ:' —1ky I8 known and AQ; . 1k.j is set

n+l

to zero. For a backward sweep, AQin +1xjisknownand AQ; _,,, is set to zero.

Finally, equations (29) are approximately factored and can be written in the

following compact form:

oF oF, )] ! oG G, n+t
[L+8n(£+ 30 ]]L [L+8c[5—§+ Fe) DAQ =R.H.S 50

where,

At

4.1 van Leer flux vector-splitting scheme

The first of the two schemes is the van Leer8 flux-vector-splitting method. The inviscid

terms of the flux vectors (I:: F and G) are split according to their contravariant Mach

number.

» |l
SRR
o ||

WM, =

n and Mg =

(Mg,M,, and Mg), defined as M, = s

where

ﬁ=(qu+Syv+Szw)/S
V=(qu+Ryv+R,w)/R
W:(Txu+Tyv+Tzw)/T

2 2 2 2
S =S,+8,+8S,

2 2 2 2 2 2

2
R =R, +Ry+R, and T =T, +T, +T,
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As an example, for supersonic flows in the x direction

+ -~

+ —

E =0, and E =

.rl'])

for

and for subsonic flows, -1< Mg <1

e
It
47}
o]

3
B
¢
——
[92]
x
T
cl
+
[\l
£
+
<
—_—

where

+

Emass =+pa (M £ 1)2 /4

E S 2

— — 2 2
cncr&':Emass{“(Y“l)U +2(y-1)Ua + 2a }/(Y - 1)+
1( 2 2 2
—lu +v +w
2 )

4.2 Roe's flux-difference -splitling scheme

E

(32)

(33)

The second scheme is the Roe's flux-difference-splitting method?, which solves the

approximate Riemann problem. For example, the interface flux in the streamwise

direction is evaluated as,
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E

1+

%[@(QL)J, E(Qr)-1AI(QR —QL)], 3

N~

(34)

where Qp, (@) and QR (@Q*) are either primitive or conservative variables to the left and

the right of the cell faces, and A is the Roe-averaged flux Jacobian matrix:

The last term in equation (34) 1Al (Qr-Qy) is delined as:

04

uoy, + k05 +0g
IA'(QR - QL) = l_]a4 + kyas + 0.7 (35)
way, + K, 05 +0g

.2
Ho, + 05l + 0gli + 0,V + 0gW — 257

ﬁzun/ﬁwn Pr
\/E*’\/;; (36)

Also, p,¥,Ww and H are evaluated using formulas similar to eq. {36) and

9 2 2 2
- - u +v +w
¢ =(r-pH-——5—— 37)
where
o =Klﬁ|(Ap - Ag}
¢

(38)
0y = ——1—2K|’{3 +CI(AP + p& A T)
2¢

0ty = — I - 8l(AP - pé A Ti)
2¢

04 =0y + 0y +0g

Oy = é(az - as)

o =KITlp (Au -k, AT)
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a7 =KITlp (av -k, ATi)
og =KITIp (Aw -k, A T)

and

For fully supersonic flow, the information (disturbance) can only travel in the flow

direction according to equation (34)

Ei+l/2.k.j=|:l::(g )]
i+1/2.k.j

A) A
55(5) = Backward difference

M‘;7 >1 {39)

where ﬁg is the average Mach number evaluated using the Roe-averaged method. The

same result is achieved by setting the state variables at the i + 1 and i + 2 planes to be
equal to the ones at the J-plane,
Gi+2=Qi+1=0i My >1 (40)

For a large number of supersonic/subsonic mixing flow problems, the
downstream influence (coniributed from the subsonic regions) can be neglected when
compared with the upstream effect. For these cases, equation (18) can even be used in
the subsonic regions to obtain an accurate solution.

With this approach, a simple modification to the Navier-Stokes solvers can be
made and a wide range of problems can be simulated with a single sweep. This approach
does not require any changes in the governing equations restrictions on the mean

values of the streamwise velocity.
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For a time dependent solution, either the flux-vector-splitting or the flux-
difference-splitting scheme is used in all three computational directions. However,
these schemes are only used in n and { directions to obtain a space marching solution.
In this case, either a PNS formulation or modified Roe's scheme is used to calculate the
fluxes in the & direction.

With alternate forward and backward relaxation sweeps, a time-dependent
solution can be obtained for general flow problems. A one-sweep solution can be
obtained for supersonic/subsonic mixing problems using either the PNS formulation
or the modified Roe's scheme. In these procedures, a local time-like ileration is used
until the residual at the local plane is reduced four orders of magnitude. Space
marching solutions require much less computational time than fully time-dependent
solutions, and these can also be used as initial conditions to reduce the computational
effort required by time-dependent solutions.

5. Adaptive Grid Technique

In the present report, the adaptive grid technique introduced by Pao and Abdol-
HamidD is used to analyze the aerodynamic characteristics of shock containing single
jets. This strategy is based upon the monitoring surface and equidistribution concept
by Eiseman39-41. Flow variables are used as the monitoring functions for grid
adaptation in the computational domain of interest. Grid densily is governed by the
geometric properties of the monitoring functions. In this method, a template grid is
first generated by a geometrical function which concentrates the grid points to a
circular zone surrounding the jet plume while leaving an adequate number of grid
points in the farfield computational domain. For the jet exit plane, this initial grid is
adapted to axial velocity (representative of the shear layer) and the pressure
{representative of the shock location). Adaptive grid for subsequent axial planes are

generated by using the adapted grid in the previous plane as lits template.
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6. Boundary Conditions

6.1 Multiblock/Multizone Methodology

The present multiblock/multizone strategy allows a great deal of topological
flexibility. As long as there is no change in grid topology (polar or cartesian) or
distribution (fine or coarse), additional blocks or zones are not necessary when the
boundary condition changes along a block face. Each of the six block faces can have
any combination of boundary conditions. Boundary conditions can be either a direct
communication at the block interface or a regular boundary condition (inflow,
outflow, reflection, symmetry wall or extrapolation). With this flexibility, the solver
requires fewer blocks and zones which significantly reduces the overhead required for
the communication belween block/zone interfaces.

A typical computational domain {figure 1) may contain zones, blocks and
partitions. The relations between zones, blocks and partitions are defined as follows:

Zone (Z,,): parts of the computational domain organized linearly along the i-
direction. Each zone may contain multiple blocks. Each block within a zone can

interface with blocks in adjacent zones where mixed boundary conditions are allowed.

Communications at the zone level are restricted to face 5 {i,;;; = 1) which communicates
with face 6 of zone Z,,_1, and face 6 (i=i=imax,;,) which communicates with face 5 of
the next zone Z;;,, 1. Blocks within a zone can terminate only at face 6 of the zone. Face
5 of zone 1 and face 6 of the last zone of the computational domain can have any
combination of the regular boundary conditions.

Block (Bp): subsection of Zm, can siart at any i-location (IMINzm < iBn <
IMAX7zm) with different regular boundary conditions and interface with any other
block (if needed) at faces 1.2.3 and 4. Face 5 and 6 can communicate with another from
zone Zy, 1 and Zy,, 1 with any combination of regular boundary conditions. Face 1,2,3,
and 4 are defined as follows: fori = Igpn, imaxzm

face 1 j= jmax, k=1, kmax
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face 1 j= jmax, k=1, kmax

face 2 j=jmin, k=1, kmax

face 3 k=kmin, j=1, jmax

face 4 k=kmax, j=1, jmax
The interface between blocks can be of any direction or order (coarse to fine grid). Any
of the four faces (1-4) in one block can communicate with any number of blocks and
different faces in any order. With this flexibility, there is no need to break a block into
a number of blocks on account of communications with more than one block or mixed
boundary conditions on a block interface. The only computational effort is setting the
correct boundary conditions for each of the four faces of a block.

Partition (P;): subsection of a block within a zone, which can start any i-
location. The partition allows the user to change boundary conditions without adding
an extra zone. Any of the four faces boundary conditions can be changed and a
turbulent or laminar solution can be selected for each partition.

Different examples of using the present multiblock/multizone methodology has been
mentioned in Section 1. This method will simplify grid generation by reducing the
number of blocks and zones needed to describe a complex computational domain and by
giving the users more flexibility in breaking the computational domain into simple

sections.

6.2 Regular Boundary Conditions.

Regular boundary conditions are inflow, outflow, reflection, symmetry, wall
and extrapolation. In the following equations, a boundary point is denoted by "n", and
the factitious image point is denoted by "{". Boundary points () are calculated as
follows:

a) Inflow/Outflow Boundary

The treatment of this boundary is based on Riemann invariants for a one-

dimensional flow. Riemann Invariants can be defined as
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(41)

where, + and - are the increasing and decreasing direclion side

of the n-direction, and side of the h-direction..

Va=kau+kyv+k,w

then, there follows:

The primitive flow variables can be written in a general form:

rr - _ 'l. - ’[‘
{pf-uf'vf'wf-pf} ={c,.p,°.u,,.v,,,w,,.czpf} +C3{O'kkay'kz'0}
where ¢, ¢g, cg are given dilferent values in various cases.

1) For inflow boundary conditions where V,, <0,
Ty =IVg - VI

If the constant entropy restriction is applied, then

1
2 \yo1 2
- a R —~ _akR
Clz-——-z 'C2=——‘Y

a

otherwise, if the constant pressure restriction is applied, then

2

_ O
€, =1C ==
Y

2) For outflow boundary conditions where , VR > o,
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If the constant entropy restriction is applied, then

constant pressure restriction

2

- YP. . a,

Q=7 C2m s
aR

b) Reflection Boundary Condition

There are three cases:

u-reflection

T
{pf' Ug, Vg, W, Pr}T = {pn'— un' vn' wno p}

v-reflection

T "
{Pr-uf"’r'wr'Pr} ={pn.un.—vn,w".p}
uv-reflection (quarter-plane polar grid)

- T
{Prvur-vrswrvpr} ={an‘un'”"n'wn'pn}

c¢) Svmmetry Boundary Condition

T
{Pr'uerr'Wr-pr}T = {Pn'un.vn.wn.pn}

d) Wall Boundary Condition

At the wall, velocity normal to the wall surface is set to zero and no-slip conditions are

imposed,
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us=v=w=o0
The pressure on the wall surface is obtained by setting the pressure gradient to zero and

adiabatic wall condition is employed for temperature.

e) Extrapolation Boun ndition
There are three options:

zero-order
Qf=0n
First-order
Or=20n+0y-1
Second-order
Gr=15Qn+05Qn -1
7. Numerical Results and Discussions

In this section, some of the computational options available in the PAB3-v2
code are used to simulate dilferent flow problems. Three test cases, which use the
multiblock/multizone, adaptive grid, time-dependent, space marching, parabolized

Navier-Stokes, and turbulence model capabilities are presented. The average

computational time on Cray-2 computer was 70 pg/grid point. The first test case is a
group of calculations for underexpanded and overexpanded supersonic jets issued into
still air from round, square, and elliptic nozzles using polar and Cartesian grids. The
second case is the simulation of high pressure supersonic flow issued into still air from
a two 5-tabs nozzles. Finally, subsonic and supersonic flows past a nonaxisymmetric
afterbody and nozzle with either a solid simulated plume or a supersonic jet exhaust are
computed and compared with experimental data.
7.1 Supersonic jet plume

The present three-dimensional code is used to predict the shock-cell and flow

characteristics of both underexpanded and overexpanded supersonic jets issued into
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still air. The present predictions for round nozzles are qualitatively compared with the
experimental data of Love et. al.42 for underexpanded supersonic jets. Quantitative
comparisons are made with the experimental data of Norum and Seiner43 for Mach 2
underexpanded and overexpanded supersonic jets issued from round nozzles. The
present space marching scheme and adaptive grid are also used to simulate a supersonic
underexpanded jet issued from both square and elliptic nozzles.

Since details of the initial jet prolile are not available, all cases are computed
using a top-hat profile at the jet exit. Free-stream Mach number in the ambient air is
assumned to have a value of .05. Space marching and time-dependent solutions
presented in this section are calculated by using the van Leer flux-vector-splitling

scheme.

7.1.1 Polar Grid; Round Nozzle

In order to evaluate the capabilities of the present code, some of the important
characteristics of mildly underexpanded supersonic jels are computed and compared
with PNS predictions as well as the experimental data of Love et. al.#2. These are the
characteristics of the first shock-cell:

a) The location (1) of the intersection between the incident shock wave

jet centerline or the intersection can be a Mach disk..
b} The location of the expansion wave reflection at
jet boundary, W.

Figure (2) shows a typical quarter plan polar grid used Lo calculate jel plume flow
issued from a round nozzle. In figure (3), the computational results for 1/D and W/D are
presented as a function of pressure ratio P,/ P,, and compared with the experimental
data of Love et. al42- The magnitude of 1 and W increases with increasing pressure ratio
for all three Mach numbers. Excellent agreement is achieved between the experimental
data and computational resulls. In order to obtain PNS solutions, the highest

applicable value of CFL number is approximately 5. By using the SMS technique, the
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applicable values of CFL number can be as high as 30. Figure {4) shows a typical
convergence history of the L-2 norm of the residual for SMS and PNS solutions. It is
observed in this figure that the residual dropped by 10 orders of magnitude in less than
100 iterations for the SMS solution. However, the PNS solution behaves similar to the
SMS (in the first 10 iterations), then the convergence rate deteriorates substantially. In
most cases, SMS solutions using PAB3D-v2 take less than 80 percent of the
computational time required by PNS to achieve a similar convergence history. For the
free stream region surrounding a Mach 1.5 or 2.0 jet, PNS solutions were unstable for a
CFL value higher than to a value of 2 and a Mach number less than 0.3. It is not clear
why a converged solution for overexpanded supersonic jet cases could not be obtained
using PNS methodology. On the other hand, converged solutions were obtained for a
wide range of Mach numbers and pressure ratio using the SMS. It was noted that the
PNS procedure was very sensitive to the inlet condition at the jet exit and that a large
discontinuity always caused a departure solution.

These results indicate that SMS is a robust scheme which gives efficient and
accurate solutions. These solutions can also be used as initial conditions for time-
dependent Thin-Layer Navier-Stokes calculations which can reduce the number of
iterations required for converged solutions37. SMS is to be used to calculate the test
cases described in this section {section 7).

Figure (5) shows the periodic structure of the Mach contours for a sonic jet with
different pressure ratios up to 10 jet-radii downstream of the jet exit. Higher pressure
ratios produced less shock cells within the same distance. The sonic flow at the exit is
expanded to a supersonic [low with a higher Mach number. The number of shock-cells
decreases from 6 to 3 and the fully expanded Mach number increases from 1.1 to 2.0 as

static pressure ratio is increased from 1.2 to 2.0.
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7.1.1.1 Underexpanded Mach 2.0 Jet; Pilpg =1.45

The space marching prediction using the modified Roe's scheme in the
streamwise direction is compared with a fully time-dependent solution in this section.
The grid size for this case was 151x11x41 and the time-dependent solution converged
after 500 global iterations, which is approximately 2100 CPU Secs. On the other hand,
the space marching solution took less than 100 CPU Secs on the Cray 2. Figure (6)
shows the centerline pressure variation predictions using both time-dependent and
space marching methods. The space marching technique gives a solution comparable
to the time-dependent solution in less than 5 percent of the computer time. All the first
and second shock-cell characteristics (spacing and strength) are captured with the space
marching scheme.

Figure (7) shows a comparison of the predicted results using mixing length (ML}
and mixing length with compressibility correction factor (ML-CC) turbulence models
(SMS solution) with the measured streamwise pressure variation along the jet center
line. The jet was operated at a pressure ratio of 1.45 corresponding to a fully expanded
Mach number of 2.24 and was issued {rom convergent-divergent nozzle with a design
Mach number of 2.

The measured static pressure distributions indicate a decay in the shock
structure strength which is due to the interaction of shocks wilh the growing mixing
layer. The ML turbulence model significantly overpredicts the shock-cell decay. It was
expected that the incompressible turbulence model would not give a good prediction for
compressible flow problems. The predicted result improved with the use of the
compressibility correction factor of Chuech et. al. 17 The computational result agrees
reasonably well with the experimental data up to 30 jet-radii downstream of the jet-

exit.
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7.1.1.2 Qverexpanded Mach 2 Jet; EILEQ=._75

Figure (8) shows the present code prediction capability for an overexpanded flow
case and for ML-CC and ML turbulent solutions, respectively. The jet was operated at a
pressure ratio of 0.75 and was issued from a convergent-divergent nozzle with a design
Mach number of 2.

The code predicts the irregular centerline pressure data with remarkable
precision. Both turbulence models give very similar pressure distributions and agree
well with available data. This suggests that the mixing layer boundary does not reach
the jet centerline. The code shows a sharp compression shock at the exit of jet as
expected for this kind of flow. This increases the pressure downstream of the shock as
shown in figure (8).

7.1.2 Cartesian Grid

A non-circular jet plume at ofl-design operating conditions (over- or
underexpanded) may contain a very complex internal shock cell structure and the shear
layer cross section goes through a complex sequence of shape transformations in the
developing region of the jet plume. In this section, solutions obtained by using both
fixed and adapted grids for underexpanded supersonic jet issued from round, square,
and elliptic nozzles are presented. Carlesian topology is used for the grids because it
offers excellent grid mobility for the adaptive grid cases. Calculations are made using
the space marching scheme in the stream wise direction and van Leer flux-vector-
splitting scheme in the crossplane directions with laminar flow assumption. Initial
shear layer thickness is assumed to be .05 and .1 of the jet-radii for adaptive and fixed
grid respectively. The test case is for an underexpanded supersonic jet with design Mach
number of 2 and pressure ratio of 1.45.
7.1.2.1 Round Nozzle

With only 36x36 grid points, the adaptive grid scheme has sufficient grid density

to represent the circular nozzle shear layer as shown in f{igure (9). As the shear layer
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and shock front change their location, the grid will follow these changes. Fixed and
adaptive grids were used for single and multiblock solutions of an underexpanded
supersonic jet (Pj/ P, = 1.45). Figure (10) shows the cenlerline pressure distribution
using a single-block solution with fixed and adaptive grid. The fixed grid solution is
exactly the same as the results presented earlier using a polar grid topology. A
secondary pressure rise at z/re = 4 appears stronger in the adaptive grid calculation
(agrees with experimental data), and there is a slight upstream shift of the shock-cell
position from the fixed to the adapted grid results. In general, the adapted grid solution
agrees better with the experimental data. Figure (11) shows how well the adapted grid
follows the shear layer and detected shock front locations as clearly described by the
density contours shown in figure (12).

As can be noted in figure (9), cartesian grid topology wastes a large number of
grid points in the farfield region. To eliminale this problem, a multiblock strategy can
be used in the farfield region as shown in figure (13). In this figure, the computational
domain is divided into three blocks with the adaptive grid procedure applied only to the
first block (with jet plume). Block dimensions are 27x27, 4x13, and 4x18 which results
in about 33 percent less grid points and, in {urn, causes a large reduction in
computational time when compared to the single block strategy. As shown in figure
(14), the three-block solution, which uses less computational resources (memory and
time), agrees well with the result produced using the single block strategy.
7.1.2.2 Square and Elliptical Nozzle

Figure (15) shows the initial adaptive grids generated for square and elliptic
nozzle calculations. In the case of the square nozzle, the X-Z and Y-Z plane have
similar shock-cell characteristics (density contours; figure (16)), to those presented for
the round nozzle in figure (12). However, the cross section plane goes through a very
complex transformation as the jet changes shape from square to round to diamond

shapes. Similar observations are made by Anderson and Barber23 for a supersonic
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rectangular nozzle. Figure (17) shows the comparison between the adaptive and fixed
grid predictions of the centerline pressure. The shock-cell spacing and strength are

very similar to the round nozzle results. Again, the secondary pressure strength at X/re

= 4 is much larger for the adaptive grid prediction than the fixed grid. In addition, there
is another secondary pressure peak shown at X, = 17 for the adaptive grid.

Figure (18) shows the density contours predictions for 2:1 elliptic nozzle. The
shock-cell structure is very different from those presented for either the square or
round nozzle. First, the minor axis grows each time that the shock reflected from the
Jjet centerline intersects with the shear layer. At the same time, the major axis decays
as the jet cross section transforms into a circular shape. Second, the shock front on the
major axis plane (X-Z) is much stronger than the ones on the minor axis plane (Y-Z).
Finally, the jet produces two different shock front structures associated with different
scales (strength and space). It is believed that these structures have different centers
which are not always located on the jet centerline (Z-axis). Figure (19) shows the
centerline pressure distribution using fixed and adaptive grid solutions. The elliptic
nozzle produces more shock-cells than either the round or square jet for a similar
distance. In addition, the shock-cells have different centerline pressure characteristics
{compare figure (19) with f{igures (10) and 17)). The adaptive grid solution predicts a
large pressure peak for the first shock-cell whereas the fixed grid solution did not.

7.2 Supersonic Nozzle

In this section, the multiblock and partitioning options of PAB3D-v2 code are utilized
to simulate a group of underexpanded supersonic jet flow which include both internal
and external flow regions for a special family of jet nozzles. The examples are designed
to show the flexibility of the PAB3D-v2 code in handling mixed boundary conditions
over a block interface. The nozzle configuration can be described as a circular pipe
section followed by five equally spaced tabs. Each tab is simply an extension of an arc

segment of the circular pipe for a certain length in the downstream direction. Each arc
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segment, representing the width of the tab, is 1/10 of the full circle. Two nozzle
configurations are chosen. In the first case, the tabs are infinite in length in a direction
parallel to the pipe centerline, (fig. 20}. This nozzle will be referred to as the "infinite
tab nozzle". Essentially, the entire flow field can be considered as internal to the nozzle
although there is venting through the spaces between the tabs. In the second case, the
tabs are chosen to be one pipe diameter i length, (Fig. 21). The nozzle exit plane is
defined as the streamwise location at the end of the tabs. This configuration is called
the "short tab nozzle". The flow region upstream of the nozzle exit plane is considered
as the nozzle internal flow, and the flow downstream of the same plane is a free jet with
a shear layer developing between the jet plume and the ambient {ree stream. Each of the
two cases has an internal flow Mach number of 2 with an internal to external pressure
ratio of 1.45 at the nozzle exit. The cross sectional compultational domain of the nozzle
requires the extensive use of multiblock strategy. Most CFD codes with multiblock
capability do not have the capability of handling mixed interface condition at a block
boundary. Therefore, these codes would have to divide this computational domain into
at least 15 blocks as shown in figure (22) with the number of blocks increasing with the
number of tabs. However, PAB3D-v2 code needs to use only 2 blocks to simulate this
test case for any number of tabs. For the short tab nozzle test case, most CFD codes need
another block to simulate the flow downstream of the nozzle exit. Using the partition
option, the PAB3D-v2 code does not have any need for an extra block or zone. With this
flexibility, more than a 20 percent reduction in grid points is achieved: the overhead
due to interpolation between block boundaries is avoided; and the convergence rate of
the solution is increased.

Figure (23) shows the Mach contours at different axial locations for the infinite
tab nozzle test case. Initially, the flow escapes through the gaps between the 5 tabs and
then the jet cross section changes into a pentagon shape connected at the midpoint of

each tab. For, the short tab nozzle jet case (figure 24), the flow initially, goes through
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the same transformation, but, the cross section changes its shape back to a circular one.
Wlezien and Kibens#4 did a series of experiments for 1,2,4, and 8 tabs
nonaxisymmetric nozzle-free jet. Their resulls indicate that multiple-tab nozzle
plumes spread faster and have a lower core Mach number than the {ree-jet case for
circular nozzles without tabs. The present predictions produce similar results to those
reported in Ref. [44]. Figures (25) and (26) show the comparisons between centerline
Mach number and pressure respectively for free-jet, nozzle-free jet, and nozzle test
cases. The short tab nozzle case produces more shock-cells; decays faster, and has lower
core Mach number than the {ree-jet described earlier in section 7 of this report.
However, the infinite tab nozzle test case decays much faster, and has the lowest core
Mach number of all cases considered.
7.3 Nonaxisymmetric Afterbody

In this section, the thin-layer Navier-Stokes equations are solved to simulate
subsonic (M = 0.8) and supersonic (M = 1.2) [low cases over the nonaxisymmetric
afterbody described in Ref. [45]. The third-order flux-difference splitting scheme of Roe
is used to discretize the governing equations. In the subsonic case, jet-exhaust is
included to utilize as an example to demonstrate the multiblock/multizone and
partitioning options in the PAB3D-v2 code. The supersonic test case compares the
pérformance of three diflerent turbulence models in simulating a separated flow region.

First, for an external flow Mach number of 0.8 and the jet operating at Mach 2, a
coarse grid topology is used for the calculation (figure (27)). A laminar flow assumption
is made for the regions upstream of the body and downstream of the jet exit. A turbulent
flow calculation using the Baldwin-Lomax turbulence model (Ref. (10)) is made in the
region over the body. Three dillferent multiblock/muitizone conligurations (1Z-2B, 2Z-
2B, 2Z-3B) are used 1o grid this problem. The first configuration has one zone with two
blocks. The first block has 64x32x10 grid points to represent the full external flow

region with three partitions ending at i = 10, 50, and 64. The second block simulates the
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jet-exhaust region with 14x10x21 grid points. In the second configuration, two-zone
block topology is used. The first zone has one block (50x10x32) with {wo partitions
ending at i = 10 and 50. The second zone has one block (14x10x52) which represents the
internal and external flow regions downstream of the jet exit. The last configuration is
similar to the second one except that the second zone splits into two blocks; one for the
external flow region (14x10x32) and the other for the jet-exit region (14x10x21). It
should be mentioned that CFD codes which permit only one boundary condition per
block interface would require a minimum of 4 blocks to simulate the present test case.
With the PAB3D-v2 flexibility in dealing with mixed boundary conditions, the present
case can be solved with as little as two blocks.

Figure (28) shows the Mach contour predictions using the 1Z-2B topology (the
other two topologies give exactly the same results). The smooth transition of the
density contours belween zone 1 and zone 2 is apparent in this figure. This transition is
only possible because of the fully conservative nature of the zonal/block boundary
scheme. The afterbody pressure distributions computed with the three dilferent
multiblock/multizone topologies are compared with experimental data in figure (29).
All three calculations give exaclly the same predictions (in less than 50 global
iterations) and agree well with the experimental data.

The supersonic Mach 1.2 case is computed using three different turbulence
models with a rectangular solid sting replacing the jel-exhaust. The three turbulence
models are; the Baldwin-Lomax 10 model, the Johnson and King model12-14 55
extended to three-dimensional flows by Abid13 and Abid, et. al.14, and the Goldberg
modell5-16_ calculations are made with a single-zone/single-block topology with fine
grid distribution (129x66x33).

The alterbody pressure distributions computed with the three different

turbulence models (Baldwin-Lomax, Johnson-King, and Goldberg) are compared with
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experimental data in figure (30). All three turbulence models predict the shock at

approximately the correct axial location. The Johnson-King and Goldberg models,

however, give shock locations slightly upstream which agree better with the data.
Both the Johnson-King and Goldberg models give a much better prediction of the
“pressure plateau” in the overcompression region. The Baldwin-Lornax model fails to
predict the "pressure plateau". The Johnson-King model is presently the best in
predicting the plateau.

While the Johnson-King model may be slightly better in predicting the "pressure
plateau,” it had to be calibrated for this flow regime. For flows with massive
separation, Johnson? noticed that very large values of the ratio of the nonequilibrium
maximum shear stresses were generated using the Johnson-King model. He suggested
limiting this ratio should be limited to a maximum value of 3.0. For the present case,
Abdol-Hamid and Compton4 found that ¢ < 2.5 produces one of the best calculations
when compared with the experimental data. Abid et. al. 16 used a limiting value of 4.0
in predicting the pressure distributions for the ONERA M6 wing. For the present
calculation, it was noted (not shown) that the convergence with o = 2.5 is slower than
using the Baldwin-Lomax model. Again, Abid et. al. 16 made similar observations. An
advantage of both the Goldberg and Baldwin-Lomax models is that they do not need to
be calibrated for this flow.

8. Summary

The PAB3D-v2 code and its application to a variety of aerodynamic test
problems have been discussed in this technical report. The code solves the three-
dimensional simplified Navier-Stokes equations using the strong conservation form of
the finite volume formulations. It uses {wo different flux-splitling schemes: van Leer's
flux-vector-splitting and Roe's flux-difference-splitting. Also, the modified Roe's
scheme is used to efficiently solve the governing equations in the steady state mode

with a single global sweep. Several of the PAB3D-v2 options {(multiblock/multizone,
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adaptive grid, different turbulence models, and t{ime-dependent and space marching
numerical schemes) were applied to three different flow examples.

For the supersonic jet plume problem, the code uses its multiblock, adaptive
grid, time-dependent and space marching strategies to predict the shock-cell structure
for mildly underexpanded and overexpanded supersonic jet plumes. The jet is issued
from round, square and 2:1 elliptic nozzles. The multiblock option reduces the
computational time by at least 20 percent. The space marching strategy predicts exactly
the shock-cell structure and when compared Lo a fully time-dependent strategy,
requires less than 5 percent of the computational time to get a converged solution. The
adaptive grid option enhances the prediction of the flow solver as it compares better

with the experimental data.

For the vented supersonic nozzle test cases, the PAB3D-v2 code provides a very
efficient multiblock interface strategy to solve the 5-tabs nozzle. Many CFD codes
require a great number of blocks per tab to solve these kinds of problems with mixed
boundaries. Only two blocks are required by PAB3D-v2 to solve this problem,
regardless of the number of tabs and length.

The time-dependent option was utilized to simulate the flowfields around a
nonaxisymmetric afterbody with external Mach numbers of 0.8 and 1.2. For the 0.8
Mach number case, the jet-exhaust was simulated with different multiblock/multizone
topologies. The PAB3D-v2 code requires only two blocks to solve the jel-exhaust
problem while many CFD codes need to break the flowfield into at least four blocks.
Three different turbulence models were used and evaluated in solving the Mach 1.2 test
case. The results of this study show that the Johnson-King and Goldberg turbulence
models give a much better prediction of the shock location and pressure plateau in the
separated region than the Baldwin-Lomax model.

In general, the PAB3D-v2 code can be used to simulate flowfields for complex

aerodynamic configurations. Obviously, a detailed validation study using the several
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options in the code needs to be made. However, there is still a need for more options and
code upgrading. Upgrading the turbulence models from the algebraic level to the two-
equation, multi-scale or algebraic Reynolds Stress level is needed to deal with 3D
mixing and general aircraft configurations. Time-dependent adaptive grid
methodology is needed for simulating vortical aspects of 3D mixing. Lastly, finite-rate
chemistry with multiple species and multiphase solvers needs to be added to the code
for solving jet plume and combustion problems.
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PRESSURE

Figure 6. Comparisons Between Time-dependent and Space Marching Solutions in
Predicting the Centerline Pressure of Underexpanded Mach 2 Jets and
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Figure 10. Comparison Between Adaptive and Fixed Grid Calculations in Predicting
the Centerline Pressure of Underexpanded Mach 2 Jel.
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Figure 20. Infinite Tab Nozzle Test Case Configuration.
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Figure 26. Centerline Pressure Comparisons Between Free-Jet, Infi
Solutions.
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