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In obtaining solutions to the first-order nonlinear partial differential equations

(PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously z

observed computational problems can be avoided if the integration of the PDEs
7

is started from an inner projected perimeter and integrated outward rather than

starting from an outer projected perimeter and integrating inward. This procedure,

however, introduces a new parameter, the main reflector inner perimeter radius Po,

when given a subreflector inner angle 00. Furthermore, a desired outer projected

perimeter (e.g., a circle) is no longer guaranteed. "Stability" of the integration is

maintained if some of the initial parameters are determined first from an approxi-

mate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm

can then be used to obtain a "best" set of parameters yielding a close fit to the de-

sired projected outer rim. Good low cross-polarization mapping functions are also

obtained. These methods are illustrated by synthesis of a high-gain offset-shaped

Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna. _ _

I. Introduction

The problem of synthesizing dual-shaped offset re-
flector antennas has received considerable attention in re-

cent years, not only because it is theoretically challeng-

ing but also because it is of considerable practical interest.

Galindo-Israel et al. [1] presented an exact algorithm for si-

multaneously synthesizing the shapes of the sub and main

reflectors for an arbitrary feed pattern, aperture ampli-

tude, and phase distributions by solving a set of nonlinear

first-order partial differential equations (PDEs). 3ervase

et al. [2] discussed an extension of the numerical method

presented in [1] and gave some computed results for the

reflector shapes. It has been observed that numerical dif-

ficulties may arise when applying these techniques, espe-

cially in the vicinity of the center region of the reflectors.

This occurs when the PDEs' integration is initialized on

the outer rims of the reflectors and proceeds "inward" [1].
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In this article, we investigate the possibility of cir-

cumventing these difficulties by starting the synthesis
procedure not from the periphery, but from inner or central

rims of the reflectors with the integration then proceeding

"outward" to the outer rims. The success of this proce-
dure depends significantly on the initial conditions chosen

at the inner rims. An approximate solution to the synthe-

sis problem provides one good choice for the initial condi-

tions. Numerical results for symmetric feed patterns and

aperture distributions are included to illustrate the appli-
cation of the synthesis procedure based on a "center" start.

A uniform aperture distribution for a high-gain dual-offset
shaped Cassegrainian-type reflector antenna is illustrated

first. Next, an aperture distribution that is uniform over

most of the aperture, but is given a Gaussian taper near

the outer rim, is shown in a Gregorian-type configuration.

This distribution is useful for a low-noise (but high-gain)
large ground antenna where very low spillover is desired

Ve = fo°MI(O)sinOdO/ foPMV(p)pdp

(B) Total differentiability at all points (0, ¢, p, ¢)

(6)

_e#=r#e (7)

(C) Snell's Law applied to the main reflector.

Equations (1) through (4) are solved by starting with

some initial values for p, 0 (very sma|l), and ¢, and then
increasing 0 in small increments to obtain the main and

the subreflector surfaces in a progressive manner. The pro-

cedure is identical to that in [1] except that the integration
is outward (increas;ng 0 and p).

past the main reflector into a "hot" ground background.

Starting the integration in the central region of the

reflectors and integrating outward does not guarantee a

circular projected outer rim as integrating inward does (if
that is desirable). It is possible to optimize one or more
initial parameters to obtain a desired circular outer rim

(or other desired results). This approach was investigated

for obtaining a circular projected outer rim with very good
results.

!1.Numerical Method

We choose the specified feed power pattern I(0) and

the desired aperture power distribution V(p) to be circu-

larly symmetric. For the antenna system shown in Fig. 1,
the differential equations for synthesizing the dual reflector

system are given by [1]:

re--re(0,¢lp,¢,r ) (1)

r#=_,(0,¢lp,¢,_) (2)

Pe - pc(O,¢IP,¢, _;P#,¢¢)

Oe= ¢0(0,¢IP,¢, _;P_,¢_)

(3)

(4)

Equations (1) and (2) are obtained by applying Shell's

Law to the subreflector while z is calculated by using the

path length condition viz., r + S - z = constant. Equa-

tions (3) and (4) are obtained from the following three
conditions:

(A) Conservation of energy on a pointwise basis for geo-
metrical optics:

!11.Numerical Results for the Cassegrainlan-
Type System

. =

Results are presented for the following system param-

eters: a = 11, f/ = 21 °, 0 M = 16 °, PM : 5, ri = 7 (see
Fig. 1). The optical path length is assumed to be 22, the

specified or object aperture power distribution is uniform,
and the feed pattern is taken to be cos'* 0 with n = 151

(yielding a subreflector edge illumination level at -25.9 dB

below the center illumination).

As mentioned above, the reflector shapes depend

strongly on the initial values chosen for the solution of the

differential Eqs. (1) through (4). For a given 00 (minimum
0 rim value for the subreflector), a critical initial param-

eter is the value chosen for P0 (minimum p rim value for

the main reflector). As an example, Fig. 2 shows two re-
suits for the same system parameters but with different

initial values of P0. It is observed from this figure that

P0 becomes very large near the center point (0 .._ 0) for
one of the P0 choices (case B). This leads to unacceptable
reflector shapes.

y,v(p)p[pe¢_ - p_¢e] = I(0) sin0 (5)

One approach to finding good initial values is to start

with an approximate solution (see [3], for example). An =
approximate solution can be found by relaxing the total

differentiability condition (i.e., Eq. 7), and then prescrib-

ing the mapping [1,3] in advance as ¢ = ¢, ¢¢ = 1, p_ = 0,

and Oe = 0. Under these conditions the mapping fi'om
(0,¢) to (p,¢) is forced to be concentric. Thus the con-
servation of energy reduces to

(8)VcV(p)pp, = I(O) sin 0
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The above approzimate solution [3] allows a value of
P0 to be found for a given 00 which then yields very good

and stable numerical solutions by the exact method dis-

cussed earlier. While this value of p0 is not critical for

obtaining a "good" solution, it is critical if a perfectly cir-

cular (or other shape) is required for the outer rim of the

main reflector. Alternate methods for choosing P0 will be
discussed in the next section.

Figure 3 presents the results for ¢0 versus 0 for two
cases in order to illustrate the advantage of starting from

a central rim instead of the outer edge. Note that the out-

ward solution (solid line) exhibits a much better behavior
than the corresponding inward solution (dashed line). Fig-

ure 4 shows the main and subreflector shapes derived by

using the outward approach. Note that not only are the
surfaces well-behaved, but also that the maximum value

of p of the main reflector in this case does not deviate sig-
nificantly from PM, the value for maximum p, which was

desired to be 5. Thus, the outer periphery condition, that

the projected aperture be circular, is approximated very
well in this solution.

Figure 5 shows a comparison between the radiation

patterns in the offset plane of the shaped reflector (solid

line) and a comparable Cassegrainian antenna. The diam-
eter of the main reflectors of the two antennas is 80)t. The

system parameters of the shaped reflector are A = 2200,

fl = 23 °, OM = 8.5 °, PM = 1000, ri = 1000 (see Fig. 1).

The optical units of length can be converted to wave-

lengths by dividing by 25. The optical path length is
assumed to be 4000. The specified main reflector aper-

ture amplitude distribution was uniform and the feed pat-

tern was taken to be cos '_ 0, with n = 151. The radiation

patterns are calculated by using geometrical optics for the
subreflector and physical optics for the main reflector scat-

tering. Some radiation characteristics of the two antennas

are given in Table 1.

IV. Obtaining a Gregorian Design by
Optimization of Parameters

In this section, we will discuss a special offset dual-

shaped Gregorian design wherein the parameter po and

other initial parameters as well are set by an optimization
procedure.

The synthesis software used herein can go through a
complete integration in less than a half minute on a 386

20-MHz processor when approximately eight Fourier terms

are used to represent differences in the functions

p(¢) and ¢(¢) (9)

between adjacent 0 values. Since an FFT is used for rep-

resentation of these functions, the increase in time with

increasing number of Fourier terms is linear. Eight Fourier

terms was sufficient for the case to be presented.

This very rapid two-dimensional integration of the

nonlinear PDEs reasonably allows for the possibility of

performing the integration many times in an optimization

algorithm to "optimize" one or more initial parameters.

One parameter that can be optimized is the choice

of Po for a given 00 value. Ideally, a value of P0 can be

chosen at the start of the optimization by solving for the

approximate solution to the PDEs as discussed earlier.

The question immediately arises as to what object

function the optimization algorithm should attempt to

minimize. One useful object is a perfectly circular pro-

jected perimeter of the main reflector at 0 = #MAX. Thus,
the function

f = SQRT PM, -- PM)_/N (i0)

can be minimized, where

(PM, : i = 1, ..., N) (10a)

are the perimeter values obtained at the set

(¢i:i=l,...,N) or (¢i:i=l,...,N) (10b)

for an$, given integration of initial parameter values. The

value PM need not be a constant unless a circular perime-

ter is desired. The object function could be expanded to

obtain a prescribed set of mapping functions

p(0,¢), ¢(0, ¢) (11)

as closely as possible in order to minimize cross-polarized

currents in the aperture, for example.

In addition to the parameter p0, we have chosen
two other initial parameters for optimization in a three-

dimensional space. A second parameter permits one de-

gree of freedom in the choice of the initial function ¢¢o

(see [1]). For the Cassegrainian design discussed earlier,

the value of ¢_o was selected as unity. The parameter A¢
is introduced such that

¢¢o=1+A¢ 1-_ sine (12)
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where A¢ is given in degrees. The allowable field of A¢
is bounded to prevent caustics from occurring where not
desired. A higher order Fourier series could be used with

more parameters available for optimization.

A third parameter used herein was the value of f2 (see
Fig. 1 or Fig. 6).

Figure 6 presents the profiles of a three-dimensionally
optimized dual-shaped Gregorian reflector pair in the off-

set plane. A uniform phase in the main reflector aperture

was required as indicated by the rays in Fig. 6. The object
function was that in Eq. (10). The value 00 was chosen as

0.1 deg, while the optimum parameters were found as

P0 = 0.015636

A_ = 23.53905° (13)

and

= -15.0858 °

The starting values for the above optimization were

chosen from an approximate solution and "manual" opti-

mization through several interations. Table 2 presents an

extract of the mapping functions obtained (see Eq. 11).

It is not clear whether this set of "optimum" parame-

ters is global or local. Achieving a rim that is more circular

and/or closer to the desired value of tiM : 3 with better

than three significant figures may require greater control

of the ¢¢o function (Eq. 12) than one parameter, A¢, can
provide. Nevertheless, the mapping is approximately cir-
cular throughout, i.e.,

p(O,¢) _ p(O) (14)

indicating that a low cross-polarization exists in the aper-

ture. Another measure of this low cross-polarization map-
ping is the nearly point caustic illustrated between the

Gregorian reflectors in Fig. 6.

Figure 7 illustrates the desired and the achieved aper-

ture power distributions. The desired uniform phase was

achieved exactly (see [1]). The small "hole" in the main re-

flector near p = 0 is determined by the "optimum" choice

of P0. The difference between the geometrical optics (GO)

computed power distribution and the desired power near

fl "_ tiM = 3.0 iS at least in part due to the approximate

GO analyses used. (The GO analyses utilized a polar grid

wherein very wide ray "tubes" occur for larger p when

A¢ is fixed. As A¢ was decreased, it was found that the

discrepancy grew smaller for tile same set of reflectors.)

Similarly, and for the same reason, the small discrepancy
near p = 0 decreased as A0 was decreased.

A two-dimensional optimization with f_ fixed at f2 =
-15.0858 deg, the value found with the three-dimensional

optimization, which yields essentially the same reflector

pair as illustrated in Fig. 6. In this case, however, the
other values chosen for the start of the optimization were

P0 = 0.0001 and A¢ = 0.0 deg.

Thus, we did not take advantage of tile values of P0
and A¢ known from an approximate solution. The final

values of the parameters are shown in Table 3.

It should be noted that in order to achieve the op-

timized values shown in Table 2 from very poor starting
values, a careful construction of constraints had to be built

into the optimization algorithm, tIowever, tile constraints

were general and not limited to any particular geometry.

Table 4 shows the resultant mapping obtained from
the two-dimensional algorithm. It is seen that the reflec-

tors obtained in this way differ by very little from those
obtained and illustrated in Table 2.

One-dimensional optimizations for an optimum value

of P0, with both A¢ and _ fixed, are generally less suc-

cessful unless a reasonably "good" value of A¢ is chosen.
Several cases wherein the starting value of P0 is chosen as:

p0(start) = 0.0001

are illustrated in Table 5. Values of

A¢ = 0 °

A¢ = 10 °

A¢ = 20 °

were selected. When either A¢ -- 0 deg or A¢ = 10 deg
is used, a correct solution is not obtained for the PDEs.

This is seen by the values of PM obtained at 0 = 16 deg.

However, when A¢ = 20 deg is chosen, a good solution is

obtained. This points up the utility of using the results

for P0 and A¢ from an approximate solution as starting
values in any optimization algorithm.

V, Numerical Results for the Gregorian-
Type System

The synthesized Gregorian-type low-noise/high-gain

dual-shaped offset reflector system was analyzed by GO
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during the actuM synthesis and with an independent GO

computer program. The subreflector was further analyzed

by the geometric theory of diffraction (GTD) and by phys-

ical optics (PO). The main refector was analyzed by PO in
all cases. Thus, the dual-reflector analysis was performed

by GO/PO, GTD/PO, and PO/PO (indicating the sub-
analysis/main analysis as shown). In addition, the object

aperture distribution, Fig. 7, was integrated directly by

PO for comparison.

The feed pattern used in the analysis was the same

as that used in the synthesis. Principal polarization was

chosen as right circular. A projection of the current dis-

tribution on the subreflector onto a plane normal to the

axis of the feed is shown in Fig. 8. Note the taper of

the feed power pattern to -20 dB at the subreflector edge

at 0 = 16 deg. This sharp taper leads to essentially no

spillover loss past the subreflector.

The equivalent current aperture distribution on the

main reflector is shown in Fig. 9 when the subreflector

is analyzed by GO. (The equivalent current is the actual
current multiplied by the Jacobian determinant transfor-

mation of the actual main reflector surface to the aperture

plane.) Note that the current distribution is uniform to the

point where it then descends Gaussian to approximately

-20 dB at the edge of the main reflector. This distribution

is essentially the same as the object function in Fig. 7.

The main reflector (D = 120_) equivalent current dis-

tribution obtained by a GTD subreflector analysis is shown

in Fig. 10 (a PO subreflector analysis yields little observ-

able difference). Note the shallow diffraction ripples over

most of the aperture (where the current was uniform in

Fig. 9). The current distribution still has a Gaussian ta-

per as prescribed in Fig. 7. This will result in very little

spillover loss past the main reflector edge and thus be ideal
for a low-noise reflector system.

The far-field patterns (diameter of main reflector =

120)_) for each of these analysis cases is shown in Fig. 11.

Note the very low loss in gain between the aperture in-

tegration of the object function (Fig. 7) and the various

diffraction analyses. This illustrates that the chosen ob-

ject pattern has achieved tile goal of potentially very low

noise due to spillover past the main reflector into a warm

ground environment (typical of upward-looking ground-

based antennas). This type of aperture distribution ap-

pears achievable only by dual-shaping methods.

VI. Conclusions

When integrating the nonlinear PDEs for offset dual-

shaped reflector synthesis from a prescribed outer pro-
jected perimeter inwards, it was found earlier that com-

putational problems do arise in the central region of the

reflectors [1]. It is found herein that these computational

problems are largely bypassed if the integration of the
PDEs is started from a prescribed projected inner rim

and integrated outward. In this case, however, a circular,

or otherwise prescribed, outer rim is not guaranteed. In

addition, a new parameter of the PDEs is introduced, the

radius, Po, of the inner projected rim of the main reflec-

tor when the inner value of/7 = 60 for the subreflector is

prescribed. This parameter exists in addition to other ini-

tial parameters (e.g., f_; see Figs. 1 and 6) and the initial

function ¢+(¢) (see [1]).

A poorly selected inner radius parameter P0, or other

poorly selected initial parameters will preclude the obtain-

ing of useful solutions to the PDEs by the method dis-

cussed herein or in [1]. Two complementary methods for

choosing the parameter P0 and other parameters are dis-
cussed. The first method utilizes the initial values found

from an approximate solution to the PDEs. A second
method utilizes an optimization algorithm which searches

for the parameters of the PDEs that minimize a prescribed

object function. Such an object function may measure the

deviation of the projected outer perimeter from circular

(or some other desired shape). Alternatively, a minimum
cross-polarization distribution in the aperture (optimum

mapping function) may be chosen as the object function.

An offset dual-shaped Cassegrainian-type high-gain

antenna is synthesized to illustrate the first method de-
scribed above. The second method of optimization is il-

lustrated by synthesizing a Gregorian low-noise/high-gain

offset dual-shaped reflector antenna. One-parameter [p0],

two-parameter [/90 and a parameter A¢ describing ¢¢o (¢)],

and three-parameter [P0, A¢, and fl] optimizatlons are il-
lustrated. Analyses of the synthesized reflectors by GO,

GTD, and PO are shown to verify the utility of the results.

It should be noted that the method of using an ap-

proximate solution to the PDEs to find the initial param-
eters is complementary to utilization of the optimization

algorithm since it provides an excellent set of starting val-

ues for the parameters in the optimization procedure.

73



Acknowledgments

The authors wish to acknowledge the significant assistance in this work of

Prof. S. Rengarajan of California State University at Northridge and R. Hodges,

JPL part-time employee and Ph.D. candidate at the University of California at Los
Angeles.

References

[1] V. Galindo-Israel, W. Imbriale, and R. Mittra, "On the Theory of Synthesis
of Single and Dual Offset Shaped Reflector Antennas," IEEE Trans. Antennas

Propagat., vol. AP-35, no. 8, pp. 887-896, August 1987.

[2] J. A. Jervase, R. Mittra, V. Galindo-Israel, and W. Imbriale, "Numerical

Study of the Problem of Synthesis of Offset Dual Shaped Reflector Antennas,"
URSIJIEEE AP'S Symposium, pp. 1-2, Syracuse, New York, June 1988.

[3] K. Shogen, V. Galindo-!srael, R. Mittra, and W. Imbriale, "A Numerical Ap_

proach for Synthesizing Dual-Shaped Offset Reflector Antennas," presented at

URSI/IEEE AP-S Symposium, San Jose, California, June 1989.

74

L



Table 1. Comparison of the radiation characteristics of the shaped
reflector antenna and the Cassegralnlan antenna (see Fig. 5)

Shaped C assegraird an
Main Reflector Reflector Antenna

Edge illumination level -4 dB -16 dB

-3 dB bearawidth 0.77 deg 0.91 deg

1st sidelobe level -10 dB -32 dB

Table 2. Mapping function for three-dimensional optimization, values In Eq. (13)

Values of p at:

8o
¢= -90 ° ¢=0 o ¢ = +90 °

¢ = +90 ° ¢ _ 180 ° t/' = 180 °

PM =

0.156359E-01 0.156359E-01 0.156359E-01 0.100000E+00

0.345170E+00 0.353902E+00 0.364169E+00 0.100000E+01

0.691174E+00 0.699794E+00 0.709482E+00 0.200000E+01

0.101939E+01 0.102740E+01 0.103634E+01 0.300000E+01

0.132247E+01 0.132951E+01 0.133745E+01 0.400000E+01

0.159466E+01 0.160053E+01 0.160730E+01 0.500000E+01

0.183220E+01 0.183685E+01 0.184240E+01 0.600000E+01

0.203348E+01 0.203695E+01 0.204135E+01 0.700000E+01

0.219891E+01 0.220133E+01 0.220471E+01 0,800000E+01

0.233064E+01 0.233217E+01 0.233470E+01 0.900000E+01

0.243227E+01 0.243313E+01 0.243500E+01 0.100000E+02

0.251358E+01 0.251491E+01 0.251552E+01 0.110000E+02

0.258565E+01 0.258576E+01 0.258707E+01 0.120000E+02

0.265436E+01 0.265418E+01 0.265537E+01 0.130000E+02

0.272516E+01 0.272466E+01 0.2"/2582E+01 0.140000E+02

0.280943E+01 0.280847E+01 0.280969E+01 0.150000E+02

0.301701E+01 0.301343E+01 0.301529E+01 0.160000E+02

Table 3. Initial value parameters obtained by two-dimensional

optimization: starting point: P0 = 0.0001, A_= 0.0 °

Parameters from Two-Dimensional Optimization

Values Eq. (13) Values Two-
Dimensional Optimization

p0 -- 0.015636 Po = 0.015734

A¢ = 23.53905 ° A¢ = 23.30467 °
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Table 4. Mapping function for two-dimensional optimization, values in Table 3

Values of p at:

00
¢ = -90 ° ¢b = 0 ° ¢ =+90 °

¢ = +90 ° ¢ _ 0 o ¢ = 270 °

0.157339E-01 0.157339E-01 0.157339E-01 0.100000E+00

0,345189E+00 0.353831E+00 0,364174E+00 0.100000E+01

0.691235E+00 0.699701E+00 0.709547E+00 0.200000E+01

0,101948E+01 0.102728E+01 0.103644E+01 0.300000E+01

0.132259E+01 0.132937E+01 0.133758E+01 0.400000E+O1

0.159479E+01 0.160038E+01 0.160745E+01 0.50(K)00E+ 01

0.183235E+01 0.183667E+01 0.184258E+01 0.600000E+01

0.203364E+01 0.203676E+01 0.204154E+01 0.700000E+01

0.219908E+01 0.220113E+01 0.220491 E+01 0.800000E+01

0.233082E+01 0.233197E+01 0.233491E+01 0.900000E+01

0.243246E+01 0.243292E+01 0.243522E+01 0,100000E+02

0.251379E+01 0.251378E+01 0.251576E+01 0.110000E+02

0.258588E+01 0.258550E+01 0.258733E+01 0.120000E+02

0.265463E+01 0.265387E+01 0.265568E+01 0.130000E+02

0.272548E+01 0.272429E+01 0.272618E+01 0.140000E+02

0.280984E+01 01280797E+01 0.281016E+01 0.150000E+02

PM -- 0.301T'/9E+01 0.301343E+01 0.301627E+0! 0.160000E+02

Table 5. Parameters and perimeter values from one-dimensional optimization of P0

with A,_ fixed. Starting point for P0 = 0.0001: ......

¢=--90 o ¢=0 o ¢= +90 °
Oo

¢=+90 ° ¢_180 ° ¢=270 °

A¢ = 0.0 ° Fixed

Po = 0,019594 Final Value

Po --- 0.195940E-01 0.195940E-01 0.195940E-01 0.100000E+00

PM = 0.542957E+02 0.499525E+02 0,459551E+02 0.160000E+02

A¢ = 10,0 Fixed

po = 0.005099 Final Value

Po = 0,509900E-02 0.509900E-02 0,509900E-02 0.100000E+00

PM = 0.815349E+00 0.697426E+00 0.299195E+00 0.160000E+02

AV_ = 20.0 Fixed

Po = 0.01747 Final Value - =

po : 0.174655E-01 0.174655E-01 0.174655E-01 0.100000E+00

PM = 0.303909E+01 0.300320E+01 0.302680E+01 0.160000E+02
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Fig. 1. Geometry of the Cassegralnlan-type dual-shaped reflector antenna system.
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Fig. 11. Gregorian*type dual-reflector far-field power patterns,

where D = 120,_ and feed EF= cosS&30 (--20 dB at edge of sub-

reflector). Analysis by: (a) aperture PO integration (see Fig. 7);

(b) GO for sub and PO formain (see Figs. 7 and 8); (c) GTD/PO

(see Fig. 10); and (d) PO/PO (see Fig. 10).
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