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A real-time digital signal combining system for use with Ka-band feed arrays is

proposed. The combining system attempts to compensate for signal-to-noise ratio

(SNR) loss resulting from antenna deformations induced by gravitational and atmo-

spheric effects. The combining weights are obtained directly from the observed sam-

ples by using a "sliding-window" implementation of a vector maximum-likelihood

parameter estimator. It is shown that with averaging times of about 0.1 second,

combining loss for a seven-element array can be limited to about O.1 dB in a realistic

operational environment. This result suggests that the real-time combining system

proposed here is capable of recovering virtually alI of the signal power captured by
the feed array, even in the presence of severe wind gusts and similar disturbances.

I. Introduction

There is considerable interest at the present time in

operating the Deep Space Network at increasingly higher

carrier frequencies for the purpose of enhancing its capa-

bilities. To date, X-band (8.4 GIIz) has been the highest

carrier frequency employed for a deep-space mission due

to the maturity of radio frequency (RF) components and

technology at this frequency. Several recent studies con-

cluded that Ka-band (32 GHz) is the proper next step

in deep-space communications, providing 8- to 10-dB im-

provements in downlink telemetry capability [1]. These
potential improvements can be attributed directly to the

higher Ka-band carrier frequencies, which yield greater an-

tenna gains as well as reduced sensitivity to plasma ef-

fects and increased useful bandwidth. However, there are

some disadvantages associated with the use of higher car-

rier frequencies, namely more stringent pointing require-

ments, increased losses due to weather effects, and greater
sensitivity to imperfections of the reflecting surfaces of

the antennas [2,3]. Such imperfecti6ns become particu-
larly troublesome on large receiving antennas, which are

subject to significant gravitational and thermal deforma-

tions, focussing and collimation problems, and mechani-

cal and wind-induced vibrations. These imperfections and

pointing errors translate directly to signal loss, resulting
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in a corresponding degradation in telemetry performance.

However, some of the signal can be recovered by means of

a properly designed feed array. Our objective is to demon-

strate a compensation technique that operates with negli-
gible combining loss and hence recovers virtually all of the
signM captured by the feed array.

A conceptual design for a possible real-time antenna

compensation system is shown in Fig. 1. Here it is assumed

that the received signal is in the form of a temporally mod-

ulated plane wave generated by a distant spacecraft. The

Cassegrain receiving system consists of a large primary

reflector, a secondary reflector, a focal-plane feed array,

and signal processing and combining equipment designed

to reconstruct the degraded signal. A possible feed-array

configuration is also shown, using a maximally compact

pattern of circular feed elements. This results in a hexag-
onal array geometry around the central feed, with each

succeeding "ring" adding six more elements than the pre-
vious ring to the total; thus, one obtains 1, 7, 19, 37, etc.,

array elements as the number of rings is increased.

The ideal primary reflector surface and its associated

signal power distribution over the focal plane are indicated

by solid curves in Fig. 1, while the deformed surface with
its power distribution is shown by dashed curves. Note

that antenna imperfections always increase the effective

spread of the signal power in the focal plane, thus reducing

the maximum possible signal power coupled into any single

feed element. IIowever, the total signal power coupled into
a properly designed feed array may not be greatly reduced,

although its distribution over the feeds may change with

time. Therefore, it is reasonable to assume that degra-

dations in telemetry performance can be ameliorated by

the use of a matched feed array in conjuction with ap-

propriate real-time signal processing and signal-combining
techniques.

Signal-processing and combining operations should be

performed in a manner compatible with proposed DSN

plans and equipment for future deep-space missions; the

signal-combining system must interface properly with fu-

ture DSN receivers. A block diagram of the proposed DSN

"Advanced Receiver" front end is shown in Fig. 2(a). This

receiver was designed to operate with a single feed, thus

it has only one RF input and one complex baseband out-

put (here represented by in-phase and quadrature com-
ponents). The receiver front end consists of a low-noise

amplifier, a downconverter chain that generates an inter-
mediate frequency (IF) spectrum centered around i0 MtIz,

an automatic gain control (AGC) circuit to maintain con-

stant average power, an 8-bit analog-to-digital (A/D) con-

verter operating at 40 megasamples/sec, and in-phase and

quadrature phase reference samples obtained from a digi-

tal phase-locked loop, which downconverts the IF samples
to baseband. The filtered outputs contain the entire mod-

ulated spectrum shifted to baseband.

As a first approximation, the front end of the pro-
posed feed-array receiver is taken to be an array of receiver

front ends (RFEs), each one associated with an element of

the feed array. Under typical operating conditions, sev-

eral array elements observe the signal simultaneously but

with different amplitude and phase. Under favorable con-

ditions, the distribution of signal power tends to change
slowly with time as the antenna deforms due to gravita-

tional and thermal loading. Antenna deformations and

pointing errors introduced by wind gusts and turbulence-

induced wavefront distortions tend to be rapidly varying
effects, resulting in much less favorable conditions for re-

ception.

A block diagram of the proposed feed-array combiner

isshown ia Fig _. 2(b). It consists of g separate RFEs, each
of which generates baseband I and Q signals that serve as

inputs to a "Signal Combining System." Typically, K =

l, 7, 19, and so on. This system combines the K complex

inputs and generates a single complex output. The receiver

phase-locks to the residual carrier and provides an identical

frequency reference to all RFEs simultaneously. Any phase

difference between the reference signal and the received

signal causes a measurable change in the complex output

of the RFE. The signal combining system measures each
complex Output and uses these estimates to increase the

effective signal level in the combined output.

II. NASA Telemetry Format

The telemetry format employed by deep-space ve-

hicles has been, and presumably will continue to be,

pulse code modulation/phase shift keying/phase modula-

tion (PCM/PSK/PM) or PCM/PM [4]. In either case,

the modulated carrier can be represented mathematically
as [4]

ST(t) = 2X/'_ sin ,t + _5,s(O(t) (la)

where

di(t) ; PCM/PMs(i)(t) = di(t)Sin(_v,_d) ; PCM/PSK/PM
(lb)

lw-

m
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6i is the modulation index, and di(t) = 4-1, i = 1, 2,..., N.

Typically N = 1, although theoretically more than one
data channel could be modulated simultaneously onto a

carrier. For the case N = 1 let gi = g, in which case the
modulated carrier becomes

= 2v6-P- -T[cos(g)sin(wo0 + s")(t) sin(g)cos(wct)]

(2)

It is clear that the total received signal power is PT

watts, the power remaining in the carrier is PRc =

PT cos_(6) watts, and the power in the modulation side-

bands is PM = PT-PRc watts. Since for g = 90 deg

there is no power in the carrier component, this type of

modulation is referred to as "suppressed-carrier modula-

tion," while the term "residual-carrier modulation" is re-

served for the case 0 < 6 < 90 deg. To date, all DSN

deep-space probes have employed the residual-carrier for-

mat [4]. Thus, residual-carrier modulation is assumed in

this study, restricted to the case N = 1 for the sake of

simplicity. The resulting signal spectrum consists of an

impulsive term at the carrier frequency due to the resid-

ual carrier, and modulation sidebands centered around the

fimdamental subcarrier frequency and its harmonics.

A graphical representation of a typical received power

spectrum is given in Fig. 3(a), showing spectral compo-
nents around the fundamental frequency as well as around

the higher-order harmonics of the square-wave subcarrier.

A typical power spectrum of the complex baseband sam-

ples is shown in Fig. 3(b), consisting of a low-pass spectrum

(the baseband version of the residual carrier) and the mod-

ulation spectra around the subcarrier fundamental and its

harmonics. Observe that the dc component can be easily

separated from the modulated subcarrier components by
means of a narrow-band low-pass filter, provided the fun-

damental subcarrier frequency is significantly greater than
the modulation bandwidth.

The effective bandwidth of this narrow low-pass filter

will be denoted by Ba, whereas the effective bandwidth of
the modulated subcarrier will be denoted by BB in sub-

sequent analysis. In particular, it will be convenient to

consider digital filters that perform a finite averaging op-

eration on the input sequence, in which case these band-

widths can be associated more precisely with the first zeros
of the filter transfer function.

III. System Model

A block diagram of the signal combining system is

shown in Fig. 4. The inputs to the combining system are

considered to be complex samples generated by the RFEs

associated with each feed. The sample bandwidth is as-

sumed to be large compared to the subcarrier frequency so

that the signal modulation is not distorted by the sampling

operation. Since both the amplifier and background radi-

ation effectively add noise to the signal, independent zero-

mean complex Gaussian noise samples are added to each

channel, with variance determined by the strength of the

total noise process and the sample integration time. The

noise-contaminated samples are split into two streams: one

of these (stream A) is input to the parameter estimation

subsystem, while the other (stream B) serves as input to

the combining subsystem. Stream A is filtered by a bank

of low-pass filters that removes the modulation sidebands

in order to simplify the estimator subsystem, while stream

B enters the combiner unperturbed. Thus, the samples
in stream B contain both the modulation sidebands and a

complex constant due to the residuM carrier.

It should be emphasized that the signal-combining

system considered here consists of two separate subsys-

terns: the parameter estimator and the channel combiner.

The combiner structure does not depend on the form of

the parameter estimator. Thus, various types of param-

eter estimators could be employed to determine the re-

quired complex weights, with varying degrees of complex-

ity and performance. Here attention shall be restricted

to maximum-likelihood parameter estimators, which yield
the smallest estimation errors in the absence of a priori

signal and noise statistics.

The received signal in the kth channel can be modeled
as

s(kx)(t) = v_Sk [c0s(6)sin(wet + Ok)

+ sO)(t)sin(g)cos(wet + 0k)] (3)

where _k and Sk = _ are the unknown phase and am-

plitude introduced by the antenna deformation, P_ is the

signal power in the kth channel, g is the modulation in-

dex, we is the carrier radian frequency (nominally 27r x 32

Grad/see) and

s(1)(t) = dl(t)Sin(w,_t + O,c) (4)

is the data-modulated square-wave subcarrier at a funda-

mental frequency of w_c/21r Hz. Note that the total re-

ceived signal power PT is the sum of the individual signal

powers, that is, PT = _k Pk. Both 0_ and Sk are assumed

to be slowly varying functions of time, and may be consid-
ered constant over time intervals on the order of seconds

to possibly minutes. The subcarrier phase 0,c is taken to
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be independent of the carrier phase Ok, as it is typically
generated by a separate oscillator on the spacecraft not

coherent with the carrier. 1 Since d(t) and 5in(wsct + #,c)

both take on the values +1 at all times, it follows that s(t)
is also restricted to the values :i:l.

The received waveforms are downconverted to an IF

frequency of about 10 MHz by means of a downconverter

chain that mathematically corresponds to a single down-
conversion operation. It is assumed here that downcon-

version is performed with a "perfect" frequency reference
that does not introduce any additional phase errors into

the resulting IF signals. These signals can be represented
a_

s_lk)(t ) = [8(1)(t)_/_COS((We--Wl)t)]gp

= Sk [cos(b) sin(wt/+ Ok)

+ 8(1)(t) sin(b) cos(wit -at- Ok)] (5)

where "LP" refers to a low-pass filtering operation.

The IF waveforms are sampled by an A/D converter

which generates 8-bit samples every To seconds, or in the
case of the Advanced Receiver, at a rate of 40 million sam-

ples per second. It is convenient to view these samples

as the coefficients of an orthonormal expansion with basis

functions the well-known "sampling functions"

¢,(t) = sin [(r/To)(t -/To)]
(./To)(t - iTo) (6)

which form a complete orthonormal set in the space of
band-limited functions over the real line. In terms of these

basis functions the expansion becomes

i------CO

with coefficients that represent samples of the waveform at

the sampling instants "iTo":

Cx_
slk(i) = s_)(t)¢i(t)dt

co

= & [cos(b)sin(wliTo + Ok)

+ sO)(iTo)sin(6icos(wiiTo + Ok)] (7b)

I p. Kinm*m, Telecommunications Systems Section, personal
communication.

1t4

Ilere it is assumed that the sampling time To is small

enough to avoid aliasing and that there are sufflcicnt quan-

tization levels to allow the representation of the quantized-

amplitude samples by continuous-amplitude samples.

The final downconversion to baseband is accomplished

using digital samples. Both in-phase and quadrature sam-

ples are generated simultaneously using samples of a per-

fect IF frequency reference, as indicated in Fig. 2(a). This
operation is represented mathematically as

,sk(i) = [2s_rk(i) sin(wliTo)]Lp (8a)

osk(i) = [2slk6) cos(wjiTo)kp (8b)

The sample products are filtered by digital low-pass filters

that pass only the modulated subcarrier frequencies. The

resulting baseband in-phase and quadrature samples in the
kth channel at time iTo become

,sk(i) = Sk [cos(b) cos(0_) - s(i)sin(b)sin(0k)] (9a)

and

,sk(i) = St [cos(S)sin(0k) + s(i) sin(b) cos(0k)] (9b)

where

s(i) = d(iTo)Sin(w,¢iTo + 0,_) (9c)

:These:signals Contain the unknown amplitude arid-phase

that affect both the residual-carrier and the modulated-

subcarrier signals.

Making use of the identities

Re{e i° [a + jb]} = a cos(O) - bsin(O) (lOa)

Im{e'/S[a + jb]} = a sin(O) + b cos(O) (lOb)

and letting - denote a complex quantity, one can also write

,sk(i) = (lla)

(lib)esk(i) = Im{gk(i)}

where

g_(i) = Ske jsk [cos(b) + js(i) sin(b)]

= l;'k [cos(b) + js(i) sin(S)] (12)



is the"complexenvelope"ofthebasebandsignalsamples.
Thecomplexcoefficient_'kcontainsboth the amplitude
andphaseof thebasebandsequences.

Nexttherepresentationoftheadditivenoiseisconsidered.
Bandpassnoisein the kth channel can be modeled as

n_(t) = v_[nc_(t) cos(w,t) + n,k(t) sin(w_t)] (13)

where n_k (t) and n,_(t) are independent zero-mean Gaus-
sian baseband processes, each with spectral level Nok/2.

Downconverting to IF yields

n1 (0 = -

= n_k(t) cos(wit) + nsk(t) sin(wit) (14)

while the IF samples are again the coefficients of the or-

thonormal expansion

nlk(t) = _ nlk(i)¢i(t) (15a)
i=-c_

ntk(i) = nzk(t)¢i(t)dt

= n_k(i)cos(wliTo) + n,k(i)sin(wliTO) (15b)

Assuming that the noise processes are broadband

compared to the sampling bandwidth, the correlation func-
tion of the noise samples becomes

E[nck(i)nek(g)] = E[n,k(i)n,t(g)]

Not _,t g a_6it (16)
=2-_0'

In-phase and quadrature noise samples are generated

along with the signal samples, with the result that

,nt(i) = [2nt_(i)sin(wziTo)]zp = n,t(i) (17a)

and

_nk(i) = [2n;k(i) cos(w;iTo)]r.p = n¢k(i) (17b)

A complex representation for the noise samples is obtained

by letting

,nt(i) = Re{fit(i)} (lSa)

_n_(i) = Im{fi_(i)} (18b)

where

fit(i) = n,k(i) + jnet(i) (18c)

is a sequence of complex noise samples. Note that the

variance of the complex noise samples is 2cr_, because the

real and imaginary components are independent zero-mean

processes, each with variance o'_. The use of complex no-

tation will often allow considerable simplification in the
derivations that follow.

Next, the problem is generalized somewhat by sam-

pling of the primitive samples in streams A and B at dif-

ferent rates. The final samples are formed by averaging

consecutive primitive samples, and hence represent an ef-

fective low-pass filtering operation. Since the samples in

stream B must reflect the temporal variations in the mod-

ulated subcarrier accurately, typically only a few primi-

tive samples can be averaged here. In stream A, however,

enough samples must be averaged to ensure that the mod-
ulated subcarrier terms are filtered out, leaving only the
residual carrier terms. Here one must be careful to make

sure that the underlying processes of interest are not fil-
tered out. Therefore, in stream A strict lower and upper

bounds must be observed on the number of primitive sam-

ples averaged, while in stream B only the upper bound is
relevant.

Suppose that MA primitive samples are averaged in
every channel of stream A, and MB in stream B. This

means that the time delay between samples is TA = MATo

in stream A and TB = MBTo in stream B. The situation is

illustrated in Fig. 5, which shows the timing relationship

between the samples in the two streams.

Applying the averaging operation of stream B to the

primitive signal samples again yields Eq. (9), but evaluated
at times in = iMBTo. The averaging operation in stream

A effectively removes the subcarrier terms from the prim-

itive samples, leaving the residual-carrier samples defined
at times iA --" iMaTo:

,zt(ia) = [,s_(i)]tp = Sk cos(5) cos(0k) (19a)

ez_(ia) = [,sk(i)]t. P = St cos(6)sin(0k) (19b)

Equation (19) can be expressed in complex form as

_,t(ia) = ,z_(ia) + jezk(ia)

= Ste i°_ cos(5)

-- 9k cos( ) = 2t = xtR + jxt! (2o)

85



Note that samples in both streams are obtained from

the same sequence of primitive samples in the correspond-

ing channels, hence the resulting sample variances in the

corresponding channels are always related by the ratio

of the number of primitive samples averaged in the two

streams. Let the noise samples in stream A be denoted

by m_(iA), and in stream B by nk(iB). The averaging

operation reduces the noise-sample variances by factors

of MA and MB, respectively, so that a_k = a_/MA and
a2Bk = a_/MB: The noise vaiian_esin the_tw0-streams are

" MA/MB is the ratio ofrelated by (r_k = r/a_k , where 7/=
the effective bandwidths of the two streams.

The parameter-estimation problem is greatly simpli-
fied if estimation is based only on the residual-carrier se-

quence as given by Eq. (20), because interference from

the data modulation is not present. Since only a small
fraction of the total signal power is in the residual car-

rier, one might expect substantial performance improve'

ments by making use of the modulation sidebands as well.

However, the more complicated estimation algorithms that

make use of the full-spectrum sequence of Eq. (12) will not

be addressed here. It is emphasized that while the averag-

ing operation in stream B is optional, it is mandatory in

stream A whenever modulation sidebands are present.

Although in general pz is a function of time, here it is

assumed that all relevant processes are stationary, so that

the time index can be ignored. Substituting Eq. (21b) for
_k(iB) yields

12k=lK@_l_'k [cos(/_) + jsin(6)s(iB)]
p, = K

_k=l I_*122_k
(24)

Making use of the Schwarz inequality,

_<Z - 2Iwkl 2_k _ 2_ (25)
k=l k=l

2 2
Dividing both sides of Eq. (25) by _k l_kl 2%k yields
the following upper bound on p, :

~ 2K gk A

p, < 2_2Bk= p
k=l

(26)

IV. The Combining Algorithm

The mathematical model for the combining system
depicted in Fig. 4 can be summarized as follows: the noise-

corrupted complex baseband samples in streams A and B
are modeled as

The choice of weights that achieves the value of the right-

hand side of Eq. (26) is

y_"
wk ----2trek (27a)

fik(iA) -" xk(iA) + rr_k(iA) (21a) ascan be seen by direct substitution

ek(iB) = _k(iB)+ _(i.) (21b)

Complex combining weights are determined by the esti-

mator subsystem operating on stream A, and applied to

the samples _k(iB) in stream B to produce the combined

output sequence _(iB):

K

k=l

(22)

The object of the combining algorithm is to maximize the

signal-to-noise ratio of the combined output samples, de-
fined as

p. = = (23)
vat [_(iB)] var [_'-_f=x _k_k(iB)]

I K - j2[cos(5) jsin(6)s(iB)]Zk=i +
20_

k=l _ -- p
(27b)

Therefore, if the signal and noise parameters were known,

then the combining operation defined by Eqs. (22) and

(27a) would achieve the sample SNR p defined in Eq. (26).
Note that with the optimum choice of weights, the mean

value of the combined signal and the variance of the com-

bined noise are both exactly equal to p. If all noise vari-

ances are equal, _r_ = 0"_, then we have the interpretation

p = PT/2a_, where PT = _,_ S_K is the total signal power
collected by the array.
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Since the required signal and noise parameters are

generally not known, this upper bound on the sample SNR

is not achieved in practice. When dealing with unknown

parameters, a plausible approach is to use the best avail-

able estimates of the underlying parameters to estimate

the combining weights. This is the approach adopted in

this article; the estimated weights are obtained by applying

the optimum weight formula (Eq. 27a) to the maximum-
likelihood estimates of the underlying parameters {17"k} and

{_L}.

V. The Maximum-Likelihood Estimator

The combining algorithm requires an estimate of the

complex signal coefficient "t_kand of the noise variance _r_.

These quantities can be estimated simultaneously from the

observed samples, either in stream A or in stream B. tIere

attention is restricted to the residual-carrier sample stream

(stream A), because of the relative simplicity of the prob-
lem when the data-modulated subcarrier is not present.

In the absence of a-priori statistics about the values
of the unknown parameters Xk and _k, tile maximum-
likelihood approach yields the best estimates of the em-

bedded parameters, on the average. These estimates are

obtained from the likelihood function, which is the con-

ditiona] joint probability density of the observed sam-

ples, conditioned on the parameters X'k and a2Bk. The

maximum-likelihood estimates are those values 3(_ and

a_k that simultaneously maximize the likelihood function,

or a monotonically increasing functional of it.

The log-likelihood function is obtained from the con-

ditional probability density of the observables, conditioned

on the parameters of interest. In stream A only the resid-

ual carrier is present, hence the observed complex samples

in the kth channel at time "iaTa" can be represented as

fik(iA) = )(_ + r_k(iA) (28)

where X2 = r_k cos(6), and _k(ia) is a zero-mean com-

plex Gaussian random variable with variance 2_r_t. It is

assumed that all noise samples are independent random

variables. If L consecutive samples are observed in each

of K channels, the joint probability density of the entire

K x L complex array becomes

K L

p(alg,4) = II II (2-4t)
k=l iA=l

(29)

where fi is a K x L-dimensional complex matrix whose el-

ements encompass all possible values of the indices "iA"

and "k," while X and a_ are K-dimensional complex vec-
tors. Denoting the real and imaginary components of _'k

by XkR and Xtl, respectively, the natural logarithm of

Eq. (29) becomes

A _ In [P (fil:K,a_)]

K

= -L_ln(2_4_)
k=l

- [( ( ).utnia- Xka) _

k=l \ At iA=l

+ (UkI(ia) -- X_t)2]_

/
(30)

This is called the log-likelihood function. The maximum-

likelihood estimates of Xka, X_t, and _t are those values

)(kR, )(_I, and &_k that simultaneously maximize the log-

likelihood function A. Differentiating A with respect to

each XtR and Xtx, setting the result equal to zero, and

solving yields the maximum-likelihood estimates

L

)_'tR = 1 _ u_a(ia) (3la)
L i=1

)(kl = l _ ukl(iA) (31b)
i=1

and

Xt = fCkR + jf(tt k = 1,2,...,K (31c)

The estimate of the noise variance is obtained by writing

the log-likelihood function, maximized over X, as

= -L ln(2r_t ) _ t (32a)

L

at --" xt,,)'+
ia=l

(32b)

Differentiating with respect to a_tt, setting the result equal
to zero, and solving yields

_L = _a, (33)
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Note that the maximum-likelihood signal estimates
X_n and )(kt are unbiased estimates of the mean values

of the real sequences ukn(ia) and Ukl(iA), also known in

statistics as the "sample mean." tIowever, the maximum-

likelihood estimates of the noise variances are biased, and

hence do not correspond exactly to the unbiased "sam-
ple variance" used in statistics. Here we use the unbiased
variance estimate

-2 1

aak,ub -- _1-'---_a.2(5-- (34)

For large L, the difference between the two estimates be-

comes negligibly small. The unbiased estimates shall be

used in this analysis because each of these estimates can

he modeled conveniently as the sum of the true variance

plus a zero-mean error term.

The maximum-likelihood estimators defined above

provide the best possible estimates of the desired param-

eters if a-priori statistics are not available, as long as the

signal parameters and noise statistics do not change with

time. These results can be extended to the slowly varying
case by selecting the total observation time to be small

compared to the characteristic time scale of the variations.

Thus, over a short time interval the above solutions apply.
tIowever, the observation interval must now be continu-

ously shifted in time to follow the parameter variations.

This extension leads to the following "sliding-window" es-
timator structures:

^ 1 iA--1

2_(ia)=-£ E ,_(e) (aSa)
t=ia--L

1 i.a-1 _ 2_L,ub(ia)- 2(L- 1),:__L I_(e)-_(ia) (35b)

Thus, the current estimates at time "iaTa" are based on

the previous L samples, up to and including the sample at

time "(ia - 1)TA".

For large values of L and short sample durations, the

computational burden required by these estimators may
become quite severe. This difficulty can be ameliorated

by observing that a recursive implementation is possible,

where the current estimate is obtained in terms of the pre-

vious estimate, the current observable, and the "oldest"

observable in the previous sum. The recursive forms are

- - 1
Xk(iA) =Xk(iA -- 1) + _-[fik(iA -- 1) -- fik(iA -- L - 1)]

(36a)

5_,ub(ia)= ^2 . 1 (_ak,ub('A-- 1) + 2(L 2) I_(iA - 1)1_

-Ifik(ia - L -- 1)l _

-L [_'k(ia)] 2 -- _k(iA--1)]_] } (36b)

Note that the corrections to the previous estimates can be

obtained from a digital "first-in, first-out" stack, minimiz-

ing the number of computations required for each update.

It is well known that the maximum-likelihood estimate

of the ratio of two parameters is equivalent to the ratio

of the maximum-likelihood estimates [5]. It follows that

the maximum-likelihood estimate of the kth weight can be
obtained from the maximum-likelihood estimates of the

complex signal estimates and the noise variances as

Vk(ia) xk(ia)
$_(iA)- 2,7,,L(ia) - 2cos(6),7_L(i.)

(37)

The maxirnum-iikelihood estimate of the kth weight there-

fore depends on the signal parameters in each channel of

stream A and on the corresponding noise variances.

An interesting special case occurs if the noise variance

in each channel is the same. This situation could arise if

the amplifier characteristics in the various channels were

exceptionally well matched and all feeds observed the same

background power levels, so that the noise temperatures in

the various channels were essentially the same. In this case,
the common variance does not have to be estimated, since

it becomes a scaling factor applied to all of the weights.

Because each signal and noise term is equally scaled, the

SNR of the combined noisy signal is not affected if this

common scaling factor is ignored.

Vl. Combiner Performance Analysis

In this section, the performance of the signal combin-

ing system will be evaluated. Constant signal components
will be assumed throughout, and it shall also be assumed

that L is large, so that the biased and unbiased variance

estimates can be considered equal. However, the unbi-

ased variance estimates will be used in the analysis. Per-

formance will be evaluated in the "steady-slate," that is,

assuming that L or more samples have already been ob-
served.

Assuming the "sliding-window" configuration of

Eq. (35), it is seen that the estimates at time iATA are

z

E
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based on the previous L samples, up to and including the

sample at time (ia - 1)TA. Since the estimates are un-
biased, each can be expressed as the sum of the true pa-

rameter plus a zero-mean random variable representing the

estimation error. This model yields

)_k(iA) "- )(t + (f(t(iA)-- f(t) _ )(k + eXk(ia) (38a)

O'_k ( i A ) -" O'2Ak"_ (ff2Ak ( i A ) -- 0"2k ) _-_ O'_k'_-f a:_, ( i A ) (38b)

where

1 ia-1

gxk(ia) = _" E (fit(e)-)(k) (39a)
t=ia--L

1 ia-I

e,,_ (ia)- 2(L- 1) _
l=iA -L

(39b)

Since the estimates are unbiased, it follows that the error
terms are zero mean. The variance of the estimation errors

can be obtained using well-known expressions for the vari-

ance of the sample mean and the variance of the sample

variance, as follows:

var [_xk(ia)] = E [rhj,(iA)[ 2 _ 2_r_ k = 2_r_k (40a)
L L _TL

{1 ,A-11 _ Ii_ fik(t) --Xk(iA)var [co: k(ia)] = vat 2(L- 1)t=" -L

while

1 ( L-3 4' _= 2_ "' - Z'=-VA_)

= alk (40b)
L-1

[ ] "_]k _kvar eo_h(ia ) = L---__I = L- 1 (40c)

In deriving Eq. (40b) recall the fact that the fourth
central moment of a Gaussian random variable is P4 =

3_r_k. Since for a Gaussian population the sample mean

and sample variance are independent random variables, it

follows that _'x (i) and eo_ are independent as well. Since
• • k

the lath estxmate m baseagon L previous samples up to and

including sample number (ia - 1), and since each sample

is independent of all others, it also follows that the lath

estimate is independent of the iath sample.

Making use of the model defined in Eq. (38), the

maximum-likelihood estimate of the kth weight becomes

2; [, (1 2 e3(k (ZA))

_,_(i.) = 2cos(a)4_ L(1 + eo_ .(ia))
(41a)

where

- _, /2" (41b)e_'k _ Xk / k

and

eo_, = ec,_ 1o'_ (41c)

If the standard deviation of each estimation error is small

compared to the estimate, then Eq. (41a) can be approxi-
mated as

:_; [1 -" (iA)]
,_diA) = 2eo_,,'L + _x,

× [1 -e_,_. (iA) + e_o_ (ia) .... ]

- 2cos(6)a_k

2 cos(,_)o'_

--2_-"_B_--a, [1 + e'_,k(ia)]
(42)

Therefore, the weight estimates may also be expressed
approximately as the sum of the true weight plus an error

term, provided the errors in the component estimates are
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sufficiently small. As before, the error term is zero mean,
with variance

_. [ ]war[e_(iA)] :war[ Xk(iA)] +war ea_k(ia )

2a,_ k 1

2(7_k 1

=, iv, +
(43)

Note that the current weight estimate is independent of

the current sample, since it depends only on the previous

L samples. Using the "small-error" approximation for the

weighting factors, the combiner output sequence defined in

Eq. (22) can be expressed as

_(i_) ___,(io) + _o(iB) (44)

where

•_c(iB) g [cos(6) + jsin(6)s(in)] E 2o.B_: [1 + e*_(iA)]
k=l

(45a)

and

K V;hk(iB)[1 _*
fic(iB) _ E 2a_k + w_ (ia)]

k=l

(45b)

In these equations, the index iA refers to the last estimate

in stream A that occurred prior to the current sample iB
in stream B.

The combiner output in Eq. (44) can be viewed as

having two components: a signal term with random mag-
nitude that takes on a new value each time the weight index

changes, plus an equivalent additive-noise term that takes

on a different value for each new sample of the combined

signal. The magnitude of the mean value of the signal term
is p, the sum of the channel SNRs that would be obtained

if the weights were known without error:

P= 2 L
k=l

(46)

The variance of the signal term can be expressed in

terms of p as

9O

var[g¢(iB)] = ,1Lcos2(e) + (L 1-----_ 4a_k
k=l

Note the dependence of the signal variance on the sum of

squares of the channel SNRs in Eq. (47). This term can
be bounded as follows:

p2_<_ 9 4
K - = 4%b-_Bk<p_

(48)

The left side follows from the Schwarz inequality: equal-

ity holds when all the channel SNRs are equal. The right

side is trivial since one obtains this inequality by throwing

away all of the cross terms in the square of the series for p.

Equality holds when all the signal power is in a single chan-
nel. Useful bounds on p follow if the noise spectral levels

in the various channels are bounded by known minimum

and maximum values No rain and Noma:c:

(49)

With the help of the above bounds, the variance of the
signal term can be bounded as

pt p_
rlL cos2(6) + K(L- 1) -< war [g¢(in)]

< Pu p_+ _ (50)
- r/L cos2(6) (L - 1)

In addition to the known system parameters, these bounds

involve only the total received signal power and the bounds
on the noise spectral levels.

The equivalent noise term defined in Eq. (45b) consists
of sums of random variables obtained from all K channels.

Since the random processes in the various channels are

independent, and since the current noise sample is inde-

pendent of the current weight error, one can express the

variance of the total complex noise as

w

[ ] -1 K (51)
var [h_(iB)] = p 1 + _ + _?Lp_os2(6 )

Note that the variance of the combined noise is always

at least as great as the variance of the ideally weighted

noise terms, p, approaching that limit as L grows without



bound.Theexcessnoisetermscanbeattributeddirectly
to uncertaintyin theweightestimates.

Perhapsthe mostdirect measure of combiner per-
formance is the extent to which the sample SNR of the

combined signal approaches its maximum value, p, which

would be obtained if the complex combining weights could

be determined without error. A lower value here implies

degraded performance. Analogous to the previous defini-

tion in Eq. (23), the sample SNR of the combined signal
when the maximum-likelihood weight estimates are used
is defined as

IE [5,(iB)]I (52)
PML-- vat

The time index on PML is ignored since all relevant

processes in this model are assumed to be stationary. The

magnitude of the expected value of the combiner output

is again p, while the variance is the sum of the signal and

noise variances defined in Eqs. (47) and (51):

[ i (5)var[_,(iB)] =p 1+_+ rlLcos2(6 ) 1+

I ,1'1
+ p(L---- 1) k=l

7, = r/L cos_(8) + p(L - 1) 4a_k (55b)
k=l

Substitution into Eq. (52) yields

PML _-

P

(54)

Note that PML is always less than p, approaching that

maximum value as L approaches infinity. This is reason-

able, since the maximum-likelihood weight estimates ap_

proach the true weights as the number of observed samples

increases. A direct measure of the loss in sample SNR due

to the imperfect weight estimates is the quantity

A

3" = P/PML

= 7, + 7.

1 K

"In = 1 + _ + rlLp cos_(5 ) (55c)

Since these loss factors involve both sums of the individual

sample SNRs and sums of their squares, it is useful to

invoke the bounds of Eqs. (48) and (49) here. Thus, the
component loss factors are bounded as

tTs
1 pt

-- r)L cos2(8) + K(L - 1) < %

1 Pu
--< 0Lcos2(6) + (L - 1) u% (56a)

A K 1

tTn = 1 + rlLpu cos2(5) + (L - 1--'_<- 3',

K 1 A

< 1 + _?Lpt cos2(5) + (L - 1) -- u3'n (565)

while the total loss is loosely bounded by sums of the upper

and lower bounds on its components:

(53) t3', + tTn g t7 < 7 < ,,3' -_ u3', + uTn (56c)

(55a)

with components due to signal, %, and noise, %, defined
as

Note that tighter bounds on the total combining loss

exist, but these involve complicated formulas in different

ranges of the parameters, and will not be considered here.

The equal noise-variance case can be treated as the

general case considered above, but with considerable sim-

plifications throughout. Although the noise variance is not

estimated in this case, a common noise variance denoted

by cr_ shall be included in these equations for consistant

results. Now the combining weights are given by

Xk(ia) (57)
wk(i,,t) = 2 cos(5)c_

where the denominator contains a_, but not its estimate.

The weight estimate can now be expressed as

wk(ia) = 2V_n [1 + _:,] (58)

and it is seen that there is no need to make a small-error

approximation here. Therefore, these results will be valid
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in general, not only where the small-error approximation

holds. The variance of the combined signal and of the
combined noise now becomes

1 rlL cos2(6)

(59a)

vat [he(iB)] = p 1 + rlLp _-os_(6). (59b)

while the variance of the total combined samples is their
sum, as before:

vat = var + var

[ (x+K) ]-p 1+ _'L_os-_(_)j
(59c)

The combining loss for the equal-variance case also follows
directly

•7 = ,7- + ,% (60a)

with components

K

eT,_ = 1 + rtLpcos2(6 ) (60b)

1

,3', r]L cos2(_f) (60c)

The behavior of the total combining loss and of its com-

ponents will be examined in the next section.

VII. Numerical Results

The following example serves to illustrate the behav-

ior of the combining loss in a realistic setting. Suppose
the 70-m antenna at DSS 14 is receiving signals from a

deep-space vehicle at Ka-band, and further suppose that

the received power levels and noise temperatures are sim-

ilar to those expected from the Galileo spacecraft during

its encounter with Jupiter, that is, PT/No = 55 dB-Hz
= 3.16 x 10_ Hz. Also assume that a standard NASA

modulation format has been employed with d_= 80 deg,

subcarrier frequency of f,c = 2 x 105 Hz, and assume that

we wish to recover the fifth subcarrier harmonic (the sec-

ond and fourth harmonics are zero for a square wave) so

that it is required that fn >_ 106 Hz; let fo = 2 x 106
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Hz. Assume a seven-element array, K = 7. As before, let
To = 2.5 x l0 -s sec, corresponding to a first-zero frequency
of fo = I/To = 4 x 107 Hz. Since the modulated subcar-

rier must be filtered out of stream A, the first zero of this

effective filter should be at some frequency much smaller

than the subcarrier fundamental, but large enough to pass
the slowly-varying parameters generated by the antenna

deformations. This requirement yields fA <_ 104 Hz or so,

implying that MA = fo/fa _> 4 X 10a. Observe that near

the above parameter values, the "small-error" approxima-

tion upon which the general formulas are based remains
valid, provided the inequality L >> 1 is satisfied.

The bounds on the combining loss 7 are shown in
Fig. 6, for nominal PT/No of 45, 55, and 65 dB-Hz. Note

that the combining-lossbounds, expressed in dB, are plot-
ted on a logarithmic scale to show their relative behavior

in regions where each combining-loss bound is very close

to zero dB. The maximum and minimum values of PT/No
are taken to be 4- 2 dB above and below the nominal val-

ues presented in the graphs. Since the total averaging time
used for each weight estimate T can be related to the num-

ber of observed samples L as T = MaToL, it is clear that

the combining-loss bounds can be viewed either as func-

tions of L or as functions of T. Therefore, the loss bounds
are plotted in terms of both of these fundamental vari-

ables in Fig. 6. Because of the small-error approximation

the bounds may not be accurate in the region L < 10 (or

equivalently, T < 10 -3 see), however, this region is of no
interest in the present application, where the tlmescaie of

interest is typically on the order of a second. Note that

a total combining loss of less than 0.1 dB can be guaran-

teed with observation times of less than 0.1 second, when

operating at 55 dB-Hz. This result shows that during a

typical encounter, this combining system can operate with

negligible combining loss, even in the presence of severe

wind gusts which can induce rapidly varying mechanical
distortions into the antenna structure.

The components of the combining-loss bounds due to

signal and noise are shown in Figs. 7(a) and 7(b), again
expressed in dB, at a nominal PT/No of 65 dB-tlz, with

all the other system parameters the same as above. Ilere

the total combining-loss bounds and their components (in
dB) are displayed on a linear scale in order to show the

signal-loss bounds on the same graph. The loss compo-

nents displayed in Fig. 7 indicate that for large L the great-

est contribution to the total loss comes from the equivalent
additive noise. The losses due to the random variations in

the signal tend to be relatively insignificant for large L.

This behavior is even more pronounced at lower PT/No,

where the individual components of the combining loss are

even more difficult to separate. Itowever, the reader is



cautionedthat the total combining loss defined here may

not be an adequate indicator of performance in all applica-

tions. The relative contribution of these loss components

to the performance degradation of specific systems may

differ markedly and should be carefully examined for each

application.

The combining loss for the equa/-variance case can be

determined exactly, without resorting to small-error ap-

proximations. These results are shown in Fig. 8, which con-

firms the previous conclusion that total combining losses

can be limited to 0.1 dB with averaging times of less than

0.1 seconds when operating at 55 dB-Hz. The behavior of

the loss components shown in Fig. 9 again indicates that
the dominant contribution comes from the additive noise,

so that losses due to random signal variations are relatively

insignificant in this region.

VIII. Summary and Conclusions

A real-time signal combining system for use with ar-

ray feeds has been proposed and evaluated. The combining

system can be used to compensate for losses resulting from

time-varying antenna distortions due to gravitational and
atmospheric effects, provided the characteristic timescale

of the variations is not too rapid -- perhaps on the order of

a second or so. It is ideally suited for recovering losses re-

sulting from main-reflector gravity- and wind-induced de-

formations of large DSN antennas operating at Ka-band
or higher frequencies.

Real-time compensation is achieved by forming a

weighted combination of the array-feed signals observed in

the presence of additive noise with combining weights con-

tinuously adjusted to maximize the signal-to-noise ratio of
the combined signal. In the digital baseband model consid-

ered, the weights were complex numbers obtained from a

"maximum-likelihood" weight estimator that obtained the

required signal and noise parameters from observations of
the array-feed outputs. A "sliding-window" implementa-

tion was proposed that effectively follows the variations

in the signal and noise parameters, achieving automatic

compensation in the combined output.

A mathematical model of the real-time compensation

system was developed. Performance measures were defined
and system performance evaluated under a "small-error"

approximation, which is valid in the regions of interesL.
The model assumed constant signal and noise parameters,

but remains valid for time-varying parameters, provided

the variations are slow compared to the time scale of the

observations. It was found that the combining operation

produced two distinct effects: it introduced random varia-

tions in the combined signal and it increased the effective

power of the additive noise. Both of these effects could

be attributed to the uncertainty in the weight estimates

due to the presence of additive noise in the system. It was

shown that under receiving conditions similar to those ex-

pected during the Galileo encounter, the total combining

loss could be limited to 0.1 dB, with averaging times of
less than a hundred milliseconds for a seven-element array.

This means that virtually all of the signal power collected

by the feed array can be recovered, even in the presence of

wind gusts that may produce changes in the signal param-
eters on the timescale of a second. For larger arrays, the

combining loss tends to increase.

Although two different types of degradations have

been defined and quantified, their effect on telemetry sym-

bol detection, carrier tracking loop behavior, mechanical

pointing-system behavior, etc., has not been completely
determined here because the interaction of these compo-

nents tends to be applications-dependent. These issues

should be addressed in the future. Also, mathematical

models should be developed to characterize the problem in

a dynamic environment and the effect of imperfect phase

reference on combiner performance should be addressed.

In addition, the possibility of using the entire modulated

spectrum for determining the combining weights should be

addressed, since this approach will improve combiner per-

formance in the Iow-SNR or highly dynamic environments.
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