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Previously, the performance of the sprit-symbol moments estimator (SSME) of

signal-to-noise ratio (SNR) has been evMuated by means of approximate expressions
for the estimator mean and variance. These are asymptotic formulas in the sense

that they become accurate as the number of estimator samples gets large. In the

present article, exact closed-form expressions are obtained for the same quantities.
These expressions confirm the accuracy of the previously derived asymptotic results,

and, unlike the asymptotic formulas, they are useful even when the number of

samples is small. It is also shown that the conventional split-symbol estimator

can be trivially scaled to form a signal-to-noise ratio estimator which is precisely

unbiased (as long as the estimate is based on more than two split-symbols).

I. Introduction

The so-called split-symbol moments estimator (SSME)

of the received symbol signal-to-noise ratio (SNR) was first

suggested in [1]. In [2], approximate expressions were de-
rived for the mean and variance of the SSME. Thes e apt

proximate expressions were later used as the basis for a

more detailed performance analysis in [3], which included
the effects of intersymbol interference as a result of filtering

the received symbol stream.

The approximations in [2] result from expanding the

exact equations for the mean and variance in a series in-

volving the central moments of the SNR estimator and

then ignoring all central moments higher than second or-

der. This type of approximation relies on the fact that

successively higher central moments of the estimator go to
zero faster than lower-order central moments as the num-

ber of samples gets large.

A natural question is: Under what conditions is it
valid to throw away the higher-order terms? The results

quoted for the mean and variance of the SSME (Eqs. 28

and 31 of [2]) include terms which go to zero as the num-
ber of sampled split-symbols, n, gets large. These terms

are proportional to 1In. How large does n have to be be-
fore the 1In terms are guaranteed to dominate the 1In 2

terms? Does the answer to this question depend on the

magnitude of the true SNR? For example, the expression
for the signal-to-noise ratio of the estimator (Eq. 32 of [2])
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exhibits peculiar behavior when the true SNR is very small.

In this case, the equation says that the signal-to-noise ra-

tio of the estimator actually decreases with n until n gets

to be about as large as 1/SNR.

In this article, exact closed-form expressions are ob-
tained for the mean and variance of of the SSME when the

symbol stream is unfiltered. These exact results confirm

the accuracy of the previously known asymptotic expres-

sions. Unlike the asymptotic formulas, the exact expres-
sions are useful even when the number of sampled split-

symbols, n, is small. Furthermore, the basic techniques
developed for this derivation might also be useful in ana-

lyzing the more complicated case of filtered data.

II. Derivation of the Result

Using the notation of [3], the split-symbol moments

estimator of SNR is denoted by SNR* and expressed as

SNR* = mp (1)
1

2 (-_mss -- rap)

where mp and ms, are average values over n symbols of
the product and sum squared, respectively, of the outputs

of half-symbol accumulators,

mp__i  j j
1 _ (Yaj + Yas) 2 (2b)

j=l

Y,_j = ___ yij (3a)
i=0

NI -- 1

i= -_,]-

(3b)

y_ = v_dj + n,_

m

= +

i=O,...,Ns-1 j=l,...,n

(3¢)

Here, N, is the number of samples per symbol and is as-
sumed to be an even integer, as in [3], and m = N,v_. The

datum yq is assumed to be an unfiltered sample of the jth

received symbol dj(dj = 4-1). The noise samples nij are
assumed to be independent with zero mean and equal vari-

ance cr2/N,. The parameters m and or are the conditional
mean and standard deviation (given dj), respectively, of

the whole-symbol accumulator outputs (Y,_j + YZj). The

symbol signal-to-noise ratio SNR is given in terms of m

and a by

m 2

SNR = -- (4)
2a 2

Conditioned on the sequence of symbol values d =

(dl,...,d,_), the yij's are independent Gaussian random
variables, as are the vectors of half-symbol accumulator

outputs Ya = (Yql,...,Yan) and Y_ = (Ypl,...,Y_-).

The statistics of Ya and Y_ are given by

m

E (Yoj ld} = E {Y#j Id} = yd_ (5a)

m 2 if2
y2E{ c,jld} = E {Y_jld} = "_"+ 2 (5b)

m 2

= -- (5c)E {Y_.,,.Yz.,,.Id} 4

m 2 j,
E {Y_,jYoj,]d} = E {YpjYt3j,ld} = Tdidj , # j (5d)

m _ j,
E {Y,_jY_j,]d} = ..-_--djdj, # j (5e)

We begin the derivation of our result by rewriting

Eq. (1) for SNR* in the form

n 2

2 SNR* + 1 = _j=x uj _ U (6)
n 2 V

Zj=I Vj

where

u_ = Yoj + Y_¢ (7a)

vj = Y,_j - Y_j (7b)

_2 (Sa)U = uj
j=l

n

v= q (8b)
j=l

The usefulness of expressing SNR* in the form of Eq. (6)
results from the fact that U and V are conditionally inde-
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pendent random variables. Given the data vector d, the

random vectors u = (ul,...,u,,) and v = (vl,...,vn) are

jointly Gaussian with

E{uj[d} = mdj E {u_ld } = m2+a 2 (9a)

E{vjld } = 0 E {v_ld } = 0-2 (9b)

E {ujvj[d } = 0 = E {ujld} E {vild } (9c)

E {ujvj,ld} = E {vjvyld} = O j' ¢ j

E {_ _, Id} = m_d_d_,= E {_ Id} E {_j,Id}

(9d)

j'_j

(90

Equations (9a-e) imply that u and v are uncorrelated

given d. Because u and v are jointly Gaussian and un-
correlated, conditioned on d; they are therefore condition-

ally independent given d. Likewise the random variables
U and V are conditionally independent given d, because

they are functions of u and v, respectively [4]: Thus, all
of the moments of 2 SNR* + 1 can be factored as follows:

E {(2 SNR* + 1) k} = Ed [E {Uk[d} E {V-kid)] (10)

To evaluate the mean and standard deviation of SNR*

exactly, it is only necessary to compute the conditional

moments E{UId}, E{U21d), E{V-1Id), and E{V-2Id},

and then calculate the expectation over d. All four of
these conditional moments can be evaluated in closed form.

The U-moments are simply the (positive) moments of a

noncentral chi-squared random variable.

E{gld}=nE{u_ld } =n(m2 +0- 2) (11)

E {U2}d} = nE {u_ld} + n(n- 1)[E {u_ld}] 2

:. [(m4+6m20- + +.(. _ 1)(m2+

= n 2 (m _ + a2) 2 + n (4m20- 2 + 20"4) (12)

In Eq. (12), the first equality follows from the indepen-

dence of the individual uj 's, and the second equality follows

from applying the general formula for the fourth moment

of a nonzero-mean Gaussian random variable [5].

The V-moments are the negative moments of a central

chi-squared random variable with n degrees of freedom. In

the Appendix, it is shown that

1
E {v-lid} = (for n > 2) (13)

(n 2)0. 5

1 (forn > 4) (14)
E {V-_Id}= (._ 2)(.- 4)0.'

These V-moments are infinite if n is smaller than the in-

dicated limits.

Note that all of the expressions in Eqs. (ll), (12),

(13), and (14) are independent of d. Plugging these re-

sults into Eq. (10) leads to the following expressions for
the moments of the estimator SNR* (assuming n > 2 or

n > 4 as appropriate):

E{2SNR* + 1} =
. +0.2)
(n - 2)0.2

=(2SNR+I)_
n

n--2

(15)

n 2
x

(_ - 2)(. - 4)_

-- [(2 SNR+ I)2 +I (8sNR+ 2)]

n 2

x (._ 2)(.- 4) (16)

The mean and variance of SNR* are calculated from

Eqs. (15) and (16) as

E (SNR*} = lIE(2 SNR* -t- 1} - 1]

1

-SNR+-__2(2SNR+I ) (forn > 2)

070

var {SNR*) -- 4vat {2 SNR* + l)

1 1) 2) (E {2 SNR* 1}) 2]- [E{(2s R" + - +

[ [. ,= _ _ 2SNR _+(4SNR-t-1)

(for n > 4) (17b)

176



In comparison, in [2] the following approximate asymptotic
results were obtained:

E {SNR* } ._ SNR + 1 (2 SNR + 1) (18a)
n

1 [2 SNR 2 + 4 SNR+ 1] (18b)var ,f.qN l_ ]L_._v*, ,_ --
n

By comparing Eq. (17) with Eq. (18) it is seen that the

n-1 ,_2 andasymptotic expressions of [2] are accurate if _- , ,
"-__Acan all be approximated by 1.

In addition to the mean and variance, higher-order
moments of the SSME may also be evaluated by applying

known formulas for the moments of noncentral chi-squared

random variables (U-moments) and for the moments of

the reciprocal of a central chi-squared random variable

(V-moments), and then solving Eq. (10) algebraically for

the corresponding moments of SNR'.

Finally, it is seen from Eq. (15) that it is easy to con-

vert SNR* into an unbiased estimator SNR** (for n > 2)
by making the definition

2 SNR** + 1 = (2 SNR* + 1) n - 2 (19a)
n

i.e._

SNR** = SNR* - 1 (2 SNR" + 1) (19b)
n

Then, assuming n > 2 for Eq. (20a) and n > 4 for

Eq. (20b),

E {SNR**} = SNR (for n > 2) (20a)

1 [2 SNR 2vat {SNR** ) = n - 4 +(4 SNR+ 1)-_]

(for n > 4) (20b)

This should be the preferred form for the split-symbol mo-

ments estimator because, in addition to being unbiased,

SNR** also has a slightly smaller variance than SNR*.

III. Conclusion

The technique introduced in this article enables one

to compute exact closed-form expressions for the perfor-

mance of the split-symbol moments estimator, for the case

of unfiltered, undegraded data. The essential trick required

for this computation was to algebraically manipulate the

estimator formula into the form of a quotient of condi-

tionally independent random variables. The calculations
in this article confirm the accuracy of previously derived

asymptotic expressions for unfiltered data. In addition, the
exact performance expressions, unlike the asymptotic for-

mulas, are useful even when the number of sampled split-

symbols, n, is small. The exact formulas show that as

long as n > 2 the conventional split-symbol estimator can

be trivially sealed to form a signal-to-noise ratio estima-

tor which is precisely unbiased. Furthermore, the same

techniques developed here may be applied to obtain sim-

plified .expressions (though not closed form) for the more
complicated case when the data is filtered.
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Appendix

The Moments of the Reciprocal of a Chi-Squared Random Variable

Conditioned on d, the random variable V is a cen-

tral chi-squared random variable with n degrees of free-

dom. According to [6], its conditional probability function

is therefore given by

v(nl2)-le-Vl2o_

p(Vla) = (2_2) "/2 r(n/2) Y > 0 (A-l)

where F(.) is the gamma function. Thus, the conditional
(negative) moments of V can be calculated (for k > 0) as

(_)./2 r(_/2) dV

= (2_)-_ r[(./2) - k]
r(./s)

_o °_ V("12)-_-le-Vl 2°_x (so._)('/_)-_r[(./2) - k] dV

= (S._)_, r[(n/S)- k]
r(_/2)

if n > 2k

1
(A-s)(n - s)(. - 4)... (_ - sk)_

The next-to-last equality in Eq. (A-2) follows from noting

that, if n > 2k, the rescaled integral in the preceding line
is simply the integral of the probability density function

of a chi-squared random variable with n - 2k degrees of

freedom. The last equality in Eq. (A-S) follows from the

gamma function recurrence formula, F(z + l) = zF(z).

Finally, it is easy to see that the integral in Eq. (A-2),

and hence the corresponding moment of V, is infinite if
n < 2k, because in this case V (n/2)-_-1 becomes infinite

near V = 0 at ]east as fast as V-1.
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