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A two-level model has previously been proposed for approximating the perfor-

mance of a Viterbi decoder which encounters data received with periodically varying

signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large

Array (VLA), either operating as a stand-alone system or arrayed with Goldstone.

This approximate model predicts that the decoder error rate will vary periodically

between two discrete levels with the same period as the gap cycle. It furtber predicts

that the length of the gapped portion of the decoder error cycle for a constraint

length K decoder will be about K - 1 bits shorter than the actuM duration of the

gap.

131this article _he two-level model for Viterbi decoder performance with gapped

data is subjected to detailed vMidation tests. Curves showing the cyclical behavior

of the decoder error burst statistics are compared with the simple square-wave cycles

predicted by the model.

The validity of the model depends on a parameter often considered irrelevant in

the analysis of Viterbi decoder performance, the overall scaling of the received signal

or the decoder's branch-metrics. This article examines three scaling alternatives:

optimum branch-metric scaling and constant branch-metric scaling combined with

either constant noise-level scaling or constant signal-level scaling.

The simulated decoder error cycle curves roughly verify the accuracy of the

two-level model for both the case. of optimum branch-metric scalhJg and the case

of constant branch-metric scaling combined with constant noise-level scaling, ttow-
ever, the model is not accurate for the case of constant branch-metric scaling com-

bined with constant signal-level scaling.

I. Introduction

Voyager's concatenated code performance using

gapped data as obtained from the Very Large Array (VLA)

arrayed with Goldstone or the VLA operating as a stand-

alone antenna was previously analyzed in [I]. This analysis

rested on an assumed ad hoc approximate model for the

errors produced by a Viterbi decoder when the signal-to-

noise ratio (SNR) is subjected to variations between two
discrete levels according to a fixed duty cycle. The model
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of [1] predicted that the decoder error rate would also vary

periodically between two discrete levels with the same pe-
riod as the gap cycle. It further predicted that the duration

of the gapped portion of the decoder error cycle for a con-
straint length K decoder would be about K- 1 bits shorter

than the actual VLA data gap.

The two-level model in [1] was generalized from an

argument presented in [2] applicable to an ideal case in

which the SNR inside the gap is zero (-_ dB), while the

SNR outside the gap is infinite (+c¢ dB). The arguments

of [2] predicted that the two-level model would be precisely
accurate in this extreme case.

Simulated performance curves for gapped data were

presented in [2] and in a follow-up article [3]. The curves

in [2] were compared with predictions of the generalized

two-level model in the appendix of [i]. Results showed

fairly good agreement between simulations and model pre-

dictions, but some small discrepancies were also noted.

The performance curves of [2] and [3] and the validity

checks in the appendix of [1] were limited in that they
only considered overall average Viterbi decoder error rates.
This article looks at the decoder's error characteristics in

finer detail by examining the cyclical variations of error

rate over a gap cycle. This level of detail is necessary for

a full direct validation of the model, rather than just an
incomplete indirect confirmation of the model based on

average error rates.

In the course of the new investigation, it was discov-

ered that a parameter usually considered irrelevant in the

analysis of Viterbi decoder performance, the overall scaling

of the received signal or the decoder's branch metrics, must
be carefully accounted for in order to ensure maximum-

likelihood performance. When the received-signal charac-

teristics (e.g., SNR) change abruptly, so should the scaling

of branch metrics. If the signal characteristics fluctuate,

and [3] appear to have been based on near-optimum scal-
ing. However, most of the Viterbi-decoder simulation soft-

ware developed recently for nongapped scenarios is based

on nonoptimum received-signal scaling, which can greatly
widen the effective gap if used by a decoder with constant

branch-metric scaling. Therefore, extreme care must be

exercised in adapting existing software to gapped scenar-
ios.

I!. Method of Analysis

A, Decoder Error Cycles

When the SNR varies over a gap cycle, the errors made

by the decoder can be expected to vary cyclically with the

same period. In order to determine the variation of decoder

performance over a gap cycle, it is necessary to obtain some

estimate of the decoder's instantaneous error rate at every

point within the cycle, rather than to simple average its

error rate over the entire simulation run. Knowledge of the
decoder's error-cycle characteristics is especially important

when concatenated coding is used and the convolutionally

decoded output must be further decoded according to an
outer code.

As a measure of decoder performance, we chose to

calculate the burst inclusion probability (BIP) rather than

the bit error rate (BER) or the symbol error rate (SER). A
given bit is included within an error burst if it is not part =

of a string of K - 1 or more consecutive correctly decoded --
bits, where K is the cons_r_ntqength of the Conv0lutional
code. This definition is equivalent to the definition of an

error burst given in [4]. The burst inclusion probability at

any particular point in the gap cycle is the probability that

a bit at that location relative to the gap will be included

within a decoder error burst. The BIP can be used to give
reasonable estimates of either the BER or the SER for

various symbol sizes, and the cyclical variation of the BIP
accurately reflects the cyclical variation of the decoder's

a Viterbi decoder designed with constant branch metric instantaneous BER or SER,

scaling is not a maximum-likelihood decoder unless the re-

ceived signal is rescaled optimally. Since hardware and
software versions of the Viterbi decoder often have con-

stant branch-metric scaling built in, the effects of nonop-

timum received signal scaling on these decoders must be
evaluated.

Fortunately, the scaling issue Seems moot for most of

the VLA applications and analysis performed up to now.
The optimum weights for combining the VLA and Gold-

If the SNR is constant over a gap cycle, the gap is
effectively missing and the BIP is also a constant over the

entire cycle, tIowever, when the SNR switches between

two levels, SNRo inside the gap and SNR1 outside the

gap, the BIP will also oscillate. The model of [1] predicts

the magnitudes of the peaks and troughs of this oscillation
and the width of the peaks. It also predicts instantaneous

jumps from peak to trough and vice versa. The simulations

reported here investigate the accuracy of these predictions.

stone received signals happen to provide the exac_ scal- H0wbig are the actual peaks and troughs? How wide are
ing required for optimum performance by a decoder with the actual peaks? What are the actual rise times and fall

constant branch-metric scaling. The simulations of [2] times?
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The two-level model of [1] predicts simple square-wave

error cycles. The BIP should oscillate between two levels,

BIPo and BIP1, for "gapped" and "ungapped" bits, re-

spectively. A discrete jump from level BIP1 to level BIPo

should occur at the beginning of every gap, and a discrete
jump from level BIPo to level BIP1 should occur K - 1

bits earlier than the end of every gap. Furthermore, the

model predicts that these two discrete levels, BIPo and
BIP1, are the same as the constant BIP levels that would

prevail at constant SNR levels SNRo and SNR1, respec-

tively. The model also predicts the same square-wave cy-
cles for the decoder's BER and SER, but these predictions

are only tested indirectly in this article by measuring the
burst inclusion probability.

B. Description of Simulations Performed

Simulations were run for a Viterbi decoder operating

on data encoded by the NASA-standard (7,1/2) code. The

simulated decoder generated its own random noise sam-
ples, based its decisions on unquantized metrics, and used

a decoding truncation window of 64 bits.

The decoder was confronted with a periodically vary-

ing SNR. The SNR varied between two levels in synchro-
nism with a gap cycle of fixed period T. For a data rate

R, the gap cycle measured in decoded bits is of length RT.
Within every gap cycle is a gap of length (7, or RG bits,

during which the SNR is at its lower level, SNR = SNRo.

For the remainder of each cycle, the SNR is at its higher
level, SNR = SNR1.

In the simulations reported here, the full gap cycle

was taken to be RT = 1123 bits, and the gapped portion of
the cycle was RG = 35 bits. This corresponds to the VLA

gap cycle parameters used in [3] for the highest Voyager-

Neptune data rate of R = 21.6 kbps.

Each simulation decoded a total of 800,000 bits, just

over 712 full gap cycles. Separate simulations were run for
many different combinations of SNRo and SNR1.

III. Viterbi Decoder Scaling Considerations

Viterbi decoders are supposed to operate as

maximum-likelihood decoders. However, real-world

Viterbi decoders, such as the DSN's maximum-likelihood

convolutional decoder (MCD), may be designed on the as-

sumption of constant SNR or slowly varying SNR. Sim-

ilarly, software simulations of Viterbi decoder operations

usually implicitly assume nonvarying SNR. Such decoders

and simulations of decoders are significantly suboptimum if

the received-signal characteristics change abruptly within

a time period comparable to a few constraint lengths.

There are two types of scaling considerations that be-

come important when the SNR is time-varying. How is

the received signal scaled? How are the decoder's branch

metrics scaled? With nonvarying SNR, the overall scaling

of the received signal and the branch metrics is irrelevant.

They may all be multiplied or divided by any convenient
scale factor and the decoder will produce the same results.

When the SNR is time-varying, the scale factor does mat-
ter. To be optimum, the scaling of the branch metrics

and/or the received signal must change as the signal and
noise characteristics vary with time.

A. Optimum Branch-Metric Scaling

The model for the received symbol rk is

r_ = mtd_ + crkn_ (1)

where dk = +1 is the kth encoded symbol, nk is zero-mean,

unit-variance Gaussian noise, and ink, o'k are the signal

level and noise standard deviation, respectively, for the

kth received symbol. The conditional probability density

function for a set of received symbols {rk} computed along

a path corresponding to encoded symbols {ci_} for the ith

codeword (cik= 4-1) is

1 e_(,. * -,',',k_., )'I_o?,
= H

k

(2)

A maximum-likelihood metric 1 Mi can be obtained from

Eq. (2) by taking logarithms and ignoring some terms
which are independent of i.

1
Mi = _ 7 [I", I- c,_,'k] o_k (3)

k

where c_k is the optimum branch-metric scaling factor,

mk
c_k = -23- (4)

grk

When the signal characteristics are constant with time,

the scale factor c_k is also constant and may be disre-

garded, because an overaI1 scaling of all metrics does not

1 The metric in Eq. (3) is called the "sign-magnltude metric" be-

cause ½ [l_kl - c_k_k] equals I,kl ifcik and rk have opposite signs,
or 0 if they have the same sign. This metric is obtained by sub-

tracting the usual correlation metric from _k Irklak and dividing

by 2.
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matter. Both hardware decoders and simulated decoders

often have this assumption built into their computation of

branch metrics, i.e., they assume c_k = 1 (or some other

suitable constant).

B. Received-Signal Scaling

If the signal characteristics vary with time, scaling

may also be performed on the received signal itself. Some

sort of automatic gain control may be functioning to keep

the received signal within the dynamic range of the re-

ceiver. When baseband combining is performed, additional

weights are applied to each separate component of the re-

ceived signal. If these scale factors change quickly enough

during a gap cycle, the resulting variation in c_k must be
accommodated by the Viterbi decoder, or else the decoder
is not maximum likelihood.

If the decoder cannot adjust the optimum branch-

metric weights o_k dynamically, optimum performance may

still be achieved if the received signal is scaled in such a

way that c_k = 1 for all k. This optimum scaling of the

received signal is

rk = pkdk + vr_nk (optimum scaling) (5)

where pk is twice the instantaneous channel symbol SNR,

= = - (6)
Pk cr_ N k

assumed constant branch-metric scaling. The DSN's hard-

ware MCD for tile NASA-standard (7,1/2) code also makes

use of constant branch-metric scaling. The Big Viterbi

Decoder (BVD) currently under development has pro-

grammable branch-metric scaling. 2

Most recent simulation software has incorporated con-

stant signal-level scaling of the received symbols. Some

older simulations, apparently 3 including the VLA gapped

data simulations reported in [2] and [3], were based on

constant noise-level scaling.

The DSN's current hardware uses an automatic gain

control circuit (AGC), but the response time is far too
slow 4 to cause any fluctuation during a VLA gap. In

a VLA-Goldstone arrayed system, optimum combining

weights must be applied in order to fully utilize the SNR

of each array component. It can be shown from Eq. (20)

of [5] that the scaling produced by applying the optinmm

weights for baseband combining is equivalent to the opti-
mum scaling for a decoder using constant branch-metric

scaling, provided that the signal characteristics at the ref-

erence antenna are unchanging. This should be true if
Goldstone is the reference antenna. In a VLA stand-alone

system, the scaling will be optimum if the received data

is ignored during the gap, i.e., if all the branch metrics

during the gap are set to zero.

D. Effects of Received-Signal Scaling on Decoders

With Constant Branch-Metric Scaling

If the decoder is constrained to have constant branch-
In Eq. (6), 1/N is the rate of the convolutional code,
and (Eb/No)k is the bit-energy-to-noise ratio for the kth metric scaling, the decoder's error characteristics are very

much influenced by the received-signal scalingl Some ap-
symbol.

Two other nonoptimum received-signal seatings have

usually been assumed in software simulations of the Viterbi

decoder. Sometimes the signal level is assumed to be a

constant (+1), and sometimes the standard deviation of
the noise is assumed to be constant. These two standard

scaling assumptions can be written compactly in terms of

the parameter Pk as

rk = dk + _ (constant signal-level scaling) (7)

preciation of these differences may be gained by reanalyz-

ing the ideal gap scenario upon which tile model of [1] is

based, as exposited in [2]. If the SNR outside the gap is

infinite and the SNR inside the gap is zero, the decoder

should have perfect state information at all places outside

the gap, including the two bit times positioned at the brink

of the gap. Since the state information at the end of the

gap includes K - 1 bits that were transnfitted during the
gap, knowledge of the state at the end of the gap allows the

decoder to correctly decode K - 1 gapped bits in addition

to all the bits outside the gap. ....
or

rk = _-dk +n_ (constant noise-level scaling) (8)

C. Scaling Used in Existing Software Simulations
and DSN Hardware

Historically, most versions of the Communications
Systems Research Section's Viterbi decoder software have

2 Oliver Collins, personal communication.
3 The scaling assumed in [2] and [3] was not documented, and

this tentative conclusion can only be inferred by deciphering the
original computer code, some of which was written in assembly
language.

4 Joseph Statman, personal communication.
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However, this is not true if nonoptimum branch-metric

scaling is used. For example, consider the case of constant
branch-metric scaling combined with constant signal-level

scaling. At the leading edge of the gap, the accumulated
metrics will have all reached some distribution of steady-

state values corresponding to finite signal and zero noise

according to Eq. (7). At the very next bit time, if the
SNR drops nearly to zero, the noise component of Eq. (7)

will completely overwhelm the data component, and the
branch metrics will all be random and huge. Large ran-
dom differences in the branch metrics will wipe out any

steady-state differences in accumulated state metrics that

were built up over the entire ungapped period. Large ran-
dom branch metrics will continue to be added throughout

the gap, resulting in a state-metric distribution at the end

of the gap which is completely random and very large.
Whichever state metric is smallest at the end of the gap

is likely to be smallest by a large margin over the second

smallest metric. After the gap is finished, the noise compo-

nent of Eq. (7) returns to zero, the branch metrics revert
to their usual magnitudes and all point toward the correct

state. However, the metric differences arising from adding
these smaller branch metrics following the gap are unlikely

to be large enough to overcome the huge accumulated met-
ric difference in favor of the random state with the smallest

metric at the end of the gap. Thus, the decoded state path

will almost assuredly pass through this random state. The
best-metric state path traced backward from this random

state will find its way to another random state at the start

of the gap.

Thus, with constant signal-level scaling, the decoded

state path passes through a random state at the beginning

of the gap and another random state at the end of the gap.
The decoded bits are totally random from the beginning of

the gap to the end. Also, there are additional decoded bit

errors before the beginning of the gap along the best:metric

path from the correct state to the first random state, and

after the end of the gap along the best-metric path from
the last random state back to the correct state. Thus, the

gap is effectively widened by some number of bits on both
ends.

Now consider the case of constant branch-metric scal-

ing combined with constant noise-level scaling of the re-
ceived signal. In this ease, all the accumulated metrics at

the beginning of the gap will have reached the same rela-

tive steady-state distribution as before, but all differences

in accumulated metrics will be magnified by a scale factor

vz'fi related to the high SNR outside the gap. The branch
metrics during the gap will be just as random as before, but

their magnitudes will be small relative to the accumulated
metric differences at the beginning of the gap. At the end

of the gap, a random state will have the best metric, but
the metrics of all states will be small relative to the metric

differences that are obtained along the path portions out-

side the gap. After the end of the gap, the decoder will
eventually find the correct state and will trace the correct

state path all the way back to the trailing edge of the gap.

The branch-metric information accumulated after the gap

outweighs the random state-metric differences existing at

the end of the gap, and therefore the correct state path

may be traced all the way to the gap edge.

Constant noise-level scaling thus corresponds to the
ideal case considered originally, where the decoder knows

the correct state both at the beginning and at the end

of the gap. The random path followed between these two

states during the gap corresponds to a string of random de-
coded bits which is K-1 bits shorter than the actual length

of the gap. A similar argument reaches the same conclu-
sion for the case of optimum scaling, or, equivalently, for

arbitrary received-signal scaling combined with optimum

branch-metric scaling.

In summary, both optimum scaling and constant

noise-level scaling produce decoded error cycles that pre-

cisely match the predicted model in the extreme case of

zero SNR inside the gap and infinite SNR outside the gap.

In contrast, constant signal-level scaling does not fit the
model even in this ideal case. The simulation results in

the next section generalize these conclusions to nonideal

cases having nonzero, finite SNR levels.

IV. Decoder Error-Cycle Curves

The burst inclusion probability (BIP) was evaluated
as a function of location within a gap cycle'for the three

types of received-signal scaling defined above, assuming

that the branch-metric computations used a constant scale

factor _k = 1. As noted earlier, the case of "optimum"

scaling of the received signal is equivalent to arbitrary sig-

nal scaling combined with optimum branch-metric scaling,
so this case shows the performance of a true maximum-
likelihood decoder. The BIP was evaluated for various

combinations of SNRo and SNR1. These curves were

plotted against a background showing the effective gap
width and the constant error levels predicted by the two-

level model in [1].

Figures l(a), (b), and (c) show the error-cycle curves
for a series of cases with SNRo = 0 (the VLA stand-alone

case considered in [1]). The SNR1 values for the five curves
plotted were 1 riB, 2 dB, 3 dB, 4 dB, and +ee dB. Fig-

ure l(a) plots these five curves for optimum branch-metric

195



scaling, Figl l(b) plots the same curves assuming constant

noise-level scaling, and Fig. l(c) plots them for constant

signal-level scaling.

Figures 2(a), (b), and (c) and 3(a), (b), and (c) show
the error-cycle curves for a series of cases with SNRo 3 dB

lower than SNR1 (the VLA-Goldstone equal array case

considered in [1]). The SNR1 values for the four curves

plotted in Figs. 2(a), (b), and (c) are 1 dB, 2 dB, 3 dB,
and 4 dB. The SNRI values for the three curves plotted

in Figs. 3(a), (b), and (c) are 1.8 dB, 2 dB, and 2.2 dS.

Figures 4(a), (b), and (c) show the error-cycle curves
for a series of cases with SNRo 2 dB lower than SNR1.

The SNRI values for the four curves plotted in Figs. 4(a),

(b), and (c) are 1 dB, 2 dB, 3 dB, and 4 dB.

In each figure, dashed horizontal lines show constant

BIP levels corresponding to constant SNR levels indicated

on the right vertical axis. These are the constant BIP lev-

els predicted by the two-level model for the decoder error-

cycle curves. Dashed vertical lines on each figure show the

predicted effective beginning and end of the gap. The ef-
fective beginning equals the beginning of the actual gap,
and the effective end is K- 1 bits earlier than the ac-

tual end. If the two-level model is correct, the simulated

decoder error-cycle curves should be framed exactly by a

square wave constructed from the appropriate combination
of dashed horizontal and vertical lines.

It is seen in Figs. l(a) and (b) that the two-level model

of [1] is precisely correct 5 (as expected) for the extreme

case of zero SNR inside the gap and infinite SNR outside

the gap. When the SNR outside the gap is not infinite, the

burst inclusion probability experiences a vertical drop-off
precisely at the points predicted by the model, but this

sharp drop-off slackens before reaching the predicted error

rate outside the gaps. Thus, the effective gap length is

approximately RG - K + 1 bits as predicted by the model,

but it is widened slightly due to the "wings" that appear in

the curves of Figs. l(a) and Co). The model of [1] slightly
underestimates the decoder's errors by squarfng off these

curves and eliminating these wings. This finding is con-

sistent with the slight underestimate of decoder errors by

tile two-level model shown in Fig. A-1 of [1] for the VLA
stand-alone case.

s The slight rounding of the error-cycle curves near tile edges of

tile effective gap window occurs because, in our definition, bursts
must start and end with actual error bits. Some random bits at the

beginning or end of the effective gap which happen to be decoded

correctly are therefore not classified as being included within a
burst, even though they are random.

In contrast, the curves in Fig. l(c) show that the two-
level model of [1] significantly underestimates the effective

width of the gaps, as predicted by the arguments at the end

of the previous section. Not only is the region of maximum

error rate longer than the effective gap length RG- K + I

by about 4 to 5 bits on each side, but the drop-off from

the maximum error rate is not as sharp and the "wings"
are much wider.

Figures 2(a), (b), 3(a), (b), and 4(a), (b) show less
definitive results for the cases of nonzero SNR inside the

gap. There are clearly wings that extend the effective

length of the gaps but at greatly reduced error levels, as

in Figs. l(a) and (b). However, the burst inclusion prob-
ability inside the gap is also rounded off (as compared to

the model's prediction) and does not rise vertically to the

predicted steady-state level. Figure 5 is a replot of one of _--

tile curves of Fig. 2(a) on a linear scale. On this figu}e it -"

can be clearly seen that the model slightly overestimates
the decoder's total errors. Tile area under tile curve saved

by not quickly rising to the steady-state level inside the

gap is greater than the area lost by not quickly falling to
the steady-state level outside the gap. This finding offers

an explanation for the curves in Fig. A-2 of [1], where it

was seen that the two-level model predicted slightly worse z
performance than the simulation for the case of VLA-

Goldstone equal array (3-dB gaps).

Figures 2(c), 3(c), and 4(c) show the same types of =
tradeoffs. The error-cycle curves do not fall as sharply as _

predicted to their steady-state levels outside the gap, nor

do they rise as sharply as predicted to their steady-state =_

levels inside the gap. However, the errorycycle peaks are =
clearly several bits wider than the corresponding ones in

Figs. 2(a), (b), 3(a), (b), or 4(a), (b).

V. Conclusions

In this study the two-level model for Viterbi decoder

performance with gapped data was subjected to more-
detailed validation tests than were performed in [1]. De-

tailed curves showing the cyclical behavior of the de- ,_

coder error burst statistics were compared with the simple

square-wave cycles predicted by the model.

The simulated decoder error-cycle curves roughly ver-

ify the accuracy of the two-level model for both the case =
of optimum branch-metric scaling and the case o£cgnstant _.:
branch-metric scaling combined with constant noise-level

scaling of the received signal. Minor discrepancies between
the model and the simulation include a broadening of the

effective gap by several bits on both sides, but at a greatly

reduced error level, whenever the SNR outside the gap is

196
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not infinite, and a lowering of the gap error rate, espe-

cially near the edges, whenever the SNR inside the gap is

not zero. These compensating effects lead to a slight net
underestimate of the overall error rate by the model in the

case of a VLA stand-alone system, and a slight net over-

estimate of the error rate in the case of the VLA arrayed

equally with Goldstone. Both of these effects are small and

do not critically diminish the validity of the model.

The model is not accurate for the case of constant

branch-metric scaling combined with constant signal-level

scaling. The effective gap in this case is significantly wider

than that predicted by the model, and the error rate falls

much less rapidly than predicted outside the gap. There-

fore, it is important to avoid this combination of received-

signal scaling and branch-metric scaling both in hardware

systems and in software simulations.
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scaling, and (c) constant signal-level scaling. (PEGL = predicted effective gap length.)
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