
TDA Progress Report 42-100 February 15, 1990

N90-21897

Finding the Complete Path and Weight Enumerators
of Convolutional Codes

I. Onyszchuk 1

CommunicationsSystems Research Section

A method for obtaining the complete path enumerator T(D, L, I) of a convo-

lutional code is described. A system of algebraic equations is solved, using a new

algorithm for computing determinants, to obtain T(D, L, I) for the (7,1/2) NASA

standard code. Generating functions, derived from T(D, L, I), are used to upper
bound Viterbi decoder error rates. This technique is currently feasible for constraint

length K <;10 codes. "- -_
\ /-i _ == = -

A pract_aF,, fas--_ algorithm is presented for computing the leading nonzero

coefficients of the generating functions used to bound the performance of constraint
length K <. 20 codes. Code profiles with about 50 nonzero coefficients are obtained

with this _Igorithm for the experimental K = 15, rate I/4, code in the Galileo

mission and for the proposed K = 15, rate 1/6, P2-dB j code.

I. Introduction

Convolutional codes such as the (7,112) NASA stan-

dard have been used for satellite and deep-space commu-

nications during the past 20 years. In 1971, Viterbi [1] de-

fined generating functions for upper bounding error proba-
bilities of convolutional codes on memoryless channels. In

practice, for codes with more than eight states, these func-

tions are still unknown, so error bounds have been eval-

uated using numerical matrix multiplications [2,8], which

require extensive computations for each channel noise level.

1 Also a student in the Electrical Engineering Department, Califor-
nia Institute of Technology, Pasadena, California.

As an alternative, algorithms have also been developed to

calculate the first few coefficients (the distance and bit er-

ror profiles) of these enigmatic generating functions [4,5].
Unfortunately, lists of these numbers are bulky (see Ta-

bles 2 and 3), and the minimum number of terms required
to approximate the decoder error bounds depends upon
the code rate and channel noise level.

A code's complete path enumerator T(D,L,I) con-

tains the number of paths having identical triples: weight,

length, number of input ls. The least-magnitude pole of

the weight enumerator T(D) = T(D, 1, 1) determines the
point at which the union bounds [1] diverge, while addi-

tional poles and residues yield the dominant terms in the

203

https://ntrs.nasa.gov/search.jsp?R=19900012581 2020-03-19T23:08:40+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42823906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

partial fract[on expansion of T(D). Concise, yet very accu-

rate, analytic approximations to several generating func-
tions' coefficients may be obtained from these dominant

terms. Furthermore, the poles and residues of T(D) may
eventually help unlock the structure of convolutional codes.

By Cramer's Rule,

Xi =
det(A_a)

det(A)

The generating functions T(D) and T(D, L, I)forthe

(7,1/2) NASA standard code (among many others) were

obtained with a simple determinant algorithm described in

this article. In addition, a new algorithm is presented for

computing the initial coefficients of T(D), OT(D, L, I)/OL

and OT(D, L, I)/OI at L = I= 1. These numbers are used

to upper bound a Viterbi decoder's event, node, bit, and

symbol error rates. The techniques explained here may
be adapted, with modifications for code nonlinearity and

Euclidean instead of Hamming distances, to find weight

for i > 0, where A i is A with all column i entries ar.i
replaced by at,0 for all rows r. A code's complete path

enumerator (by weight, length, and number of input ls)

_k

T(D, L, I) = Xo = E ao,,, X, i
./=1

enumerators of trellis codes [3,5].
..... _- : z:: _ -- -

where {zjjare the 2t States_havingedges into:state 0 (so

As an example with k = 1 for simplicity, the m = 2
encoder in Fig. 1 is in state s = 2Sl +s0. The corre-

sponding state diagram in Fig. 2 leads to the equations

A [xl, x_, x_] T = [a,,o, o, 0]T:

II. The Complete Path Enumerator

A binary, rate k/n, feed-forward convolutional en-

coder is defined by kn binary generator polynomials
gij(x), each representing the transfer function from the

ith input to the jth output (x is a delay operator). Let

g__j be the vector whose rth component is the Coeffi-
cient of x r in glj(x). The encoder's memory is m =

)"_ik=l mj_x[deg gij(x)], which for rate 1/n codes is If- 1.
If the ith encoder memory cell contains si then the en-

r[Icoder is in state s = _'_i=1 si 2i-1 The encoder's state

diagram is a directed graph whose edges (corresponding

[1 0]ix11-DL 1 -DL X2 =

-DLI 0 1-DLI X3

to branches in the associated trellis diagram) have Iabels

aij = DaLI b if there is an edge from state j into slate i Now T(D, L, I) = X0 = D_LX2 = DSL3I/(1 - DLI-

while ai,j = 0 otherwise. During a transition from state DL_I), so the code's weight enumerator is
j into state i, b is the number of ones input to the en-

coder and the number of ones output by the encoder is
d n . D s

= Eh=l g_ in" [23 + (i mod 2)]2, where - is a modulo-2 T(D) -
inner product and [k]2 denotes the binary representation 1 -2D
of the integer k.

= = V,_,_ d(d_D

d=5 d=d_ree

Let X, be the trivariate generating function of all sim-
ple paths: those from state 0 into state s via nonzero states.

X0 counts a]l Simpiepaths into state 0, called fundamental

paths. Note that X, is indexed by the destination state

(s) while the source state (0) is constant. Now define __A

as the 2m- 1 by 2m- 1 adjacency matrix of the encoder

graph with state 0 and its edges removed. The entry in

row i and column j of A_. is ai,j, which is nonzero only if

there is a directed edge connecting state j to state i (they

are adjacent). Now the following set of linear equations is
constructed:

where p(d) = 2d-s is the number of weight d fundamental

paths, and dfree = 5 is the code's free distance.

T
A [XI, X2, ..., X2,__ 1] = [al,0, as.0, ..., a2m- 1,0]T

II!. Reducing an Adjacency Matrix

When k- 11 there are only 3(2 m- 1)" 2 nonzero out =

of (2 m - 1) 2 entries_n_, andthey are located in a special

pattein, since-_ is sparse if m > 3, reduction iS useful be-

fore computing the determinant. The following example,

different from the one in the previous section, illustrates

the reduction procedure. The code with generator polyno-

mials gt_(D) = I+D+D a and g12(D) = I+D+D2+D 3

204

has an adjacency matrix A__(with L = I = 1 to simplify

entries)

(13 2'--') and 13 as the resulting upper left 2m-2 by 2m-2

submatrices,

1 0 0 (D2)- 1 0 0 0

-D 2 1 0 0 -1 0 0

-1 0 1 0 -D _ 0 0

0 -D 0 (0)1 0 -D 0

0 -D 0 0 1 -D 0

0 0 -D 0 0 1 -D

0 0 -D 0 0 0 1-D

The round brackets (parentheses) above indicate values in

A2.,-_ that are different from those in A__. Since k = 1,
the determinants of only these two matrices are needed for

T(D,L,I), and this notation will lead to their simultane-
ous computation.

As in Gaussian elimination, -ar,tr/2 j times row Lr/2J
is added to rows r = 2 to 2m- 1 so that A becomes zeroed

below its main diagonal for columns 1 to 2m-1-1 :

1 0 0 (D 2) -1 0 0 0

0 1 0 (D4)-D _ -1 0 0

0 0 1 (D 2) - 1 -D 2 0 0

0 0 0 (Dh)I-D 3 -D -D 0

0 0 0 (Dh)-D 3 1-D -D 0

0 0 0 (D3)-D -D _ 1 -D

0 0 0 (D3)-D -D 3 0 1-D

Therefore, det(A__.) equals the determinant of the resulting
lower right 2m-1 by 2m-1 submatrix. To further reduce A,

row Lr/2J times -ar,2,_-l+L_/2j is added to each row r =
2m-3 to 2m-1 (4 to 5 here), so that columns 2m-1+ 2m-2

to 2m-2 (both 6 here) are zeroed above the main diagonal.
Now det(A) = det(A__.), where A-2m_,) and £ are the new

lower right 2m-1 by 2 '_-I submatrices:

"(D4+DS)I-DU-D 3 -D-D 4 0 -D 2

(D4+D s)-D2-D 3 1-D-D 4 0 -D 2

(D 3) -D -D 3 1 -D

(D z) -D -D 3 0 1-D

To zero column 2m-I of _ (above the diagonal entry

52,_-1 2,,_-1 ---- a2,,._1,2,-_ 1 _ 0), --_tr,2_-,/a2,.-12,.-I times
row 2 '_-I is added to each row r = 1 to 2m-I-1. Define

(D4+Dh-D6)I-D-D2-D3+D 4 -D+D2-D 4]
(D4+DS.-D 6) -D2-D3+D 4 1-2D+D2-D 4

I-D

This reduction method simultaneously produces two dense

2m-2 by 2m-2 matrices (B2,,-_), B with the same determi-

nants as the corresponding original sparse 2m- 1 by 2m- 1

matrices (A__.2__1), A__.

IV. A Determinant Algorithm

The following algorithm yields the determinant of any

N × N matrix B_B_having entries from a Euclidean domain,

such as the set of all polynomials with integer coefficients.
A sequence of matrices B (N), 13(1_-1), 13(N-2), ..., 13(1) is

computed with each matrix having the same determinant

(up to sign) as El. Starting with 13(N) = 13, step j in the

algorithm produces the numerator b(y-l) of each entry in
i,k

row i and column k of B0-1):

for j = N to 2 (step)

for i = j- 1 to 1 (row index)

for k = j to 1 (column index)

r(J) (J) b(J) h(i)

_i,k = b(j+U
j+lj+l

Naturally, if b(j+l)j+l,/+l -" 0 prior to step j, then any
(J+)

column k such that _j+l,_ _ 0 must first be interchanged
with column j+l. This operation negates the determinant,
so a counter t is incremented to record the event. If no

such column k exists, row j + 1 is zero, so the algorithm

is stopped and det (B) = det (B (j)) = 0. Also note that
b(N+l)
N+LN+I = 1 initially.

The following example with N = 4 illustrates the

above reduction procedure. When j = 4, after b(4)/b (4)
-- 34/ 44,

/_(4)/£(4) and b(4)lb (4) times row 4 are added to rows
--_24 /_44 _ -- 14 / 44

3, 2, and 1, respectively (corresponding to j=N=4 in the

205

algorithm), in order to zero all entries in column 4 above

b(_) ,

B (3) =

bi___) bll) bll)
b2) _i? hi?
bi_) bll) @

0
hi? hi? hi?

-- -- va--L3 0

hi? b_i) hi? hi?

Then, after the j =

h(3) lh(3) times row
--v13 1_33

B (2) =

3 step during which -b(3)/b (3) and
23 I 33

3 are added to rows 2 and 1,

b?,) bi_) 0 0

@ bll) o o

@ @ @
0

hi? b_? hi?

hi? hi? hi? hi?

Since only elementary row operations on B have been
performed, det(B__) = det(B (a)) = det(B__(z-3"). The final

step (j = 2) produces a B (1) matrix identical to B__(2) ex-

cept with b(1)/b(2)n/ 22 0 0 0 in the first row. Therefore,

clef(B__) = det(B (1)) = b_lx). This result generalizes to any

nonsingular N x N matrix B__.

Lemma. Entry b0) det(B__(')) = (-1) t det(B__),1,1

where t is the total number of column interchanges per-

formed by the algorithm in computing b0)
1,1 "

Proof. For each value ofj from N to 2, when k=j,

the algorithm makes b["i-O = 0 for all 1 < i < j - 1 so
I ,./

that all column j entries above the main diagonal become

0. Since B (_) is zero above its main diagonal, det(B_) is

the product of (-1) t and the diagonal entries in B (1).

det(B) = (-1) t det(B (_))

C
= (-1)t 1-I b(j+l)

j=l j+ld+l

206

= (--1) t b(1)1,1 •

Expanding _(j) b_!) - b(j) _(J)Ui,k "" i,j _j,k using the equation in

the algorithm shows that b (j+l)j+l,j+ 1 divides this expression so
there are never any remainders. This is expected because

the algorithm implements a recursive factorization of the
determin ant written as a sum of products of matrix entries.

The-a]gorithm-differs from standard Gaussian elimination

because the diagonal entries in the reduced matrices are

not made equal to 1. Also, after calculations with a par-
ticular value of j are completed, all entries' denominators

are previous pivot numerators.

V. Path Distance, Length, and Bit Error
Approximations

The complete path enumerator T(D, L, I) for the

m = 6, rate 1/2, NASA standard code was obtained by

using the preceding algorithm to simultaneously compute

determinants of the two 16 by 16 reduced matrices B9_-_
and _B. The 76 poles of T(D) for this code are plotted on

the complex plane (Fig. 3) along with the unit circle for

reference. Using only the six least-magnitude poles (indi-
cated by the large points in Fig. 3), an approximation to

the partial fraction expansion of T(D) is

rlT(D) _ D 1° 1--'-_dD
rl 7"2

--+ +_
1 + OtdD 1 - ob

"_ "_ _ 1
+1 + ab----"--D+ 1 -- a;D + 1 + a;DJ

= D'° _-_ [rl(ad)k + rl(--ad)k + r2(ab) k
k=O

+ r2(--_b)k-_-r;(o;)k-_-T;(--_;) k] D k

= _ [2rl(C_d)2_ + 4Re{r2(ab)2k}] D 2k+l°
j=0

where (_u = 2.3876225 is the reciprocal of the least-

magnitude pole ofT(D), ab = 1.657193e -°'9s341sj is the re-

ciprocal of the pole with next smallest magnitude, * means
complex conjugate, and j = v/Z] ". The residues are

--P(ad') --P(ab 1)
rl = and r2 :

adlQ'(a_ I) a-[1Q'(a;l)

=

-=
l

where D_°P(D)/Q(D) = T(D) and Q'(D) is the deriva-

tive of Q(D). The other poles in Fig. 3 may be ignored
because their magnitudes are greater than 0.8, and the

corresponding residues have magnitudes less than 0.07.

Define p(d), i(d), and t(d) as the coefficients of D a in

T(D), OT(D, L, I)/OL, and OT(D, L, I)/OL, respectively,

at L = I = 1 (these generating functions are shown in

the Appendix). The number of fundamental paths hav-

ing weight 2k + 10 is

p(2k+ 10) _ 6.82(2.3876225) _

+ 4.25(1.657193)2kcos (0.310 - 1.967k)

Similarly, the terms corresponding to the six least-

magnitude poles of T(D) in the partial fraction expan-

sions of OT(D, L, I)/OL and OT(D, L, 1)/01 at L = I = 1

were used to obtain the approximations

e(2k+ 10) _ (77.725 +22.625k)(2.3876225) 2k

+39.3(1.657193)2kcos (0.485 - 1.967k)

+(2k+l)7.2676(1.657193)_cos (0.383 - 1.967k)

i(2k+ 10) _ (24.474 +12.018k)(2.3876225) 2k

+9.942(1.657193)2_cos (0.575- 1.967k)

+(2k+l)2.8723(1.657193)2kcos (0.366 - 1.967k)

which have a relative error < 02001 for k > 4.

A rate 1/n viterbi dec0der's bit error rate (BER) on

a binary-input, output-symmetric [2], discrete memoryless

channel is bounded by

oo

BER < _ i(d)Pe
d=d_r_e

where Pd is the probability that the decoder outputs a fun-

damental path having distance d from the one transmitted.
The probability that a b-bit symbol is decoded incorrectly

is bounded by [9]

SERb J

oo

[[b- 1- .qp(d) + e(d)]
d=dtree

For the additive white Gaussian noise (AWGN) channel

with bit signal-to-noise ratio Eb/No,

Pd = Q(x/2dREb/No)

where Q(x) is the Gaussian integral function [2, p. 62]. On
a binary symmetric channel with crossover probability p,

P_,=P2i-, = 2_2_]e=i(2i : 1)p'(1- p):,-1-e < (2i-i l/p,)

[6]. For decoders using integer metrics, as for example on

a binary-input, output-quantized AWGN channel, Pd can

also be computed exactly [2, p. 291].

VI. Algorithms for Profiles of Convolutional
Codes

Finding the complete path enumerator of codes with

memory greater than 8 currently seems infeasible. In these

cases, an algorithm for distance profiles [4,5] may be used

to calculate the first few nonzero coefficients of the gen-

erating functions used for error bounds. However, these

methods are fairly complex and some require extra compu-

tation to ensure that the output is correct. In this section,

Viterbi's algorithm, with survivors replaced by vectors of

integers that count paths, lengths, or bits, is applied on

a noiseless channel to compute p(d),£(d), and b(d) values.
Rate 1/n codes are treated first to simplify the discus-

sion. Define out0[s] and outt[s] as the number of ones

that the encoder outputs going from state sO = [s/2J and

sl = sO + 2m-1 into state s. Analogous to a state met-
ric, the entry in row s > 0 and column 0 of a matrix W,

referred to as W[s][0], will contain the least weight of any

simple path with length < T trellis branches. For t = i

to coeffs (a parameter described later), W[s][t] will be the

number of simple paths of weight W[s][O]+ t - 1 and length
< T branches into state s > 0. For state 0, W[0][t] is

ahvays kept at 0, except W[0][1] = 1. The entries in a
second matrix B count either the total number of ones

input to the encoder (when the variable len = 0) or the to-

tal length in trellis branches (when len = 1), of all simple

paths having length < T (again B[O][t] = 0 always). These
matrices are obtained for successive values of T starting

with 1 by extending, one branch length at a time (an al-

gorithm 'step'), the code trellis starting from state 0 only.

Thus the longest pathlength (T) explored by the algorithm
equals the number of 'steps' executed. The algorithm ter-

minates after step T* when W has reached values that

will never change, which also forces B to remain constant.

207

Then since W[s][0] is the least weight of any simple path

into state s > 0, arr_ = W[2m-1][0] + outl[0]. Also,

w[2m-1][d-dfree + l] = p(d)

B[2m-l][d-dfree+l] = b(d) (£(d) iflen = I)

for d = drree to dfree + coeffs - 1.

Two versions of the basic algorithm above are pre-

sented in C language format in Algorithm 1 and Table 1.

In Algorithm 1, matrices P and A store previous W and

B entries corresponding to simple paths of length < T,
which are used to compute new W and B matrices for

length < T+ 1 simple paths. When change remains 0 af-
ter step T °, W (and thus B) will never change because

W[s][t]=P[s][t] for all s and t. P[s][0] is initialized to 999

for s > 0, P[0][1] = 1, and all other array values are ini-

tialized to 0. If any second array index t + offset is < 0 in

the W[s][t] and B[s][t] instructions, the array referenced is
simply ignored.

The algorithm requires storage for 2m+l(coeffs + 2)
integers and the amount of work per step is proportional

to tii[s number: The number of steps executed, T*. equals

the length, in trellis branches, of the longest fundamental

path(s) having weight dfree + coeffs ± i_ The parameter

coeffs should be set equal to [lOn/k] because using this

many nonzero terms in the union bounds gives results with
three significant digits of precision when the bounds are

tight enough to be useful.

Setting coeffs = 0 and ignoring offset0, offsetl, A,

and B yields a simple and fast algorithm for finding drree-

About 2m+l bytes of storage and 2.1 CPU seconds (on

a computer executing 12 million instructions per second)
were required to obtain dfree for the m = 14 Galileo and
"2-dB" codes.

For rate kin codes with k > 1, a state s is parti-

tioned into sl, s2,... ,sk where si corresponds to the con-

tents of the ith encoder shift register. The output weight

as the eneoder enters state s is outj[s] and the input is

j E [0... 2 _- 1]. New W[s][t] and B[s][t] values are com-

puted using at most 2k entries from each of the P and A
matrices.

For codes with 2 k << 2m (such as rate 1In with

m > 3), Algorithm 1 may be improved by looping through

groups of 2k states calledbutterflies (see Fig. 4) inStead

of individual states and by computing W[s][t] and B[s][t]

in place [7]. This reduces the storage memory required by :-

almost one-half because the "double-buffering" matrices P

and A are eliminated. If the entire vector W[2 m- 1] remains __-
the same for m consecutive steps, it will never change be-
cause there is a trellis path of length < m branches between

any two states. The algorithm shown in Table 1, which

incorporates these improvements, produced the first 10n
nonzero coeffs in the profiles of two K = 15 codes: the =

rate 1/4 Galileo code (Table 2) and the proposed "2-dB", =
rate 1/6 code (Table 3). These profiles took only a few

minutes of CPU to generate and required storage of 7 and
8.5 Mbytes, respectivelyl when 4 bytes were used for each :

integer. These memory requirements could be further re-

duced by storing each integer in the smallest number of -

bytes needed (1 for W[s][0] to W[s][15] in the If = 15 codes

above).

Algorithm 1. A simple profile algorithm

2

do {
for (_= I to 2m-l) {

s0 = Ls/2J; sl = s0+2_-_;

bit = len + (1-1en) * (s rood 2) ;
W[s][O] = rain (P[sO][O] + out0[s], P[sl][O] + out0[s]);

offset0 = W[s][0] - P[s0][0] - out0 [sl;

offset 1 = W[s][O] - P[sl][0] - out0 is];

for (t = 1 to coeffs) {

W[s][t] = P[sO][t + offsetO] + P[sl][t + offsetl];
B[,][t] = A[_0]k+ ofr_t0] +

A[sl][t + offset1] + bit * W[s][t]; }
} change = O; __

for (s= 1 to 2 m-l)

for (t = 0 to coeffs)
if (P[s][t] # Win]it]) { change = 1; =

P[sl[t] = W[s][t]; S[sl[t] = A[s][t]; }

} while (change # 0);

=

208

References

[1] A. J. Viterbi, "Convolutional Codes and their Performance in Communication

Systems," IEEE Trans. Comm., COM-19, pp. 751-772, October 1971.

[2] A.J. Viterbi and J.K. Omura, Principles of Digital Communication and Coding.
New York: McGraw-Hill, 1979.

[3] E. Zehavi and J.K. Wolf, "On the Performance Evaluation of Trellis Codes,"

IEEE Trans. Info. Theory, vol. IT-33, pp. 196-202, March 1987.

[4] L. Chevillat and R. Johannesson, "A Fast Algorithm for Finding tile Distance

Spectrum of Convolutional Codes," IEEE Trans. Info. Theory, to appear.

[5] M. Rouanne and D.J. Costello, Jr., "An Algorithm for Computing the Distance
Spectrum of Trellis Codes," IEEE Jour_a-I on Selected Areas of Comm., vol.

SAC-21, August 1989.

[6] L. Van de Meeburg, "A Tightened Upper Bound on the Error Probability

of Binary Convolutional Codes with Viterbi Decoding," IEEE Trans. Info.

Theory, vol. IT-20, pp. 389-391, May 1974.

[7] C. M. Rader, "Memory Management in a Viterbi Decoder," IEEE Trans.

Comm., COM-29, pp. 1399-1401, September 1981.

[8] P. J. Lee, "A Very Efficient Transfer Function Bounding Technique on Bit

Error Rate for Viterbi Decoded, Rate I/N Convolutional Codes," TDA Progress
Report 4_-79, vol. July-September, pp. 114-123, November 15, 1984.

[9] R. J. McEliece and I. M. Onyszchuk, "A Symbol Error Upper Bound for Con-
volutional Codes," Proe. 27th Allerton Conf., Monticello, Illinois, September

26-29, 1989.

209

Table 1. A protile algorithm for rate 1/n codes

k=O; stop = 0;

do {
for (t = 0 to coeffs)

{ temp[t] = w[2"-_-k[t]i B[6][t] - W[o][t]= 0i)
w [0][1]= 1;
for (s -- 0 to 2 m-l-l) {

sO = s >> k; (cyclically)
sl -_- sO + 2 m-l-k

twO[O]= rain (W[,O][O]+ out0[2*],W[sl][O]+ out][2,]);
twl[0] = rain (Wis0][0] + OUtl[2S+l], Wisll[0] + out0[2s+l]);

off_¢too= two[o] Wiso][o]- outo[2,];
offsetO1 = twO[O]- W[sl][O] - outl [2s]; "

offsetlo = twl[o]- W[*o][0l- o_,t_[2.+1i;
offset11= tw1[o] - W[_l][o] - o_,to[2s+1];
for (t = 1 to coeffs) {

two[t] = w[so][t + offset0O]+ W[sl][t + offsetlO];
twl[t] = W[,o][t + offseaO]+ W[sl][t + offseal];
tbO[t] = B[sO][t + offset00] + B[sl][t + offsetl0] + len * tw0[t];

tbl[t] = B[sO][t + offset10] + B[sl][t + offsetll] + twl[t];

)
for (t = 0 to coeffs) {

W[sO][t] = twO[t]; W[sl]tt] = twi[t];

B[_0][t]= t_[t]; B[sx][tl = tbi[t]; }
k= k+l; if (k---m)k=0; change=l;

if (W[2"-l-k][coeffs] > 0) change = 0;
for (t = 0 to coeffs)

if (w[2m-l-k][t] # temp[t]) change = 1;

if (change = 1) stop = 0;

if (change = 0 and stop < m-l) {change = 1; stop++; }

) while (change # 0);

210

Table2.Galileocodeprofiles

Distance Fundamental Bit errors Total

d paths p(d) i(d) lengths _(d)

35 2 6 7

36 1 2 5

37 4 16 22

38 2 8 12

39 3 II 17

40 5 20 28

41 6 24 46

42 17 76 122

43 24 126 214

44 29 180 285

45 39 255 438

46 66 416 721

47 94 628 1071
48 121 850 1478

49 175 1313 2260
50 277 2086 3643

51 415 3361 5855

52 639 5304 9388

53 934 8010 14161

54 1273 11452 20271

55 1906 17550 31381

56 2878 27332 49172

57 4054 39750 71705

58 5978 60788 109808

59 8864 92738 167861

60 12966 139556 253134

61 18984 210112 383008

62 27949 317798 581467

63 41092 479512 878975

64 60126 720858 1323152

65 87799 1080933 1987235

66 128712 1622990 2992979

67 189880 2451782 4530508
68 278589 3682496 6817868

69 408780 5534126 10261968

70 598271 8283100 15386816

71 875283 12380669 23050515

72 1286052 18596544 34662286

73 1888299 27885609 52045238

74 2768375 41727376 78013493

75 4057688 62421220 116865844

76 5953416 93419654 175122289

77 8732134 139709066 262220198
78 12809968 208928290 392628663

79 18786484 312181796 587384902

80 27548175 466271448 878292728

81 40412499 696477455 1313354906

82 59269748 1039725314 1962719710

Table 3. Rate 1/6 "2-dB" code profiles

Distance Fundamental Bit errors Total

d paths V(d) i(d) lengths t(d)

56,57 1,5 2,15 3,19

58,60 1,3 2,12 2,14

61,62 5,12 25,56 35,84

63,64 11,5 43,24 67,40

65,66 8,11 44,62 68,95

67,68 8,11 48,62 76,98
69 27 167 267

70 30 162 277

71 36 216 363

72 54 366 573

73 74 464 785
74 89 610 998

75 94 670 11 O4
76 126 912 1524

77 163 1209 2022

78 226 1676 2814
79 290 2236 3785

80 369 2920 4993

81 493 4051 6846

82 574 4780 8168

83 767 6571 11236

84 979 8562 14687

85 1182 10474 18250

86 1574 14282 24860

87 1996 18516 32193

88 2618 24594 43183

89 3407 32955 57577

90 4238. 41914 73499

91 5353 53757 94399

92 7006 71430 126401

93 8932 92712 164631

94 11418 120946 214330

95 14401 155175 275986

96 18467 202902 361135

97 24039 268439 479664
98 30325 344146 616671

99 38662 446878 800288

100 49690 583672 1048171

101 63930 762130 1371587

102 81742 990268 1785532

103 103839 1278325 2308219

104 133335 1666564 3012971

105 170357 2159215 3912282

106 217467 2801764 5081111

107 278512 3640320 6613934

108 356223 4721974 8592622

109 456347 6135943 11180051

110 583546 7956498 14517787

111 746528 10327464 18861798

112 954389 13376948 24468075
113 1220261 17333391 31748900

114 1562164 22493842 41242505
115 1997088 29126250 53477032

211

Fig.1.Arate112,4'stateencoder.

DATA

STA_

DL

X2 X 1

DLI

Fig. 2. State diagram of the encoder In Fig. 1.

212

• • / ee°

o • •

Fig. 3. Poles of T(D) for the (7,1/2) NASA code.

STATE

out0[2s]

W [s0] _,_ • _,,_ tW0 [t]

W |sll twl [tl

r-rrrl rrF1

Rg. 4. A rate 1/n code butterfly (number e).

z

E

Appendix

Generating Functions for the (7,1/2) NASA Code

Using the determinant algorithm in section IV, the complete path enumerator T(D, L, I) for the m = 6, rate 1/2

NASA code was found to contain 1529 numerator and 2799 denominator trivariate terms. The code's weight enumerator,

T(D) = T(D, 1, 1), is

lID Io _6D 12 -25D TM +D 16 +93D Is -15D 2o -176D 22 -76D 24 +243D 26 ÷417D 2s -228D 3o -I156D 32 -49D 34

+2795D 36 +611D 3s -5841D 4° -I094D 42 +9575D 44 +I097D 46 -II900D 48 -678D s° +11218D 52 +235D 54 -8068D s6

-18D 5s +4429D 6o -20D 62 -1838D 64 +8D 66 +562D 6s _D 7o _I2OD 72 +I6D 76 _D so

1 -4D 2 -6D 4 -30D 6 +40D s +85D I° -81D 12 -345D 14+262D Is +844D 18-403D 2° -16OLD 22 +267D 24 +2509D 26

+389D 28-3064D 3° -2751D 32+2807D 34 +8344D 36-1960D 38-16133D 4°+l184D 4: +21746D 44-782D 46-21403D 48

+561D 5° +15763D 52-331D $4-8766D 56 +I31D ss +3662D 6°-30D 62 -I123D 64 +3D 66 +240D 6s -32D 72 +2D 76

= liD 1° + 38D 12 + 193D 14 + 1331D 16 + 7275D is +40406D 2° +...

The other two generating functions used to compute error bounds, OT(D, L, I)/OL and OT(D, L, I)/OI at L= I= 1,

both have denominators equal to the square of T(D)'s denominator above. Their numerators are, respectively,

121D lo -387D 1_ -706D 14 +1460D 16 +3970D 18 -6157D _o -11643D _2 +8725D 24 +28677D _6 +12195D 2s

+88D 3o -170654D 3_ -306124D 34 +817895D 36 +1637616D as -2879440D 4° -6106837D 42 +8568521D 44 +18636083D 46

-22431469D 4s -48921504D _° +52678351D s2 +113105887D s4 -112260733D s6 -232580537D 5s +217337170D _°
+426400859D 62 -379787502D 64 -696667758D 66 +592954735D _s +1013294336D 7° -815739185D 72 - 1311124721D 74

+968225450D 76 +1509511967D 7s -955561827D 8° -1548537967D s2 +721812022D s4 +1419185285D s6 -302418615D ss

-1166004400D 9° -173248817D 9_ +861869027D 94 +545751792D _6 -574515412D 9s -713158178D 1°° +345328990D _°_

+676371119D _°4 -186475599D 1°_ -515274530D _°s +89761092D tl° +326707300D x_ -38067910D _4 -174942675D _

+14010022D xls +79516060D _° -4391424D _ -30654965D 1_4 +1145504D x:_ +9969013D _s -241287D _3°

-2706667D 132 +39344D TM +603670D _z_ _4651D _3s _107908D x40 +354D x42 +14883D _44 -13D _4_ _1488D _4s

+96D _ _3D 1_

and

36D _o -77D _2 -140D _4 +813D _6 +269D _ -4414D _° +321D 2_ +14884D _4 -5273D _6 -40509D _s +39344D 3°

+83884D 32 - 177469D 34- III029D s6 +608702D 3s -29527D 4° - 1820723D 42 +817086D 44 +4951082D 46 -3436675D 4s

-12279246D _° +I0300306D s2 +27735007D _4 - 25648025D _6 -56773811D _s +55659125D 6° +I04376199D 62

-I066(_5512D 64 -170819460D _6 +180836818D 6s +247565043D 7° -270555690D 7_ -317381295D 74 +356994415D 76

+360595622D 7s -415401723D s° -364292177D s2 +426295756D s4 +328382391D s6 -385686727D 88 -264812337D 9°

+307287819D 92 +191225378D 94 -215144035D 96 -123515898D 9s +131946573D 1°° +71124860D _°2 -70570661D _°4

-36310569D I°6 +32722089D 1°_ +16308558D i_° -13052172D H2 -6380604D _4 +4433332D _16 +2147565D i_s

-1265046D _2° -612040D _22 +297721D TM +144665D _6 -56305D _2s -27569D _o +8232D _3_ +4066D TM -874D _36

-435D _3s+60D _o +30D 14_ _2D _4__D146

213

