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ABSTRACT

When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale
coherent structure develops and grows in amplitude as it propagates downstream. The
structure eventually rolls up into vortices at some downstream location. We approximate
the “wavy flow” associated with the roll-up of a coherent structure by a parallel mean flow
and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape
are given by classical (primary) stability theory. The periodic wave acts as a parametric
excitation in the differential equations governing the secondary instability of a subhar-

monic disturbance.

The (resonant) conditions for which the periodic flow can strongly destabilize a sub-
harmonic disturbance are derived. When the resonant conditions are met, the periodic
wave plays a catalytic role to enhance the growth rate of the subharmonic. The stabil-
ity characteristics of the subharmonic disturbance, as a function of jet Mach number, jet
heating, mode number and the amplitude of the periodic wa{'e, are studied via a secondary
instability analysis using two independent but complementary methods : (1) method of
multiple scales and (ii) normal mode analysis. We found, that the growth fates of the
subharmonic waves with azimuthal numbers 8 = 0 and § = 1 are enhanced strongly,
but comparably, when the amplitude of the periodic wave is increased. Furthermore,
compressibility at subsonic Mach numbers has a moderate stabilizing influence on the
subharmonic instability modes. Heating suppresses moderately the subharmonic growth
rate of an axisymmetric mode, and it reduces more significantly the corresponding growth

rate for the first spinning mode (i.e, 8 = 1). Our calculations also indicate that while the
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presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic

instability modes, it minimally distorts the mode shapes of the subharmonic waves.
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Chapter 1

INTRODUCTION

1.1 Motivation & Technical Importance

It is now generally accepted that large-scale coherent structures, in addition to
fine-scale chaotic motions, exist within all turbulent free shear flows. Free shear flows —
such as mixing layers, wakes and jets — are a class of flows characterized by the existence
of an inflection point in the streamwise base velocity profile. For compressible flows, the
classical inflection point is replaced by a generalized inflection point which is determined
by the cross-space derivatives of the base velocity and density. These free shear flows
are highly unstable. Small perturbations of suitable frequencies (or wavenumbers) in the
flow will grow rapidly through the so-called Kelvin-Helmholtz instability mechanism. The
instability waves will evolve into a finite amplitude disturbance which is characterized by
streamwise-periodic regions of concentrated vorticity — the so called Kelvin cat’s eyes.
Although the precise mechanisms of the spreading of turbulent flows are presently still
under study, it is generally accepted that the coherent structures play a considerable role
in the dynamics of turbulent flows; the relative importance of the large and fine scale
structures is still not understood all that well and the effect of the latter on the former

has not been quantified experimentally with any degree of precision.

Distinguishable evidence of these wave-like coherent structures in fully turbulent sub-

sonic (unheated) round jets is convincingly displayed in the schlieren photographs of Ahuja



17

et al. (1982). They concluded that these large-scale structures, whose dimension is com-
parable to the shear layer thickness, play an important role in controlling the dynamics
of turbulent flows. For example, when they excited a jet by an upstream acoustic signal
at a strouhal number, S, = F,; D; / U; =05 (F; is the excitation frequency, D; is the jet
diameter, and U is the jet velocity), the jet plume was widened considerably. By using a
photographic enhancement process, the large-scale vortices were clearly identified at some
distance downstream. Further, they found that if the excitation frequency was doubled,
a different instability mode was excited, the size of the coherent structure was reduced
and the spacing between successive structures was halved. These results confirmed the
sensitivity of the naturally existing large-scale turbulence structure to the frequency of the
imposed disturbance. The adjacent vortical structures may amalgamate at various degrees
of regularity as they convect downstream, thereby generating larger vortices. This pairing
of vortices can be seen from Figure 1 of Wille’s (1963) work. When he injected smoke into
the wall boundary layer of a circular jet nozzle, the smoke rolled up into rings of vortices

and proceeded to pair with their neighbors farther downstream. The coalescence of the

large scale structures was also demonstrated by Winant and Browand ( 1974). By injecting
a filament of dye into a shear layer, they found that the dye rolled up into discrete two-
dimensional (vortical) structures; farther downstream, they observed that two adjoining
structures interact to form a single, larger vortex. Together with Laufer, Kaplan & éhu
(1973), they conjectured that the sequential mergings of these structures is a possible

mechanism for the mixing and spreading of all free shear flows.

Over the years, experiments have established that external excitations can produce
changes in large scale and small scale motions in jet flows, although the effect of these on
the the radiated noise field is not entirely clear. Ffowcs Williams and Kempton (1978)

found that the increase in jet noise, due to excitation, is a direct consequence of the
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amplified large-scale structures, while the fine-scale chaotic turbulence plays a relatively
minor role in the noise generation mechanism. On the other hand, Morris and Tam (1977)
argued that, although the large-scale structures are responsible for producing considerable
changes in the fine-scale turbulence, the actual noise generation mechanism is a result of
the latter. They provided two explanations. First, since the phase speed of an excited
large-scale instability wave is subsonic relative to the ambient fluid, the large scale struc-
tures are inefficient in directly generating the sound waves. Secondly, if the noise increase
is directly caused by the large-scale structures, there would be a distinct frequency band
centered around the frequency of an excited, most amplified, instability wave. Instead,
jet-noise is broad-band. Nevertheless, irrespective of the mechanism through which noise
is produced, the large-scale structures play an important part in the noise generation and

the dynamics of turbulent shear flows.

A distinguishing feature of coherent structures is that they are relatively permanent
entities — in the sense that they persist for long times and distances — which co-exist with
the seemingly completely random turbulent scales. This is in contrast to the completely
chaotic small-scale motions which quickly lose their identities. This perseverance of the
large scale structures offers a hope that one can manipulate the development of turbulent
flows by modifying the evolution of the large scale structures, especially in the initial re-
gion of jets and mixing layers. There is now considerable experimental evidence that the
large-scale structures, and hence, the global features of turbulent flows can be organized by
artificial excitation such as oscillating flaps, vibrating ribbons and acoustic devices (Wyg-
nanski and Petersen 1987). By externally exciting a jet with a loud speaker upstream c'>f
the jet nozzle, Ahuja et al. found that not only did the radiated sound increase, but the
strength and regularity of the coherent structures were augmented. Ahuja et al. (1982)

presented a series of measurements for subsonic jets excited at different frequencies. They



19

have concluded that higher Mach number unheated jets require higher excitation levels
to produce noticeable changes in both large-scale turbulence and small-scale turbulence
intensities. One of the objectives of this research is to investigate one mechanism (i.e., a

secondary instability theory) that might explain this experimental observation.

The effect of excitation levels on jet mean flow velocity and turbulence intensities were
demonstrated by Ahuja et al.. They found that when the excitation level was increased,
there was a rapid decay of the mean-velocity with downstream distance. Petersen has
shown that the mean velocity profile and the spreading rate of a turbulent, axisymmetric,
unheated low speed jet can be altered by introducing a controlled acoustic excitation.
This observation is important because the increase of jet spreading and the decrease of
the mean velocity impinging on the flaps of a short takeoff and landing aircraft with an
under-the-wing or over-the-wing externally blown flap system can lead to a reduction of
flap loads and, therefore, a decrease in structural fatigue problems. By decreasing the
aerodynamic and thermal loads impinging on the ground through increased mixing and
spreading rates, the ground effects for vertical and short takeoff and landing aircraft can

similarly be reduced.

Stone & Mckinzie (1984) concluded that “control of flows by intentional excitation of
natural flow instabilities involves new and largely unexplored phenomena and offers con-
siderable potential for improving component performance.” They stressed that deliberate
acoustic excitation — which circumvents the use of intrusive methods such as suction
and blowing — of these coherent structures offers a promising new means of controlling
turbulent shear flows. Most importantly, they (see also, Ahuja et al. 1986) have also
emphasized the fact that, to date, most research work has been centered around unheated

jet flows, usually at low speed. Therefore, future research work should be directed towards
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the understanding and control of coherent structures in heated high speed jets.

Control of turbulent flows via coherent structures has obvious technological significance
for application to a considerable number of engineering devices that depend on mixing such
as ejectors, internal mixers, combustors, jets engines and high lift devices, to name a few.
One of the main culprits of poor ejector performance is an incomplete mixing; therefore,
ejector performance may be improved by enhanced mixing. Enhanced mixing in internal
mixer nozzles can increase thrust, improve fuel economy, and reduce engine noise. An
increase in fuel/air mixing in combustors can lead not only to shorter combustors, but
also to improved pollution control. In supersonic jet engines, the interaction of large scale
structures with shocks is the source of shock noise (Tam & Jackson 1983); by exciting the
jet shear layer with a high frequency, the formation of coherent structures will occur at a

smaller scale, thereby reducing the intensity of the radiated jet noise.

Having established the practical importance of manipulating the downstream develop-
ment of a jet shear layer via controlling the evolution of large-scale structures, we theorize
that the effect of manipulating these large-scale structures (or synonymously, instability
waves) may be predicted and understood without resorting to the usual empirical require-
ment for the description of the fine-scale turbulence (see also, Gaster, Kit & Wygnanski
1983). To reinforce this point, the traditional approach to turbulent flows has been known
to be more successful in describing existing data rather than predicting new insights.
Therefore, the goal of this research is to understand, at least in qualitative terms, how
certain characteristics of heated and compressible jets — such as spreading rate — can be
altered by external excitation without relying on the empirical modeling of the fine-grain
turbulence. We will do this by a systematic examination of the stability and resonances

of the coherent structures (assuming that they are instability waves) of subsonic heated
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Jjets.

1.2 Historical Background

When a flow passes through a nozzle, the boundary-layer near the inlet duct at the
jet exit quickly evolves into a free shear layer (see Figure 1) which separates the poten-
tial core from the unperturbed ambient. When this shear layer is excited by a wave-like
disturbance of suitable frequency, an instability wave develops in the flow. In the initial
stages of development, where the disturbance amplitude is still small compared to the
jet exit velocity, this wave grows in amplitude as it propagates downstream. The charac-
teristics of this instability mode is described well by linear stability theory (Michalke &
Hermann 1982, Petersen & Samet 1988). Farther downstream, where the amplitude of
the disturbance is of appreciable size, say a small percentage of the mean flow, nonlinear
effects become important, and the wave (or coherent structure) reaches a finite-amplitude
saturation. An important objective of this work to understand and to promote the (reso-
nance) conditions under which this instability wave can destabilize a subharmonic mode.
Physically, this is important since a subharmonic disturbance can generate vortex pairing;

this pairing is, at least partially, responsible for jet spreading and mixing.

The existence of large-scale instability waves has now been acknowledged by an over-
whelming number of observations; an extensive review of coherent structures in excited
shear flows is given by Wygnanski & Petersen (1987). Crow and Champagne (1971) pro-
vided the first comprehensive work on the response of a circular incompressible unheated
jet to a controlled axisymmetric excitation of a certain amplitude-and frequency. By
fx;é;a;éuring the velocxt&huct;at;&s along the jet axis, they found a “preferred” mode at

which an excited instability wave reached a maximum amplitude. This preferred mode
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has a frequency of f, = 0.3U; /D* where U} is the jet exit speed, and D" is the diameter.
They concluded that this mode is an instability wave most capable of reaching a large
amplitude before saturating. The significance of this preferred mode lies in the fact that
it is the most dominant and frequently occurring of all large scale structures at the end
of the potential core. Michalke (1971) determined that the measured phase velocity of
the coherent structure, found by Crow & Champagne, agreed reasonably well with that
obtained from a linear stability theory based on a turbulent mean flow. By using phase
locked measurements of controlled excitations in an axisymmetric cold jet, Petersen &
Samet (1988) concluded that the preferred mode is, in fact, a Rayleigh instability mode,
provided that the stability analysis is based on the local shear la'yer thickness and the
measured mean velocity profiles. As a result of this finding, they concluded that the
preferred mode in, both excited and naturally occurring, jets is a shear layer instability
mode rather than a global instability mode involving the entire jet column. This lends
considerable credibility to the use of stability theory to understand the nature and the
evolution of the quasi-deterministic large scale motions associated with the appearance of
coherent structures in both unexcited and excited jets (see also Gaster, Kit & Wygnanski

1985).

There have recently been a number of theoretical works on the inviscid stability charac-
teristics of axisymmetric jets, although studies of either compressible or heated jets remain
scarce. Batchelor & Gill (1962) pioneered a theoretical analysis on the inviscid stability
characteristics of a top hat velocity profile which characterizes the mean flow close to the
jet exit. They found that the top hat velocity profile is unstable to a small disturbance for
all axial and azimuthal wavenumbers. Their analysis is supported by Plaschko (1979) and
Cohen (1986). Stability theory has now been successfully extended in various ways and

applied for jets at near ambient temperatures and at low jet Mach numbers (for example,
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Cohen 1986).

The stability characteristics for hot jets, which are of technological interest, have re-
ceived relatively little attention. Michalke (1971) and Michalke & Hermann (1982) are
among the few who investigated the stability characteristics of subsonic heated jets by
the linear, inviscid and parallel flow stability theory. They found that the local growth
rate of spatially growing waves increases as the total temperature of the jet is increased.
This means that for heated jets there is a more unstable coherent structure, resulting in
the widening of the mean jet velocity profile. Recently, Sohn (1986) found that cold jets
are convectively unstable, whereas hot jets with an exit temperature 1.5 times the ambi-
ent temperature are absolutely unstable. By using a “quasi-linear” model, Ahuja et. al.
(1982) concluded that the small-scale turbulence, which is induced by the passage of ex-
cited large-scale structures, is responsible for the jet spreading and mixing for both heated
and unheated jets. Their theoretical and experimental studies have shown that both jet
noise amplification and jet mixing decrease as the Mach number increases. The effect
of heating is predicted to increase the turbulence intensity and to widen the jet width.
They pointed out that their theoretical results fof the heating effect on jets are inconsistent
with limited experimental data and, therefore, are inconclusive. The “quasi-linear model,”
which requires empirical constants and certain turbulence closure assumptions, provides
little physics governing the role of coherent structures in turbulent jet flows. Hence, the
mystery and intricacies of coherent structures in heated jets have yet to be systematically

unravelled.

Over the past few years, it has been established that linear inviscid stability theory can
predict with surprising accuracy the phase velocity and the passage frequency of coher-

ent structures, as well as the lateral distribution of the perturbations in excited jets (e.g.,
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Crighton & Gaster 1976, Plaschko 1979, Strange & Crighton 1983). The convincing agree-
ment obtained by Gaster, Kit & Wygnanski (1985) between experimental data and the
linear inviscid stability theory for slowly diverging shear layers reconfirmed the preceding
remark. Consequently, coherent structures can be viewed as (inviscid) instability waves
of the mean flow, and fine-grain turbulence }Slays a passive role in the development of the
coherent structures. They stressed that from the theoretical point of view, the large-scale
structures offered a hope that certain characteristics — such as mixing enhancement and
suppression — may be predicted and understood without resorting to the empirical re-

quirement for the description of the fine-grain turbulence.

Although the linear parallel flow instability theory can describe accurately the local
stability characteristics of the initial stages of the development of a large-scale instability
wave, it is unable to predict the overall streamwise amplification of the disturbance. By
retaining weakly nonparallel terms and using the method of multiple scales, Crighton &
Gaster (1976) gained substantial improvement in the total streamwise growth, although
there still exists discrepancies between their numerical results and experimental data. Pe-
tersen & Wygnanski (1987) attributed these differences to the neglect of the nonlinear

terms in a linear analysis. .

Another deficiency of linear (parallel flow) theory is that it is unable to predict the
growth rate of a subharmonic disturbance in a periodic base flow. In the case of a planar
mixing layer, this growth rate was first calculated by Kelly (1967) through the so-called
linear secondary stability analysis. His temporal analysis predicted that a periodic funda-
mental component superimposed on a parallel mean flow destabilizes a subharmonic dis-
turbance whose phase velocity matches that of the fundamental. Purely numerical work

on the instability of a periodic flow has been carried out by Pierrehumbert and Widnall
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(1982) who studied the linear (temporal) secondary instability of a row of Stuart vortices.
Their results are in reasonable agreement with Kelly’s analysis. Cohen (1986) extended
Kelly’s analysis to spatially growing waves in a planar mixing layer. While Kelly decoupled
the predominant fundamental wave from the growth of the subharmonic, Cohen consid-
ered the exchange of energy between a fundamental disturbance and its subharmonic as
both waves propagate downstream. Additionally, Cohen established subharmonic and az-
imuthal resonance conditions in low speed and unheated jets. In particular, he has shown
that the nonlinear interaction between two azimuthal modes can produce a third mode
which is initially absent in the flow. His theoretical results are in close agreement with
his experimental studies. More recently, Monkewitz (1988) generalized Kelly’s analysis
and examined vortex pairing in more detail in incompressible mixing layers. By incorpo-
rating explicitly the weakly nonlinear interaction terms between two instability modes in
his method of multiple scales analysis, he found that the development of the subharmonic
depends crucially on its phase relation with the fundamental. He has also shown that a
critical threshold fundamental amplitude is required for the subharmonic to become phase
locked with the fundamental; this presence of the fundamental leads to an enhancement

of a subharmonic growth rate.

It is perhaps appropriate at this point to mention briefly that the linear secondary
stability mechanism is also important in the studies of the laminar-turbulent transition
in walled-bounded boundary layer flows. By investigating the temporal instability of 3-D
disturbances in a spatially periodic base flow consisting of a Blasius velocity profile and a fi-
nite amplitude 2-D Tollmien-Schlichting wave, Herbert (1984) found that the subharmonic
resonance mechanism is the principal route to transition in low disturbance environments;
hence the designation H-type breakdown. His numerical results agree closely with the

experimental data of Saric (1983).
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1.3 Scope of Present Research

The p.urpose of this research is to examine in detail the stabilities and resonances
of coherent structures — assuming that they are synonymous with instability modes —
in heated subsonic round jets. We choose temporal stability theory in favor of the spatial
theory because the validity of a spatial theory was unclear at the initiation of this work (see
remarks on convective instabilities of heated jets in Chapter 2). We believe that a temporal
analysis of heated jets will contain all the essential physics and qualitative trends, although
it is certainly true that the corresponding spatial analysis may provide a better agreement
with experimental data. Of course, spatial instability arises naturally in convectively
unstable flows when periodic excitation is present. The point is that the dispersion relation
(i.e., the eigenvalue relation) is an analytic function of the complex wavenumber, and
spatial instability is merely the analytic continuation of temporal instability. In addition,
there are a number of conceptual difficulties associated with spatial instability — such as
the calculation of the mean flow distortion — which we wish to circumvent through the

use of temporal analysis. The present investigation is divided into the following two tasks:

1. Although the linear parallel flow instability theory of incompressible flows is presently
understood and documented, the stability analysis of compressible and heated round
jets is still rather sketchy. In the first part of this work, we focus on the systematic
determination of the individual role of Mach number and temperature ratio in affect-
ing jet instabilities. A good understanding of the primary instability characteristics
is also a prelude to secondary instability calculations. In this work, an analytic mean
flow (tanh shape) which provides a good local approximation to that obtained from

measured experimental data is used in our stability calculations.

2. The principal task of this work is to study the linear subharmonic instability of a peri-

odic flow consisting of the steady mean flow and a small but finite amplitude primary
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wave. In order to make the physics governing this instability more transparent, we
first establish the conditions — the so-called resonance conditions — which provide
an effective mechanism for the destabilization of an instability wave. The resonant
interactions between two waves allow us to determine the relevant parameters to be

used as input for the secondary instability calculations.

We carry out the “secondary” instability analysis using the methods of multiple scales
and a generalization of the normal mode analysis on a streamwise periodic flow. It
may be noted that the secondary instability of round jets is, to date, still new, in
the presence of heating and compressibility. The growth rate of the subharmonic
disturbance as a function of the amplitude of the primary wave for different jet
parameters — such as Mach number, temperature ratio, shear layer thickness and

modal numbers — are determined.

In summary, this research will provide a deeper understanding of the relevant param-
eters (e.g., wavenumber of excitation, modal number, Mach number and jet temperature)
that affect the secondary instability and the physical mechanisms governing vortex merg-

ings in subsonic heated round jets.
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Chapter 2

GOVERNING EQUATIONS AND PRIMARY
STABILITY PROBLEM

2.1 Governing Equations

The governing equations for a viscous, heat conducting and compressible ideal gas
in dimensional form (characterized by a superscript asterisk) are the conservation of mass,

momentum, energy, and the thermodynamic equation of state. They are

dp*
V. (p*v*) = ]
50 TV v =0 (2.1)
tD'v. . ¥ o
. ,D'T' A * * Vil o *
P-i — pi&!Tﬁ (24)

where p*, v*, p* and T'* represent the density, velocity, static pressure and the temperature,
respectively. A point in space is denoted by the Cartesian coordinate x*, V* = 3/9x"

and t* stands for time. The convective derivative is defined by

D* d . .
—D—‘-tT—at"-*-v - V*, (2.5)

g’ is the constant gravitational acceleration, C; is the specific heat capacity at constant
volume and R* is the gas constant. In (2.3), Fourier’s Law of heat conduction is assumed,;

the heat flux is given by (—k*V*T"*). These equations may be found in Bird, Stewart and

Lightfoot (1960).
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Dissipative processes in the fluid are due to the viscosity, u*, and the thermal con-
ductivity k*. For a Newtonian fluid, the shear stress tensor, r*, and the “dissipation

function”, ®*, are defined by

"= 2us — gp*(v* V) (2.6)
' =r":8"=2u'S*:8" - ;;:‘(V* v*)? (2.7)
where
1
§* = 2(V'v'+ (v*v)T] (2.8)

S* is the rate of strain tensor, I is the idemtensor and ()7 denotes the transpose of a

tensor or matrix.

2.2 Nondimensionalizing the Governing Equations and
Simplifying Assumptions
Our principal interest is in the study of certain types of instabilities associated with
compressible and heated round jets. For this purpose, the governing equations (2.1) - (2.4)
can be made dimensionless by using the centerline values at the jet exit of the base flow
(also called the mean flow or the unperturbed flow). We nondimensionalize all length,
velocity and time scales by R*, U and R* /U ;, respectively — where R* is the radius of

the jet. The dimensionless physical variables become:

v p
T T
r=1. ,=L

j P;
p=t, E=t,
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and with the above normalizations, the governing equations (2.1) - (2.4) become

dp
§+V-pv—0 (2.9)
=— =V +_1_V +L]‘; (2.10)
Dt P TR T Fr ‘
DT _ . v by — )MF
5= (v - DAMpV v + PrRev'kVT+ e ® (2.11)
’TM}P= pT (2.12)
where
S= %[Vv + (V)T (2.13)
T =2uS — gp(V -v)I (2.14)
®=r1:8 (2.15)

and k is the unit vector in the direction anti-parallel to the gravity. The Reynolds number,

'Re, Mach number, M;, Froude number, Fr, and Prandtl number, Pr, are given by

p U R* :

Re = ME A R ‘:! ’ MJ‘ = a—:,
7 7
Fe=Ji p o BG

- g.R.! - k,. y

where a; is the unperturbed sound speed at the jet exit, C} is a constant representing the
specific heat at constant pressure, ¥ = constant = C; /Cy, and ¢* is a constant representing

the magnitude of the gravitational acceleration. The nondimensional convective derivative

is given by
D 3
- == .V 2.16
Dt ot (2.16)
In order to make any progress with the relevant equations, a large number of assump-
tions must be made which are discussed in books on stability theor); (Lin 1955, Betchov
and Criminale 1967, Drazin and Reid 1981). To begin with, the last term in (2.10) is

ignored because gravitational effects are unimportant at large Froude numbers; this is a
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standard assumption in aerodynamics, for example, when R* = 5 cm, U; = 5000 cm/sec,
p; =1.3x 1073 gm/ cm®, uj = 1.8 x 107* dynes sec/cm? (air at normal conditions), Fr =
5 x 103, Re = 1.4 x 10°, Pr = O(1). In instability theory, it is convenient to decompose
the dependent variables into two parts: the base flow and the perturbations. At high
Reynolds numbers, the base flow (i.e., unperturbed flow) will satisfy the boundary layer
equations so that the unperturbed pressure will be a constant (approximately) throughout
the flow field, and the jet will “diverge” with downstream distance on a long length scale
of (R* Rei'). Since the characteristic wavelength of the instability wave is on the order
of R*, the divergence of the base flow may be ignored for the purpose of calculating the
instability wave. In other words, the base flow is assumed to be'locally parallel. The
precise form of this flow will be specified in the next section.

At high Reynolds number (say, above 10%), the effects of viscosity and heat conduc-
tivity are negligible for the instability wave, except possibly for neutral modes and their
derivatives in the cross-space. For this reason, we shall retain a highly simplified version
of the viscous and conduction terms: these terms are only important in a thin layer of
thickness h = O (Re‘l/ 3), centered around the generalized inflection point. In this layer,t
the so-called the critical layer, u4 and k are constants to a high degree of approximation
so that V - r may be replaced by p.V2v and V.(kVT) by k.V?T, where the subscript
¢ denotes the value of a quantity in the critical layer. As a result of this approximation,
the effects of heat conductivity and viscosity are correctly represented only in the critical
layer where they may be important. Outside the critical layer, these effects are incorrectly
represented in our analysis, but this is inmaterial because they are unimportant.

Further, when the disturbances are small, the largest terms in ®, in (2.11), are propor-
tional to the product of the velocity gradient [which is O(1)] and the perturbation velocity
gradient [which is at most O (6/h), where § < 1 is the characteristic magnitude of the

disturbance|. On the other hand, the perturbation temperature gradients in the conduc-
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tion term of the energy equation scale as §/h? because of the presence of the Laplacian
and are, therefore, much more important in the critical layer than ®. Consequently, the
viscous dissipation, ®, will be ignored here.

In summary, viscosity and heat conduction are included, but only to the extent needed
to eliminate any possible singularity in the instability modes arising from the reduced
inviscid and nonconducting equations. Although the viscosity and conductivity of a fluid
vary with temperature, these variations will be negligible across the thin critical layer
where they play an appreciable diffusive role. Consequently, the viscosity and conductivity
are assumed to be uniform throughout the fluid. It may be remarked that outside the
critical layer, the viscous and the conduction terms are negligible relative to the convection

terms. With the preceding assumptions, the governing equations are approximated by

dp
a—-}-V-pv—O (2.17)
—=-Vp+ 1 g2, (2.18)
Dt Re, ’
Dp 7 2,0
L V. £ ]
Dt LAY Pr,,Re,,V (p) (2.19)

where Re. and Pr. are the Reynolds and Prandtl numbers based on the viscosity and
thermal conductivity in the critical layer. The temperature has been eliminated in the
energy equation in favor of the pressure via the equations of state and continuity. The
Prandtl number and « (ratio of specific heats) are taken to be 0.7 and 1.4, respectively. In
the rest of this thesis, the subscript ¢ on Re and Pr are dropped, with the understanding
that these quantities are based on . and k.. The assumptions that lead to (2.17) - (2.19)

are discussed more fully in Moore (1964; see the article by S. F. Shen).
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2.3 The Base flow and Perturbation Equations
We shall now formally separate the disturbance from the base flow by writing

p—pot+p
vV—ove+vVv (2.20)

p—potp
where the subscript O hereafter refers to the base flow, and p, v, p are perturbation
quantities. After substituting (2.20) into (2.17) - (2.19) and collecting terms, we obtain
a set of equations for the base flow and for the perturbations. The latter set is given

vectorially as

DDt +poV v+v-Vpg=-V-(pv) (2.21)
poD—I;— + pov - Vvo+ Vp — RLVZV = - % (2.22)
Dt +'7poV v - P:Revz(pﬂo_ 1:): =-v-Vp—vpV-v
p,ReV’(—g— Pt (2.23)
where,
Dol vuwl, (2.24)

and the dots stand for terms for the product of perturbations that are cubic and higher.
In deriving (2.21) - (2.23), we have made the assumption that the base flow is parallel;

this implies that
Vo = [UQ(y, Z),0,0] (2.25)

po = [po(y, 2),0,0)] (2.28)

po = constant (2.27)
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where x = (z,y,2) is a cartesian coordinate system with z pointing along the axis of
the jet. Although the numerical calculations and the theoretical developments are carried
out in a cylindrical coordinate system (z,r,¢) with y = rcosé, z = rsin ¢, it is more
compact to write down the perturbation equations in a Cartesian system. Note that Vpg =
(0,3p0/3y,8po/3z) so that v - Vg does not involve the z-component of the perturbation
velocity. Similar remarks hold true for other terms of this type. In order to generate

specific results, the mean flow is taken as

40 = uo(r) = 5{1 -~ tanh(r - 1)/481) (2.28)
T, |
po = po(r) = - (2.29)
1+ (Ts — 1)uo + L7 M?Tuuo(1 - uo)
1
po = constant = W (2.30)
where
oo
6 is the dimensionless momentum thickness = / ug(1 — ug)dr
0
T. is the temperature ratio = To(0)
To(o0)
and,

To is the base temperature = To(y, z) = To(r)

Note that the steady unidirectional velocity profile (2.28) is not an exact solution of the
Navier-Stokes equation. It is, however, a good local approximation to that obtained from
the measured experimental data. This mean velocity profile, which has also been used by
other investigators (e.g., Michalke & Hermann 1982), is capable of representing the top-
hat profile at the jet nozzle exit and the fully developed Gaussian profile at around the
end of the potential core as well as the profiles between these two extremes. This can be
done by varying the parameter § (momentum thickness) from (near) zero to a value which
is a substantial fraction of unity (i.e., the nondimensional jet radius). The parameter §

can thus be used to characterize different velocity profiles at different axial locations.
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For compressible ideal gas flows, the mean density profile, (2.29), is obtained from
the mean velocity profile via the Busemann-Crocco law, which is valid for high Reynolds
number flows and when the Prandtl number is unity (Schlichting 1979, p. 330). For a
given velocity profile, ug, the mean density distribution is governed by three dimensionless
parameters: Mach number M;, temperature ratio T., and the isentropic exponent 7. In
this work, the isentropic exponent vy = 1.4, and T, is taken to be greater than one, which
means that the jet is hotter than the quiescent environment. For example, when T, = 2,
the jet is twice as hot as the environment.

Figure (2.1a) shows the dependence of velocity profiles on § while the effect of 8, Mj,
and T. on the mean density distributions are shown in Figure (2.1b). It is interesting
to note that in Figure (2.1b), T. has a much greater influence than the (subsonic) Mach
number M; upon the base density profile, and therefore, is expected to produce a greater

effect on the instability.

2.4 Primary Linear Stability Analysis

Although our principal goal is the study of the secondary instabilities and sub-
harmonic resonances in a compressible and heated jet, we begin our discussion with the
classical linear instabilities of a jet. A knowledge of these linear instabilities is needed in
order to study the secondary instabilities and resonances. Perhaps it is worthwhile, first,
to say a few words about the parallel flow assumption for the mean flow in view of some
relatively recent developments.

Petersen & Samet (1988) have found that the local stability characteristics (e.g, eigen-
functions, phase velocity , Reynold stress, etc.) of an instability mode developing on a
jet column can be predicted accurateljr from linear viscous stability theory based on the

measured mean velocity profiles, which are again assumed to be locally parallel. They
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found that the preceding observation is valid even when the local streamwise velocity dis-
turbance reaches a level as high as 24% of the jet speed, when the flow is unquestionably
‘nonlinear. The last remark lends considerable credibility to the generally accepted claim
‘that even in “nonlinear” flows, the mode shape of the fundamental is given quite accu-
rately by the linear mode. A large body of literature has been built on this assumption,
beginning with the pioneering work of Ko, Kubota and Lees (1970).

In fact, this finding of Petersen & Samet is important in the instability analysis of
a jet which has a finite-amplitude wave-like structure developed on its column. This
structure is approximately both spatially and temporally periodic. In order to represent
the fundamental component of this periodic flow, we shall use a Hnear instability mode.
This makes the study of secondary instabilities much easier because we do not have to
compute a finite amplitude primary disturbance. In our secondary instability analysis,
this amplitude is a given quantity; the mode shape is given by linear theory.

Unfortunately, a shortcoming of linear instability based on parallel flow assumption
is that it predicts poorly the total streamwise amplification of an instability mode. By
retaining weakly nonparallel terms in an axisymmetric round jet, Crighton & Gaster (1976)'.
[see also Gaster, Kit and Wygnanski 1985| gained a significant improvement on the total
growth rate, although there still exists some unsatisfactory discrepancies between their
results and experimental measurements. According to Wygnanski & Petersen (1987),
these discrepancies are attributed to the neglect of the nonlinear interaction terms in the
linear parallel flow analysis of a single wave train. Petersen et al. have, in fact, dispelled
the skepticism surrounding the predictive capability of a parallel flow stability analysis
for the mode shape. While there is no doubt that an accurate determination of the total
growth rate still requires further studies on nonlinear analysis, it is not a concern in this
work. The quantities of interest here are the local values of the phase velocity, growth

rate and the shape of a specific mode, and that can be described well by linear parallel
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flow analysis.

Because of the effects of compressibility and heating in a cylindrical geometry, the
algebraic aspects of the analysis in this thesis are very lengthy. In order not to burden
the reader, we use a compact operator notation; the specific elements of these operators
may be found in the various appendices.

To recall, we use a cylindrical polar coordinate (z, r, ¢), where z is along the axis of the
jet and (r, ¢) are the radial and azimuthal coordinates; the components of the perturbation
velocity are v = (u,v, w) in this cylindrical system. To represent the entire perturbation

field, we use the five-dimensional vector
F=6f=>5 (u,v,w,p,p)

After substituting the above equation into the (nonlinear) perturbation equations, (2.21) -
(2.23), and neglecting all quadratic and higher order terms in §, we arrive at the linearized

disturbance equations

A =0 (2.31)

Here A, is a linear operator whose action on fj, is defined in detail in Appendix A. The
various terms in A; are functions of the base flow alone; A has variable coefficients which
depend only on the radial coordinates. Here § is a small parameter which measures the
magnitude of a typical disturbance with respect to the base flow. Since A; depends on
r alone, we may extract the dependence of the disturbance on the other coordinates via
Fourier (space) and Laplace (time) transforms. Because of the linearity, we consider a

“single mode” (or wave component) and write

f, = f(r)e'(@=tF9)e + complex conjugate; i =+-1

f(r) = [u(r),v(r), w(r),p(r), ()]

where o and 3 are the wavenumbers in the axial and azimuthal directions, respectively, and

(2.32)

o is the complex growth rate. The disturbance is completely described by a, £, o and the
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complex amplitude function (also known as the mode shape) f(r). The modal form (2.32)
is simply a single mode of a Fourier-Laplace component representing the wavenumber and
frequency component of an arbitrary disturbance. This means that each individual mode
evolves independently in the course of time, according to the the linearized equations.
Because of the periodicity in ¢, 8 must be an integer (0, 1,2 ... etc), and it is also called
the mode number. In temporal theory, a is real, and ¢ is complex. The real part of o
determines the temporal growth rate of a disturbance. The imaginary value of o is the
radian frequency. In spatial stability, o is usually written as —fw where w is the given
real frequency, but a is complex. The spatial growth rate of a disturbance is given by
the imaginary value of . An approximate relation between the growth rates of these
two forms of instability can be obtained by Gaster’s transformation (Gaster 1962) under
certain restrictive assumptions — such as for small growth rates.

Although there still exists some questions on the application of temporal or spatial
theory (especially for nonlinear flows), it is now generally accepted that temporal analysis
is meaningful for absolutely unstable flows while spatial analysis has physical meaning
for convectively unstable flows. The basic concepts of absolute and convective instability
are discussed in detail by Huerre & Monkewitz (1985). Suppose a jet is perturbed by
a disturbance which is localized in space and is impulsive in time. Some time after the
triggering of this disturbance, a wavetrain of finite extent evolves on the jet. If both the
leading and trailing edges of this wavetrain propagate downstream, the flow is said to
be convectively unstable. Otherwise, the flow is absolutely unstable. In an absolutely
unstable flow, the trailing edge of the wavetrain propagates upstream and the group
velocity is negative in some region of the wave. Because of this, disturbances which are
generated downstream of the nozzle in an absolutely unstable flow can actually interact,
through instability waves, with the nozzle to produce “feedback” or “resonance’ loops.

Temporal stability is also applicable to flows which are required to be periodic in space.
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Such flows may not actually exist in practice, but are at least fairly close approximations
to those that do. Once a flow is forced to be periodic in space, its natural spatial evolution
is inhibited and the (linear) instability will appear as an exponential growth in time. For
this restricted class of flows, temporal instability is always valid. Since at the beginning of
this study, the concepts of convective and absolute instabilities were not clarified, we opted
for a study which is based on temporal instabilities and spatial periodicity. In retrospect,
this was a good choice because it is now known that hot jets with T, > 1.5 may be
absolutely unstable (Sohn 1986); for such flows a study based on spatial instability would
be meaningless.

The modal representation (2.32) of a disturbance transforms the system of linearized
partial differential equations, (2.31), into a system of ordinary differential equations (here-

after ODE’s) in r. These equations can be conveniently put into the matrix form
Af = oByf (2.33)

where the elements, which depend on the wavenumbers (a, 8), of A; and B are given in
Appendix B. The principal task is to solve (2.33) for a given (a, 8) and suitable boundary
conditions in order to obtain the eigenvalue from the dispersion relation o = o(a, 3). We

now discuss the boundary conditions associated with (2.33).

2.5 Kinematic Boundary Conditions on the Linearized
Disturbances

The appropriate boundary conditions for a disturbance superimposed on a subsonic

jet require that f remains finite on the jet axis and vanishes at infinity. They are,
f—>0asr— o0 (2.34)

f remains finite at r =0 (2.35)
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In fact, some of the boundary conditions to be satisfied at the origin are purely “kinematic”
in nature, and therefore, are independent of the viscosity (Batchelor and Gill 1962). In
order for a disturbance to remain single-value at the origin, these kinematic boundary

conditions yield

u(0) = p(0) =p(0) =0 for 8#0 (2.36)

and,

v(0)=w(0)=0 forf#1 (2.37)

Other boundary conditions at the origin, which cannot be determined from kinematic
consideration alone, are derived from their asymptotic behavior developed in the next

section; note that not all the boundary conditions are given by kinematic considerations.

2.6 Asymptotic Behavior of a Disturbance on a Uniform
Base Flow

The numerical solutions of hydrodynamic stability problems in an unbounded do-
main, such as in round jets, are often solved over a finite domain. Consequently, the
analytical structure of a disturbance for large r and small r is required. Because the base
flow, up and po, approaches a constant value, the asymptotic behavior can be obtained

explicitly by solving a series of Bessel-like equations. In fact, for r — 0, we can write

U = C1Up + Cauy (2.38)
v =rc1vp + C2v, (2.39)
w = c1wp + Caw, . (2.40)

p=cipp (2.41)

p=C1pp (2.42)
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where
1
Up = rlﬁ('\p')
P

vp = I"B(r,\p)
1
wp = ;\:Iﬁ("\p)

A2l _ Ig(Ar
pp.:{ 4 —pota(m—c)}—%p—)

Re p

ol
Pp = PO(TP = Ap)Ip(Apr)

ol — pouo — C)*M? +ia(uo — C)M?/Rel
- 1+ ia(uo — C)M?/Re}}

Ap

1A
Uy = —ai.[p(xur)
vy, = I;,(z\.,r)
18
Wy = x[p(/\vf)
Ao = [ +fapo(uo — C’)Re]é

where ¢; and ¢, are constants, the primes denote differentiation with respect to the argu-'r
ment in parenthesis, and the subscripts p and v refer to the so-called “preséure mode” and
“yiscous mode”, respectively. Here Iy is the modified Bessel function whose order is the
azimuthal wavenumber, § = integer, and C = {0/« is the complex phase speed. Clearly,
the kinematic boundary conditions are contained in the above asymptotic expressions. In
order to maintain a highly accurate finite difference numerical procedure, the asymptotic
boundary conditions are enforced. This not only fulfills the requirement of the value of a
specific quantity at a specific point, but also the manner it behaves (e.g., in powers of r).
Similarly, as r — oo, the same asymptotic results hold provided that Ig is replaced
by the modified Bessel function of the second kind, Kz (Abramowitz & Stegun 1972),

and ug and po are replaced by their values at r = co. Note that in all likelihood, the
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viscous solution is unimportant for large r because the argument of Ky is large (i.e.,

At ~ (aRe)5r > 1).

2.7 The Behavior of Disturbances in the Critical Layer

Although we have retained the most important effects of viscosity and heat conduc-
tivity in the critical layer, it is instructive to examine the nature of the flow in this layer
when (formally) Re = oo in equation (2.33). It is known that under certain conditions
— to be made more precise momentarily — the instability modes will become singular at
the critical point. It is desirable to know the “strength” of this singularity for numerical
purposes, and to see under what conditions af least some of this singularity may be elim-
inated, even when Re = oo. The latter condition gives us a generalization of the Rayleigh
inflection point criterion to compressible and heated flows in round jets. We emphasize
that, strictly speaking, there will be no singularity in the modes because the “diffusive”
effects of viscosity and conductivity have been retained. However, at large Re, we will
have a “near” singularity that does affect the accuracy of the numerical solutions.

By substituting Re = oo and ¢ = —1aC in equations (2.33), the linearized, inviscid

and nonconducting disturbance equations can be obtained as

pota(ug — C)u + pougv + sap =10 (2.43)
pota(ug —Clv+p =0 (2.44)
pota(ug — Clw + ”% = (2.45)
iau + ; +v'+ '—ﬂrﬁ +ia(ug - C)p=0 (2.46)

: ! v 1, 3B .
fa(uo — C)p+ pov + po(; tv+—w+t tau) =0 (2.47)

where primes denote differentiation with respect to r. After some algebraic manipulations

in favor of the pressure, the above equations can be reduced to a second order ODE with
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variable coefficients (essentially a Rayleigh equation) of the form

dp 1 2u( pb+dp g
Tl e ;BTOE - i); +[a*(uo — C)*poM; — 5 — o?lp=0 (2.48)

When the instability wave is neutral, the differential equation (2.48) has a regular singular
point at the point r = r, where ug(r.) = C (C is real for a neutral wave); the subscript ¢
hereafter refers to the value of a variable at the critical point. In the neighborhood of r.,
the coefficients of the differential equation can be expanded in terms of powers of r — r..
For example,

yp = CH+ul(r—r)+ul(r—r)?/2+-,

(2.49)

po = petpi(r—re)+ailr—re)’/2+-

where u/, = uf)(r.) etc. Substituting (2.49) into the differential equation (2.48), we obtain

the approximate differential equation around the critical point for p, i.e.,

+D1+Da(r—re)+--p + (B + Ea(r—rc) +---]p=0 (2.50)

N
P [r —-r
where
n L )
D, = Petle T Peke _ 1

JRTA Te

m " U4 2

2uc “'u‘:2 Pe P 1

D;=-

3ul,  2u  p. p2 1P
and .

2
_ 2
Ey=—(a +;3—)

B, =

re
According to the method of Frobenius (Bender & Orszag 1978), equation (2.50) has two

linearly independent solutions of the form r =r,
pa = (r = re)’q(r — ) (2.51)

ps = ga(r — rc) + Kpalog(r — rc) (2.52)
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where

gifr—r)=1+ai(r—r)+az(r—r)i+--
g2(r—re) =1+bi(r—re) +ba(r —re) + -

The coefficients a's, b's and K are found by substituting the Frobenius series (2.51) - (2.52)

into the differential equation (2.50) and equating like powers of (r — r.):
_ 3D,
T4

_ 3D2 + 401D1 - El
- 10

a1

az

The general solution of the differential equation (2.50) is of the form
P = A1pa + Azps (2.53)

where A\; and \; are constants. The solution p,; is analytic, while p; is a multi-valued
function because of the logarithmic singularity unless K = 0. For the particular case of

an unheated jet where p; is a constant, the condition K = 0 reduces to

d rul : R - -
d—;(mg_zrz') =0 at r= e (254)

Condition (2.54), which was established by Batchelor & Gill (1962) to be a necessary con-

dition for the existence of an amplified inflectional type of disturbance in an incompressible

unheated round jet, is, in fact, valid even in the presence of compressibility. Furthermore,
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the familiar generalized inflection point theorem for the existence of instability modes in

planar mixing layers, derived by Lees & Lin (1946), i.e.,
i(p uy) =0 (2.55)
dy 0% ’ ’

at y = y. where y is the transverse coordinate, can be recovered by letting 1/r. — 0 in
the condition K = 0.

The behavior of the velocity and density perturbations in the vicinity of the critical
point is obtained by substituting (2.51) and (2.52) into equations (2.43) - (2.47). The

corresponding two independent solutions near the critical point, r = r., are

31 3pcu::' + (69:: - salpc)u:: 2
e = “:;Pca(r re) + 2aipiu’? (r—r)®+
21b
vy = 2, + -+ Kvglog(r — r.)
ap.ul,
___3 (3¢ — 4a1p.)
Ug = aTpodl + P (r—r)+
ﬂ2
= o4 Kuglog(r — 2.56
_ B 2
W, = aropodl (r—r)* +
_ g
wy = — + -+ Kwglog(r — r.)

ulp.rea(r —r.)

_ 3r.u! — (dayr. + 3)ul

+ e
a?r.ul

Pa

__ [ (@2 + BPro)uf + [3Kr? — (a¥rf + B)]u;
Py = { aIr3uS(r —12) + -+ Kpglog(r — rc)
The above equations (2.56) show that the logarithmic term is present in all perturbations
unless the generalized inflection point criterion is satisfied; that is K = 0. In addition, the

leading order term in the pressure fluctuation and velocity perturbations of compressible
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flows has the same analytical behavior as in incompressible flow. For example, the leading
term for u and w has a simple pole unless the azimuthal mode number is zero, irrespective
of compressibility. The density fluctuation, or the temperature fluctuation, which is a new
quantity due to compressibility, has generally a simple pole at leading order. Consequently,
for a neutral mode, the p and v perturbations are finite, the ¥ and w modes becomes
infinite for 8 # 0, and the p perturbation is generally infinite. It is precisely the singular
nature of the perturbations at the critical point that creates difficulties in the numerical
calculations for neutral modes. With the inclusion of dissipative effects, some of this
difficulty disappears, although a very fine grid is needed in the vicinity of the critical layer

to resolve the fluctuations.

2.8 Summary

In summary, the ODE’s, which is symbolically expressed by (2.33), is solved by two
independent numerical schemes (to be discussed later) with suitable boundary conditions
on the jet axis and in the quiescent medium at infinity. Nontrivial solutions exist only for.
a certain set {(a, 8,0), or equivalently in the more usual notation,

o = o(a, B) (2.57)

The above equation is called the dispersion relation whose real part (if positive) indicates

instability and whose imaginary part is the frequency of the wave.
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Chapter 3

FORMULATION OF THE SECONDARY INSTABILITY
PROBLEM

We begin our discussion in this section with a physical description of how an
instability wave evolves on a jet and how the flow field may be approximated at a couple
of diameters downstream of the jet nozzle.

When a jet is perturbed by an external excitation of a suitable wavenumber or fre-
quency, an instability wave develops in the jet shear layer. For clarity, this instability
wave will be called the fundamental wave or the primary wave. In this work, we will
use the words “primary” and “fundamental” interchangeably. During the initial stages
of development, where the amp}itude of the disturbance is still small, the stability char-
acteristics of this wave are descriibied quite accurately by the primary stability analysis
developed in Chaﬁtér 2. 'Hrowever, as this wave propagates downs.tream,iits amplitude
grows and the mean flow diverges. The mean flow divergence results in the reduction of
the mean flow vorticity and hence, contributes to a decrease in the local growth rate of
this wave. Farther downstream, at approximately one or two diameters from the jet noz-
zle, this wave reaches a finite-amplitude (i.e., saturation) as a result of nonlinear effects.
The flow field arising from the presence of the fundamental wave may (roughly) be viewed
as convecting discrete vortex rings. This flow is periodic (approximately) in time and in
space.

A principal objective of this work is to determine the sensitivity of this periodic flow

to various controllable jet parameters such as wavenumber of excitation, azimuthal mode
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number, Mach number and jet temperature ratio.

The investigation is carried out via a secondary instability analysis. The instability

analysis of small disturbances — which for clarity, will be called secondary disturbances
— superimposed on a base flow consisting of the finite-amplitude fundamental wave and
a long time averaged mean profile is termed secondary instability analysis. In order to
make the secondary instability analysis as simple as possible, we invoke the following

assumptions:

1. The locally parallel mean profile and the shape of the fundamental mode is minimally
affected by the nonlinear self-interactions of the fundamental (i.e., shape assumption).
In physical terms, this fundamental wave can be thought of as a coherent structure

or a large scale instability wave.

2. The amplitude A of the fundamental wave, subject to an appropriate normalization,
remains approximately constant during the evolution of the secondary instability

disturbance.

3. The mean flow remains unchanged and the fundamental mode keeps its (initial) shape

and phase velocity during the evolution of the secondary instability disturbance.

4. The magnitude of the secondary disturbance is kept sufficiently small to ensure that

a linear secondary instability theory is valid.

The justification of the first assumption has been discussed in the primary stability anal-
ysis. Because of the nonlinear terms in the governing equations, a single linear instability
mode can never exist, by itself, in the flow. It will interact with itself to produce higher
harmonics and a mean flow distortion. The effects of the higher harmonics and of the mean
flow distortion in subsonic round jets were recently investigated in detail by Jarrah (1989).
His results indicate that the distortion of the mean flow due to wave Reynolds stresses is

quite small locally and is probably unimportant for the secondary instability. The small
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change in A during the course of its nonlinear evolution relative to an anticipated strong
convective growth of a subharmonic disturbance justifies the use of assumption (2). This
assumption is further supported by experimental studies on planar mixing layers; for ex-
ample, Ho & Huang (1982) found that when discrete vortices develop on the flow, the
subharmonic mode grows rapidly while the amplitude A remains approximately constant.
The recent work of Petersen & Samet (1988) supports assumption (3), especially on the
insensitivity of the mode shape to nonlinearities, although no detailed experimental results
exist for heated and compressible round jets in this regard. Furthermore, in subsequent
analysis, we find that the growth rate of the subharmonic wave is indeed very much larger
than that of the primary wave; this finding will, in fact, justify the use of assumptions (2)
and (3).

In order to have confidence in our results, two different approaches for secondary in-
stability analysis are used here. The first is based on the method of multiple scales, while
the second is done by generalizing the normal mode analysis from a parallel base flow to

a periodic base flow.

3.1 Method of Multiple Scales

Kelly (1967) was the first to use the method of multiple scales to describe the-
oretically the strong growth of a subharmonic disturbance in an incompressible planar
mixing layer. His results are consistent with the the experimental observations of the
vortex-pairing phenomenon found by Sato (1956). By using full numerical simulations on
the instability of an array of Stuart vortices in a mixing layer, Pierrehumbert & Widnall
(1982) confirmed that the two-dimensional subharmonic modes responsible for the coales-
cence of vortices are indeed the most dominant instability modes. Recently, Monkewitz

(1988) generalized Kelly’s work and examined vortex pairing in more detail in incompress-
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ible mixing layers.

The formulation of the secondary instability problem is based on Kelly’s ideas, although
a compact notation is used here. The finite-amplitude of the fundamental wave is regarded
as a moderately small perturbation parameter § [say, § = O(A) = 0.1]. The physical
variable, which describes the perturbations, F, is assumed to have a general asymptotic

expansion of the form
F = 6F; + €F; + 6%F;; + €6F 12 +0(e?), 0<eké <1 (3.1)

where F, is the fundamental (or primary) wave, F; is the secondary disturbance (which
will later be taken as a subharmonic disturbance), F1; denotes the quadratic nonlinear
interactions of the fundamental wave with itself, and F,2 represents all the quadratic
interactions between F; and F;. As the F; mode propagates downstream, it travels into
a shear flow whose transverse length scale continuously increases, the growth rate of this
wave continuously decreases and the wave eventually becomes neutral. In shear layers, a
strong interaction between the fundamental wave and its subharmonic (i.e., one half the
fundamental frequency) occurs where the fundamental becomes neutral and its amplitude
is a constant. This neutral state, which arises from the spreading of the shear layer and '
nonlinear effects, is really of no importance in this study. What really matters is t?)at
there is a region in the jet where the amplitude of the fundamental (or primary) wave is a
constant and the growth rate of the subharmonic is enhanced from that given by parallel
flow stability theory; of course, this amplitude is “unknown” to us, although experimental
data suggests that it can be as large as 10% of the mean flow, and the cross-space structure
of this wave may be represented by the local linear instability mode of the jet (Petersen &
Samet 1988). In this region, the primary wave interacts with itself at O(6%) and higher.
This interaction is assumed to have a negligible effect on the mean flow and the primary
wave. Consequently, the F;; term in (3.1) can be ignored. Of course, the nonlinear

interactions of primary wave will eventually lead to the appearance of higher harmonics,
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but they play no significant role in the generation of the subharmonic at O(e§) because
they occur at O(62%¢) and higher .

When the primary wave saturates, the characteristic magnitudes of the primary and
secondary disturbances are § and ¢ respectively. The focus of this work lies at order
€b where the primary wave F; interacts with the subharmonic disturbance F, to form
sum and difference modes. If the axial wavenumbers, frequencies, and azimuthal mode
numbers satisfy the so-called resonance conditions, which will be discussed momentarily,
then the growth rate of the disturbance F3 may be enhanced considerably from that given

by linear parallel flow analysis.

3.2 Kinematic Resonance Conditions

We now illuminate the physics governing resonant interactions between two linear

waves of the form

Fi=£i(r)E; + c.c. (3.2)
Fy =f3(r)E; +c.c. (3.3)
where
Ey = expi(a1z + B14) exp oyt
E; = expt(azz + f2¢) expogt
and c.c. denotes the complex conjugates of the preceding terms.
After substituting (3.1) - (3.3) into (2.17) - (2.19) and equating coefficients at various
orders to zero, we obtain the corresponding disturbance equations. The zeroth order

solutions come from the 0(6) and O(¢) terms. They are the eigenmodes of linear parallel

flow stability analysis (2.33), and consequently need no further exploration.
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The equation which governs the quadratic nonlinear interaction between two linear

waves, obtained at 0(&6), is of the form

le(F)lz =E,R; +FE_R_+c.ec (3.4)

where
E, = expli(a; + az)z + (b1 + B2)¢] exp(o1 + a2)t (3.5)
B- = expli(a — az)z + (B ~ B2)¢] exp(on + 3t (3.6)

R, and R._ are given in Appendix C, L;; is the linearized operator (given in Appendix
A) which governs the evolution of small disturbances in a parallel base flow, the tilde
denotes the complex conjugate of a quantity, and c.c. is the complex conjugate of the
terms preceding c.c..

Since L;; is a linear operator, the solution F;; consists of the superposition of the
homogeneous solution and the particular solution due to the forcing function, namely the

right hand side of (3.4). The homogeneous problem satisfies
L12(F12)hom = 0 (3.7)
and the particular problem is determined from
Li2(F12)pat = E4RL + E_R_ +c.c. (3.8)

where the subscripts pat and hom respectively denote the particuiar and the homogeneous
solutions of the inhomogeneous problem (3.4). Therefore, the physical variables can be

written, up to order €6, as
F =6F;+cF;+ 55[(F12)hom + (Flz)pat] (3-9)

Since the homogeneous solution (F12)pom has an initial magnitude of €6 and is described

by linear eigenmode analysis, it will always continue to be smaller than F; by an order §,
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and hence, can be neglected. The interactions between the two waves of the form given

by (3.2) and (3.3) will produce the following four sets:
(e1+ 02,81+ 2,01+ 02), (—a1+az,—F1+B2,61+03),

(a1 —az,p1 — B2,01+ 82), (—a1—az,—p1- P2, &1+ 3d2) (3.10)

As long as these four sets do not satisfy the dispersion relation (a,,), a solution to
(3.4) may be found, in principle, in a straightforward manner by the method of variation
of parameters. In such cases, (3.4) represents an inhomogeneous equation for which a

particular solution may be sought in the form
(F12)pat = E+Fiy(r) + E_Fp,(r) +c.c. (3.11)

Equation (3.11) shows that the growth or decay of (F12)ps: is the same as that given by
linear parallel flow analysis. Further, in order to satisfy the resonance conditions, which
will be discussed momentarily, the disturbance F; is required to be the most unstable wave
given by parallel flow theory. This implies that, for the case where resonance conditions
are not met, the (F12)pqt will remain smaller than F; by O(6), and it can therefore be
similarly neglected.

On the other hand, when one of the four sets of a, 8, and o satisfies the dispersion
relation, the operator L;2, with the appropriate boundary conditions, admits nontrivial
solutions which are, in fact, the linear instability modes of the base flow. This leads
to the appearance of secular terms in (3.4) which results in the occurrence of resonance
interactions. Accordingly, a solution is possible only if the right hand side of (3.4), which
contains the resonance terms, satisfies the so-called solvability condition (or Fredholm
alternative). In general, this constraint cannot be satisfied using a regular perturbation
expansion. Before we proceed to consider how this constraint can be determined from a
singular perturbation method, let us now explore the resonance interactions a step deeper.

To do this, we consider the linearized inviscid primary disturbance equation (2.48) and its
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conjugate; they are, respectively,

dzP 1 2“6 P6 dp 2 2 2 p? 2
Tt G W R @ =Y M -G —allp=0 (312)

’p 1 2uq PoNGP | | 2 > g
il - —0 Oy " —CVpMI- —a¥lp=0 3.13
dr2+(r uo +16/a po)dr+[a (4o ) po 7 g2 o’lp ( )
where C is the complex phase velocity, ¢ = —iaC, the primes denote differentiation with

respect to r, and the tilde denotes the complex conjugate of a quantity. The complex

phase velocity of an unstable mode which satisfies (3.12) and (3.13) can be expressed as
Cle, 8) = Cr(lal, 18]) + sgn(@)iCi(lal, 181), (3.14)

and the corresponding dispersion relation is

o(a,8) = |a|Cy(|el, |8]) - iaCr(|al, 8]) (3.15)

where C = Cg + {Cy, and sgn(a) means the sign of a. In view of (3.10), the complex
equation (3.15) can be separated into two real equations — a growth rate equation and a
frequency equation — which govern the resonance conditions between two unstable waves.

These equations are, respectively,
le1|Cr(leal, |1]) + laz[Cr(lez], |B2]) = ez + 1[Ci(|az + cul, |81 + B2) (3.16)

a1Cr(|a1],|B1]) + @2Cr(|aal,|B2]) = (@2 + c1)Cr(laz + a1, [f1 + B2l) (3.17)

where the a’s and 8’s can be positive or negative, and are so far arbitrary. It may be
noted that when #; = 0, the resonance conditions are valid independent of the direction
to which a wave is propagating; this is because the inviscid equations (3.14) and (3.15) do
not distinguish 8 from —8.

In order to satisfy the resonance conditions, the wavenumbers and mode numbers of

two unstable waves are restricted to the following choices:

1. The fundamental mode is axisymmetric and has an axial wavenumber close to a

‘neutral wavenumber. [i.e., #1 =0, Cy(]a;|,0) = 0].
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2. The secondary disturbance, whether axisymmetric or helical, is an almost maximally

amplified subharmonic wave. [a; = a;/2].

It may be remarked that although choices (1) and (2) are necessary, they do not guarantee
resonance because when the waves are dispersive, condition (2) places a restriction on the
phase velocity, Cg.

When the resonance conditions are (nearly) met, a subharmonic wave interacts effectively
with the fundamental to produce an instability wave whose complex growth rate, o, is
(nearly) the same as that of the subharmonic. It is effective because resonant interac-
tions produce secular terms which lead to a particular solution of (3.4) that grows more
rapidly than the corresponding homogeneous solution by at least a factor ¢t. Of course,
the wavenumber and the mode number of the wave produced is always the sum of the
wavenumbers and mode numbers of the two interacting waves. Consequently, an axisym-
metric subharmonic which interacts with its fundamental will reproduce itself. On the
other hand, a helical subharmonic mode which interacts with the fundamental will not
reproduce itself but will produce a mode that propagates at an equal but opposite angle
to the z-direction. For example, an axisymmetric mode with the wavenumber 2a and’
the mode number 0 — denoted by (2a,0) — interacts with a helical mode (-a, ) to
excite a mode (a,8). Similarly, the mode (2a,0) interacts with mode (—a, —f) results in
the mode (c, —f8). Therefore, an interaction between mode (2a,0) with modes (-c, £5)
results in modes (o, +3). Because a helical mode which interacts with the fundamental
mode does not reproduce itself, it is necessary to consider the secondary disturbance to
be comprised of a pair of helical waves spinning at an equal but opposite direction to the

z-axis. Consequently, if a non-axisymmetric subharmonic is involved, we need to assume

that the secondary disturbance is of the form

F,=F, +Fay+cec (3.18)
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where

F3, = f2,(r) expi(aaz + B2¢) expoa,t + c.c. (3.19)
Fy = fy(r) expi(— a2z + f2g) expoyt + c.c., (3.20)
where the subscripts r and ! denote a helical wave propagating in the direction of positive
and negative ¢, respectively; for clarity, we call these waves right and left spinning (or
propagating) waves, respectively. Since the terms involving the product of & are trun-
cated in the expansion (3.1), the left and right spinning waves of F2 do not interact with
each other. Each will, however, independently interact with the primary wave F1. For
example, Fy; interacts with F;, producing F3,, and F3, interacts with Fy, producing Fa.
Consequently, F; is again reproduced. Furthermore, since both the mean flow and the
axisymmetric F; are independent of the a.zimﬁthal angle, we can assume that the growth
rate of the right and left spinning waves, as a result of resonant interactions between F
(given by 3.18) and an axisymmetric primary wave, are modified exactly the same. In
other words, there is no physical preference for the growth rates between the left and the
right spinning waves. In fact, a second approach — which will be discussed in section 3.5
— shows that the growth rates of F3, and Fy; in a frame of reference that moves with the

phase velocity of F; are indeed the same.

When the resonance conditions are met, the subharmonic disturbance interacts strongly
with the fundamental to reproduce itself and therefore to increase its growth rate. The
modified subharmonic growth rate, as a result of resonant wave interactions, will be ac-
commodated by a set of slow scales.

We now proceed to obtain the governing equation for the modified growth rate using
the method of multiple scales. The method of multiple scales is discussed in several books

[e.g., Nayfeh 1973]. Accordingly, we can write

F =6F; + eF2 +€6F12 +0(6%), 0<e< b« (3.21)

where
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F, = Fl(:l:,t,¢, r) (322)
F2 :Fz(z,zl,t,t1,¢,¢1,f) (323)
F12 - Fl2(z)zlyt1 ty, ¢1 ¢1,T) (324)

and t; = 8t,¢) = 6¢,z; = 6z are the slow scales of time, azimuthal angle, and axial
direction, respectively. It may be remarked that although this set of slow scales eliminates
the nonuniformity caused by the secular terms in equation (3.4), it does not determine a
uniform zeroth order expansion. This is because the amplitudes of the mean flow and the
fundamental wave are assumed to remain unchanged with time, while the subharmonic
wave, chosen from the resonance conditions, is strongly amplified. The series expansion

(3.21) becomes disordered whenever the total magnitude of the growing subharmonic

* fundamental wave on its subharmonic to linear order in terms of the amplitude §. In the
following equation (3.27), we shall assume that the shape of the primary subharmonic is
unaltered by the appearance of the fundamental. This assumption is more fully justified

by the second approach, to be discussed in the next section, which allows the shape of the

subharmonic in the presence of its fundamental to be determined.

Since the physical variable F is a function of fast and slow scales, the partial derivatives

in t,z, and ¢ become
o 50
at at oty
2 a a
—_— —t b .
Jz - or + CEN (3.25)
d d a

3 3% 341
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As in the parallel flow analysis, we assume the normal mode concept and write
F,= fl(f)El + c.c. (3.26)

Fg = B(Zl,tl, ¢1)f2(f)E2 + c.c. (3.27)

where

Ey = expt(ayz + S19) expoil
E; = expi(azz + f24) expoat

and c.c. denotes complex conjugate of the preceding terms. It should be noted that in
(3.27), we have omitted the left propagating helical component — with the understanding
that the left propagating helical wave which interacts with an axisymmetric primary wave
produces and, therefore, enhances the growth of a right propagating helical wave; similarly,
the left propagating helical wave can be reproduced through the interaction between a right
propagating helical wave and an axisymmetric wave.

The amplitude function B is slowly varying in space and time, and will be determined
at 0(e§) by means of a solvability condition; the mode shape f; is that given by the parallel
flow theory.

It is now perfectly clear from equation (3.27) how the growth rate of the subharmonic is
modified. Because of the departure of the growth rate of F; from the parallel flow analysis,
a set of slow scales is needed to reflect this change. For example, the slow scale §z implies
a long length scale of O(R*/6), in addition to the usual length scale R*. This means that
as long as the evolution of the subharmonic is on a length scale that is much smaller than
O(R*/6), its local growth is given by parallel flow theory. However, if the growth of the
disturbance is on a distance that is comparable to O(R*/§), the change in the amplitude
function B will then be of the same order as that provided by the parallel flow analysis.

In temporal theory, it is clear that this change, which may be interpreted as an additional
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(positive or negative) growth rate for the disturbance, is physically meaningful only over

a time scale that is of O(1).

3.3 Amplitude Equation

We now proceed to derive the amplitude equation of the subharmonic disturbance
when the resonance conditions are met. The amplitude equation will be derived using
two independent methods: the first is based on an “improved” inviscid analysis and the
second is based on a viscous theory. These derived amplitude equations will be called
an inviscid amplitude equation and a viscous amplitude equation, respectively. Here, the
word “improved” signifies that the primary instability modes are actually obtained from
viscous considerations. The inviscid amplitude equation is derived from a single ODE,
while the viscous counterpart is based on a system of ODE’s. Since the wavenumber of
a subharmonic wave is near a maximally amplified wavenumber, the growth rate of the
subharmonic obtained from an inviscid analysis will provide a good approximation to that
obtained from a fully viscous analysis. We now proceed to derive the inviscid amplitude
equation, while the viscous amplitude equation is given in Appendix D.

For the particular case where the product of F; and F; reinforces F,, the disturbance,

F;3, can assume the form:
F12 = f12(z1,t1,61,7) E2 +cc. + -+ (3.28)

where

T
f12 = (v12, v12, w12, P12, P12) ",

E; = expi(azz + B2¢) expoat

and the dots stand for the non-resonating terms that are unimportant.
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We note that the linearized primary disturbance equations for an inviscid compressible

jet at O(eé) can be manipulated to a single pressure perturbation pi2(r) of the form

d? 1 2ul ' d: 2
L(Plz) = pxz + [; - E—_oaz_ - %2—] —% + [a%(uo - Cz)zpoMf - %2,- - a% p12 =rhs
(3.29)
where
dB 0B 0B
rhs = hla + hga + hs—a—d’— + hlgB (3.30)
1 = —tagpous — [— - m - 20 '+' ](POW) - tﬂzpo!ﬂz/f + laz(uo 2)p0 Pz
2uy __ #o .
hy = —fazpououz — [— “%-0C —r](uopovz) - iﬂ,zﬂouowz/f
+iaz(uo — C2)po M} (uopz + YPou2)
h3 = ia(uo - Cz)po(wg/f + M]-zrpg)
2u! ! d
his = taz Fy_ + [— - ﬁ@- - ;—z + -d—r]F,,_ +i82Fy _/r —taz(uo — Cz)poMsz_

In the above equations, the tilde denotes the complex conjugate of a quantity, the prime
denotes a differentiation with respect to r, C; is the complex phase velocity of the subhar-
monic mode, while F,_, F,_, F,_ and Fp_ are given in Appendix E. Note that althoygh
(3.30) is derived based on an inviscid analysis, its coefficients, h's, are evaluated using
viscous parallel flow instability theory. Further, hj; represents the particular set of the
interaction terms between F; and F3 that give rise to a subharmonic disturbance, while
hy, hz, and hs come from the dependence of F3 on the slow scales.

We multiply (3.29) by r/{po(uo — C2)*} to make it self-adjoint. The equation in the

self-adjoint form becomes

L(p12) = ;r(;(uo ~ C3)*L(p12) = rhs {é(uo - 02)2} (3.31)
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In order for (3.31) to possess a nontrivial solution, its right hand side must be orthogo-
nal to all »’s such that £} = 0 where L is the adjoint operator and ¥ is the adjoint solution.
The orthogonality requirement, or solvability condition, is necessary and sufficient for the
existence of solutions at order §¢. We note that since the operator [ is self-adjoint [i.e, £
= [] and the boundary conditions on ¥ are the same as those of the homogeneous solution
[i.e., L(p12) = 0], the adjoint solutions are identical with the homogeneous solution.

The orthogonality requirement becomes

JaB dB JdB

= — — B=0. 3
q‘at1+q’ax1+q”a¢1+q‘ (3.32)
where
q'_/wp 4 Uapu4%1— 2y -p%mv
YTl Proslue -Gt T T w=C e
. . 2 p2r 7
+ifa2pows/r — faz(up — Cz)PoMjPz} - (m) povadr

1 2wy ppys

00 r .
= ——{agFy_ + (- — ———— — =)F,—
th /; mPo(uo-Cz)z{ 2w (f ug — C; Po)

+ifaFy_[r — faz(ug — C2)poM? F,_} — (

where the ()' denotes a differentiation of its argument with respect to r, and ¢4 con-
tains the quadratic resonant wave interactions. Here g2 and g¢3 are included to allow the
resonance to be manifested spatially. Their explicit expressions are not given here because
this thesis focuses only on temporally growing waves. The integrands in the ¢’s are eval-
uated from linear, viscous, parallel flow instability analysis. It may be noted that if we
include the F;; term in the series expansion (3.21), an amplitude equation for the modi-
fied growth rate of the fundamental can similarly be obtained at order §? (see Monkewitz

1988). This modified growth rate, which will be coupled into equation (3.32), provides a

relationship for the mutual feedback between the subharmonic and the fundamental. In
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accordance with our previous discussion, we shall not obtain the amplitude equation for
the primary wave because this amplitude is assumed to be a constant. The constant ampli-
tude A assumes a catalytic role in the enhancement of the growth rate of an infinitesimally
small subharmonic secondary disturbance. Therefore, we called our instability analysis
a linear “secondary” instability analysis instéad of a “weakly” nonlinear analysis for two
interacting waves.

The equation (3.32) together with its complex conjugate yields
2
|q1| + |q2| a 2 + |q3l ¢2+

Real[2q1q2 ]B Iq4|2B (3.33)

a? a? 3?
31,02, +2qIQBat s +2qzqsa Er
where the tilde stands for the complex conjugate of a quantity. The above equation is
valid for temporal or spatial analysis because the amplitude B is a function of spatial and
temporal variables. Since the coefficients in (3.33) are independent of the slow scales, we

can write

B ~ exp(A1z1 + Azt + Az¢y) (3.34)

and substituting the above into (3.33) yields
lq12A2 + |g2|2A3 + |gs|® A2 + (2G142) RA 1Az + (23193)RA2As + (232g8) RA1As = |g4|? (3.35)

The A’s are in general complex and ( - )z denotes the real part of a complex number.
Each real part of A1, A3, As modifies the streamwise, temporal and azimuthal growth rate,
respectively. Similarly, each imaginary part of A’s modifies its corresponding frequency (or
wavenumber). Running parallel to Kelly’s investigation of the mixing layer, our investiga-
tion is based on a disturbance of a fixed spatial wavenumber growing in time. Therefore,

A1 and Ag are zero, while A; is real. (3.35) can therefore be simplified to

3= £184, (3.36)



65

The secondary subharmonic disturbance can be expressed in terms of the original time

variable as

F3 =faexpi(azz + B2¢) exp(oz + A26)t (3.37)

The dependence of this growth rate as a function of various jet parameters is discussed in
Chapter 6. Clearly, the growth rate of the subharmonic wave is changed by A36 due to

parametric resonance.

3.4 Normal Mode Analysis

Our previous approach models the secondary instabilities of a round jet, which
results in vortex pairing, by a perturbation analysis of two instability waves, F; and F3,
of different wave vectors undergoing interactions. When their product reproduces with
F,, the growth rate of F3 is modified. While this model provides the physics of resonant

interactions, it has at least three shortcomings.

1. The finite amplitude of the fundamental wave is regarded as a small perturbation
parameter. Therefore the perturbation theory, can provide an accurate solution only
for those values of § for which the perturbation series is an accurate representation
of the exact solution. As usual, the region of validity of an asymptotic analysis is

not known a priori, and remains to be determined from a more complete analysis.

2. There is no mechanism for the determination of the threshold amplitude of the
fundamental where the phase-locking with the subharmonic occurs. It is now known

that this phase-locking is a mechanism for the onset of secondary instability.

3. As previously mentioned, this perturbation approach fails to determine the correction

to the shape of a secondary subharmonic mode; it only provides information on its
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growth rate.

These shortcomings can be circumvented by an alternative approach developed by Her-
bert (1983). He pioneered the development of the normal mode analysis of the secondary
instability arising from the presence of TS waves in plane channel flows. His theory pre-
dicts with reasonable accuracy the growth rate of a 3-d secondary disturbance up to the
stages prior to laminar breakdown and transition. In his subsequent analysis of the (lin-
ear) secondary instability of flat plate boundary layers, he has shown that this model is
capable of explaining all the essential flow physics of staggered lambda vortex formation
(1984) and peak-valley splitting (1985) in Blasius flows.

Motivated by Herbert’s success, we will adapt his approach to subsonic heated round
jets. In this approach, a sufficiently small disturbance F; is superimposed on a periodic
base flow consisting of the steady unidirectional mean flow Fg and a finite amplitude
axisymmetric primary fundamental wave F;. We assume that the mean flow as well as
the shape of F; is minimally affected by the nonlinear self-interactions of Fy. The choice of
an axisymmetric wave is based on the resonance conditions established previously. Using
a frame of reference moving downstream with the phase velocity of F, it is appropriate

to decompose the perturbation vector field F as
F(z,r,¢,t) = AF1(z,7) + eF5(z,7,4,1) (3.38)

where

F; =fi(r)e* +cc. (3.39)

A, as discussed earlier, is assumed to be a constant, and z now refers to the streamwise
coordinate of the moving frame of reference. In (3.38), A is usually small but finite (say,
A 2 0.1), not a perturbation parameter, while ¢ is assumed to be suffiéiently small to allow
linearization about a steady and spatially periodic base flow. Of course, the range of ¢ for

which linear theory is valid remains to be determined by comparing it with future work,
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say, direct numerical simulations. The finite value of A will remove the usual accuracy
issue associated with an asymptotic analysis. Further, since the amplitude A has a physical

meaning provided the eigenfunction f is suitably normalized, we choose, for convenience,

ogax lur(r)| = 1/2 (3.40)

so that A is the maximum magnitude of the streamwise velocity perturbation. This nor-
malization, which is also used in our multiple scales approach, is not unique and is rather
subjective because f; is an eigenfunction. Herbert normalized A so that it is the maxi-
mum rms value of the streamwise velocity fluctuation. The magnitudes of eigenfunctions
of Cohen (1986) are normalized such that the experimental and theoretical profiles have
identical areas. At this point, it is important to note that this secondary instability anal-
ysis is still linear, as is the classical instability analysis. In the latter, the flow is linearized

about a locally parallel flow. The coefficients in the resultant equations depend solely on r

since the (z, ¢) and t dependences of the (primary) disturbance are trivially extracted by
Fourier-Laplace transforms. This leads to the mode shape f;(r). In the present (secondary
instébility) ;nna;lysis, linearization is maﬂe about a flow which is periociic in the streamwise
coordinate z. This streamwise pe;iodic flow becomes independent of time in a referencer
frame that moves with the phase velocity of the fundamental wave, and is independent (?f ¢
since F; is axisymmetric. Therefore, the ¢ and ¢ dependence of the secondary disturbance
can again be extracted by Fourier - Laplace transforms, but the z dependence requires a

more careful consideration and additional assumptions, to be discussed shortly. We can

now apply the normal mode analysis in ¢ and t and write
F; = f2(z,r)eP%e® 1 cc., (3.41)

where &3 is the complex growth rate, and 8 is the azimuthal mode number. After substi-
tuting (3.38), (3.39) and (3.41) into the governing equations (2.17) - (2.19), and neglecting

quadratic and higher order terms in €, we obtain a system of linear partial differential equa-
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tions which govern the instability of the linearized secondary disturbance, F;. Apart from
a complicated r dependence and numerous other terms, these equations are essentially of
the classical Mathieu type because the coefficients are (streamwise) periodic. It is known
that, according to Floquet theory of linear periodic differential equations, a Mathieu equa-
tion whose coefficients are x-periodic has two important classes of Floquet solutions: a
x-periodic and a 2x-periodic function. With guidance from Floquet theory (Ince, 1956),

we can therefore express the secondary disturbance in the Floquet form as
f2(z,r) — e=*3(z,r) (3.42)

where o is the characteristic exponent and f; is periodic in z. The solutions with period Ay
— where ), is the wavelength of the primary wave — are called the primary (fundamental)
resonance, while the solutions with period 2); are known as the principal parametric
(subharmonic) resonance. The instability modes which arise from these resonances can,
in general, be expressed in terms of Fourier series as
00
f= 3 fi(r)edn=/? (3.43)
j=—00
The fundamental modes are the harmonic series whose period is the same as the streamwise
wavelength of the primary wave and are given by 7 = even. The subharmonic modes have
odd j, and therefore, constitute a subharmonic series whose basic wavelength is twice
that of the primary wave. The fundamental and subharmonic modes are completely
uncoupled since the wavelength of the basic flow is different from the basic wavelength of
the subharmonic series. In this work, we shall investigate only the parametric resonance
case.
We now digress briefly to present some known results in incompressible boundary layer
flows. The fundamental modes produce the peak-valley splitting of the lambda-shaped
vortical structures, while the subharmonic modes cause the staggered formation of lambda

vortices. By approximating the Fourier series (3.43) to consist of merely two oblique waves
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propagating at equal and opposite angles to the z direction, Herbert (1984) has shown that
these two oblique subharmonic modes, which provide a reasonably accurate approximation
to the streamwise structure of the subharmonic¢ disturbance, are sufficient to give rise to
the formation of staggered lambda vortices.

We return to equaticn (3.43). Its substitution into the linearized disturbance equa-
tions yields an infinite set of ODE’s for the complex growth rate &2 and the mode shape
f3 ;. Numerically, the streamwise structure of the secondary disturbance is expanded in
terms of a finite Fourier modes whose stability is governed by a system of N, ODE’s —
where N, is 5 times the number of Fourier modes used. Numerically, these (stability)
equations are approximated by a complex algebraic eigenvalue problem whose computa-
tion requires O(N?) storage and O(N}) operations (see Chapter 4) — where N, equals
N, times the number of grid points in the computation domain. In order to be practi-
cal in the numerical evaluation of the secondary stability problem and in order to make

a direct comparison with the previous perturbation approach, simplification of equation

(3.43) is deemed desirable. The justification of this simplification will now be discussed.
In controlled jet experiments, a primary instability wave, which is often generated by
an acoustic source or through vibrating ribbons, produces a vortex structure that is re-
sponsible, at least partially, for the mixing and spreading of jet shear layers. In order to
control the global spreading rate via the manipulation of this vortex structure, a discrete
subharmonic disturbance can be excited simultaneously with the primary (or fundamen-
tal) frequency. In accordance with our discussion in section 3.3, when the subharmonic
disturbance is axisymmetric, it is assumed to be a subharmonic wave; when the subhar-
monic is helical, it is comprised of a pair of helical waves whose propagation angles are
equal but opposite with respect to the mean flow direction. As dictated by the reso-
nance conditions, these excited discrete modes are sufficient to promote a strong growth

of a subharmonic disturbance. In order to compare the two approaches, we assume that

the (secondary) subharmonic growth rate is minimally affected by the unexcited higher
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terms in the subharmonic series. In other words, we assume that the (two) Fourier modes
(a1/2 and —a;/2) are reasonably sufficient to represent the the streamwise structure of
the subharmonic disturbance.

With the preceding assumptions, we can approximate the subharmonic disturbance by
F, = ea”e”’te‘ﬂ"’(fz,le'""'/2 + le_le"'“‘/z) +ec.c., (3.44)

where

f21 = (u231,v2,1,w21,P2,1,P21),

and,

f2,-1 = (uz,-1,v2,-1, W2,-1,P2,-1,P2,-1)

As in primary stability analysis, we employ temporal theory, which implies that &; = 0
and &2 # O is the complex eigenvalue to be solved. Thus, in a temporal theory, we can
write

F; = e®teP39(f, 1 651/2 ¢ £, _167%/%) + cec. (3.45)

Note that in the moving frame of reference, (3.45) shows that the complex growth rates
&2 of a pair of helical modes, whose propagation angles (with respect to the z-axis) are
equal and opposite, are exactly the same. |

To recall, a main result of the multiple scales analysis is that the secondary disturbance
can interact with its fundamental to produce a wave whose wavenumber and frequency are
the same as the disturbance itself and can therefore reinforce it. Since such a destabiliza-
tion of the subharmonic requires the matching of its phase velocity with the fundamental,
our calculations focus on the particular case where the subharmonic becomes phase-locked
with the fundamental and & becomes purely real. The modal representation of F3, given
by (3.45), will transform the linearized secondary disturbance equations from a system
of partial differential equations into a system of ODE’s. These ODE’s are obtained after

substituting (3.38), (3.39) and (3.45) into (2.17) - (2.19), and by neglecting quadratic and
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higher order terms in €. The resulting equations become
(AQ + AA; + AzAz + A3A3)g = &238 (3.46)

where

— T
gE= (uz,l, Uz —1,v21,v2,-1,W2,1, W2 -1, P2,1,P2,-1, 02,1, Pz,—l) (3.47)

Recall that when the secondary disturbance is axisymmetric, we need only to consider
one subharmonic wave. In this case, f3 1 = fz,l where tilde is the complex conjugate of a
quantity. In (3.46) the precise elements of A, A, and B can be extracted from Appendix
F, the A? term arises from the cubic interaction, A%e, while the A3 term originates from
the quartic interaction, A%c. The quartic term stems from the V?(p/p) term of the energy
equationi of course, this term would have disappeared if the temperature had been used
as a dependent variable. Note that for incompressible and unheated flows, Aq and Ag do
not exist rlraeéa.use the nonlinearity in the governing equations is quadratic. Further, since
our representation of the flow arising from the finite-amplitude saturation of the primary
wave is approximated only to order A (see Chapter 6), we ignored, for consistency, the A?

and A® terms. Hence, the secondary disturbance equations become
(Ao + AA)g = 5,8¢g (3.48)

We should recognize that when A # 0 in (3.48), the parallel jet mean flow is slightly
distorted by the presence of the fundamental mode. This leads to a modified growth rate
of the subharmonic from that obtained through a parallel flow analysis.

At this point, it is crucial to realize that the difference between our two different
approaches lies in the treatment of the terms representing the interactions between two
waves. When using the normal mode approach, the interaction terms appear explicitly as
the coefficients in the disturbance equations (3.48). In contrast, these terms, when using

the method of multiple scales, appear as inhomogeneous terms in the equation (3.4).
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The boundary conditions at r = 0 and r = oo for the secondary disturbances are
identical with those of the primary stability analysis. The system of ODE’s (3.48) together
with the appropriate boundary conditions constitute an cigenvalue problem that yields,

for a given mean flow and primary eigenmodes, a dispersion relation of the form
&2 = G2(az, f2) (3.49)

The evaluation of the eigenvalues and their corresponding eigenfunctions is described in

Chapter 4, and the secondary instability results are discussed in Chapter 6.
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Chapter 4

NUMERICAL METHODS

This section deals with the numerical formulation of the eigenvalue problem which
arises from the analysis of the stability of subsonic round jets. The primary stability
problem can be cast in a system of 5 coupled ODE (2.33), while the normal mode analysis
of the secondary (subharmonic) instability problem is approximated by a system of 10
coupled ODE (3.48). The numerical solution of these systems of equations is obtained by
a spectral collocation method with Chebyshev polynomials, and the primary instability
problem is checked by a finite difference method. For both methods, a function, say f(z),
is approximated by a discrete set of values of f(2) on a set of nodal points 2;. The discrete
pointwise approximation of the function f(z) will eventually convert a linear differential
equation into a system of algebraic equations which can be solved by several techniques.
We begin by outlining an application of spectral method to the instabilities of shear layer

generated from a jet emanating from an axisymmetric nozzle.

4.1 Spectral Method

The spectral method has now been successfully implemented in many types of
hydrodynamic stability problems such as boundary layers, wakes and mixing layers. A
detailed and extensive discussion of the theory and application of spectral methods, partic-

ularly with regard to fluid dynamic problems, can be found in the monograph of Canuto,
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Hussaini, Quarteroni, and Zang (1987). The starting point of a spectral method is to

expand a function u = u(z) in an infinite complete set of orthogonal functions of the form

u(2) = Y aTa() (4.1)
k=0

where the Ti(z) are the known basis functions and the coefficients a; (k = 0,1,---) are
called the spectrum of u(z). Numerically, the function u(z) is expanded in terms of a
truncated set of the basis functions T}. For example,

N

umuy(z) =D arTe(2) (4.2)

k=0
where uy(z) is an approximation to u(z) for each N > 0. For a smooth function with
periodic boundary conditions, the natural choice of the basis functions is sines and cosines.
This leads to the usual Fourier series and its finite version. On the other hand, for non
periodic boundary conditions, the most widely used basis functions are the Chebyshev
polynomials. In any expansion, the task is either to find the set of values of u at the nodal
grids through an appropriate interpolation or the spectral coefficients a (k=0,1,:-+ N).
Intuitively, when the number of grid points is sufficiently large, they are equivalent to each
other.

The Chebyshev polynomial of degree k, Ti(z), is defined by
Te(2) = cos(kcos™'z) -1<z< 1. (4.3)

Therefore, To = 1, T1 = z, and the higher polynomials can be generated by the recursion

relation,

2:T = T;,+1(z) + Tk_l(z), k>1 (4.4)

Details of various identities, orthogonal properties, and numerical quadratures can be
found in the book by Gottlieb and Orszag (1977). The Chebyshev polynomials are even
for even k and odd for odd k, as illustrated in Figures (4.1a) and (4.1b). They are the
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solutions of the Sturm-Liouville differential equation

d
1—z2-d—z(\/1—z2)%+k2n=o (4.5)

which are bounded at z=—1and z = 1.

It is known that if a smooth function is expressed in terms of the eigenfunctions of
a suitable Sturm-Liouville problem, “spectral accuracy” is obtained. This means that
the spectrum a;, according to this basis function, decays more rapidly than any power
of k. To be more specific, the Fourier cosine series for an even function f(z) is used for

illustration. The appropriate expansion is

f(z) = i apcos(kz) 0<Lz<n~ (4.6)
k=0
where
ap = ;/{;r f(z) cos(kz)dz, k=0,1,2,--- (4.7)

If a periodic function f(z) has M — 1 continuous derivatives, and the M** derivative is

integrable, then, after integrating (4.7) by parts (M — 1) times, we find that

ay = ﬁ%ﬂ /; " f0(2) cos(xm/2 — kz)dz (4.8)

where x = 1 when M is even and 0 otherwise, and the f(M) is the M-th derivative of f. It
is worth noting that the integral in equation (4.8) is bounded by some constant which is
independent of k but may depend on M. Therefore, the truncation error, say e, using the

N + 1 modes to represent an infinitely smooth function by (4.2) can be estimated to be

constant(M)

le] 2 y, forany M (4.9)
This is because each of the coefficients a, [for k > N| satisfies (4.8) and the neglected

series expansion for f,
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will be of the order given by the right hand side of (4.9). [More precise error estimates for
the eigenfunction expansion in terms of Chebyshev polynomials is discussed in Canuto et
al]. It may be remarked that a finite difference method with N grid points usually has an
error estimate of N —P where p is the order of the accuracy of a particular scheme used;
for example, a second order method has p = 2. Thus, if a function is infinitely smooth,
then, according to (4.8), the spectrum a) decays faster than any finite power of k, or,
simply, it decays “spectrally”. An important consequence of this spectral accuracy is that
accurate numerical results can be obtained by using relatively “few” grid points, and it is
precisely this accuracy that makes spectral methods an emerging powerful computational
tool.

Further, after making the substitution z = cos(z) into (4.5), we find that

d* Ty
=zt KT, =0 (4.10)

so that the Chebyshev polynomials are the usual trigonometric functions of the argument

kzx = kcos™! z. From (4.3) and (4.6), we obtain

o :
f(z) =) arTu(2), (4.11)
k=0
where z = cos™!(z). Therefore, according to equations (4.11) and (4.1), the Chebyshev
series has the same convergence properties as the Fourier cosine series, since the former is
really the latter in disguise.

If we expand an arbitrary function u in (N + 1) Chebyshev polynomials, (4.2) will
contain (N + 1) unknown coefficients, ao,a1,...,ay. In order to evaluate these using
collocation methods, the approximate expansion of u(z) is satisfied exactly at a set of
(N + 1) points, say zo,z1,..,zx. These points are called collocation points; they are
arbitrarily subjected to a rather qualitative constraint. In order to see how to choose
these collocation points, we go back to (4.8) and note that the required coefficients ai(k =

0,1,.., N) are given by a trigonometric integral. This integral can be evaluated extremely
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accurately by a trapezoidal formula because, in fact, this scheme is equivalent to an N-
~ point Gaussian quadrature rule. Therefore, an optimum way is to divide the interval

0 < z £ x into equal increments:

o
a:,-:’7 §=0,1,..,N (4.12)

or in terms of the original variable, z,
zj:cos% F=0,1,.,N (4.13)

The set {2;} is called the Gause-Lobatto points where dTy/dz = T;, = 0. Since Ti(2) is
a polynomial in z of degree k, uy is an N-polynomial approximation to u(z).

In order to represent the derivative of the function at the collocation points, Lagrange
interpolating polynomials of degree N are used, i.e.,

N
u(z) = D Ar(2)u(zi) (4.14)
k=0 .

where the interpolant Ax(z) can be expressed in an explicit form:

n(o) = G ) e (4.15)

where ¢co = cy = 2 and ¢ = 1 for 0 < k < N. Of course, this Lagrangian polynomial
representation provides perfect accuracy for all functions with polynomials of degree < ¥.
The p** derivative of u(z) at the 5** collocation point, in terms of the values of u at.all

the collocation points, is given as

N
%;i - ,;,D?""" (4.16)
where u; = u(z;), the D;; are the elements of the derivative matrix given in Canuto, et
al. (1987) as a1
Do = —F—=-Dyux
< (__l)kﬂ'

A for j k . B
Ck (Zj - Zk) J :/: (4.17)
. _727_ . .

= 1 for j =k
Dj ——r2(1—zj) or J
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and,
D;"k = (Djx)?

With approximate representations (4.14) and (4.16) for a function u(z) and its derivatives,
it is possible to convert any ODE into a system of algebraic equations for the (N + 1)
unknowns u(zo), u(z1),.. u(zy), where 2o, z;... zy are the collocation points. These
(linear) algebraic equations may be solved by several powerful methods [see Wilkinson
1965], although a principal difficulty is that the matrix associated with these equations is
not very sparse.

Clearly, in order to apply a spectral method with the Chebyshev polynomials, the phys-
ical semi-infinite domain 0 < r < oo must first be transformed onto the finite Chebyshev
domain, |z| < 1. For boundary layer flows, the two mappings which have been success-
fully employed in transforming the infinite domain (0,00) onto the half interval of the
Chebyshev domain (0,1) are the exponential mapping (Laurien & Kleiser 1985) and the
algebraic mapping (Herbert 1984). These mappings, which cluster the collocation points
near the “wall” at r = 0 and become more widely spaced away from the wall, are inefficient
in subsonic round jets where steep gradients occur in a very thin critical layer of thickness
O(Re'i') located in the neighborhood of the jet radius, not on the jet centerline. The thin
critical layer in jets requires sufficiently dense collocation points in this layer. In fact, a
difficult numerical task that arises from the coupled system of ODE is that any numerical
scheme must be capable of capturing accurately the eigenfunctions and their derivatives
up to second order, simultaneously. The viscous and conduction terms, which contribute
to the second derivatives, are included to eliminate any singular behavior of inviscid neu-
tral eigenmodes. We utilize two different mapping methods for the stability calculation
of compressible subsonic jets. The first method maps the infinite physical domain onto a
finite Chebyshev domain. The second approximates the unbounded physical domain by

a finite domain which is mapped onto the Chebyshev domain. We now outline these two
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mappings.
Mapping A

The first mapping maps from r = 0,00 into z =0, 1 via

Iy 1 i

z= m + EexP[_El (4.18)

The parameters l; [; and n are adjustable constants which control the amount of stretching
in the r direction. Note that when n = 1 and /; = 0, the mapping reduces to the classical
exponential mapping. For a given [y and [, n controls the number of grid points in the
neighborhood of the critical point (near r - 1) When the value of n increases, more nodal
points are clustered arcund the critical layer. The parameters I; and n redistribute some
of nodal points near r = 0 to the region where strong gradients exist (near r = 1). For a
given number of collocation points, the concentration of nodes in the physical domain is

governed by the metric coefficient:

dz I n __ r®
=2 = _ _nl _— 4.20
dr 2(1’ +11)2 Igr exp[ 12] ( )

The higher the value |2/| in the neighborhood of the critical layer, the greater the concen-
tration of nodal points. As a caveat, in order not to decrease the exponential convergence
rates associated with a spectral method, a mapping, r = r(z), which maps the physical
domain onto the Chebyshev domain must not be too complicated [Canuto et al.]. In other

words, if we expand
N
ry(2)= Z apTi(2),
k=0
the truncation error, e, which arises from using the N + 1 modes to represent r, is

e = Z aka(z)
k=N o

This error ¢ must be so exponentially small that it will not affect the accuracy of a

spectral method. In (4.18), the point r = 0 is mapped onto z = 1, while the point r = oo

Y
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is mapped onto z = 0. The point z = 0 is not used as a collocation point, and we used odd
polynomials expansion so that the boundary conditions at this point are automatically
satisfied.

In general, a function and its higher order derivatives which are regular at infinity in
the physical domain r might not necessarily be regular in the computational domain z
(Spalart 1984). In order not to destroy a spectral accuracy, the function and all its higher
order derivatives at z = 0 must be sufficiently well behaved so that the formula (4.8) for
the spectral decay of the spectrum a; is valid. We now examine the behavior of u(z) as
z — 0. As r — oo, z vanishes algebraically according to the first term on the right hand
side of (4.18). Since a disturbance decays exponentially (2.38) - (2.42), we can conclude
that all the derivatives of the disturbance — 0 as z — 0, i.e,,

im &Y o I j (4.19)
lim 57 for all 3 .

Although no studies have been done here, we suspect that when a function is properly
resolved, mapping A will preserve the rapid convergence rates associated with a spectral
method. Further, the algebraic term of this mapping provides an adequate resolution of
nodal points far away from the origin.

The cylindrical geometry of a round jet inherits a coordinate singular point at r = 0
which requires a little care. To remove this singularity, we imposed explicitly the boundary
conditions at r = 0. These boundary conditions, which are independent of the viscosity,

can be obtained from (2.38) - (2.42). For § =0 or 8 = an even integer, they are

du _dp dp _

!)=w=‘d7—:l7—z:—0 (4.21)
and, for # = odd integer
dv dw
u—p-—p-—ﬁ—ir——o. (4.22)

Mapping B



81

For a disturbance which is confined to the critical layer at r = 1 and which vanishes
rapidly away from the origin, an alternate approach is to transform a truncated finite

physical domain 0 < r < Rp.x onto the computational interval 0 < z < 1 according to

z = cosf

vy = 1-2%n (4.23)

r = rc{1+8i—n:1i[r:}f(gr—_B)B)]-}

where

2r

7 is the concentration parameter which varies from zero for no stretching to high values

1 [1 + (" — 1)(re/ Rmax)

B=_|n 1+(e’—1)(r,,/Rmax)]’ 0<r1<oo0,

which concentrate more grid points near r., and r. is the approximate location of the
critical layer. Figure (4.3) shows the distribution of collocation points for various values
of 7. [See Anderson et al. 1984 for a part of this mapping]. Since the slope, dz/dr, is
large in the region of the critical layer, the mappings (4.23) provide high resolution for a
suitable value of 7. Unfortunately, because dz/dr vanishes at Rpax, any disturbance under
this mapping has zero slope at Rmax, unless the asymptotic behavior of this disturbance
is implemented appropriately (see remarks in section 4.1) into the discretization. As a
consequence, this mapping will work only for the case where a disturbance is confined
mainly in a narrrow region and decays rapidly. Extensive sensitivity studies were per-
formed to determine the effect on the eigenmodes due to the zero slope approximation of
a disturbance at Rmna.x. We found that when a Ry, is sufficiently large, typically 4 to 7,
the stability characteristics are rather insensitive to the value of Rpax as long as there is
an adequate clustering of points in the critical layer. This insensitivity of the numerical
results can be attributed to the sufficiently rapid decay of a disturbance. According to
the asymptotic solutions (2.38) - (2.42), a disturbance is of order R exp(—aRmax) at
r = Rnaz, which is small enough to be approximated by zero derivative whenever aRmaz

is sufficiently large. In this work, 7 is between 5 to 10, while r. ranges from 0.95 to 1.2.
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In either mapping, as a result of using either odd or even polynomials over the half
interval, the spectral derivative operators (4.16) need to be modified accordingly. The

matrix elements of odd and even derivative operators become

D?,(0dd) = D%, (full) — D" _,(full) (4.24)
D% (even) = D7, (full) + Df ,_,(full) (4.25)
where
j=01,---,N
k=01, ,N

The superscript p denotes the p** derivative, N is an odd integer, and N is the actual
number of collocation points in the half Chebyshev domain. The derivatives in the phys-
ical domain can be expressed in the computational domain by using the chain rule of

differentiation. For example,

w(r) = u(x(r))

du  dudz (4.26)
dr  dzdr
dzu d*u dz., du d?z .
s St ) B e (4.27)
where
dz _dzdddy
dr  dodydr (4.28)
Pz _dr dg, &0 Pzdy) dd, | dedd 'y
dr? — df dr) doz(dr) (dg) +EFy§ﬁ (4.29)

In an implementation of a spectral collocation method, the spectral derivative operators
are replaced by full matrices, non-constant coefficient terms are represented by diagonal
matrices, and the boundary conditions (when exists) are imposed by replacing the ap-

propriate rows of matrix. The spectral matrix representation of the stability equations
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converts them into the generalized algebraic problem
AX =0BX (4.30)

where A and B are complex general square matrices of size N*; N* is 5x N for the primary
stability problem, 10x N for the secondary subharmonic analysis, and N is the number of
collocation points in the computational domain.

There are generally two different classes of numerical approaches for computing the
eigenvalues o of (4.30), global and local methods. Global methods, which require no
initial guess on the eigenvalues and compute all the eigenvalues of the discretized system,
are based on the QZ algorithm (Wilkinson 1965). For a matrix of dimension N*, it
requires O( N*?) storage and O( N *3) operations. Local methods, however, require a starting
guess for the eigenvalue and an iteration scheme based on an accelerated inverse Rayleigh
iteration method (Wilkinson). The global algorithm requires much more computer time
and storage than the local method since they compute the whole spectrum of eigenvalues
of the discretized system. Therefore, in order to maximize the numerical efficiency, it
is desirable to minimize the number of Chebyshev polynomials used in a global method.
On the other hand, the main shortcoming of a local method is that it converges to the
true eigenvalue only if an initial guess is sufficiently close to it. As a rule of thumb, in
the absence of any prior guidance on the eigenvalue, we select the physically desirable
eigenvalue from a global method and use it as input to a more refined local method
(using more collocation points) to obtain a more accurate eigenvalue and its corresponding
eigenfunction.

For the tanh mean profiles of (2.28) - (2.30), we found that the eigenvalues obtained
from the global method and the local method agreed to at least six decimal places when
the same number of grid points were used. The typical rapid convergence of complex phase
velocity C corresponding to the most unstable eigenvalue of a near maximally amplifying

disturbance is reflected in the values below:
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N Cr Cr

15 0.57644 0.18860
21 0.57656 0.18866
31 0.57656 0.18866
41 0.57656 0.18866

The above results, obtained using Mapping B, are for a = 3.5, = 1,M; = 0.1, Re =
10%,7* = 1 and # = 1/15. The corresponding value of C' obtained by an independent
inviscid finite difference code (see Section 4.2) using 200 grid points is C' = 0.57656 +
0.18867s.

For a near neutral wave the convergence of the unstable eigenvalue with N is observed
to be much slower than that of a maximally amplified wave. For example, the least stable
eigenvalue for a near-neutral wave of a heated and compressible jet [a = 5.8, =0, M; =

0.8, Re = 5000, T* = 2 and § = 1/15] is found, using Mapping A, to be

N Cr Cr

35 0.4821 0.0096

45 0.4840 0.0109

65 0.4840 0.0100
This slow convergence is attributed to the near singular behavior of the eigenmodes in
the vicinity of a critical point at high Reynolds number flows (see section 2.7). In fact,
as heating and compressibility increase for high Reynolds numbers flows, we have found
that the structures of the near-neutral eigenmodes become increasingly more difficult to
resolve.

Figures (4.4) - (4.9) exhibit the typical transverse distributions of the shape and phase
of the most amplified and near neutral eigenfunctions. These eigenfunctions are normalized
such that the maximum magnitude of the eigenfunction of the streamwise velocity is 0.5.
The pressure eigenfunction is seen to exhibit the "smoothest” structure. This behavior is
sensible since the pressure perturbation has the weakest form of singularity at the critical

point. Numerically, it is precisely this relatively smooth behavior of the pressure that
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makes it the most useful variable to work with in connection with a Rayleigh equation
(when one exists). It is interesting to note that for a near maximally amplified wave, the
streamwise perturbation u has a typical distinct peak and the radial component v has a
plateau-like structure at the critical layer. For a near neutral wave, the peak structure of u
perturbation changes drastically to a shape with two local maxima and is accompanied by
a significant change of the phase, while the plateau feature of the v component transforms
to a smooth shape with a single maximum point. Note also that the amplitude of a highly
amplified u perturbation is large at the jet lipline and becomes progressively small as the

wave approaches the neutral point.

4.2 Some Remarks on Spectral Methods

1. The imposition of the asymptotic boundary conditions (see section 2.6) forbids the
use of a global method because the eigenvalue ¢ then enters nonlinearly into the
eigenvalue problem through the boundary conditions. In addition, since the analytic
far field behavior of a disturbance in a periodic base flow is still unknown, it is
suitable to use the set of mappings (4.18) and (4.23) with a sufficient number of grid

points to resolve the disturbance structure in the critical layer.

2. The extension to spatial stability analysis can be done without much difficulty. Since

the basic instability mechanism is essentially inviscid, the viscous terms which con-

tribute to a quadratic nonlinearity in a, can be neglected in a global method for
spatial stability problems. This is because a? ~ 3%/3z% and in the critical layer
(where the effects of viscosity and heat conductivity are small), this derivative is
negligible compared to 3?/3y? (i.e., the boundary layer assumption). This inviscid
spatial analysis can be reduced to a generalized eigenvalue problem for a. The phys-

ically meaningful «, usually the most unstable mode selected from a global scheme,
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is used as a starting guess for the eigenvalue of a more refined viscous local code.

4.3 Fourth-Order Finite-Difference Method

In order to have confidence in the spectral method, the eigensolutions of the viscous
problem as viscosity vanishes, or equivalently as the Reynolds number becomes infinite,
were checked by an independent fourth order inviscid finite difference method. Eigensolu-
tions of the linear stability problem of unidirectional round jets have been obtained using
finite difference methods by Paragiri (1985) for inviscid analysis and by Jarrah (1989)
for viscous modes. For completeness, a brief description of the method is discussed here.
In the absence of viscosity (and conductivity), the governing disturbance equation for an
inviscid compressible parallel flow can be reduced to a single Rayleigh-type second order

ODE for the pressure disturbance (2.48)

d’p [1 2ug po] dp 2 2 a2 B 2
E'T+[;—W_P_O]—+ O!(UO_")PoMj_"_T_a p=0. (2.48)

Since u} and p) vanish as r — 0 and as r — oo, the asymptotic solutions are

p= leﬁ(ar\[l - MZ2po(uo — C)?) asr—0 (4.31)

p= Cng(ar\/l — M?po(uo—C)?) asr— o0 (4.32)

where I5 and Kz are modified Bessel functions of the first and second kind, respectively,
and C, and C, are constants. Numerically, the asymptotic far field boundary condition is
satisfied at approximately r = Rpmqz = 4.0 and the boundary condition on the jet axis is
satisfied at the first two grid points where constant mean flow prevails to a good degree
of approximation. Details and some sample calculations may be found in Paragiri (1985).
A fourth order central difference scheme is employed which translates the ODE (2.48)

together with the boundary conditions (4.31) and (4.32) into a pentadiagonal system of
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complex algebraic equations. The complex eigenvalue C is then found by a local method
based on the Newton-Raphson scheme where iterations on the eigenvalue are performed
until a prescribed convergence criterion is met. In this work, the eigenvalues are iterated
to five decimal places for highly amplified modes, and to three decimal places for near
neutral modes. Note that a physical eigenvalue can easily be distinguished from a spurious
(unphysical) one because the latter does not converge as the number of computational grid

points is increased.

4.4 Some Remarks on the Linear Inviscid Calculation

The inviscid pressure equation (2.48) has a regular singular point whenever the
mean flow velocity equals the phase velocity of a neutral wave. This singularity often
creates numerical difficulties. For sufficiently amplified modes, the imaginary part of the
complex phase velocity C removes the singularity from the differential equation along
the real axis and hence poses no numerical problem. However, for eigenmodes that are
merely slightly unstable, the almost singular nature of the differential equation requires -
some care. To make matters worse, the secondary instability calculations require an
accurate determination for all the primary disturbances (not just the pressure) and their
higher order derivatives. As shown from section (2.7), compressible flows introduce density

fluctuations whose leading order behavior in the neighborhood of the critical point is

__[(@ 4 Brrul + [3Kr2 — (o + B
P = a?rd3ul(r—r,)

} oot Kpaloglr—r.)  (2.56)

This singularity, which is a pole of order one, may create a change in density fluctuation
across the critical layer that is too rapid for an accurate determination of an inviscid
near-neutral eigenmode. Therefore, we conclude that although the instability is predomi-

nantly inviscid, the inclusion of viscosity is mandatory in secondary instability calculations

because the primary wave is very nearly neutral.
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Fig. 4.2 (a) and (b) 2 as a function of the radial variable r for various n. Crosses
are the collocation points. (c) collocation points on r. The number of collocation
points is 35 using Mapping-A with I, = 7 and ly =3.
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Crosses are the collocation points. Bullets (r = 5), circles (r = 10), and squares (7
= 1).



.09

®
2.0
r
1.0 4

0.0

ctmaaney

0.00 026 080 078 1.00

2.0-&)

r
1.0 5

0.0

|}

0.00 0.25 0.80 078 1.00

Radius

91

3.07

2.0

1.0+

0.0

0.00 0.28 0.60 076 100

lvl

3.0 -

2.0-

1.0

0.0

T
0.00 0.286 0.80 078 1.00

Ip|

Fig. 4.4 Distributions of the [eigenfunction| of a near maximally amplified distur-
bance for Re = 1.0E +6,T, = 1.0,M; = 0.1,0 = 1/15,a = 3.5,8 = 1, and the
complex phase velocity C = (0.577,0.189).



92

3.0 o 3.0 £
o o
2019 4 2.0 o
, o , o)
o o
o
o)
1.0- P4 1.0 - &%
© o
%
o o
o o
o) o
0.0 1 0.0 j 1
-3.14 0.00 3.14 -3.14 0.00 3.4
phase of u phase of v
3.0 — 3.0 o
o o
2.0 o 204 -
r ° ,
o

1.0-*30(3 o 1.0

0 O ooEE®00 O O

0.0

' 0.0 '
<3.14 0.00 3.14 -3.14 0.00 3.4

phase of w phase of p

Fig. 4.5 Distributions of the phase of the eigenfunction of a near maximally ampli-
fied disturbance for Re = 1.0E +6,T, = 1.0,M; = 0.1, = 1/15,a = 35,8 = 1,
and the complex phase velocity C = (0.577,0.189).



93

3.0¢ 3.04%
®
2.0 2.0
r r
1.0 1 1.0
0.0t T Y U 0.0-F T T
0.00 026 060 078 1.00 N NI OKRN N7 1.00
|u] lv]
3.0 3.0%¢
|
20 2.0
r r
1.0 1 1.0
0.0 | S T T 1] 00 ) ] 1 I
000028 080 078 100 0.000.268 0.80 076 1.00
|w] |p|

Fig. 4.6 Distributions of the |eigenfunction| of a near maximally amplified distur-
bance for Re = 1.0E + 3,7, = 1.0,M; = 0.1,0 = 1/15,a = 3.5,8 = 2, and the
complex phase velocity C = (0.557,0.142).



3.0 o 3.0 e
o o
2.0 o 2.0+
r ° r °
o o
o
o
1.0 1.0+
& .
8
o o
o o
o o
0.0 ! 0.0 T
-3.14 0.00 3.14 -3.14 0.00 3.14
phase of u ' phase of v
3.0 o 3.0 2
o o
2'0 B lo] 2-0 T o
, o , o
o o
3
1.040° prom 1.0-
o o
o o
o o
0.0 . 0.0 r
-3.14 0.00 3.14 -3.14 0.00 3.14
phase of w phase of p

Fig. 4.7 Distributions of the phase of the eigenfunction of a near maximally ampli-
fied disturbance for Re = 1.0F + 3,T, = 1.0,M; = 0.1, = 1/15,a = 3.5, = 2
and the complex phase velocity C = (0.557,0.142).

y



3.0 {

2.0 #
.
1.0 1
0.0

0.00 0286 080 078 100
u|

3.0

2.0+

0.0

0.00 028 080 078 1.00
]

3.0

2.0

1.0

95

1

0.0

3.0

0.00 026 080 075 1.00
v}

20

1.0

0.0

| § T L Ll
0.00 0.28 0.80 0.78 1.00
Ip|

Fig. 4.8 Distributions of the [eigenfunction| ot a near neutral disturbance for
Re = 5.0F + 3,T, = 1.0, M; = 08,0 = 1/16,a = 6.55,8 = 0, and the complex

phase velocity C = (0.569,0.001).



3.0 3.0
1 0
2.0- # 204 °
o
r r o
o
1.0-p o] ra 1.0 g
o o
o 0
o o
0.0 T 0.0 Y
-3.14 0.00 9.14 -3.14 0.00 .14
phase of u phase of v
3.0 3.0 —
2.0 1 20-
r , r
1.0 J.P 1.0 -
0.0 Y { 0.0 r -
-3.14 0.00 3.1 -3.14 0.00 3.14
‘phase of p phase of p

Fig. 4.9 Distributions of the phase of the eigenfunction of a near neutral disturhance
for Re = 5.0F +3,T, = 1.0, M; =08,0 =1/15,a = 655,09 = 0, and the complex
phase velocity C = (0.569,0.001).



97

Chapter 5

LINEAR STABILITY OF PARALLEL JETS

The linear stability of a parallel jet is important in its own right. In order to be
able to manipulate the downstream evolution of jet shear layers, the early stages of jet
instability must be understood. We reiterate that linear analyses can reveal accurately
not only the stability characteristics of the initial stages of development of the large-scale
instability wave, but also, rather surprisingly, it can predict the cross-space structure of the
perturbation, even when the local disturbance level is as high as 24% of the jet exit velocity
(Petersen & Samet 1988). This linear analysis, being the first cascade of instability, is
used as input to fully nonlinear numerical simulations, weakly nonlinear analysis, and
secondary instability theory. This section considers some features of the linear stability of
subsonic heated round jets. The different parameters affecting jet instability mechanism
are discussed separately in order to elucidate their individual influences. The important
parameters are the jet Mach number Mj, the temperature ratio T,, the jet momentum

thickness #, wavenumbers (a, 3), and the Reynolds number Re.

5.1 Viscosity Effect

There are now a number of investigations on the inviscid stability characteristics of
round jets, although studies on the viscous instability analysis remain scarce. Batchelor

& Gill (1962) pioneered a theoretical framework on the inviscid stability of a top hat
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velocity profile which characterizes the mean flow close to the jet exit. This top hat
velocity, which ignores the presence of the jet nozzle, as is customary in all parallel flow
analysis, provides a closed form solution of the stability characteristics of a cylindrical
vortex sheet. By using more realistic profiles, which depend continuously on r, Michalke
(1971) and Mattingly & Chang (1974) obtained a good agreement with the experimental
results of Crow & Champagne (1971). Morris (1976) went further to investigate the effect
of viscosity on the instability of various jet mean velocity profiles for different values of the
jet parameters. He found that for jet velocity profiles with thin shear layers, i.e., close to
the jet nozzle, viscosity has a slight stabilizing effect on the growth rate for flows above a
Reynolds number of 1000, based on jet centerline velocity and jet nozzle radius. In other
words, viscosity for instability modes in jets is predominantly passive in character, and
can be ignored for flows at high Reynolds number (except for neutral waves).

Typical results exhibiting the influence of Reynolds number on the linear (temporal)
instability of subsonic heated round jets with the tanh base profiles of (2.28) - (2.30) are
summarized in Figures (5.1) - (5.6). In particular, the effect of Reynolds number on the
full spectrum of eigenvalues using 31 Chebyshev polynomials for « = 3.66 and § = 1/15 are
plotted for various jet parameters in Figures (5.1) - (5.3). We caution the reader that the'
discretized eigenvalues in these figures, except for the unstable ones, are only “roughly”
determined since their associated eigenfunctions did not adequately satisfied the far field
boundary conditions. Nevertheless, these eigenvalues may provide a rough guide on the
the full spectrum of the primary instability problem. The salient features that can be

extracted from these figures are

1. As the viscosity tends to zero (Re — 00), the spectrum consists of a string of neutral

modes and a complex conjugate pair of eigenvalues.

2. The string of eigenvalues, which probably constitutes part of the continuous spec-

trum, generally becomes increasingly stable with decreasing Reynolds number. The

oL
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inclusion of viscosity (at high Reynolds number) only slightly stabilizes the unstable
(discrete) eigenvalue, and breaks down the symmetry of an inviscid complex conju-
gate pair. In other words, viscosity has a considerable effect on damped waves but

exerts only a slightly stabilizing effect on unstable (inflectional) waves.

3. The “continuous modes”, whether viscous or inviscid, have phase velocities lying
between the minimum (free stream value) and the maximum (jet center line value)

of the jet mean flow.

Observation (1) is perfectly consistent with the well-known properties of the reduced in-
viscid equation (2.48). Since this equation admits a complex conjugate pair of eigenvalues,
it has either neutral modes or growing modes which have corresponding “damped” modes
moving with the same phase velocity. Furthermore, since the mean velocity profile used in
this work has only one generalized inflection point, the spectrum is thus restricted to an
assembly of a single unstable mode, its conjugate damped mode, and the remaining neu-
tral modes. The fact that an inviscid equation describes the same instability mechanism
as the viscous problem in the limit of vanishing viscosity is reinforced by (2). Although
the continuous spectrum of free shear flows is still not completely understood, observation
(3) suggests that the complex eigenvalues of the highly damped continuous modes move
toward the real axis. This observation is again consistent with the theoretical results of
the continuous spectrum of boundary layers (Grosch & Salwen, 1978); they found that
the phase velocity of the highly damped continuous mode matches the mean flow velocity.
In view of the physical insignificance of the damped waves compared to the rapidly ampli-
fied unstable waves of round jets, the continuous spectrum will not be pursued further in
this work. Nevertheless, the continuous spectrum obtained from a numerical discretiza-
tion scheme can influence the results of an unstable mode. The inclusion of viscosity will
generally increase the rate of numerical convergence of the unstable mode by moving the

continuous spectrum away from it. This implies that viscosity will play an important role
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in the convergence of a near neutral unstable eigenvalue (see Santos, 1987).

In Figures (5.4) - (5.6), the growth rate and phase velocity as functions of wavenumber
are plotted for § = 1/15. These figures show the typical influence of Reynolds number on
the unstable mode of subsonic heated round jets. Note that the eigenvalues asymptotically
approach the inviscid limit at a Reynolds number of about 5000. In contrast, the inviscid
limit of a planar mixing layer occurs at a Reynolds number of about 200 (Jarrah 1989).
This means that viscosity plays a more important role in the instability of round jets
than in mixing layers. This is because in a mixing layer, where there are two external
streams, the viscous solution (see section 2.6) is completely negligible; but this solution is
not negligible on the jet axis unless the jet momentum thickness is extremely small. Thus
the viscous solution will affect the eigenvalue through the boundary condition near the jet
axis, even when the Reynolds numbers is on the order of several thousand. For jet flows
at Re < 5000, viscosity not only slightly reduces the range of unstable wavenumbers but
also the growth rate. Viscosity is also seen to have virtually no effect on the phase velocity
of unstable disturbances, even though the Reynolds number can be as low as 500. These
results agreed perfectly with the viscous calculations of Jarrah (1989), and are consistent

with the numerical results for the spatial and viscous instability calculations of Morris

(1976).

5.2 Mach Number Effect

The new quantity in compressible flows is the density fluctuation, which occurs
simultaneously with the velocity and pressure fluctuations. The new parameters which
will generally influence compressible flows are the Mach number M;, the temperature ratio
T,, the Prandt]l number Pr, and the ratio of the heat capacity coefficients, y = C,/C,. In

this section, the influence of Mach number on the stability of jet shear layers is given, the



101

effect of temperature ratio will be discussed in next session, while the last two parameters
are assumed to be constants [y = 1.4, Pr = 0.72], and hence, will not be addressed in
this work. The Mach number can influence the instability via the base density profiles
as well as through the disturbance equations. For example, in the unheated jet, the jet
Mach number appears explicitly in the disturbance equations as well as in the base density
distribution.

Although the stability of incompressible shear layers has been studied extensively, a
systematic determination of the role of Mach number on the instability of jet shear layers
is still unavailable. In the case of mixing layers, on the other hand, there are now several
fairly complete studies [see Gropengiesser 1967, Jackson & Grosch 1988]. In his spatial
stability calculations, Michalke (1971) found that increasing Mach number reduces the
range of unstable waves as well as stabilizes the flow. Furthermore, he found that the
phase velocity is sensitive to Mach number only for lower frequencies (or, wavenumbers)
while in contrast, the growth rates become almost independent of Mach numbers. His
results also show that the stabilizing effect due to Mach number is slightly more significant
for an axisymmetric mode than for the first helical mode.

Eckart (1963) extended the Rayleigh stability criterion and Howard’s (Howard 1961)
semi-circle theorem to a compressible, adiabatic plane jet. By using a different approach,
Blumen (1970) found that the influence of @M, on the complex wave velocity of an unstable
mode is the same as that of the Richardson number in Howard’s results. He concluded
that compressibility reduces the range of unstable wavenumbers and stabilizes the mixing
layer. We will show that Howard’s semicircle analysis can similarly bound the complex
wave speed and illuminate the role of compressibility in jet shear layers. We will do this
by generalizing Blumen’s approach to a round jet.

The linear disturbance equations for an inviscid compressible jet can be reduced to a



102

single equation for the pressure perturbation p(r):

?p [1_ 24w _pldp 2 2 a2 B
L(p)—ﬁ+[;—m—g}$+ a‘(ug — C) poMj—r—z—a p=0. (2.48)

We multiply the above by r/{po(ug — C)?} to make it self-adjoint. The equation in the

self-adjoint form becomes

d r dp _
-ti—r{Po(uo—C)z-‘i_'}+qlp—o G

where q; = r [az(uo ~ C)poM} - B*/r? - az] /{po(uo —C)?}. After multiplying (5.1) by

the complex conjugate of p and integrating over the range of r, we find that

. [m'ﬂl’ - alpl*] ar = (5.2)

Separating (5.2) into the real and imaginary parts, we obtain

[o o] o0
[ ttwo ~ CrY* - Clirasdr = [ ralmFipl?ar (53)
0 0
o0
2C; f (uo — Cr)rqadr = 0 (5.4)
0
where
_ 1 "2 2, B 2
92 = POl“O —Cl‘“pl + (a + r? )Ipl ]
C =Cgr+1Cy.

For unstable waves (C; > 0) which vanish at infinity, (5.3) and (5.4) can be simplified to

oo oo
/ uggzdr = CR/ gz2dr (5.5)
0 0

00 2 o0 [ o]
/ ungdr = (012{ + CI)/(; qzdr +/ asz|p|2dr (5.6)
0 0
If we let a and b be, respectively, the maximum and minimum of the base velocity [i.e.,

a < uo(y) < 8], then (5.5) and (5.6) can be reduced to

0> -/()oo(uo — a)(ug — b)qadr (5.7)
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02 {icn - e+ +01 - 3-8} [~ mdr+ [“(@m)ilier (39
The above expression can be simplified to the equation governing the Howard’s semicircle
fheorem:
{icn - 3la+oy*+0}} < [5a-b)" (5.9)
Hence, the stability of inviscid compressible round jets, here a = 0 and b = 1, can be
reduced to exactly the same form as in Howard’s investigation of the stability of variable
density parallel shear flows.

Therefore, the complex wave velocity for an unstable mode of jet shear layers is also
restricted to the semicircle which has the range of ug for diameter, just as in unbounded
planar mixing layers. Furthermore, since equations (5.5) and (5.6), which govern the
instability of round jets, are exactly the same as equations (3.4) and (3.5) in Howard’s
results, we can conclude that compressibility stabilizes jet instability modes.

For the tanh profile, with § = 1/15, the typical role of subsonic Mach number in jet
instability for the axisymmetric and the first helical modes is illustrated in Figures (5.7)
and (5.8), respectively. Compressibility is found to be stabilizing and reduces the range of
unstable wavenumbers. For example, when the jet Mach number, M;, is increased from 0
to 0.8, the maximum growth rate of the axisymmetric and the first helical modes for an
unheated jet is reduced from 0.68 to 0.55, and from 0.66 to 0.55, respectively. Compr'ess-
ibility also reduces, but only slightly, the phase velocity of waves whose wavenumbers are
smaller than the maximally amplified wavenumber, and has no apparent effect on higher
wavenumbers. In other words, the phase velocities of disturbances, whether axisymmetric
or helical, are only weakly dependent on the subsonic Mach number.

In the limiting case as a — 0, these figures also show that long waves are unaffected
by compressibility, i.e., waves with axial symmetry travel with the base flow velocity on
the center line, whereas helical modes travel with half that velocity. Our calculations

are consistent with the results of Jarrah (1989) and are in reasonable agreement with
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the spatial stability calculations of Michalke & Hermann (1982). Physically, according to
Blumen (1970), the mean flow energy, which provides the energy for an unstable mode, is
diminished by working against the elastic force associated with a compressible medium,

and consequently the growth rate of an unstable disturbance is reduced.
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5.3 Heating Effect

In the previous section, we have discussed the effects of jet Mach numbers on
the instability. An extension of the Howard semicircle theorem provided some analytical
understanding for the reduction of the growth rates with increasing compressibility. We
would now like to gain some understanding of the effects of heating. To do this, we shall
begin by generalizing the vortex sheet problem of Batchelor & Gill (1962) to a hot jet. In
order to obtain simple results, we set M; = 0 in the final expressions.

As mentioned in section (5.2), the presence of density fluctuations in a zero Mach
number flow is caused by a variable base density profile which is a function of # and
T.. Although stability calculations have now been successfully carried out for unheated
jets, studies on the influence of heating on jet instability characteristics remain scarce.
Michalke (1971) and Michalke & Hermann (1982) are among the few who investigated the
stability characteristics of subsonic heated round jets by using linear spatial (parallel flow)
stability theory. They found that the local growth rate of the spatially growing instability
wave in a zero Mach number flow (i.e., M; = 0) increases as the total temperature is
increased.

In order to shed light on the effect of heating and to increase the understanding of the
stability characteristics of a viscous heated round jets with continuous velocity and density
profiles, the solution for a cylindrical inviscid and heated vortex sheet is investigated here.
The stability analysis of a vortex sheet has a closed form analytical solution, and has
been given by Batchelor & Gill (1962) for the incompressible case. We now consider the
corresponding compressible case.

The base profiles of a compressible vortex sheet are

ug = U, = constant, po = pq = constant forr <1
(5.10)
ug =0, po=p,=constant forr >1

On both sides of the vortex sheet, given by r = 1, where irrotational flows persist, the
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pressure perturbations are

pa = Exlg(aT,r) forr < 1 (5.11)
p = DpKg(ar) forr> 1 (5.12)

where

To=1/1- (Us - C)*M}p,

where Ig and Kz are Bessel functions, and Ej and D, are arbitrary constants. The corre-

sponding radial velocity can be obtained from the linearized radial momentum disturbance

equation. They are
va = — rLp(aTar)
¢ tap, (U, — C)
or = DyK'g(ar)
1apC

(5.13)

(5.14)

where primes denote differentiation with respect to the argument in parenthesis. Let  be
the radial displacement of the vortex sheet which assumes a normal mode representation

of the form

n = Apexpifa(z — Ct) + B¢| + c.c. (5.15)

where A, is a free constant which denotes the arbitrary amplitude.
The kinematic boundary condition that the interface I is a material surface (i.e., the

interface is formed by the same fluid particles at all times) can be expressed as

B¢ =0 forr=1% (5.18)
%f =0 forr=1" (5.17)
where
D d
oi = -3?+(v+vo)-V
and,

I=1I(z,r,,t)
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Substituting equations (5.10) - (5.15) into (5.16) - (5.17) and after linearizing the

disturbance equations, we obtain

ExI'g(aT,)

: _ DnK's(a)
taCAp = nCia (5.19)

Furthermore, the dynamic condition that the pressure is continuous at the interface yields
EpxIg(aT,) = DpKg(a) (5.20)

(5.18) - (5.20) provide the the equation for the determination of Ax, Ej and Dj. In order

to have a nontrivial solution, these equations yield

_ 2
(UGC C) = —Lﬂ(Taa)% (5'21)
where
_ Kp(a)I's(Ta0)
Lg(Yaa) = K"sﬂ(a)fg(raa)

The complex wave velocity in equations (5.21) cannot be solved analytically for a nonzero
Mach number. In order to investigate the individual influence of heating, the solution for
an incompressible heated jet is examined. In this case, an explicit analytical expression

for the real and imaginary parts of the complex wave velocity can be obtained as below:

Ua

Cr = UM/T.Lp(a) (5.23)

1+ TtLﬂ(C!)

where T, = p;/p,. Since the jet centerline velocity is used in the normalization in this work,
U, = 1. Thus, the incompressible vortex layer is unstable to all disturbance wavenumbers,
as in the classical Kelvin-Helmholtz problem. Since very short waves for real flows with a

finite shear layer thickness are stable, this vortex sheet model is applicable to disturbances
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whose wavelength is much longer than the shear layer thickness. This will be further
elucidated in subsequent discussion. Since the wavelength of a disturbance is inversely
proportional to its wavenumber, long wave approximations are, therefore, characterized
by small wavenumbers and thus low frequencies.

Using (5.22) and (5.23), the typical influence of heating on the value of Cy and Cj as
functions of the axial wavenumbers for 8 = 0 and 8 = 1 are plotted in Figures (5.9a) and
(5.9b), respectively. It is found that, except for long axisymmetric waves, heating reduces
the phase velocity substantially; for example, the phase velocity of an axisymmetric wave
with axial wavenumber 7.5 is reduced from 0.53 to 0.36. For waves with a approximately
less than 1.5, this reduction is more pronounced for the first helic‘al mode than for the
axisymmetric mode.

In the limiting case, the values of C for long wave approximation (@« — 0) can be

obtained from (5.22) - (5.23). They are

Cr=1,Cr=0, forf=0 (5.24)
1 .
CR = ﬁ, CI = 1+ T, for ﬂ ?—é 0 (525)

Therefore, a heated vortex sheet is always stable to long axisymmetric modes, but is'
unstable to all non-zi;iis}ﬁirin&fi:é'modes whose growth rates are reduced by heating. For

a cold jet (T. = 1), long waves with axial symmetry travel with the speed of the center

of the jet, whereas all helical modes travel with half that speed (Batchelor & Gill 1962).

The phase velocity of long axisymmetric waves is independent of heating, whereas that of

non axisymmetric waves is substantially reduced by heating.

The stability characteristics of a continuous base velocity profile are in general not
expréééii)le in closed form, and, thérefore, must be determined numerically. The phase
velocity and growth rate as functions of wavenumbers for the tanh velocity profile with
= 1/15 are displayed in Figure (5.7) for # = 0 and in Figure (5.8) for # =1. Note that

axisymmetric disturbances are more unstable in heated jets than in cold jets only at small
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axial wavenumbers, and that heating reduces the range of unstable waves. Except for very
small axial wavenumbers, heating generally decreases significantly the phase velocity; for
example, the phase velocity of a near neutral axisymmetric disturbance is decreased from
0.562 to 0.476. While the phase velocity is rather insensitive to Mach number, it is, except
for long axisymmetric waves, substantially reduced by heating.

By using a slightly different velocity profile (profile 1 of Michalke 1984), we found that
these stability characteristics are virtually indistinguishable from those of profile (2.28) -
(2.30). This insensitivity of the stability characteristics to the details of the (two slightly
different mean velocity profiles) convinces us that our results are representative of what
might be obtained for a wide class of mean flows with reasonable shapes.

By comparing Figures (5.9 a-b) and Figures (5.10 a-b), the phase velocities obtained
from a tanh velocity profile with 8 = 1/15 and the vortex sheet model are seen to exhibit
very similar behavior. In contrast, the quantitative values of the amplification factors from
these two profiles are considerably different (except at small wavenumbers); this shows the
true limitation of a vortex sheet theory.

Further, the long wave results for § = 1/15 are consistent with Jarrah’s (1989) calcu-
lations on mean velocity profiles with a different momentum thickness, namely 4 = 1/5.
For shear flows, as previously mentioned, the stability behavior of a disturbance which
has a large wavelength in comparison to a characteristic profile length (e.g., shear layer
thickness) is unaffected by the form of velocity profiles. The validity of the preceding
statement needs some clarification, though. For round jets, we found that this statement
is true for axisymmetric modes but not strictly valid for helical modes. To be precise, the
phase velocities of long waves (i.e.,  — 0) in a tanh velocity profile with a finite shear
layer thickness, whether axisymmetric or helical, agreed with that obtained from simple
vortex models. For the corresponding growth rates, this agreement is found in axisym-

metric modes but not in helical modes. This disagreement is exacerbated as the helical
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mode number and the shear layer thickness is increased.
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5.4 Mode Number and Shear Layer Thickness Effects

Since the evolution of instability modes in an axisymmetric jet is affected by
the shear layer thickness and the mode number, these effects are concurrently discussed
in this section. The length scale characterizing the effect of shear layer thickness is the
dimensionless momentum thickness # which, in this work, is normalized with the jet radius.
There have now been a number of theoretical studies on the stability characteristics of
incompressible round jets. In their theoretical work, Batchelor & Gill (1962) found that
a top-hat jet velocity profile (i.e, § — 0), which represents the mean flow very close to jet
exit, is unstable to a small disturbance for all axial and azimuthal wavenumbers. Their
analysis is supported by Plaschko (1979) who found that the thin jet shear layer (ie.,
small §) for a slowly diverging jet is unstable to a large number of discrete azimuthal
modes. The importance of the parameter # in the initial evolution of an axisymmetric jet
is further explored in detail by Cohen (1986). By using a scaling analysis, he found that
all azimuthal modes will amplify at identical rates whenever § < 1 and (A\z/X3)? < 1;
where A, and A are the streamwise and the azimuthal wavelengths. This implies that
the results obtained from the thin jet shear layer are equivalent to the planar mixing layer
where the stability characteristics depend only on a single parameter o.

Although the shear layer near the jet nozzle exit is unstable to a large number of az-
imuthal modes, only the first few are considered since these are the modes that dominate
the coherent structures experimentally (Cohen 1986). In fact, the geometrical design of
most laboratory jets, which consists of a small nozzle emanating from a large chamber
where an acoustic excitation signal is introduced, cuts off higher azimuthal modes. It is
for this reason that azimuthal excitation of a jet is usually accomplished by a series of cir-
cumferentially placed acoustic “drivers”. To be more precise, a linearized monochromatic
pressure wave traveling inside a plane duct, where for simplicity the mean flow in the duct

is set to zero, before exiting downstream to the jet nozzle is used for illustration. This
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wave Is of the form

2 2,273
exp (—tw,t) cos(nd}:y) expt [:—‘2 - n‘i: } z (5.26)
oc

where w, is the excitation frequency, h is the duct height, a., is the sound speed, y
is the cross stream direction, z is the downstream direction, and ng is the duct mode
number. Equation (5.26) shows that the fundamental mode (ng = 0) will always propagate
sinusoidally downstream. However, if the excitation frequency w, is small such that w, <
n4xac/h, then the behavior of the acoustic mode along the z axis is purely exponential,
and the wave is said to be cut-off. Therefore, at a given frequency, only a finite number
of modes can propagate out of the jet nozzle exit. In order to excite the instability wave
whose frequency is on the order of the ratio of the dimensional jet exit speed (U;) and
the shear layer thickness (), the excitation frequency of acoustic waves corresponding to
most laboratory experiments is often quite low. Consequently, only the fundamental plane
acoustic wave survives through the nozzle exit. This implies that if the nozzle is round,
then an axisymmetric low frequency acoustic wave, which accentuates an axisymmetric
instability wave, will be observed at the nozzle exit. Farther-downstream where the rolling-
up of coherent structure occurs, the axisymmetric and the first azimuthal components have
been experimently observed to predominate the flows. Therefore, the stability calculations
are focused mainly on these modes.

The parameter # appears explicitly in the velocity profile (2.28) - (2.30). If the flow
is compressible, § also appears as a parameter in the base density via the coupling with
the velocity profile. In order to single out the effect of the shear layer thickness, the base
density profile is taken to be constant (i.e., M; = 0 and T, = 1). In this work, the tanh
velocity profiles for two different axial locations are investigated, although the analysis
can be carried out to include profiles at an arbitrary location, pro“rided that the mean
profiles are known a priori. The values of momentum thickness which characterize the

two locations are chosen to be § = 1/15 and § = 1/5. Crighton & Gaster (1976) reported
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that these values of  correspond to axial positions 0.5 and 2.7 diameters downstream
of the nozzle exit in the experimental measurements of Crow & Champagne (1971). Of
course, the functional relation between § and the streamwise direction, which depends on
M; and T\, will vary from experiment to experiment.

The growth rate and phase velocity of the first three azimuthal disturbances for a cold
and incompressible jet for § = 1/15 and § = 1/5 are summarized in Figure (5.11) and
Figure (5.12), respectively. In Figure (5.11), the jet shear layer is dispersive to waves
longer than the most amplified wave and relatively nondispersive for shorter waves; § = 1
produces the largest range of (approximately) nondispersive waves. The phase velocity of
axisymmetric modes decreases with a from unity to 0.56. In cont;raét, the phase velocities
of helical modes (8 = 1, 2) increases with a from 0.5 to 0.56. In particular, the phase
velocity for a neutral wave is approximately 56 % of the jet centerline velocity, and it
is independent of the mode numbers when the shear layer is very thin. An important
consequence of the almost nondispersive character of azimuthal modes over a broad range
of wavenumbers is that it allows waves to interact resonantly. We shall show in Chapter 6
that this resonance wave interaction phenomenon is, in fact, a mechanism for the strong
growth of a subharmonic disturbance. Further, the axisymmetric (8 = 0) mode has the
highest maximum growth rate of 0.680, the # = 1 mode amplifies at a slightly lower rate
of 0.663, while the most unstable rate of § = 2 is 0.595. This is reasonable, since as § —
0, the results of the tanh profiles tend to that obtained from vortex sheet analysis where
all azimuthal modes amplify at the same rate at large enough axial wavenumbers.

It is interesting to recall that the phase velocity for all azimuthal waves for a simple
vortex sheet (i.e. for # = 0) is at approximately 50% of the jet centerline velocity. This
shows that although the vortex layer under-estimates the phase velocity of the tanh veloc-
ity profiles at = 1/15 by about 11 %, it correctly predicts that all azimuthal disturbances

with high axial wavenumbers propagate at the same phase velocity.
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Farther downstream at § = 1/5, Figure (5.12a) shows the 8 = 1, § = 2, and 8 = 0,
are respectively the most, the second, and the third unstable modes. The maximum
growth rates of the disturbances with # = 1, # =0, and 8 = 2 are 0.173, 0.134 and
0.039, respectively. Therefore, if both the axisymmetric and helical modes have the same
initial amplitudes, the helical mode will eventually dominate downstream of the end of the
potential core. The emergence of 8 = 1 mode as the dominant instability mode towards
the end of the potential core is also observed by Michalke & Hermann (1982), Cohen
(1986) and Miles & Raman (1988). Batchelor & Gill (1962) theoretically demonstrated
that the “ fully developed” jet, after the end of a potential core, is unstable only to the
B = 1 mode. For the tanh profiles, the phase velocities of axisymmetric modes are seen
to decrease with wavenumbers from unity to 0.71. In contrast, the phase velocities of
modes 8 = 1 and # = 2 increase with wavenumbers from 0.5 to 0.67 and from 0.5 to 0.56,
respectively. Owing to a greater value of 4, the near-neutral azirmuthal modes now travel
with different phase velocities. =

By comparing Figure (5.11) and Figure (512), we found that as the shear layer thick-
ness grows, not only does the wavenum}greié@g{haximum local growth rate and the range
of unstable waves becomes smaller, but the range of nondispersive waves is significantly
reduced. It should be noted that, as pointed out by Petersen (1978), each coalescence
of coherent structures will result in a bigger value of 4, making the layer more dispersive
to unstable waves . These results are consistent with the numerical results of Petersen

(1978), Michalke & Hermann (1982) and Cohen (1986) which are based on spatial stability

calculations.
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Isothermal, Incompressible jet
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Fig. 5.1 The effect of Re on the spectrum of linear, parallel flow, temporal eigen-
values using 31 collocation points for § = 1/15, M; = 0, T, = 1, a = 3.66, and
g=0.
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Heated, Incompressible jet
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Fig. 5.2 The effect of Re on the spectrum of linear, parallel flow, temporal eigen-
values using 31 collocation points for § = 1/15, M; = 0, T, = 2, a = 3.66, and
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Isothermal, Compressible jet

stable €———— '—-o unstable

1.0
O * Re=5E+5
@o"f% x Re=5000
N ) o Re=500
0.8 o X :
Gj X >k? >(><>\'\< )
_‘? 06 [~ O0 © %Q § om
s o % 8
S .l :
3 "o
e X ®
o 0.2} o ¢
@ >§8
é’cqg
0.0
_O2 ] | | | | !

-0.8 =04 0.0 0.4
Imaginary Part, ¢

Fig. 5.3 The effect of Re on the spectrum of linear, parallel flow, temporal eigen-
values using 31 collocation points for § = 1/15, M; =08, T, =1, a = 3.66, and
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Heated, Incompressible jet
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Axisymmetric Mode
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Fig. 5.7 Inviscid (a) growth rate and (b) phase velocity of the azimuthal modes
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Chapter 6

SUBHARMONIC INSTABILITY MODES

As discussed in Chapter 3, a principal effect of excitation is to generate a primary
wave which grows in amplitude, and then reaches a finite amplitude (i.e., saturation) as it
propagates downstream. In turbulent flows, this primary wave is usually called a coherent
structure. An objective of this work is to investigate, via a secondary instability theory,
the conditions under which this primary wave can destabilize a subharmonic mode. Since
subharmonic disturbances generate vortex pairing (and vice-versa), in a physical sense,
the present chapter focuses on the conditions, as a function of Mach number, temperature
ratio etc, which enhance, or at least influence, vortex pairing. This process of merging
(or pairing or amalgamation), is generally believed to be an important mechanism in the
spreading of jet flows.

Although secondary instability theory in round jets is presently still new, its predictive
capabilities are, for the most part, undisputed in incompressible planar mixing layer's and
boundary layer flows. We now digress momentarily to review some of these known results,
and outline some distinct features of round jets that are absent in mixing layers and
boundary layers.

By using a secondary instability analysis, Kelly (1967) argued that the sequential merg-
ing of vortices in planar mixing layers can be attributed to the subharmonic instability
modes in a periodic base flow. These modes, which absorb energy from the mean flow via
thé catalytic role of a periodic fundamental mode, predominate in the flow at approxi-

mately the location where vortex pairing occurs. Ho & Huang (1982) also demonstrated
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that after each pairing of coherent structures, the peak frequency of the energy spectrum
was halved, and the merging process was found to be at the location where the sub-
harmonic modes become the dominant instability modes. Their findings reinforced the
predictive capability of a secondary instability theory.

Further, Herbert (1983, 1984, 1985) demonstrated that a secondary instability analysis
can unravel some of the fundamental routes to transition in incompressible wall-bounded
flows. In a particular route, he has shown that the essential flow physics associated
with the formation of staggered lambda vortices in boundary layers, although seemingly
formidable, can be revealed by a linear secondary instability theory. It may be remarked
that boundary layer flows are fundamentally different from shear hows. This difference
is marked by the presence of a solid wall which constitutes an additional viscous no-
slip condition on the velocity perturbations. Consequently, the growth of an instability
mode is induced by viscosity, and hence, the growth rate is small. This means that when
the viscosity is turned off in wall-bounded boundary layer flows, there are no instability

modes. In contrast, the instability modes in shear flows are predominantly inviscid, and

the growth rates are generally large; at least in the sense that the amplitude of the

fundamental changes by a significant amount in one period or wavelength.
Jets and planar mixing layers belong to the same class of lows, which are characterized
by the existence of a generalized inflection point in the parallel flow profiles. However,

the former have a few distinct features that are absent in the latter. The qualities that

discriminate jets from mixing layers are:

1. The radius of a jet nozzle constitutes a length scale, which is used in our normaliza-
tion, in addition to the shear layer thickness. Thus the shear layer thickness becomes

a bona-fide parameter for a jet; this quantity can be scaled out for a mixing layer.

2. The vortex stretching term, which represents the extension or contraction of vorticity

lines by the strain rate of the flow, is nonzero for azimuthal disturbances.
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Because of (1) above, the symmetry of the base vorticity about the critical point of a jet is
broken, and, as a result, the waves are dispersive so that waves with different wavenumbers
are convected with the flow at different speeds. Furthermore, the criterion for the existence
of an inflectional mode is now a function of the mean flow and the mode number, 3, of
the instability mode (Batchelor & Gill 1962). In contrast, the necessary and sufficient
condition for the existence of an instability mode in a planar mixing layer depends on the
base flow alone.

We will employ a generalization of the current incompressible secondary instability
theories to gain a better understanding of the mechanisms governing the amalgamation
of coherent structures in compressible round jets. High speed jets, whether for heating or
for nonzero Mach number, introduce density perturbations. These result in quadratic and
cubic interactions between the density perturbations and other types of perturbations.
This cubic interaction results in considerable algebra in the secondary instability analysis,
and therefore necessitate some simplifications which we will now discuss.

Recall that a deficiency of linear stability analysis is that it cannot determine a unique
amplitude A. In this work, the amplitude A is a small arbitrary prescribed quantity
which corresponds to the maximum amplitude of the streamwise velocity perturbation. A
consequence of this normalization is that if all other types of perturbations are at most
the same order as A, then the quadratic interaction between F; and F; will play a more
important role than the cubic interaction between F, and itself and F;. This is because,
for small A, the quadratic interaction is of order Ae while the cubic interaction is of or-
der A%e. There are, however, possible situations where this definition of A might cause
inconsistencies with our analysis. These happen in strongly heated jets where the parallel
stability analysis provides a density eigenfunction that is much greater than the stream-
wise velocity eigenfunction. As a result, the magnitude of the density perturbation (Ap;)

will no longer be small compared to the unperturbed density (pg). This will invalidate the
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present stability analysis where the amplitudes of all types of perturbations are assumed
to be small compared to the mean flow. Nevertheless, these possibilities can be avoided
by normalizing A so that it corresponds to the maximum amplitude of the density per-
turbation. This implies that when A is small, the amplitude of all types of perturbations
will be small too. Therefore, in this work, we shall focus on the cases where A? and higher
order terms can be neglected. The preceding remark is consistent with our representation
of the flow arising from the finite-amplitude growth of the primary disturbance associated
with the parallel base flow. Formally, this flow [say, & | may be expanded as
U(z,r,t) = uo(r) + A%ul +.--+ A {ul(r) + A%ui(r) +-- } exp(ia; z)

+ {A’ué +-- } exp(2iay) + -+ c.c (6.1)
where the superscript 1 denotes a correction due to the nonlinear self-interactions of the
primary wave, and the finite amplitude A can, in principle, be obtained from the so-
called Landau’s equation (Jarrah 1989). Since the periodic base flow we have modeled
(ie., uo + (Auj exp(ia; z) + c.c.)) is formally valid to O(A), on the basis of the expansion
(6.1), any quantity involving A? and higher order terms in the secondary strability analysis
7 should be t'“‘,‘,??‘f?@:ﬁ‘,,’?‘,‘e” as noted by K,‘,’!l),'?,,,v,ve also assume that,t,h?, terms of O(A)
and higher in (6.1) do not eliminate the generalized inflection point associated with the
parallel mean flow, as otherwise, the perturbation analysis will be invalid.

Fully developed coherent structures (or roughly, vortices) can be viewed as manifesta-
tions of a primary instability wave that propagates and grows in the downstream direction.
Although the quantitative experimental data on the vortex-pairing scenario in round jets
is presently still very scant, the evidence of the pairing phenomenon can be seen in the
experimental work of Wille (1963) and Reynolds (1988). In our study , the merging of
coherent structures is idealized as being composed of two externally excited disturbances:
an axisymmetric fundamental wave and its subharmonic. The fundamental wave is chosen

to be axisymmetric for two reasons. First, the axisymmetric geometry of a jet nozzle tends
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to accentuate an axisymmetric wave near the nozzle. Secondly, the resonance condition
on mode numbers, which has been established in Chapter 3, can be satisfied exactly for
a subharmonic mode with an arbitrary mode number. Further, the merging of two ring-
like coherent structures is idealized as the resonant interaction between two axisymmetric
waves. And, any appearance of helical motions can be attributed to a helical subharmonic
resonanting with its axisymmetric fundamental. This idealized model, which assumes
that other frequencies and fine scale motions play a minor role in the overall flow physics
describing the merging of coherent structures, provides a blueprint for future studies and
comparisons.

To recap, the assumptions used in the secondary instability analysis are:

1. The magnitude of the subharmonic disturbance is sufficiently small to allow lineariza-

tion about the primary wave and the parallel base flow.

2. The mean flow profiles are kept unchanged and the mode shape (i.e., the cross-space
structure) of the primary wave is given by a linear theory even though the amplitude
of this wave may be quite large (say, A = 0.10). Some justification of this assumption

lies in the work of Petersen & Samet (1988).

3. We shall assume that A is a prescribed constant, although in experiments we find that
during and after saturation, while the subharmonic is growing, A is a slow function
of z. In our temporal theory, this translates into A = A(t); we ignore this slow

dependence on time.

A consequence of these assumptions is that the stability characteristics of the fundamental
mode can be approximated by the linear modes of parallel flow analysis. It may be
reiterated that the disturbances are normalized such that A is the amplitude corresponding
to the maximum of the streamwise velocity perturbation of the primary wave, and we

consider a disturbance to be an infinite wave train that is spatially periodic but temporally
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growing.

6.1 Resonance Conditions

In the method of multiple scales, we considered two small amplitude waves of
arbitrary wavenumbers and growth rates evolving temporally in a parallel shear flow. The
lowest order nonlinear interaction can occur only through quadratic wave interactions.
In a perturbation scheme, the flow field at this order may be thought of as the response
of a linear oscillator to a small forcing function comprised of the quadratic wave (or,
oscillation) interaction terms. The response of the oscillator to this small forcing function
is small unless there is a resonant wave interaction. This happens when the growth rate,
mode number and wavenumber of a forced wave, generated by the forcing term, are the

same as that of an instability wave of the parallel flow. A consequence of the quadratic

wave interactions is an enhancement of the trqﬁsfe; of energy from the mean shear flow

comparable in size to a primary mode associated with the roll-up of a coherent structure.
Recall that in order to have resonant wave interactions, the two unstable wave modes

must fulfill the following resonance conditions:

lea|Cr(lail, |81]) + |a2|Cr(lezl,|82]) = a2 + 1|Cr{|ez + a1, |81 + B2l) (3.18)

a2CR([a1],|81]) + 22Cr(lezl, |82]) = (a2 + 1)Cr(laz + 1], |81 + B2l) (3.17)
where the a’s and B’s can be positive or negative, and are so far arbitrary. These condi-

tions, upon close examination, can be satisfied by selecting all of the following restrictions:

" (6.1) The wavelength of the subharmonic disturbance is twice that of the primary

(or, fundamental) wave [i.e, a; = —2a3].
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(6.2) The sum of the azimuthal mode numbers of the fundamental and its subhar-

monic is equal to the azimuthal mode number of the subharmonic alone.
(6.3) The phase velocity of the fundamental equals that of the subharmonic.

(6.4) The sum of the growth rates of the fundamental and the subharmonic is the

same as the growth rate of the subharmonic alone.

The condition (6.2) can be satisfied exactly by taking the fundamental to be axisym-
metric, while the subharmonic can be axisymmetric or helical. The condition (6.3) requires
the waves to be nondispersive and this can only occur when the jet momentum thickness
is small (i.e., near the jet nozzle). In round jets, where the waves are dispersive, this con-
dition is met only approximately. In contrast, the phase velocities in planar mixing layers
are independent of the wavenumbers and hence guarantee this condition exactly. For the
tanh velocity profile, the matching of phase velocity can be approximately satisfied in two
different ways. The first way represents a near neutral fundamental mode interacting with
a near maximally amplified subharmonic, while the second way involves a near maximz;lly
amplified fundamental interacting with a subharmonic whose growth rate lies between
zero for a = 0 and the most amplified value. For clarity, we called these two ways route /
and route II to subharmonic instabilities, respectively. Route I is physically more mean-
ingful since a fundamental wave attains a finite-amplitude saturation when it is within the
vicinity of a neutral point. As revealed in Figure (6.1), an axisymmetric subharmonic can
interact with the fundamental via route I, while the matching of phase velocities between
a helical subharmonic and the fundamental can occur through either route I or route II;

note that the fundamental is axisymmetric. In Figure (6.1), the subscripts f and s denote
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the phase velocities of the fundamental and the subharmonic, respectively; symbolically,
route I is represented by an interaction between I; and I,, while route II is represented
by an interaction between II; and I1,.

The condition (6.4) can approximately be fulfilled by choosing an almost maximally
amplified subharmonic and a fundamental wave that is near neutral. Strictly speaking,
this condition will preclude route II, although sometimes this condition is abandoned
altogether under the assumption that growth rates are generally “small”. It is worth
noting that the wave resonant interactions in the bulk of Kelly’s work (1967) on planar
mixing layers in achieved via route II. A consequence of this choice is that the condition
on the growth rate is not met. The effect on the secondary subharmonic modes for not
imposing the condition (6.4) will be examined in round jets in subsequent sections.

In summary, in order for all the resonance conditions to be satisfied simultaneously,
the fundamental must be a near neutral axisymmetric mode, while the subharmonic can

have an arbitrary azimuthal mode number and is nearly maximally amplified.

6.2 Comparison of Approaches

In view of the absence of any previous studies on the secondary instabilities of
subsonic heated round jets, two distinct yet complementary approaches are used. One of
these is a perturbation method and the other is a generalization of normal mode approach
to a periodic base flow. Typical results from the two approaches for § = 1/15 and various
jet parameters are compared in this section. In Figures (6.2) - (6.4), the solid lines
represent the method of multiple scales, while the open circles indicate the normal mode
analysis. In the normal mode analysis, the [relative frequency| = |d27] — the absolute value
of the imaginary part of 6, defined in (3.45)— refers to the frequency of the subharmonic in

a frame of reference that moves with the phase velocity of the fundamental wave. When
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this [relative frequency| is zero, the relative phase velocity in the streamwise direction
between the fundamental and its subharmonic becomes zero.

In Figures (6.2 a-b), the growth rate of the secondary wave (i.e., the real part of 6, =
&;r) and its |relative frequency|, as a function of the amplitude, A, of a near maximally
amplified fundamental mode are plotted. These figures represent the case where the phase
velocity approximately satisfies the resonance condition (6.3), whereas the growth rates
do not adequately fulfill condition (6.4). A couple of interesting observations can be
extracted from these figures. First, the normal mode analysis produces a “dominant”
subharmonic mode whose growth rate increases at a rate proportional to the amplitude
A of the fundamental and a second mode which suffers a decay as A increases. In the
perturbation method, we focus on the subharmonic whose growth rate increases with A.
The growth rate of the dominant mode is increased by about 3% when A changes from 0
to 0.02. At a larger value of A, the decaying mode is physically insignificant relative to
the dominant mode and, it will not be pursued here. Secondly, when A ranges from 0 to
0.02, the growth rate of the dominant subharmonic mode agrees well with that obtained
from the method of multiple scales. Finally, the phase velocity of the subharmonic wave
remains synchronized with its fundamental when A becomes finite. Note that in all of
these calculations, A is still very small; because of the presence of the (periodic) primary
wave, the subharmonic possesses a growth rate which is larger than what it would have
in the parallel base flow.

The previous results are extended to larger amplitudes, A, in Figure (6.3). In comparing
the two approaches, it can be seen that when A is less than 0.03, they are in agreement.
However, when A increases from 0.03 to 0.1, the perturbation method overestimates the
growth rate. We conjecture that this disagreement arises from the inaccuracy of the
low order perturbation method for large A, which is presumably caused by the limited

accuracy of the truncated asymptotic expansion (3.21) - (3.24). An obvious suggestion is
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to introduce a second slow time scale T; = §%¢ in order to absorb the parabolic dependence
of the growth rate on A for large A. Rather than extending the analytical approach in this
way, we chose to explore the normal mode method whose range of validity is somewhat
larger than that of the asymptotic method and which also provides an independent check.
Once the primary wave attains a finite amplitude, the secondary instability of the jet,
as manifested by the growth rate of the subharmonic, increases. We believe that this
instability will result in the pairing of the vortex rings associated with the primary wave.

Figures (6.4 a-b) show the growth rate and the |relative frequency| as a function of the
amplitude of a near neutral fundamental mode for a heated jet. It can be observed that
when A increases from 0 to 0.02, the growth rate of the subharmonic mode is augmented
by about 7%. Further, for this range of A, the two approaches are in good agreement,
and the phase velocity of the subharmonic mode matches that of the fundamental.

It is worth noting that the periodic flow destabilizes the subharmonic mode of Figure
(6.4) more dramatically than that of Figure (6.2). This can be attributed to the fact that
the results in Figure (6.2) do not adequately fulfill the growth rate restriction (6.4). These
results are rather typical of our calculations, and therefore, we can conclude that in order
to achieve optimum enhancement of a subharmonic instability mode, its wavenumber,
phase velocity and growth rate must satisfy the resonance conditions simultaneously.

Additionally, in subsequent sections of this chapter, it will be found that in order to
compare these approaches, it is essential that the phase velocity of the primary subhar-
monic disturbance matches (or, almost matches) the fundamental. This is because when
the linear waves are nondispersive, there is no mechanism in the low order perturbation
analysis to guarantee the destabilization of a subharmonic mode by the periodic flow by

means of phase-locking with the fundamental.
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6.3 Compressibility Effect

In this. section, the influence of M; on the secondary subharmonic instability in an
unheated compressible jet is presented. It should be remembered that as the jet Mach
number changes, the shape of the primary mode also changes. Therefore, both this change
in the primary waves as well the explicit dependence of the secondary wave on M; will
alter the instabilities of the subharmonic. [For reference, compressibility stabilizes the
primary eigenmodes]. The axial wavenumbers of the subharmonic and the fundamental
are chosen to correspond to a near maximally amplified wavenumber and a near neutral
wavenumber, respectively. In accordance with the discussion in the previous section, only
the “dominant” subharmonic is shown.

A typical influence of M; on the growth rate and the |relative frequency| of subharmonic
instability modes (82 = 0) and (82 = 1) in the presence of a finite amplitude primary mode
is exhibited in Figure (6.5). With reference to Figure (6.5b), an interesting feature is that
when the waves are (initially at A =0) slightly dispersive, a finite threshold (fundamental)
amplitude Ay, is required for the matching of phase velocities to be established. After this
matching is established, the dominant subharmonic mode always travels with the speed
of the fundamental, and the growth rate of the subharmonic mode increases substantially
as A increases (see Figure 6.5a). This threshold amplitude generally decreases as the
difference (at A = 0) between the phase velocities of the fundamental and subharmonic
decrease. This observation is important because it implies that for small amplitudes of A
which are less than the threshold value, the low order perturbation series (3.21), which
assumes that the matching of phase velocities is independent of A, might not be able to
correctly predict the growth rate of the secondary disturbance when the primary waves
are dispersive. This is sensible, on physical grounds, since the matching of phase velocity
means that the two waves travel in unison. Therefore, there is a possibility for the effective

transfer of energy from the mean flow to the subharmonic mode via the catalytic role of
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the finite-amplitude primary wave; this is because there is no “phase cancellation” by the
motion of the subharmonic relative to the fundamental.

In order to have a representative idea of the effect of compressibility, it is sensible to use
the total increment of the growth rate of a subharmonic mode from parallel flow analysis
due to the effect of the primary wave. Let R represent this increment when A changes

from O to 0.1. Conveniently, some of the more important results pertaining to Figure (6.5)

can be tabulated as below:
M; Am R

0.1 0.011 0.236
0.8 0.004 0.204
0.1 0.006 0.205
0.8 0.011 0.180

——_-O0o X

The above calculations are for Re = 5000, § = 1/15, T,= 1, and B; = 0. The value of A;x
is only an estimated one because we did not have enough runs in the neighborhood of A;;.
For an incompressible jet, when the amplitude A changes from 0 to about 0.1, the growth

rates of the 3 = 0 and #; = 1 are augmented by 0.236 and 0.205, respectively. This is

about a 40 % increase over their values at A = 0 and suggests that subharmonic instabilities

play a major role in the development of a jet flow. Furthermore, when A is greater

than the threshold value, compressibility has a moderate stabilizing effect on secondary

subharmonic instability modes so that vortex pairing, which results from subharmonic
instability, is expected to be less important in compressible flows. For example, for the §;

= 0, the increment, R, is reduced from 0.236 to 0.204 due to compressibility.
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6.4 Heating Effect

In this section, the influence of T, on the secondary subharmonic growth rates in a
heated (7. > 1) and low Mach number (M; = 0) jet is discussed. The comparison between
heated and unheated flows is again rather subjective since the primary eigenmodes also
depend on T,. As noted in Chapter 5, heating is found to have a slight stabilizing effect
on primary modes with axial wavenumbers larger than the most amplified wavenumber.
As before, the axial wavenumbers of the subharmonic and the fundamental are chosen to
correspond to a near maximally amplified wavenumber and a near neutral wavenumber,
respectively (i.e., via Route I).

Figure (6.6) shows the influence of T, on the growth rate and the |relative frequency]|
of subharmonic instability modes (8 = 0 and 2 = 1) as a function of the amplitude
A of the fundamental mode. In this figure, § = 1/15, M; = 0.1, and $; = O are used.
Again, for clarity, R refers to the increment in the growth rate of the subharmonic mode
when A changes from 0 to 0.1, and Ay, represents an approximate threshold amplitude for
the onset of a secondary subharmonic instability mode. The more significant information

pertaining to Figure (6.6) can be tabulated as below:

ﬂ? T- Ath R

0 1 0011 0.236
0 2 0014 0.206
1 1 0.006 0.205
1 2 0001 0.122

Several interesting features can be seen in this figure, using the above table as an
aid. First, the growth rate of subharmonic instability modes in a heated jet, again,
increases as A increases. Secondly, while heating slightly suppresses the growth rate of
an axisymmetric secondary mode (by about 15%), it decreases the growth rate of 8 =1

mode considerably (by about 40%). This leads us to believe that heating tends to inhibit
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vortex-pairing in round jets, and this inhibition is substantially more pronounced for the
first azimuthal subharmonic mode with # = 1. Finally, heating increases the threshold
amplitude required for the onset of a secondary subharmonic with 8 = 0, but it reduces
the corresponding threshold amplitude for # = 1 mode. To conclude, vortex pairing in a

heated, incompressible jet is likely to be an axisymmetric phenomenon.

6.5 Shear Layer Thickness Effect

We recall that jet instability is caused by the induction of the vorticity, which
is contained within a narrow region in jet shear layers. The physical mechanism for
an amplified disturbance can be explained in terms of a vortex sheet in a homogeneous
incompressible fluid (Drazin & Reid). According to the Biot-Savart law, each vortex in an
inviscid fluid is carried with the fluid and induces a circulating flow proportional to the
strength of the vortex line. Specifically, the velocity induced at any point by the vortices
will amplify the sinusoidal displacement of a vortex sheet.

In a given parallel velocity profile, the mean vorticity is inversely proportional to the
thickness of the shear layer. This vorticity of the steady mean flow can be interpreted as a
source term from which energy is transferred to the unsteady pertu?bation vorticity. This
point can be illustrated by considering a two-dimensional incompressible inviscid fluid
with a steady mean vorticity 2o and an unsteady small perturbation vorticity 2. The

equations governing the dynamics of the total vorticity and the perturbation vorticity are,

respectively,

D ,
= = 6.2
5;(Fo+ Q) =0 (6.2)
3 3\ do
5 Tuog )V =-v— (6.3)
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where

and up and v are the mean flow velocity and the radial perturbation velocity, respectively.
These equations reveal that while the total vorticity of a material element carried with
the fluid is conserved, the perturbation vorticity, which is being convected by the mean
flow ug, changes along the mean flow because of the “source term” —vdQq/dr.

Although in secondary instability analysis, the presence of a finite-amplitude funda-
mental mode will restructure the vorticity distribution, the growth rate of a subharmonic
mode is, nevertheless, expected to increase as § becomes smaller. This growth is revealed
in Figure (6.7), which is plotted for Re = 5000, M; = 0.1, T\ = 1, $; = 0 and two different
values of §: § = 1/30 and § = 1/15. It may be noted that the flow is taken to be unheated
(T. = 1) and almost incompressible (M; = 0.1) in order to isolate the effect of the param-
eter @, which appears explicitly in the velocity profile. It is shown that, when A changes
from O to 0.1, the total increment, R, of the growth rates of the axisymmetric subharmonic
modes for § = 1/30 are approximately twice that for # = 1/15. These results indicate that
although the presence of a primary wave redistributes the vorticity of the parallel flow, the
growth rate of a secondary subharmonic mode is seen to increase proportionally to 1/6,
just as in the primary stability analysis. This implies that if vortex pairing is a resonant
interaction between these structures and a small amplitude subharmonic mode, the for-
mer exerts the greatest influence in reinforcing the latter when the shear layer thickness is
small (i.e., near the jet nozzle). This means that each successive coalescence of a coherent
vortex structures not only makes the primary wave more dispersive because of the larger
shear layer thickness, but also makes it less conducive to pairing.

In Figure (6.7), it may also be noted that the solid lines represent the case where the
resonance condition on the growth rate (6.4) is not met, and subsequently, the increase

in the subharmonic growth rate is less pronounced than in the case where the condition
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(6.4) is fulfilled.

6.6 Mode Number Effect

In this section, we will discuss the influence of the finite amplitude primary ax-
isymmetric mode on the growth rate and the |relative frequency| of a subharmonic mode
for various mode numbers. In Chapter 5, we found that the tanh velocity profile with
small values of 4, which characterize the mean flow close to jet exit, is unstable to a
large number of azimuthal modes. When # increases, the # = 1 mode increasingly be-
comes the dominant instability mode. Further, it is found that the periodic flow is most
unstable to subharmonic disturbances whose phase velocity is the same as that of the
fundamental. This matching of the phase velocity only occurs when the jet momentum
thickness is sufficiently small, since otherwise, the wave speed cannot be matched because
of dispersiveness. The value # = 1/15 is chosen because at this value of @, not only can
resonant wave :ixilté;ictl:ions occur, but also the streamwise location implied by this value
is sufﬁcienﬂy far from the jet nozzle to ensure that a finite-amplitude saturation of the

fundamental mode can be attained. Some evidence of this particular value of # can be

In Figures (6.8) and (6.9), the subharmonic growth rate and the [relative frequency| for
various azimuthal numbers are plotted as a function of the amplitude of the fundamental
mode. The results in these figures are based on Re = 5000, § = 1/15, 8 =0, T\ = 1,
M; = 0.1, a; = 3.66, ay = 7.32. These figures show that for a low Mach number jet,
the overall increment of the subharmonic growth rate of the azimuthal modes § = 0, 1
and 2 increase as A increases. The secondary growth rates of 3 = 0 and # = 1 are of
comparable size, while the corresponding quantity for 8 = 2 is relatively small. It is rather

surprising to note that the threshold amplitude A¢j of # = 3 mode is rather high, and the
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phase-locking phenomenon is never established for # = 4 mode. The secondary growth
rate of 8 = 3 is in fact smaller than the growth rate obtained from parallel flow analysis.
These results are of interest because they indicate that the approximate fulfillment of
the resonance condition on the phase velocity does not automatically lead to an increase
in the (temporal) growth rate of a subharmonic mode. Physically, the suppression of
the growth rate of the subharmonic, and hence the vortex-pairing, means the energy is
pumped from the subharmonic to the mean flow. It would be interesting to see whether
these observations could be verified experimentally or by full numerical simulations.
These results suggest that in order to achieve maximum mixing enhancement in round
jets via the amalgamation of coherent structures, it is most effecti;'e to excite a subhar-

monic mode with 8 =0 or # = 1 modes.

6.7 Influence of A on the Eigenfunction of Subharmonic
Modes

In the previous sections, the secondary growth rate and the |relative frequency|
in the presence of a base flow consisting of a parallel mean flow and a finite-amplitude
fundamental mode are discussed. This section considers the influence of the fundamental
mode on the eigenfunctions of the subharmonic. For clarity, the eigenfunctions of the

fundamental and its subharmonic are written, respectively, as

fi = ]f1|exp t(el) (6,4)
f21 = [f21| expi(62,1) (6.5)
f2,—1 = |f2’_1] exp 1'(02,_1) (6.6)

where the amplitudes |f;], |[fz1] and |f2_1| as well as the phases §;, 62, and f;_,; are

functions of the radial variable r.
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For a real 43, the substitution of (6.4) - (6.6) into (3.39) and (3.45) yields

F, =2A[fy| cos(a;z + 8,) (6.7
Fz = 2¢ eXp(t‘izt){lfz,lf cos(az:l: + ﬂ2¢ + 02,1) + !fz,_ll COS(az.’L' - ﬂ2¢ + 02,_1)} (6.8)

Recall that when &3 is purely real, the |relative frequency]| is zero. Further, the eigenfunc-
tions are normalized in such a manner that A and ¢ becomes the maximum amplitudes of
the streamwise velocity perturbations.

In Figures (6.10) - (6.11), the amplitude [f3 1| and the phase 82 as a function of
the radial variable, r, are plotted for three different values of A: A = 0.0, A = 0.05
and A = 0.1. [For reference, the corresponding growth rate and |relative frequency| are
plotted in Figures (6.2) - (6.3).] As discussed before, these figures characterize the case
where the resonance condition on phase velocity (6.3) is approximately met, whereas the
resonance condition on the growth rate is not satisfied. Except for small changes in the
amplitudes of the radial and azimuthal velocity components as A becomes larger, the
secondary eigenfunctions are generally unaffected by the size of A. This lends credibility
to the fact that the mode shape of the secondary instability wave or that of the primary

during saturatxon is glven rea.sona.bly well by the pa.rallel flow results.

Fxgures (6 12) TG 13) show the amphtude and the phase of a near max1ma.lly ampli-

fied subharmonic disturbance ( = 1) for an unheated low Mach number jet. The jet
parameters are identical with the previous case. [For reference, the corresponding growth
rate and “relative frequency” are plotted in Figure (6.4).] These figures represent the
case where the resonance conditions on phase velocity (6.3) and growth rate (6.4) are
adequately satisfied. Again, with the exception of a slight decrease of the eigenfunction
amplitudes in the vicinity of the critical layer as A increases, the amplitude functions of
the secondary subharmonic modes are minimally affected by the magnitude of A.

In summary, we conclude that while the finite-amplitude fundamental mode can sub-
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stantially enhance the growth rate of its subharmonic, it has only a small to moderate

effect on the mode shape of the subharmonic.
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Routes of Resonant Interactions: I & II
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Fig. 6.1 Inviscid phase velocity for various mean profiles at § = 1/15.
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Comparison of Approaches: Incompressible, Isothermal Jet
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Comparison of Approaches: Incompressible, Isothermal Jet
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Comparison of Approaches: Incompressible, Hot Jet
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Compressibility Effect: Isothermal jet
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Shear Layer Thickness Effect: Incompressible, Cold Jet
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Mode Number Effect: Incompressible, Isothermal Jet
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Mode Number Effect: Incompressible, Isothermal Jet
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Effect on |Eigenfunction|
Incompressible, Isothermal Jet
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Effect on |Eigenfunction|
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Effect on Phase of Eigenfunctions
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Chapter 7

SUMMARY & CONCLUSIONS

This research concerns the (temporal) instabilities and resonances of the shear layer
generated by a subsonic heated jet emanating from an axisymmetric nozzle. When the
shear layer is excited by a harmonically oscillating disturbance of a suitable frequency (or
wa.vehumber), an instability wave develops in the flow. For clarity, this instability wave
is termed a primary wave or fundamental wave. In the initial stages of development —
where the amplitude of the disturbance relative to the mean flow is small — the stability
characteristics (e.g., growth rate, phase velocity and mode shape) of the primary wave
are described quite accurately by linear instability theory. We begin our research with
the systematic investigation of the linear instability characteristics of a small disturbance
superimposed on a prescribed paralle] mean flow approximated by the hyperbolic tangent
function. By generalizing Howard’s semi-circle theorem to compressible round jets, we
have shown that compressibility reduces the range of unstable wavenumbers and has a
stabilizing effect. The role of subsonic Mach number, M;, in affecting jet instability
properties is numerically examined for the tanh velocity profile with § = 1/15. We have
concentrated our research on this value of # because it provides a good representation of
the velocity profile at a downstream location where the shear layer is sufficiently thin to
ensure that resonance interactions between two waves (i.e., fundamental and subharmonic)
can occur. Hence, subsequent discussions, unless otherwise indicated, pertain only to these
mean profiles with § = 1/15.

Calculations show that the most unstable temporal growth rates of a (2-d) axisymmet-
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ric mode and a (3-d) first helical mode (i.e., # = 1)in an incompressible flow are approxi-
mately equally dominant, and compressibility (in the subsonic range) reduces the growth
rates of the axisymmetric mode and the helical mode by approximately 19% and 17%, re-
spectively. Compressibility also decreases slightly the phase velocities of those instability
modes whose wavenumbers are smaller than the maximally amplified wavenumber, and
has no apparent effect on the phase velocities of those with higher wavenumbers. In order
to single out the effect of heating, the stability characteristics of the tanh profile with a
temperature ratio T, = 2 — but with Mach number M; = 0 — are numerically examined.
The results indicate that while the phase velocity is rather insensitive to Mach number, it
is, except for very long axisymmetric waves, substantially decreasea by heating. Heating
also appears to reduce the range of unstable wavenumber and to slightly decrease the
growth rate of the most amplified wavenumber. The stability behavior of an instability
wave which has a large wavelength relative to the radius of the jet nozzle is compared to
that obtained from a heated vortex sheet analysis. The results indicate that the phase
velocities of long waves (i.e., @ — 0) — irrespective of the azimuthal mode number —
in a tanh velocity profile agreed well with those obtained from the vortex sheet. For the
corresponding growth rates, this agreement is found only in axisymmetric modes but not
in helical modes. In fact, the disagreement becomes progressively worse as the helical
mode number and the shear layer thickness is increased.

When the primary wave propagates downstream, its amplitude will — as a result of
the exponential growth rate predicted by the linear instability theory — quickly grow to
an appreciable size. Because of the mean flow divergence (caused by viscous spreading)
and nonlinear effects, this wave eventually reaches a finite-amplitude equilibrium state
(i.e., saturation) at some downstream location. We approximate the nearly periodic flow
which arises from the saturation of the primary disturbance by a parallel mean flow of

the hyperbolic-tangent type and a periodic component whose phase velocity, wavenumber,
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mode number and mode shape are the same as those associated with the primary wave.
The principal task of this research is to determine the resonances and instabilities of this
periodic flow. The conditions for resonant interaction between two arbitrary instability
modes are derived. The resonant interaction between two modes allows an effective mech-
anism for the transfer of energy from the mean flow to an instability mode. In order
to satisfy the resonance conditions, we have shown that the wavenumbers and the mode
numbers of the two unstable modes, a primary and a secondary, must be restricted to the

following choices:

1. The primary mode is axisymmetric and has an axial wavenumber close to a neutral

wavenumber.

2. The secondary wave, which can have an arbitrary mode number, is almost the max-
imally amplified subharmonic wave; the wavelength of the subharmonic is twice that

of the primary wave.

A key result from the resonant conditions indicates that resonant interaction between two
modes can occur only when the jet momentum thickness is sufficiently small since, other-
wise, the wave speeds cannot be matched because of dispersiveness. When the resonance
conditions are met, a subharmonic mode interacts strongly with the primary to produce
an instability mode whose wavenumber and mode number is the sum of the wavenumbers
and mode numbers of the two interacting waves. If the subharmonic mode is axisymmet-
ric, it will interact with the fundamental to reproduce itself. The interaction involving a
helical mode with mode number 2 will, however, produce a mode with mode number -5,
and vice versa. Therefore, whenever an interaction involves a subharmonic mode which is
helical, we shall assume that the secondary disturbance is comprised of a pair of helical
waves whose propagating angles are equal and opposite. As a result, the secondary distur-
bance, whether axisymmetric or helical, when interacting with an axisymmetric primary

wave will reproduce itself and therefore increase its growth rate. We have obtained this
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(modified) growth rate of the subharmonic as a function of the amplitude of the primary
wave — for different jet Mach numbers and jet temperatures — using two independent
methods: the method of multiple scales and a generalization of the normal mode analysis
in a spatially periodic base flow.

We found that when the resonance conditions are met almost exactly and when the
amplitude A of the primary mode is less than 3 % of the mean flow, the two approaches
are in good agreement. However, as A increases from 3 % to 10%, the perturbation
method appears to progressively over-estimate the subharmonic growth rate. It is also
shown that when the amplitude of the primary increases from 0 to 2%, the growth rate
of the subharmonic mode is augmented by about 7%. This leads us to believe that the
secondary instability — as manifested by the increase of the growth rate of the subhar-
monic — will enhance the pairing of the vortex rings associated with the primary wave.
Our results indicate that the secondary (subharmonic) growth rates for a (3-d) instability
wave with azimuthal Aumber B =1 and a (2-d) axisymmetric wave are equally dominant,
while those associated with higher spinning numbers are relatively insignificant. Further-
more, compressibility has a moderate stabilizing effect on the secondary instability modes
(whether axisymmetric or helical) so that vortex pairing, which results from subharmonic
instability, is expected to be less pronounced in compressible flows. -

In order to have a representative idea of the effects of compressibility and heating,
we use the total increment, denoted by R, of the growth rate of a subharmonic mode
when the amplitude of the primary wave changes from 0 to 10%. Compressibility reduces
the increment, R, of an axisymmetric mode and a helical (8 = 1) mode by about 15%
and 12%, respectively. While heating seems to suppress moderately the increment, R,
of the secondary growth rate of an axisymmetric mode (by about 15%), it reduces the
corresponding increment of the # = 1 mode significantly (by about 40%). This leads

us to conjecture that heating tends to inhibit vortex-pairing in an axisymmetric jet, and
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this inhibition is most pronounced for the 8 = 1 mode; we infer that vortex-paring in a
heated, incompressible jet is most likely to be a (2-d) axisymmetric phenomenon. Our
calculations also show that the mode shapes of the subharmonic instability modes are
generally unaffected by the presence of the (finite) amplitude primary wave. Finally,
when we calculated secondary instability for other values of §, we found that the growth
rate of the subharmonic mode increased in proportion to 1/8. This implies that vortex-
paring is more likely to occur near the jet nozzle. (of course, we also have the requirement
of phase speed matching which is most perfect for small 9).

In summary, the principal effect of excitation is to generate a saturated large-scale
structure whose vortices may merge because of subharmonic (secondary) instabilities.
Since the secondary growth rates of the subharmonic instability modes — which are at
least partially responsible for jet spreading and mixing — are suppressed by heating and
compressibility, we conjectﬁre that it will be more difficult to control vortex-mergings in

a subsonic heated jet than in a low speed cold jet.
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APPENDIX A
The Primary Stability Equations

The stability equations for the evolution of linear disturbances superimposed on a

parallel mean flow are of the form

Ay =0 (2.31)

where A, is a 5 X 5 matrix whose elements, a;;, are

1 (2,1 83 | .2
a1 = 2= 3,+;ar+r—2+3, — poQzuo — 9

!
a13 = —poYy
ais=0
a14 = —0;
ays — 0
a =0

1
a2 =4an — Rer?
_ 28,
3™ Rert
a4 = _ar
azs =0
as; =0
asz = —023

ass = @22
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as4 = -"_—¢
ass =0
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1
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the primes denote differentiation with respect to r, and the subscript 0 refers to the parallel

base flow.
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APPENDIX B

Stability Equations for the Primary Eigenmodes

The elements of A; and B, in equation (2.33) are

1 1 2 :
ayy=— | D*+=-D-— Ez——-c)z2 — potaug
Re r r
_ !
a12 = —pPoYg
a3 =0
a4 = —1a
a5 =0
a1 = 0
1
az =811 —~ Rer?
-2i8
37 Rer?
azq — —D
agzs — 0
az; =0
as; = —aszs
ass = az2
—iB

ass =0
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a4 = —7poic

1
Q42 = —’YPO(;' + D)

_ —poiB
243 =
r
" 7 ' 2 2 1
_ . Y [P0 oP0 , Po X B ’7(2/’0 1) ¥ 2
a4q = —iQtg— 2L+ 2yt |—5—-—)Dt+t55—D
“ T PrRe Py p3+p8r+po r’po) PrRe \ p}  por +PrRep0

ags = — P p6+Po_a’_ﬂ2 _ P (1 _‘%) __am
PrRe \p3 ' to3 s pir? PrRe \pir p% PrRep?
ag1 = —potc

1
asz = —pp — po(- + D)

ags = —P:iﬁ
asq =0

ags = —uplx
b11 = po
b2z = po
bss = po
bya=1
bgs = 1

bjxy =0 forj#k

where
d

=E;;

Dn

and the primes denote differentiation with respect to r.
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APPENDIX C

Governing Equations for the Secondary Disturbance

Perturbation Method
The governing equation for the secondary (subharmonic) disturbance — obtained at O(6¢)

— is of the form

ng(F)lg = E+R+ + E_R_ + c.c. (34)

where

R+ = [F05FU;FW)F}7:FP]T)
R =[FyFoe,Fy,Fp, F, T,

and the components of R, and R_ are found to be:

Fu = —{polvau] + viuy +1f1u; 22
+t'/32u2!’;‘~ + fajusuy + t'azuluz] + u:)(!)2p1 + vlpz)

+uo(p2iaruy + prsazuz) + p1oauz + pauio1}

Fy, = —{polvav] + v1v} +iajusvy
Hazuyvg + 15, 952 + iglvzwl — wguy
+uo(pasa1v1 + priagvz) + p1o2vz + pavro1}
Fy = —{po[vaw] + viw}h + fajusw; + fazuyw;
B 4 igy e ¢ sy o)
+ug(pataiw; + pricgws) + p201wy + pro2ws}
F, = —{vap} +v1p} + usia1p; + uipaiay
+%2pyif) + Bipaifs + o2 (% + v+

Lunify + wrien) + vp1 (% + vh + Fwiifz + ugias)}
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F, = —{puifrwa/r + paifaw1/r + prvy + prwaiBa/r
+p2w1iB1/r + (P + p1/r)va + pavi + (03 + p2/7)01
+p15azuz + uztaypy + p2iayuy

+p2fazuy}

— ~ ~p . i
Fye = —{po[tau] + viiy + 1l911112,z
—iﬂzﬁz%‘ + tap gy — iagulﬁg] + ub(ﬁzpl + vlﬁz)
+ug(paiciuy — priaaiia) + p1821z + P2uror}
— s 0 oo im T
Fy- = —{po[Vav} + v1 75 + a1 iavy
—fagu; ¥y +ify 182 — Bagyy, — 2awi]

+ug(patarvy — priagts) + 12z + Pav101}

Fp_ = —{po[izwll + 016)5 + faytaw; — fau; iy
+ifyoala — g, wida | S 4 Wil
+ug(paiciwy — priceidy) + prowy + p192i2}

Fpe = —{Vap) + v1Ph + G2fa1p1 — uipriaz
+22p,if) — Lpsifs + vPa(% + vi+
LwiiBy + witen) + 4p1(2 + 8§ — 2iniB; — Gaias)}
Foo = —{p1iprin/r — paifawr/r + p193 — prinifa/r
Shrwnibafr + (5 + /7)o + Bavd + (B + Ba/r)on

—p1iagts + Uiy py + Prfouy — pataguy}

In the above equations, the primes denote differentiation with respect to r, and the

tilde represents the complex conjugate of a quantity.
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APPENDIX D
Amplitude Equation Derived from Viscous Analysis

Here we consider the solvability condition for a system of ODE’s. The approach here
follows closely from Nayfeh (1980). In analyzing the stability problem of a compressible
and viscous jets, the lowest inhomogeneous problem occurs at order §e. This problem
governs the quadratic interaction between two linear waves: F; and F3. The appropriate
governing equations for the case where the interaction between F; and F; reinforces F,
are

(§ — 0200)u12 — poupv12 — fazp1z = Ry, (D1)

1 2
(§ — o200 — }_&7)”“ - Kﬁw” ~ Dpy1; = R, (D.2)

2t 1 g '
——@%Un +(§ - 0200 — m—3)wiz - ?Pl‘.’ =R, (D.3)

Rer

wi2 + (—iauo - Uz)plz = R: (D4)

. 1 '
—YpofoaUy2 — ’7P0(; + D)vya — 7p0r P

where
1

Re

(D2 +-D - ﬂ—2 — a%) — potaaug

8B JB B 2,. tf, 0B -
” —-_— — er— ————  — E— —
R = {po(atl + uoazl)uz + p2 3. " e taz P + — 34, )uz} BF,_

+ BF,_

. | 8B 3B 2 .. i, 9B - .
B = {poly, +wogg)en — glioag+ G 5m ) -
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B oB 2 0B 2,. 0B 18, 0B B } ~
w_[, 9B _ _ 2 ;0,08 (P2 05 —BF,_
Ry {”"(atl + “°az1)'”’ r2Re 0¢, v Re('azaxl t r? 9é Jwr + r3¢1p2 v

0B 0B wy 0B 0B } -
Y= — _— — —)} - BF,_
Ry = {m(Gp +voge) + (2 g +wag) | - B,
where ﬁ‘u_,ﬁ‘u_,ﬁ' - and Fp_ are given in Appendix E.
The boundary conditions at r = O are
u12(0) = p12(0) = v},(0) = wi,(0) for Bz = odd (D.5)
u12(0) = p5(0) = v12(0) = w15(0) for f # odd (D.6)

and at r — oo, the disturbances vanish. The inhomogeneous problem has a solution
provided that a solvability condition is satisfied. To determine this condition, we multiply
D.1by r&;, D.2 by r&,, D.3 by r& and D.4 by r&,. After adding the resulting equations
and integrating the results by parts, we obtain
00
/; {L1}u1z + {L2}v12 + {Ls}wiz + {Li}p12 dr + { Boundary Terms}°
- /0 “ (R -B)dr (D.7)
where
R = (R;, R}, Ry, By)
B = (&1,&2,§s,64)

The adjoint equations are defined by setting each of the coefficients of u;3, v12, w12 and

p12 in the integrands of D.7 equals to zero. They are

(§ — 0200)61 — fa27po€a =0 (D.8)

1 2¢ 53,
—poupét + (§ — o200 — Rcr;)fz t Rezést 1P DLU =0 (D.9)
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21 1 )
_Rij‘zz €2+ (§ — o2p0 - Rerz)fs - —-—"32 Tpofs =0 (D.10)
. 1 1532 .
—tagy + (;— + D)é; — —7-53 — (fazug +02)4 =0 (D.11)

To determine the boundary conditions on the {'s, we set the boundary terms in D.7 =
0, and after invoking the homogeneous boundary conditions (D.5) and (D.6), the adjoint

boundary conditions are found to be

£1(0) = £4(0) = £4(0) = €}(0) =0 for #; = odd (D.12)

£1(0) = £4(0) = £2(0) = £3(0) =0 for B, # odd (D.13)
It may be noted that if we replace & by u;2, & by —v;2, & by wy2 and ypoé&, by p12 in
(D.8) - (D.12), the asymptotic equations where contant flows prevail are identical with
(D.1) - (D.4). Comparing the adjoint problem with the original homogeneous problem,
we find that although their boundary conditions are identical, the differential equations
are different, and hence, the homogeneous problem is not self-adjoint. The solvability

condition, which obtained from equation (D.7), is given as
- :
/ rR-Bdr =0 (D.14)
0
The above equation can be simplified to

v v v

3B d B ~
v v v vBv — . )
USt 3t1 + q2 azl + 93 a¢l + 94 0 (D 15)

00
a1 =/; rpo {u2€1+vzfz+w253+£:%}dr

m A A fd Py
i = [ —r{Ptit oot Boobo+ Bt} ar
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where the superscript v indicates that a quantity is obtained from the viscous analysis, and
the tilde denotes the complex conjugate. Here ¢}, ¢5 and ¢3 arise from the dependence
of the F, on the slow scales, ¢§ contains the particular set of interactions between F;
and F, that reproduces F2, while ¢3, ¢§ are included in the above equation to allow the
resonance to be developed spatially; their explicit expressions are not given here because
our analysis is based on temporal theory.

Again, as in equation (3.32), the same exponential dependence of BY on the slow scales

is assumed, i.e.,

BY ~ exp(Az1 + A3ty + A341) (D.16)

The above equation, together with (D.15) and its complex conjugate, yields

|g§ P27 +1g5 237+ 103 12037+ (28 45) RAT A3 + (281 48) RAS A + (28503 ) RATAS = li* (D.17)

The AY’s are in general complex and ( - )g denotes the real part of a complex number.
We consider a subharmonic disturbance with fixed wavenumber and it is allowed to grow

only in time, (D.17) can then be simplified to

(D.18)

The physical interpretation of A} has been discussed in Chapter 3, and will not be repeated

here.
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APPENDIX E

Resonant Wave Interactions Terms

The governing equation for the linearized disturbance equation for pressure —

obtained at O(§¢) — is of the form

d’pyz | [1 2up Po] dp1z 2 1 a2 B3
L(p12) = o2 + [; T w-C; P_o] ar + |az(uo ~ C2)*po M} — Pl B2t rhs
(3.29)
where
dB aB 9B ~
= hy— _— — + h12B 3.30
rhs h16t1+h2611+h33¢1+ 12 (3.30)
. 1 2uf A o a . -
his =t Fy_ + [; - ﬁ - 5—2 + ;]Fv_ +18:Fy_r — foa(ug — Cz)pQM;"F _

In the above equations, all variables, except for F,_, F,_, F,_ and f"p_, have been

defined in Chapter 3. The undefined variables are

w_3

Fu_ = —{po[v_zu']_ + Ulu'_g + "ﬂlul T

+ifu_s A 4+ faju_zu; — faguiu_g] + ug(v_2p1 + v1p_2)

+ug(p-ztonuy — prfagu_z) + p1o2u_z + p_suy01}

n , , .
Foo = —{po[v-2v} +v1v_; +iaiu_sun
. - w_ ] 2w_
—faguiv_g + iy B2 4 Fay gy - Iwoawy

+ug(p-_gta1vy — priagv_3) + p1o2v_z + p_avi01}
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2 — ’ » -
Fu- = —{polv-2wl + viw'; +faju_sw; — fo2u w_3

+ify B2 4 §fy B2 4 B20L 4 T
+up(p_giaywy — pricaw_z) + p_z01w1 + p1oaw_z}
Fpo = —{v_gp} +vipy + u_sicipr — ur1p-2ioz
+2=2p1if) + Yp_aiB8; + yp-2(% + v+
Luify + uiien) + 7p1 (552 + vl + fw_2ifz — u_zias)}

In accordance with the discussion in Chapter 3.2, the eigenfunctions u_3,v_2,w_3,p_2

and p_2 are for an unstable mode with a wavenumber —a; and a mode number f;.
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APPENDIX F

Secondary Instability Equations Using Normal Mode
Analysis

The shape function of the subharmonic disturbance g is written as
g = (u2,u_2,v7,v_2, w3, W_3,p2,p2,p2,P2)" (3.47)

The stability of subharmonic disturbance superimposed on a periodic flow consisting of a
finite amplitude primary wave and a parallel mean flow is governed by the following set

of 10 coupled linear ODE’s:

§uz — poupuz — fazps — AFu_ = &2(pous + Apru_s) (F.1)

(§- #)02 - %wz — Dpy — AFy_ = &2(pova + Ap1v_3) (F.3)

Bt v+ (§— 200~ og)us — P2py — AR = iafpown + Aprwos) ()
—qpotazuz — 7?0(% + D)vz ~ L’T.-@Wz + 844p2 +ausp2 — A(Fyp +beon) = 52(p2 + Ap1/po)
(F.7)

—poticzuz ~ povz — po(% + D)vz - poiﬂz wz — uotazpy — AF,_ = Gap, (F.9)

where

1 1 .
§=— (D2 +-D - r—: - ag) —~ potagug,
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After replacing the subscript 2 of the components of the shape function g by -2 (and
-2 by 2) and by substituting the coefficients (with the exception of i2) by their complex
conjugates in equations (F.1), (F.3), (F.5), (F.7), and (F.9), equations (F.2), (F .4), (F .6),
(F.8), and (F.10) are obtained, respectively.

In equations (F.1) - (F.10), the prime denotes a differentiation with respect to r, uo
refers to the mean velocity in a moving frame of reference, a4y and a4 are given in
Appendix B, Py F,_ Fy_, Fp_ and F,_ are given in Appendix E, and ton, which arises

from the quadratic interactions in the conduction term of the energy equation, is found

to be
7
'I’con:"zllbj (F.ll)
i=1
where
_ _pode: piodpz dpoaiaspip-z | 2em00p1p-22  PoPIAl, P19,
h1=-—"§5— - 7 3 ) +—3 3
Po Py Po Po Po Po
g = POP1P2 _ AP1P0Ply | Prp-s 2010 s _ por1fio-1 _ 4porir_s
(red) s (red) S (r2p3) P%;
Vs = _p1B3p-2 4popip—2B2B1 | 2B1B2p—2p1 _ poaipip-2
(r2p5) (r?p5) (r203) Po
v = Popip-1  Podip—2 _PoBipip-1  P1P0P-2 | P1POP-2 2p)0hp—2  2Pip-2  2Bip1p-2
I3 )] P (re3) (3 (red)  (r%0d)
vs = 2aip1p_2 _ 2pip_2 _ p-20ipy " 2p_2pr1a109 + P20} 5 4p_sphpy  p-20\ 2029\
] X % P % P (red) = A3
e = _p-201B1 | 2B:81p_2m1 + p_2pbpr | P-20hp1 | 205Php1  2p-2p1 | 2B3p—2m
(r*0}) (r?0}) P (rr3) P (rol) (r?03)
203p-2p1 _ 29751
P P

The appropriate boundary conditions at r — O are
u2(0) = p2(0) = p2(0) = vy(0) = wh(0) for Bz = odd (F.12)

(0) = p4(0) = £4(0) = v2(0) = w2(0) for f# odd (F.13)
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u_2(0) = p_2(0) = p_2(0) = v/ 5(0) = w' ,(0) for B2 = odd (F.14)
u_5(0) = p,(0) = p' 5(0) = v_2(0) = w_2(0) for B # odd (F.15)

and at r — oo, the subharmonic disturbances vanish.
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