L
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by NASA Technical Reports Server

Distributed Simulation of Network
Protocols*

F. Patcrra, C. M. Overstrect, and K. Maly
April 16, 1990

Abstract

' Simulations of high speed network protocols are very CPU inten-
sive operations requiring very long runtimes. Very high speed network
' protocols (Gigabit/sec rates) require longer simulation runs in order
to rcach a steady state, while at the same time requiring additional
CPU processing for each unit of time because of the data rates for the
' traflic being simulated. As protocol development proceeds and simula-
tions provide insights into any problems associated with the protocol,
the simulation model often must be changed to generate additional or
finer statistical performance information. Iterating on this process is
' very time consuming due to the required runtimes for the simulation
models. In this paper we present the results of our efforts to distribute
' a high speed ring network protocol, CSMA/RN{1].

1 Introduction

Computer simulations of real world entities can be computationally intense
tasks taking many hours or even days to run. Simulation analysis of net-
work topologies and protocols is of this type. Because communication media
speeds are ever increasing, a need exists for protocols which can fully use the
newly available bandwidth. Their development, however, relies on the use
of computer-based simulations. One promising method for lowering the tigm; N

*This work was supported in part by CIT under grant INF-88-002-01, by NASA under 4 . '
grant NAG-1-908, and Sun Microsystems under RF596043. oty

1

https://core.ac.uk/display/42823795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

One such protocol currently understudy al Old Dominion Universily is
a gigabit ring network called CSMA/RN. This a fiberoplic, carrier sensed,
multiple access protocol that operates nominally at 1 gigabit per sccond.
Because of the amount of simulated traflic that must be processed belore
the network reaches a steady state is very high, long simulation times are
required. In addition, because cach second of simulation time accounts for
a large amouut of data, hence simulated events, each second of simulation
time take longer to process.

2 Model Decomposition and Processor Syn-
chronization Schemes

While we are interested in nsing distributed simulation as a tool lor studying
high performance networks, questions concerning the effective distribution of
a simulation model must he addressed: decomposing the model into cooper-
ating processes, and imsuring that the results of the distributed simulation
malch those obtained in a single processor version.

Key to efficiently utilizing concurrent computing techniques is determin-
ing an cffective decomposition of the model. Becanse the environment which
is most cominonly available is a munber of losely coupled workstation com-
puters, connected via a low speed network, the overhead of interprocessor
communication can casily exceed any time gains resulting from the concur-
rent computation. ‘This implies that a successful decomposition will attempt
to minimize the amount of interprocessor conumunication,

Three basic methods for performing model decomposition have heen iden-
tified as workable for certain problem domains: server decomposition, phys-
ical iodel decomposition, and arbitrary decomposition.

The server method requires that the developer identily support functtons
to the simulation, such as random number generation or events list main-
tenance, that can be isolated and placed on separate processors. In this
scenario one processor is lefl Lo run the main simulation while other pro-
cessors provide the supporl functions. [2] and [3] have used this method
successlully to reduce sinmlation times by as much as 80%.

To allow further study of the server model, Old dominion University has
developed a suile of tools, deseribed in [}, that can be linked to sitnulations

written in Simscript, C, or Pascal to provide Lhe necessary communication
and handshaking software for server model decompositions.

In contrast, physical model decomposition breaks the model into submod-
cls corresponding to the components of the physical system heing simulated.
Different components share a single processor or may be execute on sepa-
rate processors. This method results in a loosely coupled distribution which
can, under some circumstance may reduce the conununication requirements
among processors. The drawbhack of only be able to utilizes many processors
as Lhere are conenrrently operaling components in the corresponding physical
entity. This method scems casily applicable some communication network
protocol simulations such as the CSMA/RN protocol described in [1].

The arbitrary method of model decomposition is Lo simply divide the
model mlo as many parts as available processors, making Lhe breaks where
ever convenienl from a programming point. of view, such as programming
modules. This vesulls is a decomposition which may require more interpro-
ccssor communication, hut could also allow greater concurrency during the
run. There is little chance for reduction in simulation time with this method
given the runtime environmenl. A betler environmment. for simulations em-
ploying this decomposition would be a tightly coupled set. of processors work-
ing with a pool of shared memory.

While cach of these mayv provide some reduction in serial computer time,
cach only works well for some small problem domains and have not been
shown to Tunction well in the general case.

The second major problem faced by distributed simmlation researchers is
that of processor synchronization. 'I'wo methods are much discussed in the
literature, the "conservative™ and the "optimistic™ methods. However, as
with model decomposition. neither appears to work well for all problems.

Both the conservalive and optimistic methods rely on developing a usable
decomposition of the simulation model, and ranning cach component. on
scparate processors. ‘The conservative method allows the parallel exceution of
events as long the cvents can be insured to be sale. A safe event is one who's
inputs are fully defined and will not be directly or indirectly affected by the
output of any other event. A more complete deseription of the conservative
method synchronization can he lound in 5).

The optimistic method, also called Time Warp, allows all processors to
execute the events as soon as they are available, regardless of their relative
logical times and the state of their inputs. As inappropriate Liming sequences

are detected, the simulation for the node with the inappropriate sequence is
rolled back to a carly time when the simalation was known to be correct and
then restarted. In order to "roll back,” the stale of the computalion on cach
processor must he saved al various points, so that that process state can be
restored il thal processor must be rolled back. Saving the states may incur
more overhcad than the benelits gained by the distributed computation. A
good introduction to the optimistic or Time Warp method ol synchronization

can be found in [6].

3 Experiences

Four possible decompositions of the CSMA/RN model have been studied, all

are described below.

3.1 Physical decomposition, one node per processor

The first attempl resulted in a decomposition of the cvents list based on
node. Bach node in the network was assigned to a physical computer and
cach computer maintained its own events list.

We found that this decomposition resulled in a [/O bound, very tightly
coupled model that was executed in lock step form, with all processors wailing
for a single resource, the ving media. Because CSMA/RN is a carrier sensed
network, messages being transmitted may be interrupted if another messages
passes the sending node. As the simulation runs, new messages enter the ring
and can cither 1) be successfully placed on the ring or 2) are interrupted by
passing messages. This means that cach node, belore transmitling a message,
must determine thal the ring in front of the node is not occupied and must
have knowledge of the next time a message will pass in front of the it in
order to propetly terminate the transmission (as complete or interrupted).
In addition, because the network has a ring topology, any node can influence
any other node, so global information aboul the state of the ring is required
by all nodes before each transmission. Finally the amount of computation
al each processor hetween interprocessor communication operalions is very
small therefore the processor spend most of their time waiting for 1/0 and
comparatively little time performing the simulation. This decomposition
resulted in longer runtimes than the single processor model.

3.2 Physical decomposition, one node per processor
with replication

The second method studied also assigned a separate processor to cach node
in the network, however because global information is required by each node,
all parts of the simulation that could effect the node was run on each local
host.

This decomnposition resulted in a very loosely coupled model that required
virtually no interprocessor communication. lach processor was loaded with
very computationally intensive code, but resulted in most of the simulation
being replicated on each processor with corresponding replication of com-
putations. In order to determine which operations, all operations of the
simulation were independently studied for interoperation dependencies. The
complete analysis can be found in the appendix, lhowever, the collection of
stalistically data was identified as the only opertations who's execution did
not require global information and therefore could be executed separately for
cach node in the network. If statisties collection consnmes a large percent.-
age of the runtime, then the amount of statistics time would be divided by
the number of nodes in the network. Unfortunately, as shown in the analy-
sis, stalistics collection represents a very small percentage of the runtime so

observed speedup wonld have been minimal,

3.3 Segmented ring

The third method studied was an altempt to incrcase the amount of pro-
cessing on cach physical processor and reduce the amount of interprocessor
communication required. The network ring was to be segmented, as shown in
the figure below, and placing a number of simulated nodes on each processor.

This method to suffers from the same some ol the same problems as the
first decomposition described. There is a high level of computation than
in the first method, however, at the points in the simulated network where
the ring must pass Lo a new physical processor, the execution be comes lock
stepped again. The resulting simulation allowed one processor, representing
a bank of connecled nodes, to operate for the length of time equal to the
simulated network propagation delay for the two nodes that reside on the
beginning and end of the adjacent ring segments.

With this and the first decomposition studied, the problem of deadlock

by |

Fignre 1 Segmented Ring

had to be addressed. Bach processor in cooperaling in the simulation must
communicated with the processor representing the nodes behind its nodes
on the ring. Because Uhis is a ring inlerprocessor breaks of the, there is
no concept of beginning or ending to the network so the dependencies are
circular. A scheme to insure that the simulation progress was developed.
liowever because the Lhe speedup would be limited, if observed at all, it was

not fully detailed.

3.4 Server Decomposition

One obscrvation made during our tests was that if data could be provided
by one module Lo a sccond one without a Lime dependent cycle developing,
the synchronization needs are el less. The major problem being addressed
currently is the developmicut of mctliods for model decomposition that reduce
the amount. of intermodule Lime based dependency.

Using static code analysis tools previously developed at Old Dominion
Universily, we are performing data flow analysis of cxisting simulation niod-
cls, written in the SIMSCRIPT, C, and Pascal langunages, to determine the
prevalence of code sections which either supply and/or consume time inde-

6

-—-------—-1

pendent data objects during the simulation run. One najor problem maybe
the the relative costs of compnting the data objects. Sumple objects, such
as random numbers, can be computed quickly, so the overhead of communi-
cation for can easily exceed ny benefits derived [rom computing the values
on other machines. As discussed in [1], one solution to this problem may
be to bunch the data objects and scud them in quantity. This results in an
inventory model with a reduction in comnnimication overhead.

Additionally, we believe that code containing time dependent data cycles
can be distributed if there is sulficient computation timme between data re-
quests to allow for the synchronization to occur or that the dependencies are
not tight, one generation per synchronization, so that values can he precom-
puted and the simulation can be made Lo proceed.

4 Conclusion

Distributed simulation is a very hard problem [7]. Simulations of very tightly
coupled systems such as network protocols that share a common resource
have proven to be more difficult due to the amount of shared information
that is required. Initial eflorts in developing decompositions along physical
lines has proven fruitless. In order for a distributed simulation to provide
reductions in runtime, the modules must be designed so that the can perforny
compute intensive operations and require very little intermodule communi-
cation.

Currently we have simulalion models for the FDDIR], DQDB[9] (formally
QPSX), and CSMA/RN[10] protocols available for analysis. To support the
distribution of modules detected, we will use tools described in [4] to provide
interprocessor communicalion and server model synchronization. These tools
may need to be extended to allow for two way data flow and synchronization
under a request. and deliver scheme.

-1

A Appendix — Analysis of CSMA /RN Repli-
cation Distribution

A.1 The data set

The data sel was developed Lo shiow lour scenarios when simulation the net-
work; A message immedialely sent, A message forced to wail, A message
interruption, and a neighbor Lo neighbor transmission.

I"vrom To

A I3
- 13
A C’
. 13
A 3
13 ('

!

Lenglh Tone
2 !
2 2
3 4
2 i
2 i0
2 10

The network being simulated has three nodes, cqually spread 1 time unit

apart to form the ring

A== (= A

A.2 Events and operations

Seven operations have heen identified for the operations analysis of this al-

gorithm.

1. A new message begins transmission
2. The start of a message passes through a node withoul causing an in-

terruplion

[

-~ O O

. A message interrupls another

. A message reaches ils destination
. A message compleles transmission
. The end of a message is passed through a node
. An interrupted message is restarted

Each of these operations can be further broken into suboperations lo

which execution times can be attached.

1That is the message has completely left the originator

8

I. A new message begins transmission

(a) Copics of a Start event are placed on the Actual list for all nodes
from the originator to the neighbor preceding the destination.

(b) An End cvent is placed in the Possible list for the neighbor of the
originator

(c) The Transmitting array is updated to indicate that the originator
is currently transmitting.

(d) The delay for the Start is added Lo the packel delay

2. The start of a message passes throngh a node without causing an in-
terruption

(a) The Start event for the executing node is removed from the Actual
list

(b) The Transmitting array is updated to show that the node is no
longer transimitling.

3. A message interrupts another

(a) Fracture count is incremented

(h) Copics of an Interrupt cvent are placed on the Actual list for all
nodes from the originator to the preceding neighbor of the desti-
nation.

(c) Remove the Start event, that caused the interruption at the cue-
rent node, from the Actual list

(d) Campute the number of bits transmitted
() Compute the number of bits forced to wail,
(1) Add the number of bits transmitted Lo the count of bits delivered

so far
(g) Remove the interrupted message’s End event from the Possible list.
(h) Place new Start and End cevents on the Possible list

4. A message reaches its destination
(a) NO ACTION REQUIRED

5. A message completes transinission

(a) The corresponding End event is moved from the Possible list to the
Actual list and copices of it are posted for cach of the nodes {rom
the originator to the neighbor preceding the destination node

9

(b) The total delay for the message is added to the total message delay

(¢) The number of bits in the Tast packel message is added to the
total bits delivered

(d) The transmitting flag is reset

6. The end of a message is passes Lhrough a node

(a) The End or Interrupt cvent is removed from the Actual list
(b) The Transmitting array is updated

7. An interrupted message is restarted

(a) Copies of a Start cvent, are placed on the Actual list {or all nodes
from the originator to the neighbor preceding the destination.

(b) An End event is placed in the Possible list for the neighbor of the
originator

(c) The Transmitting arcay is updated Lo indicate that the originator
is currently transmilting.

(d) The dclay for the new Start is added to the packet delay

All of the subevents are weighted as taking | unit of exccution time excepl

subevents l.a, 3.b,5.a, 7.a which take (n/2) and 4.a taking 0 units?,

A.3 The simulation

The following is a table of the operations executed and their ordering for the
data set given in section A.l.

2

n is the number of nodes in the network being simnlated

10

This information can be gotten from section A.3.

Opcration Number — Units per Total for

Class Required Instance Class
| [6 5 30

2 3 2 6

3 1 9 9

Time Operation/ Transmilting Array

Node A B C

l I-A 1{0]0
2 I C 11011
2 4-13 11071
3 5-A o 0|1
3 2-A 1{0]1
4 1-13 11011
7l 5-C 11010
| 6-A 01010
4 I A 11010
5 I C 1] o1
5 2--3 [O
6 4--C 11 1]1
6 3-A I I
7 6-B 11011
7 13 11 0]l
T 5 C 11010
K] 6--A 0 0]0
8 7-A 11010
9 5-A 01010
9 2-13 0110
10 4-C 01110
10 6--13 0]l 0to
10 1-A 110}0
10 -3 11 1]0
1l 1-B I{1]0
11 4-C F1 110
12 5 A 0 tjo
| 12 _____ﬁ_l_!_ ______ njopo

(3]

1]

(6]

[7)

(8]

[9]

(10]

J. Comfort. The simulation of a microprocessor bassed event set pro-
cessor. In Proceedings of the Fowrleenth Annual Stmulalion Symposinmn,

pages 17-33, 1981.

I'. Paterra, C.M. Overstreet, and K. Maly. Distributed simulation: no
special tools rcquired. 1990. Submitted to the 1990 Winter Simulation
Conlerence.

Jayadev Misra. Distributed discrete-cvent simulation. ACM Computing
Surveys, 39-65, 1986.

David Jefferson. Distributed simulation and the time warp operating
system. ACM SIGOPS, 77-93, Nov. 1987,

Peter A. Tinker and Jonathan R. Agre. Object Creation, Messaging, and
Stat Manipulation in an Objecl Oriented Time Warp System. Society
for Computer Simulation International, Mar. 1989,

W. 5. Burr. The [ddi optical data link. [IEEE Communicalions,
24(5):18-23, May 1986.

R. M. Newman, Z. L. Budrikis, and J. L. [ullett. The qpsx man. IEEE
Commaunicalions, 26(4):20-28, April1988.

E. Foudriat, K. Maly, C. M. Overstrect, D. Game, S. Khanna, and T.
Paterra. Csma/rn a protocol for high speed fiber optic networks. 1990.

Submitted for publication WHERE? — ED IS THIS THE CORRECT
TITLE??

13

