
N90-22299

An Approach To Rescheduling Activities Based On
Determination of Priority and Disruptivity

Jeffrey L. Sponsler and Mark D. Johnston

Space Telescope Science Institute
3700 San Martin Drive, Baltimore, MD 21218 USA

(301) 338-4565 sponsler@stsci.edu

Abstract

A constraint-based scheduling system called SPIKE is being used to create long-term
schedules for the Hubble Space Telescope. Feedback from the spacecraft or from other
ground support systems may invalidate some scheduling decisions and those activities
concerned must be reconsidered. A function rescheduling priority is defined which for a

given activity performs a heuristic analysis and produces a relative numerical value which is
used to rank all such entities in the order that they should be rescheduled. A function
disruptivity is also defined that is used to place a relative numeric value on how much a pre-

existing schedule would be changed in order to reschedule an activity. Using these
functions, two algorithms (a stochastic neural network approach and an exhaustive search
approach) are proposed to find the best place to reschedule an activity. Prototypes have
been implemented and preliminary testing reveals that the the exhaustive technique
produces only marginally better results at much greater computational cost.

1. Introduction

Scheduling is an intellectual activity that humans do on a daily basis. Often this activity is
accomplished without the awareness that reasonable (but not necessarily optimal) solutions
are formulated for a generally hard problem. One may argue that the number of activities to
be scheduled in a day is small, the constraints to be imposed are simple, and thus the
problem is tractable. On the other hand, it should be recalled that a fine-grained massively
parallel architecture fine-tuned over epochs is at work. Rescheduling is perhaps an equally
important activity due to the fact that schedules are rarely executed precisely as planned and
therefore must be revised dynamically. It is the focus of this report.

1.1. Description of the HST

NASA's Hubble Space Telescope (HST) is an orbital observatory to be launched by the
Space Shuttle Discovery in 1990. It has six scientific instruments and will provide greatly
improved resolution and sensitivity because it will be above the earth's atmosphere. The
Space Telescope Science Institute (STScI) is responsible for managing the ground-based
scientific operations of HST. Proposals for observation of astronomical objects are
submitted by astronomers (professional and amateur) and are processed by a series of
software programs. An expert system called TRANSFORMATION processes proposal
data and produces data structures organized by rules. An AI system called SPIKE is used

63

PRECEDING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19900012983 2020-03-19T23:14:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to create long term schedules (for periods of one year or more). SPIKE feeds the data from
one week of such a schedule to a system called SPSS that is used to create a finely detailed
schedule. From this is derived specific spacecraft commands. For more details about
HST, see Hall 1982.

1.2. SPSS and TRANSFORMATION

SPSS (Science Planning and Scheduling System) is the short-term scheduling software for
HST. SPSS operates on entities known as exposures, alignments, observation sets, and
scheduling units (SUs). The term exposure is defined simply as an observation of some
object by a science instrument (SI). An alignment is a specification for pointing the
spacecraft. Generally this pointing may start at one point and end at another but in practice
usually is a single point. One or more exposures may be assigned to the same alignment.
An observation set is composed of alignments where all exposures have the same guide
stars (reference stars used to maintain exact pointing of HST). A scheduling unit (SU) is
composed of one or more observation sets that conform to certain requirements (e.g., there
is a sequential nogap specification between bordering exposures of different observation
sets).

The TRANSFORMATION system has been developed at STScI to generate this data
organization. It uses heuristics obtained by operations astronomers who have in the past
manually generated the SPSS data structures. The input is a proposal file prepared and
submitted remotely by an astronomer. Its output is used to populate the SPSS database as
well as to provide the SPIKE system with the data needed to generate its schedules.

1.3. The SPIKE scheduling system

The SPIKE scheduling environment consists of the core SPIKE constraint based system, a
user interface, and a neural network based algorithm used to search for optimal solutions to
the ST long term scheduling problem (Miller, 1989). Descriptions of these subsystems
follow.

1.3.1. The Constraint Based Scheduling System

The SPIKE system has been created as a general purpose scheduler and so specific
references to other systems and even to spacecraft are abstracted. The system operates on
activities, constraints, and scheduling clusters (groups of activities). The mapping of terms
according to the pattern SPSS term/SPIKE term includes: exposure/activity,
constraint/constraint, scheduling unit/scheduling cluster (often the term cluster is used). It
is the case that within the body of this paper these analogous terms will be used
interchangeably.

SPIKE processes information from TRANSFORMATION about targets (e.g., "crab
nebula"), exposures (e.g., "crab nebula using planetary camera"), constraints (e.g, "A
before B"), and the proposal data organization that SPSS requires.

The suitability function is a means for representing scheduling constraints and preferences
(Johnston, 1990). The approach is numeric and provides a powerful way to represent the
concept of "goodness over time." The SPIKE approach is extensible and the constraint
knowledge is represented explicitly as objects (Flavors instances) with associated methods.

In the SPIKE domain scheduling is treated as a constraint satisfaction problem.
Constraints may be either absolute time constraints ("execute the exposure only if the sun is
not in the target path"), relative time constraints ("execute exposure A before exposure B"),

64

or resource constraints. Such problems are known to be NP-complete (Garey, 1979) and
so the exhaustive traversal of the entire search space is not computationally tractable if the
number of scheduling clusters is large.

The term dependency cluster is defined as follows: Let S be a set of activities that are in a
dependency cluster. An activity A is a member of S if one can traverse relative time
constraint links to all other activities in S. Informally, the dependency cluster contains
activities that directly or indirectly affect (via relative constraints) the other activities in the
cluster.

Using the SPIKE scheduling tools, one may make a scheduling decision (i.e., a
commitment) that restricts the times when a scheduling cluster may be scheduled. The
scheduling system will propagate changes based on the relative constraints to other clusters
that contain activities so linked. In general, the suitabilities of other activities within a
dependency cluster will shrink reflecting the notion that available scheduling windows are
smaller.

SPIKE also keeps track of resource constraints such as available data storage, available
exposure time, available TDRSS down-link time, and so on. Each resource is represented
as a suitability function that will reflect lower suitability as the resource is consumed in a
given time segment.

The mode of SPIKE usage considered in this paper is long range scheduling. In this
mode, the overall scheduling interval is divided into discrete units called segments. The
length of a segment is arbitrary but expected to be one week during normal operations.

A long range schedule will consist of a number of time segments each of which will have a
set of scheduling clusters that have been committed there. The commitments are to week-
long segments and do not specify precise times. Periodically, the information about one
segment will be communicated to SPSS which will then build a more detailed schedule.
The logic of this organization is based on the notion that SPIKE can attempt to optimize a
year-long schedule. SPSS will then have far fewer SUs upon which to work and will
operate in much less time. Scheduling the SUs in that time range should be successful
(based on SPIKE calculations), and a higher quality schedule will result.

Figure 1 illustrates the graphical interface to the SPIKE system.

65

ORIGINAL PAGE IS

POOR QUALITY

[

iSUN- 25 n
i _or '095C-'30" 0'20,_0 '6

!MOON-25
*o, _095C-007 0CO00'6

i2o0- _,3_ r -g,

o _096C'007 gO000 '6
me :_v,'c 'Og_C "OO _ OCOCO 15

c _{mr ,--'096,:-,SC_ 20C22 '6
abl] 29 re, ' :]o ,

_y_m m'ukJ.

E

',l-.an- *)89 O_OOmOO OOO_

[. , _go,_ legca4 _9os4 ,a_3T4 _mog4 ,I? ,4 _9 _3a _,s4 _9 9

! n---
k

............. j

i
i - -- - m • -- i I

I -- i I

Figure 1. Example screen from SPIKE showing the scheduling of a few HST
observations. The upper left window represents a six-month scheduling interval and
includes only scheduling clusters. The bottom window shows one of those clusters, its
component activity and constraints. The upper right window displays textual information
about several of the constraints.

1.3.2. Neural Network Schedule Optimizing System

The scheduling constraint satisfaction problem (CSP) can be represented as a Hopfield
discrete neural network (Johnston, 1989) which can be thought of as a matrix where the
rows represent scheduling clusters and the columns represent discrete time segments. The
output state of each neuron in the matrix can be either 0 or 1 where 1 indicates a
commitment of the activity to_the time segment. A column of guard cells is used to bias the
network in such a way as to maximize the number of clusters that are scheduled (neurons
that are on).

A congruous connection matrix stores the connections between neurons representing
relative constraints. Those connections are derived by analyzing the effect of committing
an activity A to a time segment S on all other possible activity/segment neurons in the
matrix. Another matrix stores the biases associated with each neuron. These biases are

assigned by analyzing the absolute constraints on activities that comprise clusters, in such a
way that higher biases indicate greater suitability.

66

The term summed suitability is defined to be a function of the sum of all inputs to each
neuron that is on in the network. This is one way to measure how good the overall
schedule is.

1.4. Interactions between SPIKE and SPSS

SPIKE t9 SP$$ _ommunication

SPIKE sends information to SPSS concerning what scheduling units are to be placed in a
specific week. The granularity is very coarse in that SPIKE assures SPSS that the SU is
schedulable at some point in that week (but not at which point). The operators of SPSS
then must attempt to place each SU onto a detailed timeline.

SPSS to SPIKE communication

It may be the case that SPSS will be unable to place certain SUs on its timeline. The
reasons for this might include:

, The philosophy of scheduling at STScI includes the provision for an
oversubscription of exposures that is the rule rather than the exception. The
SPIKE system therefore has adjusted the appropriate parameters associated with
various resource constraints (exposure time, data volume) such that 30%
oversubscription is the scheduling goal.

. Since SPIKE is a long term scheduler, some constraints (e.g., South Atlantic
Anomaly of the Van Allen Belts, TDRSS satellite availability) must be calculated
only on a statistical basis. This is due to the fact that the ST in-track position is not
accurately predictable on long time scales.

3. The logical context may have changed from the time that SPIKE calculated its best
schedule to the time when SPSS attempts to place SUs on its calendar.

• Minor changes in the orbit model may invalidate certain SPIKE decisions. For
example, solar activity may have changed unpredictably such that constraints
based on such activity (e.g., SAA) become more severe at SPSS scheduling
time.

• On-orbit experience with the spacecraft may change the manner in which activities
are scheduled.

4. The greedy algorithm employed in the auto-scheduling SPSS subsystem may select
from the search space a set of SU/time assignments such that certain mutually
conflicting constraints make a complete scheduling of all SUs assigned to the week
impossible.

It is a possibility that the execution by the spacecraft of certain exposures may fail (or that
the data resulting from an exposure may be lost). In such a case, the SPIKE system will
have to be alerted to this partial failure. This may require the creation of a new SU
consisting of only the activities affected that will have to be considered for rescheduling.

In the event that SPSS is unable to schedule a subset of the SUs for a week, information

concerning that subset will be sent to the SPIKE system along with some rudimentary
explanation information (e.g., "constraint C violated", "instrument X unavailable"). This

67

new information will, of course, make invalid portions of the SPIKE schedule. The
corresponding scheduling clusters will have to be removed from the schedule and
reprocessed. Those steps are the focus of this discussion.

1.5. CCOPS

A SPIKE subsystem called Constraint Cascading Over Planning Sessions (CCOPS) has
been developed to do the following:

CCOPS facilitates the decomposition of the full scheduling problem into more manageable
portions. If the SPIKE system is called upon to build a schedule and all proposals are
loaded at once, about 15,000 activities may be memory resident. As the number of
activities and constraints increases, the time required to load files and instantiate the
database and the time required for computation will increase. If it is the case that all
activities and constraints are memory-resident at one time and a complete schedule has been
computed, the problems associated with a hardware or software crash are exacerbated
because a major loss is sustained. The goal then has been to break the pool of proposals
into groups.

The CCOPS system processes session monitors which retain an abstract memory about
what proposals are grouped, what scheduling decisions have been made, and what
resources have been consumed. The CCOPS system interface is menu-oriented and
provides the user with tools to group proposals. Each group can be loaded into and
processed by the SPIKE scheduling tools. Scheduling decisions made are stored by
CCOPS in a symbolic format in a database that can be saved to disk. The important feature
provided by CCOPS is a protocol for communicating the consumption of resource from
one group of proposals to another.

The CCOPS system helps to solve the rescheduling problem by providing a mechanism for
dealing with first the high priority items followed by the supplemental ones since, at the
very least, the pool will be divided by director's priority.

Let SM a and SM b be session monitors that are ordered (i.e., a < b). The CCOPS system

supports constraint cascading where information about the resources consumed by SM a is

communicated to SM b. The cascade is unidirectional and so no information may be passed

from SM a to SM b. Thus, it is important that SM a be fully scheduled before any scheduling

is done in SM b. Otherwise incorrect scheduling decisions would be made. Similarly,

rescheduling of clusters assigned to SM a should be effected before those assigned to SM b.

2. Functions used to quantify the problem

An important component of the SPIKE scheduling methodology is based on the notion that
constraint information (e.g., "schedule A before B") can be represented numerically as
suitability functions. In that spirit, two new measures, rescheduling priority and
disruptivity, are proposed. These functions map preferences related to rescheduling into
numeric values so that they can be considered along with other constraints and preferences.

2.1. Rescheduling Priority

Given a specific scheduling cluster, it is desirable to deduce a numeric preference that can
be used via comparison to select such objects for rescheduling.

68

Thetermrescheduling priority is defined to be the relative measure of how important it is to
reschedule a cluster. This priority is a single numeric value that is determined in the
following manner. Each element in a set of criteria is considered. With respect to a
specific criterion, the cluster is analyzed, yielding a numeric value, the sub-priority. All
such values are multiplied producing the rescheduling priority. The behavior of the multiply
function is such that if any value (determined for a specific criterion) is zero then the
rescheduling priority is zero. Each analysis is therefore done with that fact in mind.

The criteria that are proposed for consideration are described below.

2.1.1. Partial scheduling of a dependency cluster

In certain cases, it may be that the activities in a proper subset of the scheduling clusters in
a dependency cluster are not scheduled. The numeric value associated with such a case is
calculated in the following manner: Let C be the number of clusters in a dependency

cluster, Su be the number of unscheduled clusters, and S s be the number of scheduled

clusters. The priority is the ratio Ss/C. This is a subjective measure based on the notion

that a dependency cluster that has a higher percentage of scheduled clusters (and thus is
closer to being completely scheduled) ought to be processed before a cluster with a lower
percentage. The activities in a dependency cluster are linked via constraints and therefore
represent a scientific experiment.

2.1.2. Partial scheduling of a Proposal

Similar logic utilized in the case of the dependency cluster can be applied to the set of
activities in a proposal. Here the scientific value of completion may be even stronger. If C

is the number of activities in a proposal, then the same ratio Ss/C is used to find the

numeric value for this preference.

2.1.3. Director's Priority

Each proposal has an assigned director's priority which is one of high or supplemental.
Using this information, the sub-priority of a cluster is 1 if the director's priority (of the
source proposal) is high and 0 otherwise. The pool of supplementals is large, the current
philosophy states that supplemental proposals are not guaranteed scheduling, and so this
criterion will give supplementals originally not scheduled by SPIKE a chance.

2.1.4. Priority based on repeated SU failures

It is possible that a specific SU will repeatedly fail to be scheduled by SPSS. One reason
for this is the oversubscription philosophy mentioned above. It is proposed that a priority
value be calculated to capture those iterations for use by the SPIKE rescheduling
machinery. If N is the number of times that SPSS has rejected a specific SU, then the
repeat failure priority is 1/N (unless N >= threshold in which case it is 0). The threshold
is currently assigned the value three. For example, if the SU has been rejected by SPSS 2
times then its priority is 1/2.

2.1.5. Some clusters cannot be rescheduled

If C i is a cluster to be rescheduled, other components of the dependency cluster (to which

C i belongs) have been either executed by ST or have been scheduled in the very near term

69

(andhencemaynot beunscheduled),andthereis no suitabletime segmentfor Ci dueto
constraintsthenit is impossibleto rescheduleCi andits priority mustbezero.

2.2. Disruptivity

The function SD(scheduling cluster, time segment), the suitability based on disruptivity, is
defined to be a relative measure of the effects of scheduling scheduling cluster in time
segment. Such changes would include other clusters being uprooted and rescheduled.
Unlike the rescheduling priority, sd takes the form of the classic suitability function. An
SD of one means that little if any disruption is expected. An SD of zero means that an
unacceptably high disruption is predicted.

Disruptivity can be calculated by taking the following factors into account:

2.2.1. Disruptivity and estimated propagated effects

If one reschedules an activity, what are the effects of that on the other activities in the
dependency cluster of the activity? The best case scenario would be if no other activities
must be moved from their positions on the pre-existing schedule. Assuming that one is
able to get all other activities back on the schedule, the worst case exists when all other
activities in the cluster must be shuffled within the schedule in order to accommodate the

activity.

The other important criterion related to determining SD is what happens to the overall
suitability of the schedule. The suitability of the old (and now invalid) schedule is the
baseline. If the suitability of the new schedule increases or remains constant, then
disruption is low and sd is close to one. If the suitability decreases, the SD is less than
one.

2.2.2. Resource Consumption and Disruptivity

Determining the overall summed suitability of a schedule can be used to determine how

placing one activity will affect resource consumption. The neural network system
maintains a network that encodes how a specific scheduling decision affects other activities
based on resource consumed. If a decision is made that causes many activities to become
unschedulable based on available resource then this will be included in the calculation to

produce a relatively higher disruptivity.

3. Two Algorithms for Rescheduling an Activity

In the following paragraphs, two algorithms that can be used to solve the single activity
rescheduling problem are proposed. In both algorithms schedule time is divided, by the
concept of now (some time segment), into the past (all segments lower in ordinality than
now), and the future (all segments higher than but including now). The selection of now
should represent not real clock time but instead the point in the real time future that is where
one can reasonably make changes to the schedule. For instance, one probably would not
want to routinely make changes to a schedule for the next week in real time. However,
making changes two months in the future might be acceptable. Therefore, assigning now
to be a month into the real time future is reasonable.

The first step in either algorithm is to order the list of scheduling clusters to reschedule
based on their relative rescheduling priority (see above). The following discussions relate
only to rescheduling a single cluster that is selected from such a list.

70

r

In both cases disruptivity is calculated in the following manner. If any unschedulables are
noted then disruptivity is 1. Otherwise the disruptivity is percent of activities that moved.
The suitability based on disruptivity is of course 1 - disruptivity.

3.1. A Stochastic NN Algorithm

The stochastic NN rescheduling algorithm is based primarily on the notion that enough
intrinsic knowledge of the clusters and constraints is stored in the biases and weights of the
neural network system to quickly (and optimally) replace an activity on a pre-existing
schedule. Let A be the cluster that is to be rescheduled. The steps are described below.

1. Freeze the past.

a. Turn on the neurons in the past that represent accepted commitments (of clusters
to segments). Clamp those neurons (with a high bias) so that their state can not
change.

b. For rows that are in the past that have no neurons on, clamp all neurons in those
rows with a negative bias to prevent any neurons there from being turned on.

2. Eliminate the original commitment (of the cluster to be rescheduled) from the range
of commitment possibilities by turning the corresponding neuron off and clamping
it with a large negative bias.

3. Turn on all neurons in the future that correspond to legal commitments. The
assumption here is that these pre-existing commitments are valid and represent a
baseline schedule. These neurons are not clamped using bias and so during a
network run may change state. The underlying logic is this: It is desirable to
preserve as much of the pre-existing schedule as possible. However, no
scheduling decision that lies in the future cannot be revoked in order to reschedule
A. Figure 2 illustrates an example neural network representation at this point.

, Run the neural network scheduler. Since the clusters in the dependency cluster of A
except for A are scheduled their weighted affects on the network will tend to place
A in a legal place (that should be very close in time to its original placement). If
such a legal place does not exist (because it is in the past), then some portion
(perhaps all) of the dependency cluster must be moved. The more activities that are
moved in order to accommodate the rescheduling of A the more the solution violates
our goal of minimized disruptivity.

5. Given a solution determined in step 4, calculate the measure of disruption that has
occurred.

71

Clusters

a

b

C

d

e

f

Past

0 0 0

0 0 0

0 0 0

0 0 0

0 • 0

Q 0 0

1 2 3

Now

Future

0 0 0 0 0 0 0

0 0 0 0 0 0 0

O_X 0 0

0 0_0 0

4 5 6 N_
Segments \

o o__o)
0 0 0

0 0 0

0 0 0

8 9 10

Segments considered for rescheduling

O Neuron in OFF state

• Neuron in clamped ON state

O Neuron in unclamped ON state

X Old commitment that is disallowed

Figure 2. Neural network representation of a schedule. Each circle in the figure depicts a
neuron (representing a possible commitment). Cluster c, in this scenario, had previously
been committed to segment 5. That commitment is now illegal. Black circles represent
commitments that are considered unchangeable (because they are in the past). Gray circles
represent commitments in the schedule that can be uncommitted (in order to reschedule
cluster c). Both algorithms begin by creating a network that has this general organization.

3.2. An Exhaustive Algorithm to Minimize Disruptivity

In this algorithm, the neural network environment and external functions are also used to
determine disruptivity. However, in this algorithm an exhaustive search is effected to
determine the best possible place(s) where cluster A can be rescheduled. The method used
to estimate disruptivity will operate in the following manner:

1. Freeze the past, and turn on legal commitments in the future (same as above).

2. For each time segment in the future (except for the disallowed segment), find the
disruptivity that results from scheduling A there.

a. First turn on the corresponding neuron and set its bias high.

72

b. Run the network. The network may cause clusters in the future to move because
the immutable commitment of A may cause certain commitments to be
inconsistent (based on the weights and biases).

c. Analyze the disruption.

3. The segment that produces the best (lowest) disruptivity is selected as the place for
rescheduling A. In the case of ties, the earliest segment is selected.

Informing SPIKE about disruptivity.

Once the suitability of disruptivity has been calculated for a given activity, it may be useful
to communicate that inferred knowledge to the core SPIKE scheduling system. The
suitability can be integrated into the planning session data structures as an absolute time
constraint, represented graphically for users, and may guide automatic or manual
rescheduling of activities.

4. Prototype systems and experimental results

We have implemented a prototype based on the discussion above in order to test whether
the behavior of the exhaustive rescheduling algorithm justifies the computational expense
relative to the stochastic neural network rescheduling approach.

Hypotheses

Let l.tl be the mean disruptivity of the neural network approach and p2 be the mean
disruptivity of the exhaustive algorithm.

H0: pl = p2

HI: _1 # p2

In a setup that was composed of 60 segments, 30 scheduling clusters, and dependency
clusters of size 3, 50 trials were run for both the network rescheduling algorithm and the
exhaustive rescheduling algorithm to determine which would find the best place to
reschedule such that disruptivity was minimal. For the network rescheduling algorithm the
mean was 0.139 and the standard deviation was 0.318. For the exhaustive rescheduling
algorithm, the mean was 0.038 and the standard deviation was 0.141. A 95% confidence
interval (0.005, 0.197) for the difference in population mean scores was determined using
the Z statistic (Bhattacharyya, 1977). Since the interval does not include zero, the null

hypothesis is rejected in favor of H I .

5. Discussion

The exhaustive approach to rescheduling appears to generally produce better results.
Statistics reveal that the differences however are not great and so one might argue that the
computation involved in the exhaustive approach is too costly given the marginal benefit.
Although a large (50) number of trials were executed, the algorithms were only tested on a
single problem. More testing on a varied set of problems is required in order to more
accurately assess the comparative usefulness of these approaches. It is also possible that
the selected parameters (e.g., number of links, position in time of the rejected cluster) may
have biased the results. Again, only more tests will tell.

73

It is considered odd that the exhaustive system was only a little better statistically. First,
one may argue that statistical measures are designed to be conservative with respect to
supporting differences that result from varying treatments. Another important point is that,
in general, the best place to reschedule a cluster is another point in time that is close to the
original segment. If such a place exists that is legal (based on constraints), then the
stochastic algorithm should find this solution. It is when that nearby place is not legal that
the exhaustive algorithm should prevail because the stochastic algorithm will then find any
legal configuration without regard for disruptivity.

It is believed that the basic approach described in this report is sound and when fully
implemented will provide an effective mechanism to repair broken schedules when that
need arises.

Acknowledgements

The authors would like to thank the following persons for their ideas concerning this
report: Dr. Glenn Miller and Shon Vick.

References

Bhattacharyya, G., and Johnson, R. (1977). Statistical Concepts and Methods. New
York: John Wiley & Sons, Pub.

Garey, M., and Johnson, D. (1979). Computers and Intractability. New York: W.H.
Freeman and Co.

Hall, D., ed. (1982), The Space Telescope Observatory, NASA CP2244.

Miller, G., Johnston, M., Vick, S., Sponsler, J., and Lindenmayer, K. (1988).
Knowledge Based Tools for Hubble Space Telescope Planning and
Scheduling: Constraints and Strategies, in Proc. 1988 Goddard
Conference on Space Applications of Artificial Intelligence; reprinted in

Telematics andlnformatics 5, p. 197 (1988).

Johnston, M., Adorf, Hans-Martin (1989). Learning in Stochastic Neural Networks for
Constraint Satisfaction Problems. In Proc. NASA Conf. on Space
Telerobotics.

Johnston, M. (1990). SPIKE: AI Scheduling for NASA's Hubble Space Telescope. To
appear in Proc of the Sixth IEEE Conference on Artificial Intelligence
Applications (March, 1990).

74

