
N90-22308

Analyzing Spacecraft Configurations

Through Specialization and Default

Reasoning

Matthew R. Barry

Carlyle M. Lowe

Rockwell Space Operations Company

600 Gemini Ave., R20A-4

Houston, TX 77058

19 January 1990

Abstract

For an "intelligent" system to describe a real-world situation using as few

statements as possible, it is necessary to make inferences based on observed

data and to incorporate general knowledge of the reasoning domain into the

description. These reasoning processes must reduce several levels of specific

descriptions into only those few that most precisely describe the situation.

Moreover, the system must be able to generate descriptions in the absence

of data, as instructed by certain rules of inference. The deductions applied

by the system, then, generate a high-level description from tile low-level

evidence provided by the real and default data sources.

We describe an implementation of these ideas in a real-world situation. Tile

application concerns evaluation of Space Shuttle electromechanical system

configurations by console operators in the Mission Control Center. A pro-

duction system provides the reasoning mechanism through which the de-

fault assignments and specializations occur. We provide examples within

165

PRECEDING PAGE BLANK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19900012992 2020-03-19T23:13:53+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42823775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this domain for each type of inference, and discuss the suitability of each

toward achieving our goal of describing a situation in the fewest statements

possible. Finally, we suggest several enhancements that will further increase

the "intelligence" of similar spacecraft monitoring applications.

1 INTRODUCTION

This paper addresses the application of default reasoning and specialization

techniques toward problems involving pattern classification. A collection

of discrete sensor values from a real-time telemetry stream are integrated

with certain knowledge about the "world" these sensors represent in order

to synthesize an understanding of a situation. By delimiting various in-

tersensor relationships and applying them to subsets of the sensor space,

specializations of certain situations are achieved. These specializations re-

duce the number of propositions in the world while maintaining a sort of

"semantic equivalence."

In some cases certain sensor values may be missing. This absence of infor-

mation may be due to some problem, or it may be evidence of a feasible

situation in which the lacl_' of information is information in itself. For these

situations it is reasonable to allow a default value for a sensor. This de-

fault value may be specified a priori or somehow derived from the current

context.

1.1 Specialization

Specialization is a fundamental reasoning process employed in configuration

analysis. By configuration analysis we mean the process of evaluating all

of the sensor values within a given context. This can be accomplished by

building an evaluation step-by-step from the lowest (least encompassing)

statements to the highest (most encompassing) statements. In essence,

this process classifies patterns of labelled binary samples into prespecified

groups, each of which becomes a sample on its own. The hierarchy of groups

represents the specialization of several samples into one equivalent sample.

166

For instance, if

{01,...,0,} = P

where Oi are labelled samples from context _, then

A ¢:> ¢,1

represents the specialization of the statements 0_ into the statement Ch-

Furthermore, if

{_'1} (.] {(_n+l,..o ,On+m} = 0

then we might apply the successor specialization

A _ {2 2

o, EQ

and so on. For efficiency in our production system implementation (de-

scribed below), we restrict each sample to one specialization by removing

it from the context (database) as it is consumed by the new statenmnt.

Considering the last example, we apply

after the specialization.

1.2 Default Reasoning

The problem area we consider in this paper belongs to the group of prob-

lems in Artificial Intelligence research labelled common sense reasoning. In

order to draw conclusions based upon certain conditions in an "intelligent"

167

manner, there must somehow be a higher level of practical information that

represents what we might ascribe to a human as "common sense." For ex-

ample, we might reason "if b is a bird, and we have no reason to believe

that b cannot fly, then conclude that it can."

Research efforts related to solving these problems have centered around

extending classical mathematical logics to account for implicit information

in the database. Typically, this is done by making assumptions about

missing information by providing default values. In some cases, providing

default values is in itself another problem that must be handled in tile

reasoning system. Etherington [Etherington 19881 provides a summary of

current techniques for handling incomplete information.

1.2.1 The Closed-World Assumption

In an attempt to restrict the reasoning assumptions to information that is

available, the Closed- World Assumption (CWA) has been developed [Reiter 1978].

The CWA is the assumption of complete knowledge about which positive

facts are true in the world. Under the CWA, it is not necessary to explicitly

represent negative information. Negative facts may be inferred from the ab-

sence of the same positive fact. The CW'A corresponds to the knowledge

base:

if KB _'P then infer -,P,

which states that if the proposition P cannot be derived from the knowledge

base KB, then it is reasonable to assume that P is false.

1.2.2 Default Logic

Traditional logics do not possess means for considering the absence of

knowledge. Research has considered two sorts of information types whose

implementation can extend the capabilities of traditional logics to cover this

shortcoming 1. In the positit'e information category, one assumes that rele-

1A formal introduction to default logic may be found in [Besnard 1989!.

168

vant information is known, therefore anything that is not known must be

false. In the default information category, one has default values available

to fill gaps in the absence of specific evidence. It is this default information

category that describes the reasoning process embodied by our classifier.

A default logic may be constructed from a standard first-order logic by per-

mitting addition of new inference rules [Reiter 1980,Reiter and Criscuolo 1981].

These new rules allow known and unknown premises, making possible con-

clusions based on missing information. A default theory, A, is an ordered-

pair (D, W) consisting of a set of defaults, D, and a set of first-order for-

mulae, W. The fundamental statements in A are defaults, defined by the

expression:

where a(_), 3i(_), and "_(_-) are formulae whose free variables are contained

in _ = xl,..., x,_. This expression states that if certain prerequisites a are

believed, and it is consistent to believe that certain justifications 3 are

true, then it is reasonable to sanction the consequent "_ [Etherington 1988].

If 3(2) = ;,(:g), then the default is normal. If 3(_-) = "_(g)/_ _(_-), for some

,_(_), then the default is semi-normal.

This capability to withdraw a previous assumption and reconstruct a new

set of conclusions is known as nonmonotonic reasoning [Ginsberg 1987].

2 Application

The application we present involves the operational evaluation of Space

Shuttle electromechanical component configurations by flight controllers in

the Mission Control Center (MCC). Specifically, specialization and default

reasoning techniques have been applied to one of the tasks involved in

monitoring two Shuttle propulsion subsystems: the Orbital Maneuvering

System (OMS) and the Reaction Control System (RCS).

169

2.1 Overview

To operate the OMS and RCS, Shuttle astronauts manipulate a collec-

tion of switches controlling valves that direct the fluid flows throughout a

plumbing network. Many of these switches control two valves simultane-

ously: an oxidizer system valve and the corresponding fuel system valve.

Position indicators within the valves and switches provide insight into their

mechanical position.

Flight controllers in the MCC help the astronauts to manage these systems

by monitoring the on-board configuration. The information available to

the flight controllers is more complete than the information available to

the astronauts Valve and switch positions appear to the flight controllers

as binary values noting presence of (or lack of) an open indication, close

indication, or both. A set of 16-bit configuration words relay all of the

available measurements to the flight controllers.

The MCC computers help the flight controllers to monitor the on-board

valve and switch configuration by executing a program that compares ac-

tual and ezpected configurations. Since only some of the bits in a given

configuration word apply to the systems of interest, the comparison pro-

cedure includes a set of masking words. When the bit patterns that are

not filtered by the mask disagree, the program indicates a problem by dis-

playing a certain status character next to that word. Since the contents of

those words are displayed in hexadecimal notation, the operators are made

aware of a discrepancy condition through this status character, but are not

informed of the specific discrepancy. Furthermore, several discrepancies

may occur in the same word.

The process of manually deciphering the hexadecimal information is time

consuming and prone to error, so we use a computer program to decode

any word of interest. This program displays English descriptions of the

indications corresponding to those bits that do not match the expected bit

pattern. It is up to the operator, however, to remember the patterns from

each individual decoding, and to construct a complete signature interpre-

tation from several hexadecimal words simultaneously.

170

2.2 Reducing Information

The classifier we describe was developed to perform this decoding and sig-

nature construction task through belief specialization and default reasoning.

The decoding program was extended to isolate each bit in the configuration

words and to generate a statement for a database describing the observed

and expected indications. The classifier then attempts to generate a state

description for these indications. The state descriptions offer an explana-

tion in high-level, intuitive, terminology. For example, instead of being

offered the four statements

Open(ox-valve,manifold-l)

Open(fu-valve,manifold-l)

_Closed(ox-valve,manifold-l)

_Closed(fu-valve,manifold-l)

the flight controller is informed

Open(valves,manifold-l)

due to the application of a typical specialization rule

Open(ox-valve,x) ,_....

Open(fu-valve,x) _,

-Closed(ox-valve,x) ,,'_

-Closed(fu-valve,x) =,

Open(valves,x)

where x is bound to manifold-1. Better still, if the database includes the

statements

Open(valves,manifold-l)

Open(valves,manifold-2)

Open(valves,manifold-3)

Open(valves,manifold-4)

Open(valves,manifold-5)

171

then the best description is

0pen(valves,all-manifolds)

from the specialization

0pen(valves,manifold-i) A

0pen(valves,manifold-2) A

0pen(valves,manifold-3) A

0pen(valves,manifold-4) A

0pen(valves,manifold-5)

0pen(valves,all-manifolds)

Carrying on to "meta-level" statements regarding a "configuration of con-

figurations." one might make the specialization of the statements

0pen(valves,all-manifolds)

0pen(valves,rcs-regulators)

0pen(valves,loms-crossfeed)

0pen(valves,all-prop-tanks)

0n(heaters,thrusters)

0ff(heaters,pods)

resolve to tile implicit description

Configuration(Prelaunch)

2.3 Missing Information

One important consideration in the problem is that lack of evidence regard-

in 9 a position indication is important information. That is, missing infor-

mation may imply a certain position indication. For the OMS and RCS,

this is the case with the switch positions: lack of an OPEN or CLOSED

172

indication means that the switch is assumed to be in the GPC (General

Purpose Computer) position for computer-controller valve operation. This

corresponds to the semi-normal default rule (without prerequisites)

:GPC(s) A _0pen(s) A -_Closed(s)

GPC(s)

for switch s.

Missing information is also important in valve positions. Many valves lack

instrumentation of the CLOSED position, so if the OPEN indication is

not present, then one nmst assume that the valve is closed. Similar to the

switch position default, this corresponds to the senti-normal default rule

:Closed(v) A -0pen(v)

Closed(v)

for valve v.

3 Implementation

The sort of reasoning process described above can be implemented through

the use of a commercial production system. Statements providing a special-

ization of beliefs conveniently can be represented as conventional produc-
tion rules. The left-hand side of the rule consists of one or more statements

which, when considered together, imply a more specialized statement hav-

ing equivalent meaning. The right-hand side of the rule asserts the conse-

quent statement and retracts all of the prerequisites that were held true in

order to fire the rule. This process decreases the total number of statements

in the database, while maintaining equivalent knowledge within the reason-

ing world. The system can retract its own conclusions (and assumptions)

later in the deduction process, thereby exhibiting nonmonotonic reasoning.

173

3.1 Design

The application we describe uses a combination of procedural and declara-

tive programming techniques. NASA's C Language Integrated Production

System (CLIPS) provides rule processing capabilities. A host program, writ-

ten in C, acquires the necessary data and applies a valuation algorithm to

generate statements (facts) for the database. This algorithm assigns to each

positive component position indication a description of the component, a

description of the position indication (e.g. Open, Closed, On, or Off), and

a qualifier as to whether that position belongs to the actual or expecfed

configuration. When all necessary statements have been generated, the

production system evaluates them and builds the state description with

the given inference rules. The contents of the database after all inferences

have been performed (i.e. when no more rules fire) represents the conflict

set between the actual and expected configurations. The host program

translates this set of statements into English sentences for display to the

operator.

Since the independence of valve or switch state indications is not guaran-

teed by the physical system, so this independence is not required by our

production systenl. That is to say, though the valves are intended to re-

side in either the opened or closed states, the indications may not provide

conclusive evidence and perhaps no default assumptions are available. For

these situations none of the statements that consider the guilty valve will

be applied, thereby leaving the lowest level samples in the database. This

is a desirable characteristic of the program, causing it to provide all of the

evidence that was not reduced through the inference process. Moreover,

facts are held based on observed world states rather than assumed states -_.

In order to reason about defaults one must be able to decide when infor-

mation is missing. Our application uses the CLIPS not operation for this

purpose. This operation evaluates to TRUE if a match is not available for

the pattern, thus allowing us to determine that default-overriding evidence

is not present in the database. If the default indication is the only one

2There remains the underlying assumption, however, that the observed state represents

the actual state.

174

available for a particular sensor, then the value provided as the default

value for that sensor becomes the value of the missing pattern. If any evi-

dence other than the default value is available, that evidence is used in the

classification process. These default processing rules fire first so as to build

all of the lowest-level indications before starting specializations. A typical

default rule looks like this:

(defrule expect-switch-defaults

(default 7dom 7item

7d&sp-oplsp-cllsp-gp)

(not (actual

(not (actual

(not (actual

(not (actual

=>

?dom ?item sp-op))

?dom ?item sp-cl))

?dom ?item sp-dm))

?dom ?item sp-gp))

(assert (actual 7dom 7item 7d))

This rule extracts a default indication from the default table, specifying that

it handles only switches by restricting the pattern match to one of the three

reasonable switch values (the value of dilemma (sp-dm), though a possible

observed state, is not a reasonable default value). It then proceeds to

search for an overriding indication by looking for all possible switch values

in the actual indications. If a match is found, then an actual indication

is present and the rule fails. If no match is found then the default value

is appropriate, so the rule fires, asserting the default value as the actual

value.

Most of the production rules in our application represent the specialization

rules. These rules assemble collections of patterns into a more specialized

pattern implying the same information. The right-hand side of the rule

retracts the premises and asserts the conclusion. Each of these rules works

for either of the two comparison states. Recalling the manifold example

provided earlier we demonstrate a specialization rule as shown below. This

rule collects all five of the named manifolds for an arbitrary domain dom

and either specialization mode (actual or expect). Providing the switch

175

and valve positions (?s and ?v) for each manifold are the same, the rule as-

serts the special conclusion ?dom manifolds. Prior to the special assertion,

however, the rule retracts the prerequisites from the database 3.

(defrule specialize-group-manifolds

?ml <- (?mode&actuallexpect

?dom manifold-I ?s ?v)

?m2 <- (?mode

?dom manifold-2 ?s ?v)

?m3 <- (?mode

?dom manifold-3 ?s ?v)

?m4 <- (?mode

?dom manifold-4 ?s ?v)

?m5 <- (?mode

?dom manifold-5 ?s ?v)

=>

(retract ?ml ?m2 ?m3 ?m4 ?m5)

(assert(?mode

?dom manifolds ?s ?v))

4 Extensions

Though the techniques we have employed constitute a powerful application,

there are a variety of enhancements that can be made to the reasoning

process. We outline a few of tllem here.

4.1 Temporal Reasoning

Comparing an actual signature with an expected signature can sometimes be

interpreted as a matter of temporal persistence. If we can make assumptions

3The retraction is performed before the assertion to minimize the complexity in driving

new patterns through the network.

176

about the dynamic behavior of the measured system, then we can draw from

knowledge of the eepected state to help make assumptions about the actual

state.

One can imagine running a configuration evaluator continuously (ours runs

only upon demand), focusing only on those indications that change in

the signature. An interesting enhancement therefore might be in predict-

ing the nexf signature by incorporating knowledge of procedures and time

[Georgeff 1987].

4.2 Analog Reasoning

Though the information provided as input to the classifier currently is dis-

crete (binary), analog information may also be important in describing

a configuration. For example, some valves may not have discrete position

indications, but rather "percentage open" indications. There may be guide-

lines for interpreting "percentage flow" through these valves that could be

implemented as rules with thresholds on their left-hand sides. If a valve is

indicating 2% open, for example, the interpretation will probably lead to

considering this valve closed.

Analog interpretations may also be used to reason about system measure-

ments that are not strictly part of the "configuration." We nfight include

considerations for thermodynamic measurements in our evahatlon, build-

ing flow hierarchies, limit violation detectors, or deternfining "degrees of

wellness" for analog components.

4.3 Evidential Reasoning

A variety of problems may be introduced into the classification process by

supplying nonrepresentative signatures as input. There are many orbiter

component failures that will cause an invalid signature to be relayed to

blission Control. For example, failure of a computer, demultiplexer, signal

conditioner or transducer will cause all of the telemetry measurements as-

sociated with that components to be incorrect, without affecting operation

177

of the measured device. These conditions are detectable, however, and can

be provided as input to the classifier. When the classifier is made aware

an instrumentation component failure, and it "knows" the measurements

derived from that component, then it can take this invalid information into

account when perfornfing the classification.

Sometimes the instrumentation failure may not be known before a classi-

fication process begins. In these cases it might be useful to refer to sub-

signatures that one can map onto the actual signature, measuring the de-

gree to which each body of evidence supports the indicated signature. The

heuristics for interpreting competing signatures will likely involve evidential

reasoning [Lowrance 1986].

5 Summary

Tile motivation behind this project has been to desire to demonstrate

the capabilities of applied default reasoning and specialization as realized

through a typical production system. We described a system that im-

plements these reasoning paradigms in a real-time telemetry monitoring

application. This application performs a complete task, relieving flight

controllers from this duty and allowing them to address their attention to

other activities. Due to its declarative construction, the system is able to

accomnlodate changes in the "world" without restructuring the inference

process. Most importantly, the system is able to perform a mundane task

frequently, consisteutly, and inexpensively, while producing expert-level re-

sults.

We also described several enhancements that seem to be logical extensions

to the current system. These extensions will be investigated in the near

rut ure.

References

[Besnard 1989] Besnard, An Introduction to Default Logic, Springer-Verlag,

178

Berlin, 1989.

[Etherington 1988] Etherington, Reasoning with Incomplete Information,

Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1988.

"LGeorgeff 1987] Georgeff and Lansky, "Procedural Knowledge," SRI Inter-

national Technical Note 411, Menlo Park, CA, 1987.

[Ginsberg 1987 Ginsberg, Readings in Nonmonotonic Reasoning, Morgan

Kaufmann Publishers, Inc., Los Altos, CA, 1987.

[Lowrance 1986] Lowrance, Garvey and Strat. "A Framework for

Evidential- Reasoning Systems," in Proceedings of the Sixth National

Conference on Artificial Intelligence, 1986.

[Reiter 1978] Reiter, "On Closed-World Data Bases," in Logic and Data

Bases, Gallaire and Minker (eds.), Plenum Press, New York, 1978.

[Reiter 1980! Reiter, "A Logic for Default Reasoning," Artificial Intelli-

gence i3, North-Holland, 1980.

[Reiter and Criscuolo 1981] Reiter and Criscuolo, "On Interacting De-

faults," Proceedin9s of the Secenth International Joint Conference on

Artificial Intelligence, 1981.

179

