
_ _i:_ ¸ != =

I

\

NASA Contractor Report 182056

ICASE INTERIM REPORT 11

The Preprocessed Doacross Loop

Joel H. Saltz

Ravi Mirchandaney

NASA Contract No. NAS1-18605

May 1990

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

(NASA-CR-18205b)

LOUD final _eoort

Operated by the Universities Space Research Association

THE PREPROCESSF_I') t30ACROSS

(ICASt:) 15 p C_CL 12A

National Aeronautics and

Space Administration

I_angley Fle_aeareh Center
Hampton, Virginia 23665-5225

5315g

N90-22972

https://ntrs.nasa.gov/search.jsp?R=19900013656 2020-03-19T22:05:58+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42823614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7

!

J_
J

_w

r _

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.

The series will complement the more familiar blue ICASE reports that have been

distributed for many years. The blue reports are intended as preprints of

research that has been submitted for publication in either refereed journals or

conference proceedings. In general, the green Interim Report will not be submit-

ted for publication, at least not in its printed form. It will be used for research

that has reached a certain level of maturity but needs additional refinement, for

technical reviews or position statements, for bibliographies, and for computer

software. The Interim Reports will receive the same distribution as the ICASE

Reports. They will be available upon request in the future, and they may be

referenced in other publications.

Robert G. Voigt
Director

The Preprocessed Doacross: Loop

Joel H. Saltz

ICASE NASA Langley Research Center

Hampton, VA 23665

Ravi M_rchandaney

Department of Computer Science

Yale University

New Haven, CT 06520

May 29, 1990

Abstract

Dependencies between loop iterations cannot always be charac-

terized during program compilation. Doacross loops typically make

use of a-priori knowledge of inter-iteration dependencies to carry out

required synchronizations. We propose a type of doacross loop that
allows us to schedule iterations of a loop among processors without

advance knowledge of inter-iteration dependencies. The method pro-

posed for loop iterations requires us to carry out parallelizable pre-

processing and postprocessing steps during program execution.

*This work was supported by NASA grant NAS1-18605 while the authors were in
residence at ICASE, NASA Langley Research Center

1 Introduction

Dependencies between loop iterations cannot always be characterized during

program compilation. This inability to characterize dependencies can inhibit

exploitation of potential parallelism if one is restricted to usual types of

parallel loop constructs, i.e. doalI or doacross loops [3] [2]. DoalI loops do

not impose any ordering on loop iterations while doacross loops impose a

partial execution order in the sense that some of the iterations are forced

to wait for the partial or complete execution of some previous iterations.

Typically, doacross loops make use of a-priori knowledge of inter-iteration

dependencies to carry out required synchronizations.

The method we outline here is a variant of a doacross loop that allows

us to schedule iterations of a loop onto processors in the absence of prior

knowledge about inter-iteration dependencies. We call this type of doacross

loop the preprocessed doacross.

We use symbolic transformations to produce from a given loop: (1) inspec-

tor procedures that perform execution time preprocessing, and (2) ezecutors

or transformed versions of source code loop structures. These transformed

loop structures carry out the calculations planned in the inspector procedures.

Characterizing the cost of execution time preprocessing is a critical aspect of

this research. One requirement is that the execution time preprocessing itself

be parallelizable. The preprocessing required for the preprocessed doacross

loop is fully parallelizable. ::: :

In Section 2, we describe the preprocessed doacross parallel construct,

and in Section 3 we present results from two sets of experiments designed to

characterize the performance tradeoffs manifest by using this construct.

2 The Preprocessed Doacross Loop

2.1 Overview

A doacross loop is frequently used when one needs to parallelize loops with

non-lndependent loop iterations. Typically it is necessary, before executing

the loop, to know the distances of dependencies between statements in dif-

ferent loop iterations. It is possible to carry out a simple form of execution

time preprocessing that eliminates the need to know dependency distances.

o i=l, N

y(a(i)) =

nd do

yCbCi))

Figure 1: Loop with Execution Time Determined Dependencies

parallel do i=l,N

Sl: while(ready(b(i)).eq.NOTDONE)

endwhile

;2: y(i) = y(b(i))

33: ready(i) = DONE

_nd parallel do

Figure 2: Parallelized Loop with True Dependencies

In Figure 1, we present a code fragment that will be used to demonstrate

the structure of the inspector and executor loops in a simplified preprocessed

doacross loop. We assume that there are no output dependencies between

left hand side array references; in Figure 1 this means that no two elements

of array a have the same value.

We first assume that all dependencies are true dependencies, i.e., a(i)

= i and b(i) < i. As we show in Figure 2, we can use a shared array

ready to make certain that the data dependencies are satisfied. Before the

loop executes, ready is initialized to NOTDONE; when a new array element

y(i) is calculated, we set ready(i) = DONE (statement $3). When y(b(i))

is required to satisfy a dependence in Figure 2, a busy wait is carried out

(Statement $1) until y(b(i)) has been calculated.

In the case when some of the b(i) > i, the dependence relations be-

tween loop iterations are in fact antidependencles. To accommodate these

antidependencies, we transform the loop in Figure 1 so that during the course

of the computation, all writes to y in Figure 1 are transformed into writes to

3

a new array ynew. A reference to y(b(i)) in Figure 1 may or may not have

already been written to during an earlier loop iteration. When b(i) < i,

we use ynew(b(i)) in the right hand side of the transformed loop and when

b(i) >_ i we use y(b(i)). In many cases it will be necessary to copy the

newly computed elements of ynew back into y after the computation in the

loop is done.

If we do not assume that a(i) is equal to i, the order in which elements

of y are written in the sequential loop (Figure 1) is determined by integer

array a. When a right hand side array element y(b(i)) needs to be accessed,

we will need to determine whether we should use an old or an updated value

of y. If y(b(i)) in Figure 1 is written to during an earlier loop iteration j <

i we use y(b(i)) in the transformed code, otherwise we use ynew(b(i)).

An array iter can be initialized during a preprocessing phase, so that

• the value i is stored in iter(a(i))

• all other elements of iter (a (i)) are set equal to a large integer (MAXINT).

If iter(a(i)) < i for some iteration i of the transformed loop, a true de-

pendency involving y exists and we use y(b(i)). Alternately, if iter(a(i))

> i we use ynew(b(i)).

In order to limit the cost of initialization and the use of memory associated

with this implementation of the doacross construct, we reuse the same arrays

iter and ready for multiple preprocessed doacross loops. A (parallelized)

postprocessing phase can be carried out after the loop is finished during

which ±ter(a(i)) is set equal to MAXIIfr and ready(a(i)) is set equal to

NOTDONE. Figure 3 serves to summarize pre and postprocessing required for

the preprocessed doacross loop.

2.2 A More Complex Example

In this section, we will examine in some detail how the doacross transforma-

tions would be carried out in a slightly more complex case. Following this

exposition, experimental results obtained from this example will be presented

in Section 3.

In the loop S1 in Figure 4, up to M+I separate elements of y are read (otice

that the inner loop goes from 1 to N). The right hand side elements of y in

Preprocessing

)arallel do i=l,N

iter(a(i)) = i

_nd parallel do

Postprocessing

parallel do i=l,N

iter(a(i)) = MAXINT

ready(a(i)) = NOTDONE

yold(a(i)) = ynew(a(i))

end parallel do

Figure 3: Pre and Postprocessing Steps

iteration i may or may not have dependency relations with any loop itera-

tion of $1 (including iteration ± itself). Any dependency can be either a true

dependency or an antidependency. Figure 5 depicts a transformed version of

the loop shown in Figure 4. As was described in Section 2.1, iter(a(i)) is

set to i before the parallelized loop is executed. When iter(b(i)+nbra (j))

is less than or equal to t, we use ynew, the newly computed value of y (state-

ments $5 and SS). Note that when iter(b(i)+nbrs (j)) is strictly less than

i (statement S3), it is necessary to make sure that the true dependency is sat-

isfied. When iter(b(i)+nbrs(j)) is equal to i, wedo not busy wait because

the dependency is within iteration i. Finally, when iter(b(i)+nbrs(j))

is greater than i, either a reference to y from some later loop iteration is

related to y(b(i)+nbrs (j)) by an antidependency relation or alternately,

y(b(i)+nbrs(j)) is not written to anywhere in the loop nest. In either

case, we use the old value of y and do not busy wait (statement $7). After

the parallelized loop is completed, postprocessing analogous to that depicted

in Figure 3 is carried out.

5

31 do i=l,N

do j=I,M

y(a(i)) = y(a(i))

end do

end do

+ val(j)*y(b(i) + nbrs(j))

Figure 4: Preprocessed Doacross Test Loop

Sl parallel do i=L,N

$2 ynew(a(i)) = y(a(i))

" do j=I,M

offset = b(i) + nbrs(j)

check = iter(offset) - i

33 if (check. It. 0) then

34 while (ready(offset). he. DONE)

endwhile

35 ynew(a(i)) = ynew(a(i)) + val(j)*ynew(offset)

36 else if (check.gt.0)

37 ynew(a(i)) = ynew(a(i)) + vals(j)*y(offset)

else

38 ynew(a(i)) = ynew(a(i)) + vals (j)*ynew(offset)

endif

end do

ready(a(i)) = DONE

_nd parallel do

Figure 5: Parallelized Preprocessed Doacross Test Loop

6

2.3 Further Variants

The transformations we have described in this paper utilize several arrays to

schedule the iterations in parallel. These arrays will typically be the size of

the index set, resulting in large utilization of memory. There are a number of

ways in which the memory used by the preprocessed doacross can be reduced.

It is possible to transform the original loop L into a pair of nested loops L_,,,,r

and L_t,r. The inner loop L_,,e_ would range over contiguous iterations of

the original loop L. Loop Li,,,_ would be parallelized using the preprocessed

doacross methods described above; loop L_a, would be carried out in a

sequential manner. Preprocessing and postprocessing involving arrays ready,

iter , ynew , and yold is carried out before and after each set of Linno r

iterations. This transformation reduces memory requirements because during

each iteration of L,_t,_ we can reuse ready and iter.

When the left hand side arrays are indexed by a linear subscript function

(i.e. a(i) is replaced by some known linear function c x / + d). it is possible

to eliminate the execution time preprocessing phase along with the need to

allocate storage for array iter. For the loop depicted in Figure 4, we can

determine whether y(b(±) + nbrs(j)) can be written to by testing to see

whether (b(i) + nbrs(j) - d m_od c) is equal to 0. Ira write is carried out

it occurs during loop iteration (b(i) + nbrs(j) - d)/c.

3 Performance of Preprocessed Doacross

In this section, we provide experimental results for the performance of the

inspectors and executors described in Section 2. The following timings were

done on an Encore Multimax/320 with 13 megahertz APC/02 boards and

version 2.1 of the FORTRAN compiler. Parallel efficiency is defined as

T, eq/(p * T_,.), where T, eq is the time required to solve a problem using an

optimized sequential version, Tp,,_ is the time required on the same problem

using a parallel code on p processors.

3.1 Preprocessed Test Loop

In this section we report on some experiments to characterize the performance

of the preprocessed doacross loop construct. We consider Figure 4, where we

have initialized arrays nbrs and a, such that nbrs(j) = 2j-L, and a(i)

= 7

= 2i. We parallelize this loop using the preprocessed doacross construct.

In the data presented below, we assess the costs of the preprocessing and

postprocessing outlined in Section 2.1. So that we may be better able to

interpret the test results, in Figure 5, we have chosen to initialize a using

a simple linear left hand side array index subscript function. We use the

transformations described in Section 2.2.

In Figure 6 we depict parallel e_ciencies on 16 processors obtained when

we set N equal to 10000, VI equal to either 1 or 5, and varied L from 1 to

14. Recall that in loop S1 in Figure 4, up to M + I separate elements of y

are read. For odd numbered values of L, there are no dependencies between

outer loop iterations. The efficiencies we see for those L values reflect the
overheads of :

1. performing the runtime preprocessing and postprocessing

2. performing execution time dependency checks

For M equal to 1 and 5 efficiencies observed for odd L values are approximately

33% and 50% respectively.

The eiTiciencies for even values of L increase monotonically for both values

of M. This is understandable because as L increases, the number of outer loop

iterations between dependencies also increases.

3.2 Sparse Triangular Solves

We now consider a slightly different test loop which is used to solve sparse

triangular systems of equations. Many of the sparse triangular systems we

use for model problems arise from incompletely factored matrices obtained

from a variety=_of'c[iscretlzed -pkrt_al_differentlai equations. The solution of

these sparse triangular systems aCcounts-for a large fraction of the sequential

execution time of linear solvers that use Krylov methods[I]. The data de-

pendencies between the elements of y are determined by the values assigned

to the data structure column during progr_rn execution. Thesedependencies

inhibit the parallelization of the outer loop (statement S1, Figure 7). A de-

scription of the structure of the triangular systems used in our experiments

is found in [1], outlined in the appendix is a brief description of how these

systems were generated.

Effect of Loop
0.6

0.5

0.4

(,.)
E

.m 0.5
0

[_J

0.2

rometers on Efficiency of Preprocessed Doconsider

o M - 5

A M - 1

......

0.1

0.0
0 2 4 6 8

L

10 12 14

Figure 6: Preprocessed Doacross Efficiencies

9 ORIGINAL PAGE IS

OF POOR QUALITY

31 do i=l,n

y(i) = rhs(i)

do j=low(i),high(i)

y(i) = y(i) - a(j)*y(column(j))

end do

end do

Figure 7: A Sparse Triangular Solve

Table

Test

Problem

1: Preprocessed Doacr_
Preprocessed Preprocessed Doacross

Iterations Rearranged

Time (ms)

Doacross

Time (ms)

,ss Times for Sparse Triangular Matrices

Sequential

Time (ms)

SPE2 34 21 223

SPE5 45 23 241

5-PT 37 19 192

7-PT 84 56 616

9-PT 97 58 698

The loop in Figure 7 was parallelized on 16 processors and the paral-

lelized and sequential times for the test matrices examined are depicted in

Table-1. The timings obtained corresponded to parallel efficiencies between

0.32 to 13.46. A modified loop was produced by carrying out the loop itera-

tions in a more advantageous order. This reordering of loop iterations leaves

the inter-iteration dependencies unchanged but reduces the effects of these

dependencies on performance. Themechani_sm for carrying out this iteration

reordering is described in [4] and is called a Doconsider transformation. The

resulting loop is parallelized using the preprocessed doacross mechanism and

the results are presented below in Table 1. Parallel efficiencies depicted in

that table range from 0.63 to 0.75.

10

4 Conclusion

The preprocessed doacross loop is a type of doacross loop that allows us

to schedule loop iterations onto processors without prior knowledge of inter-

iteration dependencies. We have demonstrated that such a loop structure can

allow parallelization of loops that would not otherwise be easily parallelized.

The overheads required to parallelize loops in this manner can be substantial

but should not prevent us from achieving overall performance gains in many

cases.

5 Appendix: Definition of Test Triangular

Systems

The the triangular systems referred to in Section 3.2 were derived from the

following partial differential equation discretizations:

SPE2 This problem arises from the thermal simulation of a steam injection

processes. The grid is 6x6x5 with 6 unknowns per grid point, this

yields a system with 1080 equations. The matrix is a block seven point

operator with 6x6 blocks.

SPE5

5-PT

7-PT

9-PT

This problem arises from a fully-implicit, simultaneous solution sim-

ulation of a black oil model. It is a block seven point operator on a

16x23x3 grid with 3x3 blocks yielding 3312 equations.

The problem is a five point central difference discretization on a 63 x

63 grid; this yields a system with 3969 equations.

The problem is a seven point central difference discretization on a 20

x 20 x 20 grid; this yields a system with 8000 equations.

The problem is a nine point box scheme discretization on a 63 x 63

grid; this yields a system with 3969 equations.

References

[1] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An exper-

imental study of methods for parallel preconditioned krylov methods. In

11

Proceedings of the 1988 Hypercube Multiprocessor Conference, Pasadena

CA, pages 1698,1711, January 1988.

[2] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In The

Proceedings of the ICPP, 1986, pages 836-844, 1986.

[3] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors

and compilation techniques. IEEE Trans. on Computers, 29(9):763-776,
September 1980.

[4] J. Saltz, R. Mirchandaney, and K. Crowley. The doconsider loop. In Pro-

ceedings of the 1989 A CM International Conference on Supercomputing ,
Crete, Greece, pages 29-40, June 1989.

12

Report Documentation Page

i

N_3IC_3 FAEwO_3otC S a_(_
Sr,_ce Z_3rn,nEsrralOo

1. Report No.
NASA CR- 182056

ICASE Interim Report No.

2. Government Accession No.

11

4. Title and Subtitle

THE PREPROCESSED DOACROSS LOOP

7. Author(s)

Joel H. Saltz

Ravi Mirchandaney

9. Pedorming Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton_ VA 23665-5225
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research_ Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Repo_ Date

May 1990

6. Performing Organization Code

8. Performing Organization Repo_ No.

I_terim Report Ii

10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofReportandPeriodCovered

Contractor Report

14. Sponsoring _,gency Code

15. Supplementa_ Notes

Langley Technical Monitor:

Richard W. Barnwell

Final Report
16. Abstract

Dependencies between loop iterations cannot always be characterized during

program compilation. Do,crOss loops typically make _se of a-priori knowledge

of inter-iteration dependencies to carry out required synchronizations. We propose

a type of doacross loop that allows us to schedule _iterations of a loop among

processors without advance knowledge of ister-iteration dependencies. The method

proposed for loop iterations requireslus to carry out parallelizable preprocessing

and postprocessing steps during program execution.

17. Key Words (Suggested by Author(s))

dependencies, loops, shared memory,

doacross, compilation, runtime, inspector,
execution

19. SecuriW Cla_if. (of this repot)

Unclassified

NASA FORM 1626 OCT 86

18. Distribution Statement

59 - Mathematical and Computer Sciences

(General)

61 - Computer Programming and Software

Unclassified - Unlimited

20. SecuriW Cla_if. (of this pa_)

Unclassified
21. No. of pages

14
22. Price

A03

NASA-Langley, 1990

! -

