
N90-22989

SPATIAL OPERATOR ALGEBRA FRAMEWORK FOR MULTIBODY
SYSTEM DYNAMICS

G. Rodriguez, A. Jain, and K. Kreutz

Jet Propulsion Laboratory/California Institute of Technology

4800 Oak Grove Drive, MS 198-219, Pasadena, CA 91109

Abstract: This paper describes the Spatial Operator Algebra framework for the dynamics of general

multibody systems. The use of a spatial operator-based methodology permits the formulation of the dy-

namical equations of motion of multibody systems in a concise and systematic way. The dynamical equations

of progressively more complex rigid multibody systems are developed in an evolutionary manner beginning

with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed
loops. Operator factorizations and identities are used to develop novel recursive algorithrrLs for the forward

dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

1 Introduction

The field of multibody dynamics is currently being challenged in two major ways. The increase in the size and

complexity of spacecraft systems requires the development of tools that not only help manage the complexity
of such systems, but also facilitate the development of novel dynamics formulation techniques and solution

algorithms. Areas such as robotics involve multibody systems consisting of multiple robot manipulators

interacting with each other and with complex environments. These are multibody systems with not only

constantly time-varying topological structure, but also ones in which the constituent bodies change with
time. Coping with this aspect requires versatile and flexible dynamics simulation tools.

In this paper, the Spatial Operator Algebra Framework [1] is used to develop a systematic procedure

for concisely formulating the equations of motion and derive spatially recursive forward dynamics algorithms

for multibody systems. The equations of motion of progressively more complex rigid multibody systems such
as serial chains, tree topology systems and finally closed chain systems are developed. Operator factorizations

and identities are then used to obtain efficient spatially recursive algorithms for the forward dynamics of
such systems. Extensions to handle flexible link elements are also discussed.

2 Equations of Motion

We begin by briefly describing the coordinate-free spatial notation used throughout this paper. Given the

linear and angular velocities v and w, the linear force F, and moment N at a point on a body, the spatial
velocity V, spatial acceleration ot and the spatial force f in 7_6 are defined as follows:

v0()V , Ct=_', f= F

The rigid body transformation operator _b(.) E 7_6x6 is defined as:

qb(l)_= (Io I'[)

https://ntrs.nasa.gov/search.jsp?R=19900013673 2020-03-19T22:06:02+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42823608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OF. POOR QUALITY

,!

'i |i

]

" li!i
|

i!i !lJ!

.c:

i

• • • •

i

j,i.i
iliijJ

=..

o_-=,!§=

i!,
ili.i
.II...I=_ilJj

i+i,li

',='z

II

i'=

- !

?

=

.__!_n
:l',l.il
l+l!i_

i li!
0

8 o
Z

i
ijl

!--

0

8

:1
1!i

(00¢0

_e

I&l

I--

25

where 1 is a vector joining two points, and I is the cross-product matrix associated with 1 which acts on a

vector to produce the cross-product of i with the vector. ¢(1) and _*(l) transform spatial forces and spatial

velocities respectively between two points on a rigid body seperated by the vector 1. For a rigid body, its

spatial inertias Me and Mo at its center of mass C and at another point O respectively, are defined as

= 0 mI , and M(O) _= _(p)M(C)¢*(p) = -m_ mI

where p is the vector from O to C, m is the mass of the body, and if(C) and ,7(0) are the inertia tensors
for the body about C and O respectively. The reader is referred to [2] for additional discussion on the use
of spatial notation.

2.1 Dynamics of a Serial Rigid Multibody System

Serial rigid multibody systems form basic subsystems from which the dynamics of more general rigid multi-

body systems can be generated. In this section we derive the equations of motion of a serial multibody system

consisting of n rigid links connected together by multiple dof joints. The links are numbered 1 through n
from tip to base. We use the terms outboard (inboard) link to refer to a link on the path towards the tip

(base).

The set of configuration variables for the serial chain are the collection of the joint configuration

parameters. It is assumed that the k th joint possesses rp(k) positional dofs parameterized by the vector of

configuration variables O(k) (of dimension at least rp(k)), and that its r_(k) motion dofs are parameterized

by the r_(k) dimensional joint velocity vector fl(k). The kinematical equations which relate 0(k) to _(k)

depend on the specific nature of the k th joint. It is assumed for notational convenience that all the joint

constraints are homogeneous (i.e., catastatic). H(k) is defined such that H*(k) is the 6 x r_(k) joint map

matrix for the k th joint whose columns span the space of permissible relative spatial velocities Av(k) across

the joint. The complexity of the dynamics algorithms for the serial chain is determined by the number of

overall motion dofs A/" zx ,,= _'_k=l r,(k) for the chain. The state of the multibody system is defined by the
collection of [0(.), _(.)] for all the joints, and is assumed known.

Since each link is rigid, it suffices to develop the equations of motion at a single reference point

on each link, which is taken to be the inboard joint location Ok for the k th link. With V(k) denoting the

spatial velocity, o,(k) the spatial acceleration, .f(k) the spatial force and T(k) the joint force at Ok for the
k th link, the following Newton-Euler recursive equations describe the equations of motion for the serial rigid
multibody chain:

V(n+l)=O, a(n+l)=O

fork = n--.1

V(k) = ¢'(k+ 1,k)V(k+ 1) +H*(k)_(k)

a(k) = ¢*(k + 1,k)a(k + 1) + H*(k_(k) + a(k)

end loop

f(O) = 0

fork = 1..-n

f(k) = ¢(k + 1, k)f(k - I)+ M(k)a(k) + b(k)

T(k) = H(k)f(k)

end loop

(2.t)

a(k) and b(k) are the velocity dependent Coriolis acceleration and gyroscopic forces repectively for the

k th link at Ok • ¢(k, k - 1) denotes the transformation operator from Ok-1 to Ok • For additional details

regarding the derivation of these equations of motion, see [1]. We have made the simplifying assumption

27

that the tip force f(0) is zero• Attaching a full 6 motion dot joint between the physical base and the inertial
frame allows us to easily deal with the mobile base situation• For the inverse dynamics problem, the joint

accelerations _ are known, and nq. (2.1) represents an O(.N') computational process involving a base-to-tip

recursion to compute the velocities and accelerations, followed by a tip-to-base rccursion to compute the

joint forces•

In order to express the equations of motion given by Eq. (2•1) in a more compact form, we define

the slacked notation• In this notation, the V(k)'s, a(k)'s etc are viewed as components of vectors V, a etc.

Then Eq. (2.1) can be written in the following compact form:

V : g;V+H'j5

f = C_f+Ma+b (2.2)

where,

0 0 0

¢(2, 1) 0 ...

o ¢(3,2) .•.
• . .°.

0 0 ...

H(1) 0 ... 0

H _ 0 n(2) ... o
• • ... •

0 0 ... H(n)

0 0

0 0

0 0

¢(n,n- 1) 0

)

M(1)
0

M_

0

0 ... 0 \

M(2) ... 0

• • ° • ,

0 ... M(n)

However, since £, is nilpotent (C_ = 0),

(, 0 0)O=()6"&'I--'¢¢'-1=I+_e0+_e2+ ...-t-g_ -1-- ¢(2,1) I ... 0
• . .•• •

,(n,1) ¢(n,2)... I

(2.3)

(2.4)

where,

¢(i,j) _= ¢(i,i- 1) ... ¢(J+ 1,j)

Thus Eq. (2.2) can be reexpressed in the form,

V = ¢'H*/_

a = ¢'(H*i_+a) (2.5)

f = ¢(M(_ +b) = CM¢*H*/}+¢(M¢*a + b)

T = HI = HCM¢*H*_+ He(Me*a+ b)

= M/_+C, where M a_ HCM¢*H*, and Ca= H¢(M¢*a+b)

M E T¢Arx_ is the mass matrix for the serial chain and C E T_J¢ consists of the velocity dependent Coriolis,

centrifugal and gyroscopic joint forces. In the terminology of Kane's method [3], fl are the generalized speeds

and the elements of ¢*H* are the partial (spatial) velocities.

C,, ¢, H, and M are the first of the spatial operators that will be encountered• Recursive dynamical
algorithms can be derived naturally by exploiting the special state transition properties [1] of the elements of

spatial operators such as _e¢, ¢ etc.. For instance, given a vector y, the evaluation of the matrix-vector product

ey does not require an O(n 2) matrix-vector product computation, and not even the explicit computation

28

of the elements of ¢, but rather, it can be evaluated using an O(n) recursive algorithm involving only the

elements of £, and Y. This is precisely the correspondence between the concise operator based high-level

description of the equations of motion in Eq. (2.5) and the recursive algorithmic description in Eq. (2.1).

Spatially recursive O(A/') forward dynamics algorithms for serial chains have been developed in

[4] based on the recognition of the isomorphism between the structure of the dynamics equations and the

equations encountered in Kalman Filtering theory. These insights have formed the basis for the development

of the Spatial Operator Algebra Framework for multibody dynamics.

2.2 Tree Topology Systems

In this section, the dynamics of rigid multibody systems with tree topological structure are discussed. A

tree topology system may be viewed as a set of component serial chains (referred to as branches) coupled

together via joints at their terminal links. The total number of branches is denoted l. The index for the

branches thus ranges from 1 .-- _, and consistent with the link numbering scheme in the previous section,

the inboard branches are assigned indices larger than those for the outboard ones. The connectivity function

z(k) is defined as the index of the direct predecessor branch, i.e., the inboard branch to which the k th branch
is connected. The jth branch is simply denoted a predecessor branch for the k th branch if it belongs on the

unique path from the k th branch to the base, i.e., if :P(k) = j for some integer p > 0. The joint coupling two

branches is assigned to the outboard branch. Figure 1 illustrates the link/branch numbering convention for

tree topology systems.

The notation for serial chains from Section 2.1 is carried over to describe the branches in the tree

structure, and an additional subscript is used to identify the specific branch in the system. Thus nj and Afj

denote the number of links and the number of motion dofs respectively, while V/, Mj, E_j, Cj etc. denote
the appropriate spatial velocity etc. quantities for the jth branch. A link/joint is identified by the index

of the branch it is on, plus its location within the branch. For instance, Y(kj) (or more accurately Vj(k))

denotes the spatial velocity of the the k th link of the jth branch at its inboard joint location O(kj). The

overall stacked spatial velocity, acceleration etc. vectors for the tree are now denoted V, a, f etc. with

V -_ [VI* -.. Vt*]* etc.. The total number of links n, and the total number of motion dofs Af for the system

are given by
l l

n = nj and Af _ (2.6)

j----1 ./ml

Note that when the jth branch is the direct predecessor of the k th branch, i.e., j = z(k), the joint connecting

them is the n_h joint on the k th branch and is located on link lj on the jth branch. The transformation

operator from the n_h joint to the 1}h joint is denoted _b(lj, n_). The spatial operator E_ is now defined in
terms of its block matrix elements below. For j, k E 1 --. £,

z (j, k) =

g_j for j=k

0 --. 0 ¢(lj,nk))

0 ... 0 0

• ... " .,

0 ... 0 0

for j = :(k), i.e. ifj is the direct predecessor branch of k

0 for j # z(k), i.e. ifj is not the direct predecessor of k

0 denotes a zero matrix of dimension appropriate for the context• As a consequence of the numbering scheme

used here, for j < k, the jth branch cannot be a predecessor to the k th branch and thus the (j, k) th block

element,£_(j,k) = 0. Thus E¢ is a strictly lower triangular matrix. The analogs of Eq. (2.2) are as follows:

Y = £_V+H*fl

a = C;a+H'fl+a

f = ,f.¢f+Ma+b (2.8)

Once again (analogous to Eq. (2.4)), _:¢ is nilpotent (_:_ - 0), and so

_ _-_ (I--_b) -1 = I-_-_b-_-_'_- "'" .+_-1 (2.9)

The block structure of ¢ is described below:

• Cj for j=k

¢(j, k) = {¢(mj, lk)},_3 if 3 p > O: j = if(k), i.e., if j is a predecessor branch of k (2.10)

0 if j ¢ ,P(k) Vp > 0, i.e., ifj is not a predecessor branch of k

Here {¢(m/,lk)}m3 denotes a block matrix whose (rn, l) th entry is given by ¢(mj, l_) with m E 1...nj and

l E 1... nk. ¢(mj,lk) is the transformation operator from joint lk (on the k th branch) to joint rnj (on the

jth branch) and is a generalization of the transformation operator ¢(i,j) in Eq. (2.4) for serial chains. It
is formed by sequentially composing all the individual transformation operators that lie on the unique path

joining the two joints. The numbering scheme used here ensures that ¢ will be a lower triangular matrix.
The operator ¢ has state transition properties analogous to the ¢ for serial chains, and as a consequence, it
can be used for high-level and concise description of the dynamics of tree topology systems (as in Eq. (2.11)

below), but with the full understanding that from the computational perspective, these equations directly

map into recursive implementation procedures. From Eq. (2.8) and Eq. (2.4) it follows that,

V = ¢*H*fl

a = ¢*(H*/3+a) (2.11)

f : ¢(Mc_ + b) = CM¢*H*/3+ ¢(M¢*a+ b)

T : Hf = HCM¢*H*fl+ H¢(M¢*a+b)

= A/I/3+C, where A4 _ HCM¢*H*, and C _ He(Me*a+ b)

_/[E T_X×£ denotes the mass matrix for the tree system. 7_ _ T - C can be easily computed from the

knowledge of the system state, and so the equations of motion for the system can be rewritten in the form

.A4/3 = 7_ (2.12)

The forward dynamics problem requires then the solution of the joint accelerations/_ for a given set of joint

forces T. The mass matrix for the system is typically not available and potentially needs to be computed to

solve the forward dynamics problem. However, in Section 3, a recursive O(Af) forward dynamics algorithm

for tree topology systems, which does not require the explicit computation of the mass matrix 2,4, is derived.

Before proceeding on to closed topology systems, we first derive the structure of the Jacobian

operator. Given nc points, denoted Ck's, on the tree (seeFigure 1), the Jacobian operator J C T_6"c×X

defines the mapping between/3 and r_, i.e., 17' = Jfl, where V E T_6"c denotes the vector of spatial velocities

at these points. If Ck is on link mj, then the spatial velocity at Ck is given by

9(k) = ¢*(O(m_), Ck)V(mj)

with ¢(O(mj), Ck) denoting the rigid body transformation operator from Ck to the point O(mj). With the
block elements of B E 7_6_x6nc defined as

th link

¢(O(mj), Ck) if Ck E mj
B(mj,k) = for k = 1...nc (2.13)

0 otherwise

30

it followsthat
V" = B*V = B*_*tt*_, i.e., J = B*¢*H* (2.14)

This gives us an expression for the desired Jacobian operator which will be used below when dealing with

loop closure constraints for closed topology systems.

2.3 Closed Topology Systems

This paper develops a systematic procedure for the formulation of the equations of motion and derivation of
forward dynamics solution algorithms for general topology multibody systems with time-varying topologies

as well as changing constituent bodies. Based on the specific application, such systems may be conceptually

partitioned as follows:

(a) The primary system consisting of the least time-variant part, i.e., the multibody subsystem with fixed
topology and constituent bodies.

(b) The secondary system consisting of the multibody subsystem which may change from time to time.

(c) The set of closure constraints and/or boundary conditions between/within the primary and secondary

systems which change with changes in the system topology.

Note the the subsystems described above are in the order of increasing time-variation. As an example, let

us examine the robotics scenario of multiple manipulators interacting with each other and the environment

to perform complex tasks. In this context, the manipulators belong to the primary system since their innate

structure varies very little with time. The task objects vary from task to task and form the secondary

system. The constraints between these two subsystems change during the execution of a task, such as

grasping, mating, tool operation etc., and belong to the last category.

This partitioning allows us to derive a very general and yet systematic procedure for the development

of dynamics algorithms which are responsive and adaptable to time-varying systems. The procedure involves
a sequence of decoupled steps for each of the primary and secondary system dynamics, and one step in which

they come together when the constraint forces are computed. Being structurally time-invariant, it is possible

to put in place optimized algorithms for the dynamics of the primary system. The time-variant secondary

system is typically of small complexity and thus the use of standard, though suboptimal, algorithms does
not substantively degrade performance.

This decomposition of the closed topology system is a departure from the more traditional approach

(see [5, 6]) of forming a spanning tree for the full system and computing the constraint forces at the points

of closure. In these latter approaches, even small changes in the original system typically lead to whole new

spanning trees for the system. This disallows any algorithmic optimization, and the algorithms are also not
very amenable to coping with time-varying systems.

The primary and secondary systems in most applications have tree topological structure. However

in general there may be internal closed loops within either system. In any case, by cutting an appropriate

number of joints, each subsystem may be regarded as a tree topology system with additional kinematical

constraints at the internal loop closure points. The equations of motion for tree topology systems derived in

Eq. (2.12) will be used to describe the dynamics of the tree components of both the primary and secondary

systems, with the subscripts "P" and "S" differentiating the two subsystems. Thus the dynamics of the tree

part of the two systems are described by

Tp = * * " = .h4shs (2.15)HpCpMpCpHpl?p ./t4p_p, and Ts = H "(M .t.t r*5S_PS S_PS II SIJS -_

Me and Ms denote the mass matrices, /_p and /_s the motion dof parameter vectors, Tp and _hs the

bias-free internal joint forces for the primary and secondary subsystems respectively.

31

Combiningtheinternallooppointsofclosure with the pointsof closure coupling the two systems, we
obtain the overall points of closure for each of the subsystems. Let Vp and Vs denote the spatial velocities

at these overall points of closure for the two systems, and following the discussion leading to Eq. (2.14), let

Jp = B_o¢_H_, and Js = B_¢*sH_. denote the Jacobian operators for the two systems corresponding to
these points. Thus Vp = Jpflp and Vs = Jsfls. The kinematical constraints due to the existence of internal

closed loops within the primary and secondary systems leads to constraint equations of the form:

Q,,17, = and Qs17s= Os
The coupling together of the primary and secondary systems via joints leeds to constraint equations of the
form:

O,,17,,+ O,s 's=Oo
Defining

= , As= , and A_[Ap As]

Qs

the closure constraints can be collectively expressed in the form:

It is assumed that [ApJp AsJs] is of full row rank HE. The overall number of motion dofs of the closed

chain system is given by Arc _ .M + Afs - A/B, and if necessary, Eq. (2.16) can be used to find the Arc

dimensional minimal set of motion generalized coordinates for system. Based on the principle of virtual

work, Eq. (2.16) implies that the closure constraint joint forces are of the form

J_A* s

for some] E _B. This leads to the following overall equations of motion:

0 .Ms 3;A* s = :_s where v = _r-[(A;Je) (AsJs)] Vv
Ae Jp AsJs 0 U ' Vs

o .Ms S;A's =
0 0 -[ApApAg + AsAsA*s] f U - [ApJp.Mp1Tp + AsJs.Msl:_s]

(2.17)
where

--1 *
Ap _ jp.MpIj_,, and As _ Js.Ms Js

Note that Ap and As are the effective "admittances" of the primary and secondary systems reflected to the

points of closure. We now describe some special cases of the above setup:

• The joint constraints coupling the primary and secondary systems are typically on the relative spatial

velocity across the joints at the points of closure. When this is true for all joints, an appropriate
reordering of the elements of I7 will result in Qp = -Qs. Furthermore, if no relative motion is

permitted across the joint, i.e., there is rigid rather than loose coupling, then in fact QP -- I and

Qs = I. When this is the case for only some of the joints, only the corresponding rows have these

special features.

• If the secondary system has no internal actuators or source of generalized forces, then Ts = O.

• If the secondary system is a free rigid body with no internal degrees of freedom, then the motion

generalized coordinates vector 3s is of dimension 6 and consists of the 3 translational and 3 rotational

dof parameters.

32

3 Forward Dynamics of Closed Chain Systems

In this section we discuss a recursive method for solving the forward dynamics of closed chain rigid multibody

systems. This method does not require the explicit computation of the primary and secondary tree system

mass matrices ._4p or Ms, but does require the computation of the constraint force parameters.

From the equations of motion of the closed chain system with dynamical closure constraints given

by Eq. (2.17), the solution of the forward dynamics problem can be solved by the following sequence of steps:

(A) Solve A4p]_ ! = Tp for #]p Solve A4S#s] = Ts for /}/s

(B) Compute 5 / = Jp/_//, Compute 51 : Js_ls

(C) Compute hp = Jp.hd_,lJ_) Compute As = JsA4slJ_

(D) Solve [ApApA*p + AsAsAs]f - (Ap&Ip + As&Is) U for f

(E) Solve A4/,]_, * *~-J Apl for SoJve " "= =-JsAJ for

As a result of the partitioning, a changes in the closure constraints only effect A and thus only STEP

D, while changes in the secondary system effect only the steps in the right half column. Recursive algorithms

for carrying out each of these steps are derived below. The proofs of the various lemmas are omitted due

to space limitations. However they follow precisely along the lines of the proofs for serial chains discussed

in [7]. The explicit use of the subscripts indentifying the primary/secondary system is dropped (except for

STEP (D)) since the discussion is equally applicable to either subsystem.

STEP (A) Solve .£4/_ ! - T. (Forward Dynamics of a Tree Topology System)

Note that Step (A) is equivalent to solving the forward dynamics of a tree topology system, and we

develop an O()V') recursive algorithm for this solution. This algorithm is based on a new factorization

of the mass matrix .hi[in terms of square factors, which may be contrasted with the earlier non-square
factorization in Eq. (2.11). This square factorization is then used to obtain an explicit expression for
j_-l.

The articulated body inertia ma_riz P is defined as the solution to the following equation:

M = P - E¢[P - PH*(HPH*)-IHP]C_ (3.1)

P is block diagonal and the elements on the diagonal (denoted P(kj)) can be obtained using a recursive

algorithm described in Eq. (A.1) in Appendix A. Physically, P(kj) is the articulafed body inertia as

seen at the kJ h joint, i.e., it is the effective inertia of all the links outboard from the kJ h joint assuming
that the joint forces at all the outboard joints are zero.

For the subsequent development, it is convenient to define

D _ HPH*, G _- PH*D -_, K _ £¢G

A & &
r = GH, _=I-r, _ =g,_ (3.2)

Note that D, G, v and • are all block diagonal. The structure of £_ is identical to that of E_ with its
elements being given by

¢(kj, ki - 1) _- ¢(kj, kj - 1)7(kj - 1)

33

£¢ isalsonilpotent(£_= 0),andanalogousto ¢, ¢ isdefinedas

¢ ... (3.3)

The structure of ¢ is very similar to that of ¢ and it also possesses the state transition properties which

are used to develop recursive algorithms. ¢ may be viewed as the transformation operator for composite

bodies (i.e., as if all the joints are locked), while ¢ is the transformation operator for articulated bodies

(i.e., as if all the joint forces were zero). The following lemma yields a square factorization of A4.

Lemma 1: The mass matrix f14 has the following factorization:

.3.4 = [I + HCKID[I + HCK]*, (3.4)II

The following lemma gives the explicit form for the inverse of [I + HCK].

Lemma 2:

[I + HCK] -1 = [I - HCK] (3.5) II

Combining Lemma 1 and Lemma 2 leads to the following form for the inverse of the mass matrix.

Lemma 3:
.A4-I = [I- HCK]*D-_[I - HCK] (3.6) I1

Thus,

The O(A f)

_! = .A4-1T = [I - HCK]*D-I[I - HCK]7' (3.r)

recursive computation of the expression on the right is given in Eq. (A.2) in Appendix A.

STEP (B) Compute 51 = J_!

From Eq. (2.14), 51 = B*& I, where

However we have that,

&! _ ¢*H*/_ ! (3.8)

Lemma 4:

(I - HCK)H¢ = He (3.9) 1

Thus using Eq. (3.6) and the above lemma in Eq. (3.8),

_1 = ¢*H*[I - HCZ]*D-l[I- HCK]7' = ¢*H*D-I[I - H¢I(]T

Comparing this with Eq. (3.7) we see that &! can be evaluated as an intermediate quantity in the

O(Af) recursive algorithm for computing/_! described in STEP (A).

STEP (C) Compute A = J.M-1J *

Using Eq. (2.14) and Eq. (3.6),

A = {[I- HCK]HCB}*D-I{[I- HCK]HCB}

= B*¢*H*D-IHCB = B*I2B, where f_ _= ¢*H*D-1H¢ (3.10)

34

where Eq. (3.9) has been used to simplify the above expression, h recursive O(A0 procedure for the

computation of 9 is given in Eq. (A.5) in Appendix A. Note that without the simplification resulting

from the use of Eq. (3.9), the computation of A would be an O(N "s) process.

STEP (D) Solve [ApAA*p + AsAsAs] f = (Ap&lp + As&Is) - U for]

Now,

] = [ApAA*p + AsAsA*s]-I[(ApSIp + AsSJs) - U] (3.11)

In this form this step is of O(Af_) complexity. However, when (ApApA*p) is invertible, we can obtain

an alternative expression for] by reexpressing Eq. (2.17) as follows:

0 Ms J;A* s = Ts

0 AsJs -ApApA*p U - Ap&lp

and consequently,

0 Ms + J_A*s(ApAA*p)-IAsJs 0 =

0 AsJs -ApApA*p

Ts + J_ A*s (Ap ApA*p)- I[U - Ap &lp]

U - Ap&fp

From the above equation it follows that

* * * -1 -1 * * * -1 ~ffls [.Ms + JsAs(ApApAp) AsJs] [Ts= -- JsAs(ApAAp) (Apolp U)]

] = (ApAA*p)-I[(APSIp + AsJs3s)- U]

= (ApApA*p)-I[(Ap&Ip + AsSs)- U], where 5s _- Js3s

Note the similarity between the forms of Eq. (3.11) and the above equation for]. The computational

cost of the above operation is a combination of the cost of inverting ApApA*p, and the O(Af 3) step of

solving a square linear system of equations of size Afs. The cost of inverting ApApA*p depends on its
structure: its sparsity reflects the degree of coupling between the closed loops in the system. The cost

is typically much less than the worst case of O(.N'_). In many application domains such as robotics,

ApApA*p is in fact block diagonal and is thus invertible in O(ArE) steps [1]. In addition, for most
applications Afs << AlE, and this new formulation can lead to considerable computational savings.

The inverse of [ApApA*p + AsAsA*s] will not exist if [ApJp AsJs] is not of full rank, i.e., the

configuration is such that the number of motion dofs for the system have changed. It is therefore

necessary to reformulate the constraint equation Eq. (2.16) so as to preserve the full rank property.

Such changes of rank can occur at kinematically singular configurations.

STEP (E) Compute f16= _h/l-Xd.A.]

We have from Sq. (3.6) and Eq. (2.14) that

fi6 = -[I - HCK]*D -1 [I - HCK]HCBA*]

Using Lemma 4 this simplifies to

f16 = -[I - HCK]*D-1HCBA *]

The recursive O(Af) implementation of the above step is given in Eq. (A.6) in Appendix A.

(3.12)

35

TheoverallcomplexityofthisspatiallyrecursiveforwarddynamicsalgorithmrangesbetweenO(Af+

Afs) + O(Af_) for the worst case and O(A f -t- As) -t- O(AfE) -t- O(Af_) in the best case.

By treating the primary and secondary system as one system, which amounts to defining the quan-

tities ¢ _ diag(¢p, Cs), H _- diag(Hp, Hs) etc., and using the above results, the overall closed topology

forward dynamics algorithm can be restated in the following form:

-[I-HCK]*D-½[I-b(AAA*)-lb*]D-][I-HCK]¢, where b_HCBA* (3.13)

Note that when there are no closed loops in the overall system, A -- 0, and the middle term reduces to I,

and we recover the form for for the forward dynamics of tree topology systems in Eq. (3.7).

4 Flexible Multibody Dynamics

In this section we briefly describe the extensions to handle the case of flexible links. We use the serial chain

discussed in Section 2.1 as an illustrative example, but now assume that the links in the chain are flexible.

It is assumed (without losing any generality) that finite element models are available for all the links, and
in particular, the k th link is characterized by: nk node points with the location of of the j_h node denoted

• 'SQk(J) , the vector of displacement variables uk/ E T_6nk , a free-free mass-matrix mk E 7_6nk x6nk, a stiffness
matrix Kk E T_6nk×6nk. The ordering of the nodes is such that Qk(1) is on the same element as Ok-1 and

Qk(nk) is on the same element as Ok • Treating the k th link as being pinned at Ok , this implies that

ulk(nk) = 0, and thus the true flexible dofs are given by the vector uk = hkulk, where h_[I,0]. Note that
uk E 7_6("_-1) and hk E "R.,6nkX6(nk-1).

With V(k) denoting the spatial velocity of the k th link at Ok ,

V(k) = ¢'(k + 1,k)V(k + 1) + H*(k)fl(k) + ¢'(Qk+l(1),Ok)uk+l(1)

= ¢*(k + 1, I¢)V(k + 1) + H*(k)fl(k) + C_+lh*_uk+l

• °.(1)where C_+ 1 = [¢ Qk+1(),Oh , 0, -.. 0] e 7_6x6"k

(4.1)

(4.2)

Thus,
V = ¢*[H*fi + C*h*u]

with C defined as the block matrix with C2 to C,, along its first block subdiagonal, and h is the block

diagonal matrix with jth block diagonal element being hi. Let Vk/ E 7_6nk denote the vector of spatial

velocities on the k th link at the nk node points. Then

V_ = B*_Y(k) +h*_uk, where B_ -_ [¢(Ok,Qk(1)),''',¢(Ok,Qk(nk))] E T_ 6x6nk

:=_ Y 1 = B*V + h*u = S*¢*[g*fi+ C*h*u] + h*u = B*¢*H*fl+ [I + B*¢*C*]h*u

(4.3)= [I+B*¢*C'][h* B'H*]X, where X _

B denotes the block diagonal matrix with the B_'s along its diagonal. We have used the facts that,

BkC_ = ¢(k, k - 1) _ BC = £_ =_ Bee = ¢ - I =_ B[I + CCB] = CB

Note that X is the 'vector of motion dofs for the serial links and includes both the rigid and flexible dof

parameters.

Using Eq. (4.3), the kinetic energy for the whole chain is given by

)
36

A41is the mass matrix for the flexible serial chain. Given this factored form for the mass matrix, similar

techniques to those used for the rigid multibody case in the earlier sections result in alternate factorizations

and inversion of the mass matrix, and recursive forward dynamics algorithms. The reader is referred to [8]

for additional details. Just as for the rigid multibody case, the algorithms for flexible serial chains directly

extend to the flexible general topology multibody systems.

5 Conclusions

This paper describes the Spatial Operator Algebra Framework for the dynamics of general multibody systems.

Based on their rate of time-variation, the multibody system is partitioned into a primary subsystem, a

secondary subsystem and the set of closure constraints. This allows the development of forward dynamics

algorithms which are not only recursive and efficient, but also capable of easily coping with time varying

multibody systems. The solution procedure consists of a sequence of steps on parallel paths involving the

dynamics of the spanning trees for the primary and secondary systems. The two paths come together for

one step in order to compute the constraint forces. Using the spatial algebra techniques to develop novel

factorizations of the mass matrix and operator identities, efficient recursive algorithms for carrying out each

of these steps is developed. The overall algorithm does not require the computation of the mass matrix, and

its complexity is linear in the number of dofs for the tree systems. In addition, the impact on the complexity

of the algorithm, of the degree of coupling among the closed loops in the system topology is made clear,
and it is shown that the in the best circumstance, the algorithmic complexity is also linear in the number

of closure constraint equations. During the development, an O(A/') forward dynamics algorithm for tree

topology systems is also developed. For the sake of clarity, the focus of much of the paper was on multibody

systems with rigid links. However the extensions necessary to deal with flexible elements are discussed.

6 Acknowledgement

The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute

of Technology, under contract with the National Aeronautics and Space Administration.

References

[11G. Rodriguez and K. Kreutz, "Recursive mass matrix factorization and inversion: an operator approach

to open and closed-chain multibody dynamics," JPL Publication 88-11, Jet Propulsion Laboratory,
Pasadena, CA, 1988.

[2] A. Jain, "Unified formulation of dynamics for serial rigid multibody systems," Eng. Memo. 347-89-264,

(Internal Document), Jet Propulsion Laboratory, Pasadena, CA, 1989.

[3] T. Kane and D. Levinson, Dynamics: Theory and Applications. McGraw-Hill, 1985.

[4] G. Rodriguez, "Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics,"

IEEE J. Robotics Automat., vol. 3, Dec. 1987. (JPL Publication 86-48, 1986).

H. Brandl, R. Johanni, and M. Otter, "An algorithm for the simulation of multibody systems with

kinematic loops," in World Congress on the Theory of Machines and Mechanisms (Tth), Seville, Spain,
1987.

[6] D. Bae and E. Haug, "A recursive formulation for constrained mechanical system dynamics: Part II.

Closed loop systems," Mech. Struct. _ Mach., vol. 15, no. 4, pp. 481-506, 1987-88.

37

[7] G. Rodriguez, K. Kreutz, and A. Jain, "A spatial operator algebra for manipulator modeling and control,"
in IEEE Conf. Rob. and Aut., Scotisdale, Az, May 1989.

[8] G. Rodriguez, "Spatial operator approach to multibody manipulator inverse and forward dynamics," in
IEEE Conf. Rob. and Aut., Cincinnati, OH, May 1990.

A Appendix

Based on the special structure of ¢, ¢ etc., it is possible to evaluate many of the dynamical expressions
in a recursive manner and we describe some recursive algorithms in this appendix. First we define some

notational shorthand to simplify the description of the algorithms that follow:

x(ni + 1)
y(nj + 1, nj)

y(b,

y(lj, Oj)x(Oj)y*(lj, 05)

==_ z(1,(i))

y(1,(j), nj)

mO-l(j)

me,-l(j)

where y(.,.) and x(.) stand for some appropriate arrays. Thus wherever a term with indices as in the left
column appears, its meaning is actually given by the corresponding term in the column on the right. !pr

• A recursive method for the computation of the block diagonal elements of P as defined by Eq. (3.1)

and the entries of D, G, K, £¢ and _ defined in Eq. (3.2) are given by:

forj = 1...£

If z-l(j) = 0, then P(0j) = 0

fork = lj-..nj
P(k) = ¢(k,k-1)P(k- l)¢*(k,k-1)+ M(k)

D(k) = H(k)P(k)H*(k)
e(k) = P(k)H*(k)n-l(k)

V(k) : I-G(k)H(k)

¢(k+l,k) = ¢(k+l,k)7(k)

K(k+l,k) = ¢(k+l,k)G(k)

end loop

end loop

(A.1)

• The recursive computation of/_! = [I - HCK]*D-'[I - HCK]T in Eq. (3.7) in STEP (A) can be

carried out via the O(A/') tree topology forward dynamics algorithm described below. It also results in

the computation of &l = ¢*D-I[I- HCK]T required in STEP (B) as an intermediate quantity.

/for = 1.--£

fork =

z(k)

If t-l(j) = 0, then z(Oj) = 0, T(0j) - 0

lj..-nj

: ¢(k, k - 1)z(k - 1) + K(k, k - 1)_b(k - 1)

= T(k)- H(k)z(k)

= D-l(k)e(k)

end loop

end loop

38

(

_/(nt + 1) = 0
forj = £-..1

fork =_J(k)
end loop

end loop

nj ... lj
= _*(k + 1, k)&f(k + 1) + H*(k)u(k)

= _(k) - K'(k + 1)&f(k + 1)

(A.2)

• STEP (C) requires the computation of A = B*f_B. In order to obtain a O(Af) recursive scheme for

the computation of f_ we first define the matrix T as the one satisfying the equation:

H*D-1H = T - _;X_ (A.3)

T as defined above is a block diagonal matrix and its elements can be computed recursively. We now

obtain the following decomposition of Q.

Lemma 5:

. =_r+_'T+T_ (A.4) II

Noting that _ is strictly lower triangular, we can then recognize that T as nothing but the diagonal

elements of fL We now present a recursive scheme to compute the block diagonal elements of T and of
f_.

' T(nt + 1) = 0
forj : l-..1

fork = nj...lj
T(k) = _b*(k+ 1,k)T(k+ 1)_b(k+ 1,k) + H'(k)D-I(k)H(k)

_(k,k) = T(k)
form = k-1...lj

fl(k,m) = fl*(m,k) = T(k,m+ 1)_b(m+ 1,m)
end loop

end loop

end loop

The above recursion yields the elements f/j on the block diagonal of fL Since f/ is symmetric, the

off-diagonal elements satisfy f_j,: = fl_d' and can be computed from the diagonal elements as follows.
l'2ld for I E 1 ... (j - 1) can be obtained via the following recursive scheme:

if iV(l) = j for some p > 0

for i = nj..-lj
end loop

end loop
else

_i,t = _Ta = 0
end if

for m = nl-..11

_(k,m) = [2*(re, k) = _(k, lj)_b(lj,m) (A.5)

39

• The O(.A/') recursiveimplementation of 136 = -[I - H_I,K]°D-tH_BA'f in Eq. (3.12)in Step (e) is

-- BA" fDefine f -

forj = 1...£

If s-l(j) = 0, then z(0j) -- 0,_(0j) = 0

fork = lj...nj
z(k) - _(k,k-1)z(k-1)+ K(k,k-1)_(k-1)

,(k) = -HCk)z(k)
_(k)= D-1(k)dk)

end loop

end loop

a(m + 1) = 0
forj = t-..1

fork - nj...lj

a(k) - _'(k + I,k)a(k + 1)+ H*(k)v(k)

fl6(k) - u(k)-K*(k+l)a(k+l)

end loop

end loop

given below:

(A.6)

Figure 1: Rluswation of link/branch numbering convention fcf mukibody system

40

